scheduling_ddpm.py 18.3 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
# Copyright 2023 UC Berkeley Team and The HuggingFace Team. All rights reserved.
Patrick von Platen's avatar
improve  
Patrick von Platen committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
15
16

# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim

anton-l's avatar
anton-l committed
17
import math
18
from dataclasses import dataclass
19
from typing import List, Optional, Tuple, Union
Patrick von Platen's avatar
Patrick von Platen committed
20

Patrick von Platen's avatar
Patrick von Platen committed
21
import numpy as np
22
import torch
Patrick von Platen's avatar
improve  
Patrick von Platen committed
23

24
25
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, randn_tensor
Kashif Rasul's avatar
Kashif Rasul committed
26
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44


@dataclass
class DDPMSchedulerOutput(BaseOutput):
    """
    Output class for the scheduler's step function output.

    Args:
        prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
            Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the
            denoising loop.
        pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
            The predicted denoised sample (x_{0}) based on the model output from the current timestep.
            `pred_original_sample` can be used to preview progress or for guidance.
    """

    prev_sample: torch.FloatTensor
    pred_original_sample: Optional[torch.FloatTensor] = None
45
46
47
48


def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999):
    """
Patrick von Platen's avatar
Patrick von Platen committed
49
50
    Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
    (1-beta) over time from t = [0,1].
51

52
53
54
55
56
57
58
    Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
    to that part of the diffusion process.


    Args:
        num_diffusion_timesteps (`int`): the number of betas to produce.
        max_beta (`float`): the maximum beta to use; use values lower than 1 to
59
                     prevent singularities.
60
61
62

    Returns:
        betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
63
    """
64

65
66
67
68
69
70
71
72
    def alpha_bar(time_step):
        return math.cos((time_step + 0.008) / 1.008 * math.pi / 2) ** 2

    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
        betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
73
    return torch.tensor(betas, dtype=torch.float32)
Patrick von Platen's avatar
improve  
Patrick von Platen committed
74
75


Patrick von Platen's avatar
Patrick von Platen committed
76
class DDPMScheduler(SchedulerMixin, ConfigMixin):
77
78
79
80
    """
    Denoising diffusion probabilistic models (DDPMs) explores the connections between denoising score matching and
    Langevin dynamics sampling.

81
82
    [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
    function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
83
84
    [`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and
    [`~SchedulerMixin.from_pretrained`] functions.
85

86
87
88
89
90
91
92
93
94
    For more details, see the original paper: https://arxiv.org/abs/2006.11239

    Args:
        num_train_timesteps (`int`): number of diffusion steps used to train the model.
        beta_start (`float`): the starting `beta` value of inference.
        beta_end (`float`): the final `beta` value.
        beta_schedule (`str`):
            the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
            `linear`, `scaled_linear`, or `squaredcos_cap_v2`.
Nathan Lambert's avatar
Nathan Lambert committed
95
96
        trained_betas (`np.ndarray`, optional):
            option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc.
97
98
99
100
        variance_type (`str`):
            options to clip the variance used when adding noise to the denoised sample. Choose from `fixed_small`,
            `fixed_small_log`, `fixed_large`, `fixed_large_log`, `learned` or `learned_range`.
        clip_sample (`bool`, default `True`):
101
102
103
            option to clip predicted sample for numerical stability.
        clip_sample_range (`float`, default `1.0`):
            the maximum magnitude for sample clipping. Valid only when `clip_sample=True`.
104
105
106
107
        prediction_type (`str`, default `epsilon`, optional):
            prediction type of the scheduler function, one of `epsilon` (predicting the noise of the diffusion
            process), `sample` (directly predicting the noisy sample`) or `v_prediction` (see section 2.4
            https://imagen.research.google/video/paper.pdf)
108
109
110
111
112
113
114
115
116
        thresholding (`bool`, default `False`):
            whether to use the "dynamic thresholding" method (introduced by Imagen, https://arxiv.org/abs/2205.11487).
            Note that the thresholding method is unsuitable for latent-space diffusion models (such as
            stable-diffusion).
        dynamic_thresholding_ratio (`float`, default `0.995`):
            the ratio for the dynamic thresholding method. Default is `0.995`, the same as Imagen
            (https://arxiv.org/abs/2205.11487). Valid only when `thresholding=True`.
        sample_max_value (`float`, default `1.0`):
            the threshold value for dynamic thresholding. Valid only when `thresholding=True`.
117
118
    """

Kashif Rasul's avatar
Kashif Rasul committed
119
    _compatibles = [e.name for e in KarrasDiffusionSchedulers]
120
    order = 1
121

