scheduling_ddpm.py 25.6 KB
Newer Older
1
# Copyright 2024 UC Berkeley Team and The HuggingFace Team. All rights reserved.
Patrick von Platen's avatar
improve  
Patrick von Platen committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
15
16

# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim

anton-l's avatar
anton-l committed
17
import math
18
from dataclasses import dataclass
19
from typing import List, Optional, Tuple, Union
Patrick von Platen's avatar
Patrick von Platen committed
20

Patrick von Platen's avatar
Patrick von Platen committed
21
import numpy as np
22
import torch
Patrick von Platen's avatar
improve  
Patrick von Platen committed
23

24
from ..configuration_utils import ConfigMixin, register_to_config
Dhruv Nair's avatar
Dhruv Nair committed
25
26
from ..utils import BaseOutput
from ..utils.torch_utils import randn_tensor
Kashif Rasul's avatar
Kashif Rasul committed
27
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin
28
29
30
31
32


@dataclass
class DDPMSchedulerOutput(BaseOutput):
    """
33
    Output class for the scheduler's `step` function output.
34
35
36

    Args:
        prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
37
            Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
38
39
            denoising loop.
        pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
40
            The predicted denoised sample `(x_{0})` based on the model output from the current timestep.
41
42
43
44
45
            `pred_original_sample` can be used to preview progress or for guidance.
    """

    prev_sample: torch.FloatTensor
    pred_original_sample: Optional[torch.FloatTensor] = None
46
47


YiYi Xu's avatar
YiYi Xu committed
48
49
50
51
52
def betas_for_alpha_bar(
    num_diffusion_timesteps,
    max_beta=0.999,
    alpha_transform_type="cosine",
):
53
    """
Patrick von Platen's avatar
Patrick von Platen committed
54
55
    Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
    (1-beta) over time from t = [0,1].
56

57
58
59
60
61
62
63
    Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
    to that part of the diffusion process.


    Args:
        num_diffusion_timesteps (`int`): the number of betas to produce.
        max_beta (`float`): the maximum beta to use; use values lower than 1 to
64
                     prevent singularities.
YiYi Xu's avatar
YiYi Xu committed
65
66
        alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar.
                     Choose from `cosine` or `exp`
67
68
69

    Returns:
        betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
70
    """
YiYi Xu's avatar
YiYi Xu committed
71
    if alpha_transform_type == "cosine":
72

YiYi Xu's avatar
YiYi Xu committed
73
74
75
76
77
78
79
80
81
        def alpha_bar_fn(t):
            return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2

    elif alpha_transform_type == "exp":

        def alpha_bar_fn(t):
            return math.exp(t * -12.0)

    else:
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
82
        raise ValueError(f"Unsupported alpha_transform_type: {alpha_transform_type}")
83
84
85
86
87

    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
YiYi Xu's avatar
YiYi Xu committed
88
        betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta))
89
    return torch.tensor(betas, dtype=torch.float32)
Patrick von Platen's avatar
improve  
Patrick von Platen committed
90
91


92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
# Copied from diffusers.schedulers.scheduling_ddim.rescale_zero_terminal_snr
def rescale_zero_terminal_snr(betas):
    """
    Rescales betas to have zero terminal SNR Based on https://arxiv.org/pdf/2305.08891.pdf (Algorithm 1)


    Args:
        betas (`torch.FloatTensor`):
            the betas that the scheduler is being initialized with.

    Returns:
        `torch.FloatTensor`: rescaled betas with zero terminal SNR
    """
    # Convert betas to alphas_bar_sqrt
    alphas = 1.0 - betas
    alphas_cumprod = torch.cumprod(alphas, dim=0)
    alphas_bar_sqrt = alphas_cumprod.sqrt()

    # Store old values.
    alphas_bar_sqrt_0 = alphas_bar_sqrt[0].clone()
    alphas_bar_sqrt_T = alphas_bar_sqrt[-1].clone()

    # Shift so the last timestep is zero.
    alphas_bar_sqrt -= alphas_bar_sqrt_T

    # Scale so the first timestep is back to the old value.
    alphas_bar_sqrt *= alphas_bar_sqrt_0 / (alphas_bar_sqrt_0 - alphas_bar_sqrt_T)

