scheduling_ddpm.py 17.3 KB
Newer Older
Ryan Russell's avatar
Ryan Russell committed
1
# Copyright 2022 UC Berkeley Team and The HuggingFace Team. All rights reserved.
Patrick von Platen's avatar
improve  
Patrick von Platen committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
15
16

# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim

anton-l's avatar
anton-l committed
17
import math
18
from dataclasses import dataclass
19
from typing import List, Optional, Tuple, Union
Patrick von Platen's avatar
Patrick von Platen committed
20

Patrick von Platen's avatar
Patrick von Platen committed
21
import numpy as np
22
import torch
Patrick von Platen's avatar
improve  
Patrick von Platen committed
23

24
from ..configuration_utils import ConfigMixin, FrozenDict, register_to_config
25
from ..utils import _COMPATIBLE_STABLE_DIFFUSION_SCHEDULERS, BaseOutput, deprecate
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
from .scheduling_utils import SchedulerMixin


@dataclass
class DDPMSchedulerOutput(BaseOutput):
    """
    Output class for the scheduler's step function output.

    Args:
        prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
            Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the
            denoising loop.
        pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
            The predicted denoised sample (x_{0}) based on the model output from the current timestep.
            `pred_original_sample` can be used to preview progress or for guidance.
    """

    prev_sample: torch.FloatTensor
    pred_original_sample: Optional[torch.FloatTensor] = None
45
46
47
48


def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999):
    """
Patrick von Platen's avatar
Patrick von Platen committed
49
50
    Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
    (1-beta) over time from t = [0,1].
51

52
53
54
55
56
57
58
    Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
    to that part of the diffusion process.


    Args:
        num_diffusion_timesteps (`int`): the number of betas to produce.
        max_beta (`float`): the maximum beta to use; use values lower than 1 to
59
                     prevent singularities.
60
61
62

    Returns:
        betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
63
    """
64

65
66
67
68
69
70
71
72
    def alpha_bar(time_step):
        return math.cos((time_step + 0.008) / 1.008 * math.pi / 2) ** 2

    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
        betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
73
    return torch.tensor(betas, dtype=torch.float32)
Patrick von Platen's avatar
improve  
Patrick von Platen committed
74
75


Patrick von Platen's avatar
Patrick von Platen committed
76
class DDPMScheduler(SchedulerMixin, ConfigMixin):
77
78
79
80
    """
    Denoising diffusion probabilistic models (DDPMs) explores the connections between denoising score matching and
    Langevin dynamics sampling.

81
82
    [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
    function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
83
84
    [`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and
    [`~SchedulerMixin.from_pretrained`] functions.
85

86
87
88
89
90
91
92
93
94
    For more details, see the original paper: https://arxiv.org/abs/2006.11239

    Args:
        num_train_timesteps (`int`): number of diffusion steps used to train the model.
        beta_start (`float`): the starting `beta` value of inference.
        beta_end (`float`): the final `beta` value.
        beta_schedule (`str`):
            the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
            `linear`, `scaled_linear`, or `squaredcos_cap_v2`.
Nathan Lambert's avatar
Nathan Lambert committed
95
96
        trained_betas (`np.ndarray`, optional):
            option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc.
97
98
99
100
101
        variance_type (`str`):
            options to clip the variance used when adding noise to the denoised sample. Choose from `fixed_small`,
            `fixed_small_log`, `fixed_large`, `fixed_large_log`, `learned` or `learned_range`.
        clip_sample (`bool`, default `True`):
            option to clip predicted sample between -1 and 1 for numerical stability.
102
103
104
105
        prediction_type (`str`, default `epsilon`, optional):
            prediction type of the scheduler function, one of `epsilon` (predicting the noise of the diffusion
            process), `sample` (directly predicting the noisy sample`) or `v_prediction` (see section 2.4
            https://imagen.research.google/video/paper.pdf)
106
107
    """

108
    _compatibles = _COMPATIBLE_STABLE_DIFFUSION_SCHEDULERS.copy()
109
    _deprecated_kwargs = ["predict_epsilon"]
110
    order = 1
111