122
    @register_to_config
Patrick von Platen's avatar
improve  
Patrick von Platen committed
123
124
    def __init__(
        self,
Partho's avatar
Partho committed
125
126
127
128
        num_train_timesteps: int = 1000,
        beta_start: float = 0.0001,
        beta_end: float = 0.02,
        beta_schedule: str = "linear",
129
        trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
Partho's avatar
Partho committed
130
131
        variance_type: str = "fixed_small",
        clip_sample: bool = True,
132
        prediction_type: str = "epsilon",
133
134
135
136
        thresholding: bool = False,
        dynamic_thresholding_ratio: float = 0.995,
        clip_sample_range: float = 1.0,
        sample_max_value: float = 1.0,
Patrick von Platen's avatar
improve  
Patrick von Platen committed
137
    ):
138
        if trained_betas is not None:
139
            self.betas = torch.tensor(trained_betas, dtype=torch.float32)
140
        elif beta_schedule == "linear":
141
            self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
142
143
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
144
145
146
            self.betas = (
                torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
            )
anton-l's avatar
anton-l committed
147
        elif beta_schedule == "squaredcos_cap_v2":
Patrick von Platen's avatar
Patrick von Platen committed
148
            # Glide cosine schedule
Nathan Lambert's avatar
Nathan Lambert committed
149
            self.betas = betas_for_alpha_bar(num_train_timesteps)
Nathan Lambert's avatar
Nathan Lambert committed
150
151
152
153
        elif beta_schedule == "sigmoid":
            # GeoDiff sigmoid schedule
            betas = torch.linspace(-6, 6, num_train_timesteps)
            self.betas = torch.sigmoid(betas) * (beta_end - beta_start) + beta_start
Patrick von Platen's avatar
improve  
Patrick von Platen committed
154
155
156
        else:
            raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")

Patrick von Platen's avatar
Patrick von Platen committed
157
        self.alphas = 1.0 - self.betas
158
159
        self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
        self.one = torch.tensor(1.0)
Patrick von Platen's avatar
Patrick von Platen committed
160

161
162
163
        # standard deviation of the initial noise distribution
        self.init_noise_sigma = 1.0

164
165
        # setable values
        self.num_inference_steps = None
166
        self.timesteps = torch.from_numpy(np.arange(0, num_train_timesteps)[::-1].copy())
Patrick von Platen's avatar
Patrick von Platen committed
167

168
169
        self.variance_type = variance_type

170
171
172
173
174
175
176
177
178
179
180
181
182
183
    def scale_model_input(self, sample: torch.FloatTensor, timestep: Optional[int] = None) -> torch.FloatTensor:
        """
        Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
        current timestep.

        Args:
            sample (`torch.FloatTensor`): input sample
            timestep (`int`, optional): current timestep

        Returns:
            `torch.FloatTensor`: scaled input sample
        """
        return sample

184
    def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None):
185
186
187
188
189
190
191
        """
        Sets the discrete timesteps used for the diffusion chain. Supporting function to be run before inference.

        Args:
            num_inference_steps (`int`):
                the number of diffusion steps used when generating samples with a pre-trained model.
        """
192
193
194
195
196
197
198
199

        if num_inference_steps > self.config.num_train_timesteps:
            raise ValueError(
                f"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:"
                f" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle"
                f" maximal {self.config.num_train_timesteps} timesteps."
            )

200
        self.num_inference_steps = num_inference_steps
201
202
203

        step_ratio = self.config.num_train_timesteps // self.num_inference_steps
        timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.int64)
204
        self.timesteps = torch.from_numpy(timesteps).to(device)
205

206
    def _get_variance(self, t, predicted_variance=None, variance_type=None):
207
208
        num_inference_steps = self.num_inference_steps if self.num_inference_steps else self.config.num_train_timesteps
        prev_t = t - self.config.num_train_timesteps // num_inference_steps
209
        alpha_prod_t = self.alphas_cumprod[t]
210
211
        alpha_prod_t_prev = self.alphas_cumprod[prev_t] if prev_t >= 0 else self.one
        current_beta_t = 1 - alpha_prod_t / alpha_prod_t_prev
Patrick von Platen's avatar
Patrick von Platen committed
212

Kashif Rasul's avatar
Kashif Rasul committed
213
        # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf)
214
        # and sample from it to get previous sample
Kashif Rasul's avatar
Kashif Rasul committed
215
        # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample
216
        variance = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * current_beta_t
Patrick von Platen's avatar
Patrick von Platen committed
217