    # Convert alphas_bar_sqrt to betas
    alphas_bar = alphas_bar_sqrt**2  # Revert sqrt
    alphas = alphas_bar[1:] / alphas_bar[:-1]  # Revert cumprod
    alphas = torch.cat([alphas_bar[0:1], alphas])
    betas = 1 - alphas

    return betas


Patrick von Platen's avatar
Patrick von Platen committed
129
class DDPMScheduler(SchedulerMixin, ConfigMixin):
130
    """
131
    `DDPMScheduler` explores the connections between denoising score matching and Langevin dynamics sampling.
132

133
134
    This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
    methods the library implements for all schedulers such as loading and saving.
135
136

    Args:
137
138
139
140
141
142
143
144
145
        num_train_timesteps (`int`, defaults to 1000):
            The number of diffusion steps to train the model.
        beta_start (`float`, defaults to 0.0001):
            The starting `beta` value of inference.
        beta_end (`float`, defaults to 0.02):
            The final `beta` value.
        beta_schedule (`str`, defaults to `"linear"`):
            The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
            `linear`, `scaled_linear`, or `squaredcos_cap_v2`.
146
147
        trained_betas (`np.ndarray`, *optional*):
            An array of betas to pass directly to the constructor without using `beta_start` and `beta_end`.
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
        variance_type (`str`, defaults to `"fixed_small"`):
            Clip the variance when adding noise to the denoised sample. Choose from `fixed_small`, `fixed_small_log`,
            `fixed_large`, `fixed_large_log`, `learned` or `learned_range`.
        clip_sample (`bool`, defaults to `True`):
            Clip the predicted sample for numerical stability.
        clip_sample_range (`float`, defaults to 1.0):
            The maximum magnitude for sample clipping. Valid only when `clip_sample=True`.
        prediction_type (`str`, defaults to `epsilon`, *optional*):
            Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
            `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
            Video](https://imagen.research.google/video/paper.pdf) paper).
        thresholding (`bool`, defaults to `False`):
            Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
            as Stable Diffusion.
        dynamic_thresholding_ratio (`float`, defaults to 0.995):
            The ratio for the dynamic thresholding method. Valid only when `thresholding=True`.
        sample_max_value (`float`, defaults to 1.0):
            The threshold value for dynamic thresholding. Valid only when `thresholding=True`.
        timestep_spacing (`str`, defaults to `"leading"`):
            The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
            Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
        steps_offset (`int`, defaults to 0):
170
            An offset added to the inference steps, as required by some model families.
171
172
173
174
        rescale_betas_zero_snr (`bool`, defaults to `False`):
            Whether to rescale the betas to have zero terminal SNR. This enables the model to generate very bright and
            dark samples instead of limiting it to samples with medium brightness. Loosely related to
            [`--offset_noise`](https://github.com/huggingface/diffusers/blob/74fd735eb073eb1d774b1ab4154a0876eb82f055/examples/dreambooth/train_dreambooth.py#L506).
175
176
    """

Kashif Rasul's avatar
Kashif Rasul committed
177
    _compatibles = [e.name for e in KarrasDiffusionSchedulers]
178
    order = 1
179

180
    @register_to_config
Patrick von Platen's avatar
improve  
Patrick von Platen committed
181
182
    def __init__(
        self,
Partho's avatar
Partho committed
183
184
185
186
        num_train_timesteps: int = 1000,
        beta_start: float = 0.0001,
        beta_end: float = 0.02,
        beta_schedule: str = "linear",
187
        trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
Partho's avatar
Partho committed
188
189
        variance_type: str = "fixed_small",
        clip_sample: bool = True,
190
        prediction_type: str = "epsilon",
191
192
193
194
        thresholding: bool = False,
        dynamic_thresholding_ratio: float = 0.995,
        clip_sample_range: float = 1.0,
        sample_max_value: float = 1.0,
195
196
        timestep_spacing: str = "leading",
        steps_offset: int = 0,
197
        rescale_betas_zero_snr: int = False,
Patrick von Platen's avatar
improve  
Patrick von Platen committed
198
    ):
199
        if trained_betas is not None:
200
            self.betas = torch.tensor(trained_betas, dtype=torch.float32)
201
        elif beta_schedule == "linear":
202
            self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
203
204
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
205
            self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
anton-l's avatar
anton-l committed
206
        elif beta_schedule == "squaredcos_cap_v2":
Patrick von Platen's avatar
Patrick von Platen committed
207
            # Glide cosine schedule
Nathan Lambert's avatar
Nathan Lambert committed
208
            self.betas = betas_for_alpha_bar(num_train_timesteps)
Nathan Lambert's avatar
Nathan Lambert committed
209
210
211
212
        elif beta_schedule == "sigmoid":
            # GeoDiff sigmoid schedule
            betas = torch.linspace(-6, 6, num_train_timesteps)
            self.betas = torch.sigmoid(betas) * (beta_end - beta_start) + beta_start
Patrick von Platen's avatar
improve  
Patrick von Platen committed
213
214
215
        else:
            raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")