112
    @register_to_config
Patrick von Platen's avatar
improve  
Patrick von Platen committed
113
114
    def __init__(
        self,
Partho's avatar
Partho committed
115
116
117
118
        num_train_timesteps: int = 1000,
        beta_start: float = 0.0001,
        beta_end: float = 0.02,
        beta_schedule: str = "linear",
119
        trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
Partho's avatar
Partho committed
120
121
        variance_type: str = "fixed_small",
        clip_sample: bool = True,
122
123
        prediction_type: str = "epsilon",
        **kwargs,
Patrick von Platen's avatar
improve  
Patrick von Platen committed
124
    ):
125
126
127
128
        message = (
            "Please make sure to instantiate your scheduler with `prediction_type` instead. E.g. `scheduler ="
            " DDPMScheduler.from_pretrained(<model_id>, prediction_type='epsilon')`."
        )
Anton Lozhkov's avatar
Anton Lozhkov committed
129
        predict_epsilon = deprecate("predict_epsilon", "0.13.0", message, take_from=kwargs)
130
131
132
        if predict_epsilon is not None:
            self.register_to_config(prediction_type="epsilon" if predict_epsilon else "sample")

133
        if trained_betas is not None:
134
            self.betas = torch.tensor(trained_betas, dtype=torch.float32)
135
        elif beta_schedule == "linear":
136
            self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
137
138
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
139
140
141
            self.betas = (
                torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
            )
anton-l's avatar
anton-l committed
142
        elif beta_schedule == "squaredcos_cap_v2":
Patrick von Platen's avatar
Patrick von Platen committed
143
            # Glide cosine schedule
Nathan Lambert's avatar
Nathan Lambert committed
144
            self.betas = betas_for_alpha_bar(num_train_timesteps)
Nathan Lambert's avatar
Nathan Lambert committed
145
146
147
148
        elif beta_schedule == "sigmoid":
            # GeoDiff sigmoid schedule
            betas = torch.linspace(-6, 6, num_train_timesteps)
            self.betas = torch.sigmoid(betas) * (beta_end - beta_start) + beta_start
Patrick von Platen's avatar
improve  
Patrick von Platen committed
149
150
151
        else:
            raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")

Patrick von Platen's avatar
Patrick von Platen committed
152
        self.alphas = 1.0 - self.betas
153
154
        self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
        self.one = torch.tensor(1.0)
Patrick von Platen's avatar
Patrick von Platen committed
155

156
157
158
        # standard deviation of the initial noise distribution
        self.init_noise_sigma = 1.0

159
160
        # setable values
        self.num_inference_steps = None
161
        self.timesteps = torch.from_numpy(np.arange(0, num_train_timesteps)[::-1].copy())
Patrick von Platen's avatar
Patrick von Platen committed
162

163
164
        self.variance_type = variance_type

165
166
167
168
169
170
171
172
173
174
175
176
177
178
    def scale_model_input(self, sample: torch.FloatTensor, timestep: Optional[int] = None) -> torch.FloatTensor:
        """
        Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
        current timestep.

        Args:
            sample (`torch.FloatTensor`): input sample
            timestep (`int`, optional): current timestep

        Returns:
            `torch.FloatTensor`: scaled input sample
        """
        return sample

179
    def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None):
180
181
182
183
184
185
186
        """
        Sets the discrete timesteps used for the diffusion chain. Supporting function to be run before inference.

        Args:
            num_inference_steps (`int`):
                the number of diffusion steps used when generating samples with a pre-trained model.
        """
187
188
189
190
191
192
193
194

        if num_inference_steps > self.config.num_train_timesteps:
            raise ValueError(
                f"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:"
                f" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle"
                f" maximal {self.config.num_train_timesteps} timesteps."
            )

195
        self.num_inference_steps = num_inference_steps
196
197
198

        step_ratio = self.config.num_train_timesteps // self.num_inference_steps
        timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.int64)
199
        self.timesteps = torch.from_numpy(timesteps).to(device)
200

201
    def _get_variance(self, t, predicted_variance=None, variance_type=None):
202
203
        alpha_prod_t = self.alphas_cumprod[t]
        alpha_prod_t_prev = self.alphas_cumprod[t - 1] if t > 0 else self.one
Patrick von Platen's avatar
Patrick von Platen committed
204

Kashif Rasul's avatar
Kashif Rasul committed
205
        # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf)
206
        # and sample from it to get previous sample
Kashif Rasul's avatar
Kashif Rasul committed
207
        # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample
208
        variance = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * self.betas[t]
Patrick von Platen's avatar
Patrick von Platen committed
209