218
219
220
        if variance_type is None:
            variance_type = self.config.variance_type

221
        # hacks - were probably added for training stability
222
        if variance_type == "fixed_small":
223
            variance = torch.clamp(variance, min=1e-20)
224
        # for rl-diffuser https://arxiv.org/abs/2205.09991
225
        elif variance_type == "fixed_small_log":
226
            variance = torch.log(torch.clamp(variance, min=1e-20))
227
            variance = torch.exp(0.5 * variance)
228
        elif variance_type == "fixed_large":
229
            variance = current_beta_t
230
        elif variance_type == "fixed_large_log":
Patrick von Platen's avatar
Patrick von Platen committed
231
            # Glide max_log
232
            variance = torch.log(current_beta_t)
233
234
235
        elif variance_type == "learned":
            return predicted_variance
        elif variance_type == "learned_range":
236
237
            min_log = torch.log(variance)
            max_log = torch.log(self.betas[t])
238
239
            frac = (predicted_variance + 1) / 2
            variance = frac * max_log + (1 - frac) * min_log
Patrick von Platen's avatar
Patrick von Platen committed
240
241
242

        return variance

243
244
245
246
247
248
249
250
251
252
253
    def _threshold_sample(self, sample: torch.FloatTensor) -> torch.FloatTensor:
        # Dynamic thresholding in https://arxiv.org/abs/2205.11487
        dynamic_max_val = (
            sample.flatten(1)
            .abs()
            .quantile(self.config.dynamic_thresholding_ratio, dim=1)
            .clamp_min(self.config.sample_max_value)
            .view(-1, *([1] * (sample.ndim - 1)))
        )
        return sample.clamp(-dynamic_max_val, dynamic_max_val) / dynamic_max_val

254
255
    def step(
        self,
256
        model_output: torch.FloatTensor,
257
        timestep: int,
258
        sample: torch.FloatTensor,
Patrick von Platen's avatar
Patrick von Platen committed
259
        generator=None,
260
        return_dict: bool = True,
261
    ) -> Union[DDPMSchedulerOutput, Tuple]:
262
263
264
265
266
        """
        Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
        process from the learned model outputs (most often the predicted noise).

        Args:
267
            model_output (`torch.FloatTensor`): direct output from learned diffusion model.
268
            timestep (`int`): current discrete timestep in the diffusion chain.
269
            sample (`torch.FloatTensor`):
270
271
                current instance of sample being created by diffusion process.
            generator: random number generator.
272
            return_dict (`bool`): option for returning tuple rather than DDPMSchedulerOutput class
273
274

        Returns:
275
276
            [`~schedulers.scheduling_utils.DDPMSchedulerOutput`] or `tuple`:
            [`~schedulers.scheduling_utils.DDPMSchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. When
277
            returning a tuple, the first element is the sample tensor.
278
279

        """
280
        t = timestep
281
282
        num_inference_steps = self.num_inference_steps if self.num_inference_steps else self.config.num_train_timesteps
        prev_t = timestep - self.config.num_train_timesteps // num_inference_steps
283

284
285
286
287
288
        if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]:
            model_output, predicted_variance = torch.split(model_output, sample.shape[1], dim=1)
        else:
            predicted_variance = None

Patrick von Platen's avatar
Patrick von Platen committed
289
        # 1. compute alphas, betas
290
        alpha_prod_t = self.alphas_cumprod[t]
291
        alpha_prod_t_prev = self.alphas_cumprod[prev_t] if prev_t >= 0 else self.one
Patrick von Platen's avatar
Patrick von Platen committed
292
293
        beta_prod_t = 1 - alpha_prod_t
        beta_prod_t_prev = 1 - alpha_prod_t_prev
294
295
        current_alpha_t = alpha_prod_t / alpha_prod_t_prev
        current_beta_t = 1 - current_alpha_t
Patrick von Platen's avatar
Patrick von Platen committed
296

297
        # 2. compute predicted original sample from predicted noise also called
Patrick von Platen's avatar
Patrick von Platen committed
298
        # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
299
        if self.config.prediction_type == "epsilon":
Patrick von Platen's avatar
Patrick von Platen committed
300
            pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
301
        elif self.config.prediction_type == "sample":
Patrick von Platen's avatar
Patrick von Platen committed
302
            pred_original_sample = model_output
303
304
        elif self.config.prediction_type == "v_prediction":
            pred_original_sample = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output
305
306
        else:
            raise ValueError(
307
308
                f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` or"
                " `v_prediction`  for the DDPMScheduler."
309
            )
Patrick von Platen's avatar
Patrick von Platen committed
310