216
217
218
219
        # Rescale for zero SNR
        if rescale_betas_zero_snr:
            self.betas = rescale_zero_terminal_snr(self.betas)

Patrick von Platen's avatar
Patrick von Platen committed
220
        self.alphas = 1.0 - self.betas
221
222
        self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
        self.one = torch.tensor(1.0)
Patrick von Platen's avatar
Patrick von Platen committed
223

224
225
226
        # standard deviation of the initial noise distribution
        self.init_noise_sigma = 1.0

227
        # setable values
Will Berman's avatar
Will Berman committed
228
        self.custom_timesteps = False
229
        self.num_inference_steps = None
230
        self.timesteps = torch.from_numpy(np.arange(0, num_train_timesteps)[::-1].copy())
Patrick von Platen's avatar
Patrick von Platen committed
231

232
233
        self.variance_type = variance_type

234
235
236
237
238
239
    def scale_model_input(self, sample: torch.FloatTensor, timestep: Optional[int] = None) -> torch.FloatTensor:
        """
        Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
        current timestep.

        Args:
240
241
242
243
            sample (`torch.FloatTensor`):
                The input sample.
            timestep (`int`, *optional*):
                The current timestep in the diffusion chain.
244
245

        Returns:
246
247
            `torch.FloatTensor`:
                A scaled input sample.
248
249
250
        """
        return sample

Will Berman's avatar
Will Berman committed
251
252
253
254
255
256
    def set_timesteps(
        self,
        num_inference_steps: Optional[int] = None,
        device: Union[str, torch.device] = None,
        timesteps: Optional[List[int]] = None,
    ):
257
        """
258
        Sets the discrete timesteps used for the diffusion chain (to be run before inference).
259
260

        Args:
261
262
            num_inference_steps (`int`):
                The number of diffusion steps used when generating samples with a pre-trained model. If used,
Will Berman's avatar
Will Berman committed
263
                `timesteps` must be `None`.
264
265
266
267
268
269
            device (`str` or `torch.device`, *optional*):
                The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
            timesteps (`List[int]`, *optional*):
                Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
                timestep spacing strategy of equal spacing between timesteps is used. If `timesteps` is passed,
                `num_inference_steps` must be `None`.
Will Berman's avatar
Will Berman committed
270

271
        """
Will Berman's avatar
Will Berman committed
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
        if num_inference_steps is not None and timesteps is not None:
            raise ValueError("Can only pass one of `num_inference_steps` or `custom_timesteps`.")

        if timesteps is not None:
            for i in range(1, len(timesteps)):
                if timesteps[i] >= timesteps[i - 1]:
                    raise ValueError("`custom_timesteps` must be in descending order.")

            if timesteps[0] >= self.config.num_train_timesteps:
                raise ValueError(
                    f"`timesteps` must start before `self.config.train_timesteps`:"
                    f" {self.config.num_train_timesteps}."
                )

            timesteps = np.array(timesteps, dtype=np.int64)
            self.custom_timesteps = True
        else:
            if num_inference_steps > self.config.num_train_timesteps:
                raise ValueError(
                    f"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:"
                    f" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle"
                    f" maximal {self.config.num_train_timesteps} timesteps."
                )
295

Will Berman's avatar
Will Berman committed
296
297
            self.num_inference_steps = num_inference_steps
            self.custom_timesteps = False
298