210
211
212
        if variance_type is None:
            variance_type = self.config.variance_type

213
        # hacks - were probably added for training stability
214
        if variance_type == "fixed_small":
215
            variance = torch.clamp(variance, min=1e-20)
216
        # for rl-diffuser https://arxiv.org/abs/2205.09991
217
        elif variance_type == "fixed_small_log":
218
            variance = torch.log(torch.clamp(variance, min=1e-20))
219
            variance = torch.exp(0.5 * variance)
220
        elif variance_type == "fixed_large":
221
            variance = self.betas[t]
222
        elif variance_type == "fixed_large_log":
Patrick von Platen's avatar
Patrick von Platen committed
223
            # Glide max_log
224
            variance = torch.log(self.betas[t])
225
226
227
228
229
230
231
        elif variance_type == "learned":
            return predicted_variance
        elif variance_type == "learned_range":
            min_log = variance
            max_log = self.betas[t]
            frac = (predicted_variance + 1) / 2
            variance = frac * max_log + (1 - frac) * min_log
Patrick von Platen's avatar
Patrick von Platen committed
232
233
234

        return variance

235
236
    def step(
        self,
237
        model_output: torch.FloatTensor,
238
        timestep: int,
239
        sample: torch.FloatTensor,
Patrick von Platen's avatar
Patrick von Platen committed
240
        generator=None,
241
        return_dict: bool = True,
242
        **kwargs,
243
    ) -> Union[DDPMSchedulerOutput, Tuple]:
244
245
246
247
248
        """
        Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
        process from the learned model outputs (most often the predicted noise).

        Args:
249
            model_output (`torch.FloatTensor`): direct output from learned diffusion model.
250
            timestep (`int`): current discrete timestep in the diffusion chain.
251
            sample (`torch.FloatTensor`):
252
253
                current instance of sample being created by diffusion process.
            generator: random number generator.
254
            return_dict (`bool`): option for returning tuple rather than DDPMSchedulerOutput class
255
256

        Returns:
257
258
            [`~schedulers.scheduling_utils.DDPMSchedulerOutput`] or `tuple`:
            [`~schedulers.scheduling_utils.DDPMSchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. When
259
            returning a tuple, the first element is the sample tensor.
260
261

        """
262
        message = (
263
264
            "Please make sure to instantiate your scheduler with `prediction_type` instead. E.g. `scheduler ="
            " DDPMScheduler.from_pretrained(<model_id>, prediction_type='epsilon')`."
265
        )
Anton Lozhkov's avatar
Anton Lozhkov committed
266
        predict_epsilon = deprecate("predict_epsilon", "0.13.0", message, take_from=kwargs)
267
        if predict_epsilon is not None:
268
            new_config = dict(self.config)
269
            new_config["prediction_type"] = "epsilon" if predict_epsilon else "sample"
270
271
            self._internal_dict = FrozenDict(new_config)

272
        t = timestep
273

274
275
276
277
278
        if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]:
            model_output, predicted_variance = torch.split(model_output, sample.shape[1], dim=1)
        else:
            predicted_variance = None

Patrick von Platen's avatar
Patrick von Platen committed
279
        # 1. compute alphas, betas
280
281
        alpha_prod_t = self.alphas_cumprod[t]
        alpha_prod_t_prev = self.alphas_cumprod[t - 1] if t > 0 else self.one
Patrick von Platen's avatar
Patrick von Platen committed
282
283
284
        beta_prod_t = 1 - alpha_prod_t
        beta_prod_t_prev = 1 - alpha_prod_t_prev

285
        # 2. compute predicted original sample from predicted noise also called
Patrick von Platen's avatar
Patrick von Platen committed
286
        # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
287
        if self.config.prediction_type == "epsilon":
Patrick von Platen's avatar
Patrick von Platen committed
288
            pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
289
        elif self.config.prediction_type == "sample":
Patrick von Platen's avatar
Patrick von Platen committed
290
            pred_original_sample = model_output
291
292
        elif self.config.prediction_type == "v_prediction":
            pred_original_sample = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output
293
294
        else:
            raise ValueError(
295
296
                f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` or"
                " `v_prediction`  for the DDPMScheduler."
297
            )
Patrick von Platen's avatar
Patrick von Platen committed
298
299