311
        # 3. Clip or threshold "predicted x_0"
312
        if self.config.clip_sample:
313
314
            pred_original_sample = pred_original_sample.clamp(
                -self.config.clip_sample_range, self.config.clip_sample_range
Will Berman's avatar
Will Berman committed
315
            )
Patrick von Platen's avatar
Patrick von Platen committed
316

317
318
319
        if self.config.thresholding:
            pred_original_sample = self._threshold_sample(pred_original_sample)

320
        # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
Patrick von Platen's avatar
Patrick von Platen committed
321
        # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
322
323
        pred_original_sample_coeff = (alpha_prod_t_prev ** (0.5) * current_beta_t) / beta_prod_t
        current_sample_coeff = current_alpha_t ** (0.5) * beta_prod_t_prev / beta_prod_t
Patrick von Platen's avatar
Patrick von Platen committed
324

325
        # 5. Compute predicted previous sample µ_t
Patrick von Platen's avatar
Patrick von Platen committed
326
        # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
327
        pred_prev_sample = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
Patrick von Platen's avatar
Patrick von Platen committed
328

Patrick von Platen's avatar
Patrick von Platen committed
329
330
331
        # 6. Add noise
        variance = 0
        if t > 0:
332
            device = model_output.device
333
334
335
            variance_noise = randn_tensor(
                model_output.shape, generator=generator, device=device, dtype=model_output.dtype
            )
336
337
            if self.variance_type == "fixed_small_log":
                variance = self._get_variance(t, predicted_variance=predicted_variance) * variance_noise
338
339
340
            elif self.variance_type == "learned_range":
                variance = self._get_variance(t, predicted_variance=predicted_variance)
                variance = torch.exp(0.5 * variance) * variance_noise
341
342
            else:
                variance = (self._get_variance(t, predicted_variance=predicted_variance) ** 0.5) * variance_noise
Patrick von Platen's avatar
Patrick von Platen committed
343
344
345

        pred_prev_sample = pred_prev_sample + variance

346
347
348
        if not return_dict:
            return (pred_prev_sample,)

349
        return DDPMSchedulerOutput(prev_sample=pred_prev_sample, pred_original_sample=pred_original_sample)
Patrick von Platen's avatar
Patrick von Platen committed
350

Partho's avatar
Partho committed
351
352
    def add_noise(
        self,
353
354
355
356
        original_samples: torch.FloatTensor,
        noise: torch.FloatTensor,
        timesteps: torch.IntTensor,
    ) -> torch.FloatTensor:
357
358
359
        # Make sure alphas_cumprod and timestep have same device and dtype as original_samples
        self.alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device, dtype=original_samples.dtype)
        timesteps = timesteps.to(original_samples.device)
360

anton-l's avatar
anton-l committed
361
        sqrt_alpha_prod = self.alphas_cumprod[timesteps] ** 0.5
362
363
364
365
        sqrt_alpha_prod = sqrt_alpha_prod.flatten()
        while len(sqrt_alpha_prod.shape) < len(original_samples.shape):
            sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)

anton-l's avatar
anton-l committed
366
        sqrt_one_minus_alpha_prod = (1 - self.alphas_cumprod[timesteps]) ** 0.5
367
        sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
368
369
        while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape):
            sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
370
371

        noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
anton-l's avatar
anton-l committed
372
        return noisy_samples
anton-l's avatar
anton-l committed
373

374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
    def get_velocity(
        self, sample: torch.FloatTensor, noise: torch.FloatTensor, timesteps: torch.IntTensor
    ) -> torch.FloatTensor:
        # Make sure alphas_cumprod and timestep have same device and dtype as sample
        self.alphas_cumprod = self.alphas_cumprod.to(device=sample.device, dtype=sample.dtype)
        timesteps = timesteps.to(sample.device)

        sqrt_alpha_prod = self.alphas_cumprod[timesteps] ** 0.5
        sqrt_alpha_prod = sqrt_alpha_prod.flatten()
        while len(sqrt_alpha_prod.shape) < len(sample.shape):
            sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)

        sqrt_one_minus_alpha_prod = (1 - self.alphas_cumprod[timesteps]) ** 0.5
        sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
        while len(sqrt_one_minus_alpha_prod.shape) < len(sample.shape):
            sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)

        velocity = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample
        return velocity

Patrick von Platen's avatar
improve  
Patrick von Platen committed
394
    def __len__(self):
Nathan Lambert's avatar
Nathan Lambert committed
395
        return self.config.num_train_timesteps