299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
            # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891
            if self.config.timestep_spacing == "linspace":
                timesteps = (
                    np.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps)
                    .round()[::-1]
                    .copy()
                    .astype(np.int64)
                )
            elif self.config.timestep_spacing == "leading":
                step_ratio = self.config.num_train_timesteps // self.num_inference_steps
                # creates integer timesteps by multiplying by ratio
                # casting to int to avoid issues when num_inference_step is power of 3
                timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.int64)
                timesteps += self.config.steps_offset
            elif self.config.timestep_spacing == "trailing":
                step_ratio = self.config.num_train_timesteps / self.num_inference_steps
                # creates integer timesteps by multiplying by ratio
                # casting to int to avoid issues when num_inference_step is power of 3
                timesteps = np.round(np.arange(self.config.num_train_timesteps, 0, -step_ratio)).astype(np.int64)
                timesteps -= 1
            else:
                raise ValueError(
                    f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'."
                )

324
        self.timesteps = torch.from_numpy(timesteps).to(device)
325

326
    def _get_variance(self, t, predicted_variance=None, variance_type=None):
Will Berman's avatar
Will Berman committed
327
328
        prev_t = self.previous_timestep(t)

329
        alpha_prod_t = self.alphas_cumprod[t]
330
331
        alpha_prod_t_prev = self.alphas_cumprod[prev_t] if prev_t >= 0 else self.one
        current_beta_t = 1 - alpha_prod_t / alpha_prod_t_prev
Patrick von Platen's avatar
Patrick von Platen committed
332

Kashif Rasul's avatar
Kashif Rasul committed
333
        # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf)
334
        # and sample from it to get previous sample
Kashif Rasul's avatar
Kashif Rasul committed
335
        # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample
336
        variance = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * current_beta_t
William Berman's avatar
William Berman committed
337
338

        # we always take the log of variance, so clamp it to ensure it's not 0
William Berman's avatar
William Berman committed
339
        variance = torch.clamp(variance, min=1e-20)
Patrick von Platen's avatar
Patrick von Platen committed
340

341
342
343
        if variance_type is None:
            variance_type = self.config.variance_type

344
        # hacks - were probably added for training stability
345
        if variance_type == "fixed_small":
William Berman's avatar
William Berman committed
346
            variance = variance
347
        # for rl-diffuser https://arxiv.org/abs/2205.09991
348
        elif variance_type == "fixed_small_log":
349
            variance = torch.log(variance)
350
            variance = torch.exp(0.5 * variance)
351
        elif variance_type == "fixed_large":
352
            variance = current_beta_t
353
        elif variance_type == "fixed_large_log":
Patrick von Platen's avatar
Patrick von Platen committed
354
            # Glide max_log
355
            variance = torch.log(current_beta_t)
356
357
358
        elif variance_type == "learned":
            return predicted_variance
        elif variance_type == "learned_range":
359
            min_log = torch.log(variance)
William Berman's avatar
William Berman committed
360
            max_log = torch.log(current_beta_t)
361
362
            frac = (predicted_variance + 1) / 2
            variance = frac * max_log + (1 - frac) * min_log
Patrick von Platen's avatar
Patrick von Platen committed
363
364
365

        return variance

366
    def _threshold_sample(self, sample: torch.FloatTensor) -> torch.FloatTensor:
367
368
369
370
371
372
373
374
375
376
        """
        "Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the
        prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by
        s. Dynamic thresholding pushes saturated pixels (those near -1 and 1) inwards, thereby actively preventing
        pixels from saturation at each step. We find that dynamic thresholding results in significantly better
        photorealism as well as better image-text alignment, especially when using very large guidance weights."

        https://arxiv.org/abs/2205.11487
        """
        dtype = sample.dtype
377
        batch_size, channels, *remaining_dims = sample.shape
378
379
380
381
382

        if dtype not in (torch.float32, torch.float64):
            sample = sample.float()  # upcast for quantile calculation, and clamp not implemented for cpu half