        # 3. Clip "predicted x_0"
300
        if self.config.clip_sample:
301
            pred_original_sample = torch.clamp(pred_original_sample, -1, 1)
Patrick von Platen's avatar
Patrick von Platen committed
302

303
        # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
Patrick von Platen's avatar
Patrick von Platen committed
304
        # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
305
306
        pred_original_sample_coeff = (alpha_prod_t_prev ** (0.5) * self.betas[t]) / beta_prod_t
        current_sample_coeff = self.alphas[t] ** (0.5) * beta_prod_t_prev / beta_prod_t
Patrick von Platen's avatar
Patrick von Platen committed
307

308
        # 5. Compute predicted previous sample µ_t
Patrick von Platen's avatar
Patrick von Platen committed
309
        # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
310
        pred_prev_sample = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
Patrick von Platen's avatar
Patrick von Platen committed
311

Patrick von Platen's avatar
Patrick von Platen committed
312
313
314
        # 6. Add noise
        variance = 0
        if t > 0:
315
316
317
318
319
320
321
322
323
            device = model_output.device
            if device.type == "mps":
                # randn does not work reproducibly on mps
                variance_noise = torch.randn(model_output.shape, dtype=model_output.dtype, generator=generator)
                variance_noise = variance_noise.to(device)
            else:
                variance_noise = torch.randn(
                    model_output.shape, generator=generator, device=device, dtype=model_output.dtype
                )
324
325
326
327
            if self.variance_type == "fixed_small_log":
                variance = self._get_variance(t, predicted_variance=predicted_variance) * variance_noise
            else:
                variance = (self._get_variance(t, predicted_variance=predicted_variance) ** 0.5) * variance_noise
Patrick von Platen's avatar
Patrick von Platen committed
328
329
330

        pred_prev_sample = pred_prev_sample + variance

331
332
333
        if not return_dict:
            return (pred_prev_sample,)

334
        return DDPMSchedulerOutput(prev_sample=pred_prev_sample, pred_original_sample=pred_original_sample)
Patrick von Platen's avatar
Patrick von Platen committed
335

Partho's avatar
Partho committed
336
337
    def add_noise(
        self,
338
339
340
341
        original_samples: torch.FloatTensor,
        noise: torch.FloatTensor,
        timesteps: torch.IntTensor,
    ) -> torch.FloatTensor:
342
343
344
        # Make sure alphas_cumprod and timestep have same device and dtype as original_samples
        self.alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device, dtype=original_samples.dtype)
        timesteps = timesteps.to(original_samples.device)
345

anton-l's avatar
anton-l committed
346
        sqrt_alpha_prod = self.alphas_cumprod[timesteps] ** 0.5
347
348
349
350
        sqrt_alpha_prod = sqrt_alpha_prod.flatten()
        while len(sqrt_alpha_prod.shape) < len(original_samples.shape):
            sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)

anton-l's avatar
anton-l committed
351
        sqrt_one_minus_alpha_prod = (1 - self.alphas_cumprod[timesteps]) ** 0.5
352
        sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
353
354
        while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape):
            sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
355
356

        noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
anton-l's avatar
anton-l committed
357
        return noisy_samples
anton-l's avatar
anton-l committed
358

359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
    def get_velocity(
        self, sample: torch.FloatTensor, noise: torch.FloatTensor, timesteps: torch.IntTensor
    ) -> torch.FloatTensor:
        # Make sure alphas_cumprod and timestep have same device and dtype as sample
        self.alphas_cumprod = self.alphas_cumprod.to(device=sample.device, dtype=sample.dtype)
        timesteps = timesteps.to(sample.device)

        sqrt_alpha_prod = self.alphas_cumprod[timesteps] ** 0.5
        sqrt_alpha_prod = sqrt_alpha_prod.flatten()
        while len(sqrt_alpha_prod.shape) < len(sample.shape):
            sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)

        sqrt_one_minus_alpha_prod = (1 - self.alphas_cumprod[timesteps]) ** 0.5
        sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
        while len(sqrt_one_minus_alpha_prod.shape) < len(sample.shape):
            sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)

        velocity = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample
        return velocity

Patrick von Platen's avatar
improve  
Patrick von Platen committed
379
    def __len__(self):
Nathan Lambert's avatar
Nathan Lambert committed
380
        return self.config.num_train_timesteps