        # Flatten sample for doing quantile calculation along each image
383
        sample = sample.reshape(batch_size, channels * np.prod(remaining_dims))
384
385
386
387
388
389
390
391
392
393

        abs_sample = sample.abs()  # "a certain percentile absolute pixel value"

        s = torch.quantile(abs_sample, self.config.dynamic_thresholding_ratio, dim=1)
        s = torch.clamp(
            s, min=1, max=self.config.sample_max_value
        )  # When clamped to min=1, equivalent to standard clipping to [-1, 1]
        s = s.unsqueeze(1)  # (batch_size, 1) because clamp will broadcast along dim=0
        sample = torch.clamp(sample, -s, s) / s  # "we threshold xt0 to the range [-s, s] and then divide by s"

394
        sample = sample.reshape(batch_size, channels, *remaining_dims)
395
396
397
        sample = sample.to(dtype)

        return sample
398

399
400
    def step(
        self,
401
        model_output: torch.FloatTensor,
402
        timestep: int,
403
        sample: torch.FloatTensor,
Patrick von Platen's avatar
Patrick von Platen committed
404
        generator=None,
405
        return_dict: bool = True,
406
    ) -> Union[DDPMSchedulerOutput, Tuple]:
407
        """
408
        Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
409
410
411
        process from the learned model outputs (most often the predicted noise).

        Args:
412
413
414
415
            model_output (`torch.FloatTensor`):
                The direct output from learned diffusion model.
            timestep (`float`):
                The current discrete timestep in the diffusion chain.
416
            sample (`torch.FloatTensor`):
417
418
419
420
421
                A current instance of a sample created by the diffusion process.
            generator (`torch.Generator`, *optional*):
                A random number generator.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~schedulers.scheduling_ddpm.DDPMSchedulerOutput`] or `tuple`.
422
423

        Returns:
424
425
426
            [`~schedulers.scheduling_ddpm.DDPMSchedulerOutput`] or `tuple`:
                If return_dict is `True`, [`~schedulers.scheduling_ddpm.DDPMSchedulerOutput`] is returned, otherwise a
                tuple is returned where the first element is the sample tensor.
427
428

        """
429
        t = timestep
Will Berman's avatar
Will Berman committed
430
431

        prev_t = self.previous_timestep(t)
432

433
434
435
436
437
        if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]:
            model_output, predicted_variance = torch.split(model_output, sample.shape[1], dim=1)
        else:
            predicted_variance = None

Patrick von Platen's avatar
Patrick von Platen committed
438
        # 1. compute alphas, betas
439
        alpha_prod_t = self.alphas_cumprod[t]
440
        alpha_prod_t_prev = self.alphas_cumprod[prev_t] if prev_t >= 0 else self.one
Patrick von Platen's avatar
Patrick von Platen committed
441
442
        beta_prod_t = 1 - alpha_prod_t
        beta_prod_t_prev = 1 - alpha_prod_t_prev
443
444
        current_alpha_t = alpha_prod_t / alpha_prod_t_prev
        current_beta_t = 1 - current_alpha_t
Patrick von Platen's avatar
Patrick von Platen committed
445

446
        # 2. compute predicted original sample from predicted noise also called
Patrick von Platen's avatar
Patrick von Platen committed
447
        # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
448
        if self.config.prediction_type == "epsilon":
Patrick von Platen's avatar
Patrick von Platen committed
449
            pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
450
        elif self.config.prediction_type == "sample":
Patrick von Platen's avatar
Patrick von Platen committed
451
            pred_original_sample = model_output
452
453
        elif self.config.prediction_type == "v_prediction":
            pred_original_sample = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output
454
455
        else:
            raise ValueError(
456
457
                f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` or"
                " `v_prediction`  for the DDPMScheduler."
458
            )
Patrick von Platen's avatar
Patrick von Platen committed
459

460
        # 3. Clip or threshold "predicted x_0"
461
462
463
        if self.config.thresholding:
            pred_original_sample = self._threshold_sample(pred_original_sample)
        elif self.config.clip_sample:
464
465
            pred_original_sample = pred_original_sample.clamp(
                -self.config.clip_sample_range, self.config.clip_sample_range
Will Berman's avatar
Will Berman committed
466
            )
Patrick von Platen's avatar
Patrick von Platen committed
467

468
        # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
Patrick von Platen's avatar
Patrick von Platen committed
469
        # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
470
471
        pred_original_sample_coeff = (alpha_prod_t_prev ** (0.5) * current_beta_t) / beta_prod_t
        current_sample_coeff = current_alpha_t ** (0.5) * beta_prod_t_prev / beta_prod_t
Patrick von Platen's avatar
Patrick von Platen committed
472

473
        # 5. Compute predicted previous sample µ_t
Patrick von Platen's avatar
Patrick von Platen committed
474
        # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
475
        pred_prev_sample = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
Patrick von Platen's avatar
Patrick von Platen committed
476

Patrick von Platen's avatar
Patrick von Platen committed
477
478
479
        # 6. Add noise
        variance = 0
        if t > 0:
480
            device = model_output.device
481
482
483
            variance_noise = randn_tensor(
                model_output.shape, generator=generator, device=device, dtype=model_output.dtype
            )
484
485
            if self.variance_type == "fixed_small_log":
                variance = self._get_variance(t, predicted_variance=predicted_variance) * variance_noise
486
487
488
            elif self.variance_type == "learned_range":
                variance = self._get_variance(t, predicted_variance=predicted_variance)
                variance = torch.exp(0.5 * variance) * variance_noise
489
490
            else:
                variance = (self._get_variance(t, predicted_variance=predicted_variance) ** 0.5) * variance_noise
Patrick von Platen's avatar
Patrick von Platen committed
491
492
493

        pred_prev_sample = pred_prev_sample + variance

494
495
496
        if not return_dict:
            return (pred_prev_sample,)

497
        return DDPMSchedulerOutput(prev_sample=pred_prev_sample, pred_original_sample=pred_original_sample)
Patrick von Platen's avatar
Patrick von Platen committed
498

Partho's avatar
Partho committed
499
500
    def add_noise(
        self,
501
502
503
504
        original_samples: torch.FloatTensor,
        noise: torch.FloatTensor,
        timesteps: torch.IntTensor,
    ) -> torch.FloatTensor:
505
        # Make sure alphas_cumprod and timestep have same device and dtype as original_samples
506
507
508
509
        # Move the self.alphas_cumprod to device to avoid redundant CPU to GPU data movement
        # for the subsequent add_noise calls
        self.alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device)
        alphas_cumprod = self.alphas_cumprod.to(dtype=original_samples.dtype)
510
        timesteps = timesteps.to(original_samples.device)
511

512
        sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
513
514
515
516
        sqrt_alpha_prod = sqrt_alpha_prod.flatten()
        while len(sqrt_alpha_prod.shape) < len(original_samples.shape):
            sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)

517
        sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
518
        sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
519
520
        while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape):
            sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
521
522

        noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
anton-l's avatar
anton-l committed
523
        return noisy_samples
anton-l's avatar
anton-l committed
524

525
526
527
528
    def get_velocity(
        self, sample: torch.FloatTensor, noise: torch.FloatTensor, timesteps: torch.IntTensor
    ) -> torch.FloatTensor:
        # Make sure alphas_cumprod and timestep have same device and dtype as sample
529
530
        self.alphas_cumprod = self.alphas_cumprod.to(device=sample.device)
        alphas_cumprod = self.alphas_cumprod.to(dtype=sample.dtype)
531
532
        timesteps = timesteps.to(sample.device)

533
        sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
534
535
536
537
        sqrt_alpha_prod = sqrt_alpha_prod.flatten()
        while len(sqrt_alpha_prod.shape) < len(sample.shape):
            sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)

538
        sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
539
540
541
542
543
544
545
        sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
        while len(sqrt_one_minus_alpha_prod.shape) < len(sample.shape):
            sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)

        velocity = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample
        return velocity

Patrick von Platen's avatar
improve  
Patrick von Platen committed
546
    def __len__(self):
Nathan Lambert's avatar
Nathan Lambert committed
547
        return self.config.num_train_timesteps
Will Berman's avatar
Will Berman committed
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562

    def previous_timestep(self, timestep):
        if self.custom_timesteps:
            index = (self.timesteps == timestep).nonzero(as_tuple=True)[0][0]
            if index == self.timesteps.shape[0] - 1:
                prev_t = torch.tensor(-1)
            else:
                prev_t = self.timesteps[index + 1]
        else:
            num_inference_steps = (
                self.num_inference_steps if self.num_inference_steps else self.config.num_train_timesteps
            )
            prev_t = timestep - self.config.num_train_timesteps // num_inference_steps

        return prev_t