scheduling_ddpm.py 23.6 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
# Copyright 2023 UC Berkeley Team and The HuggingFace Team. All rights reserved.
Patrick von Platen's avatar
improve  
Patrick von Platen committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
15
16

# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim

anton-l's avatar
anton-l committed
17
import math
18
from dataclasses import dataclass
19
from typing import List, Optional, Tuple, Union
Patrick von Platen's avatar
Patrick von Platen committed
20

Patrick von Platen's avatar
Patrick von Platen committed
21
import numpy as np
22
import torch
Patrick von Platen's avatar
improve  
Patrick von Platen committed
23

24
from ..configuration_utils import ConfigMixin, register_to_config
25
from ..utils import BaseOutput, randn_tensor
Kashif Rasul's avatar
Kashif Rasul committed
26
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin
27
28
29
30
31


@dataclass
class DDPMSchedulerOutput(BaseOutput):
    """
32
    Output class for the scheduler's `step` function output.
33
34
35

    Args:
        prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
36
            Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
37
38
            denoising loop.
        pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
39
            The predicted denoised sample `(x_{0})` based on the model output from the current timestep.
40
41
42
43
44
            `pred_original_sample` can be used to preview progress or for guidance.
    """

    prev_sample: torch.FloatTensor
    pred_original_sample: Optional[torch.FloatTensor] = None
45
46


YiYi Xu's avatar
YiYi Xu committed
47
48
49
50
51
def betas_for_alpha_bar(
    num_diffusion_timesteps,
    max_beta=0.999,
    alpha_transform_type="cosine",
):
52
    """
Patrick von Platen's avatar
Patrick von Platen committed
53
54
    Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
    (1-beta) over time from t = [0,1].
55

56
57
58
59
60
61
62
    Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
    to that part of the diffusion process.


    Args:
        num_diffusion_timesteps (`int`): the number of betas to produce.
        max_beta (`float`): the maximum beta to use; use values lower than 1 to
63
                     prevent singularities.
YiYi Xu's avatar
YiYi Xu committed
64
65
        alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar.
                     Choose from `cosine` or `exp`
66
67
68

    Returns:
        betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
69
    """
YiYi Xu's avatar
YiYi Xu committed
70
    if alpha_transform_type == "cosine":
71

YiYi Xu's avatar
YiYi Xu committed
72
73
74
75
76
77
78
79
80
81
        def alpha_bar_fn(t):
            return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2

    elif alpha_transform_type == "exp":

        def alpha_bar_fn(t):
            return math.exp(t * -12.0)

    else:
        raise ValueError(f"Unsupported alpha_tranform_type: {alpha_transform_type}")
82
83
84
85
86

    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
YiYi Xu's avatar
YiYi Xu committed
87
        betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta))
88
    return torch.tensor(betas, dtype=torch.float32)
Patrick von Platen's avatar
improve  
Patrick von Platen committed
89
90


Patrick von Platen's avatar
Patrick von Platen committed
91
class DDPMScheduler(SchedulerMixin, ConfigMixin):
92
    """
93
    `DDPMScheduler` explores the connections between denoising score matching and Langevin dynamics sampling.
94

95
96
    This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
    methods the library implements for all schedulers such as loading and saving.
97
98

    Args:
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
        num_train_timesteps (`int`, defaults to 1000):
            The number of diffusion steps to train the model.
        beta_start (`float`, defaults to 0.0001):
            The starting `beta` value of inference.
        beta_end (`float`, defaults to 0.02):
            The final `beta` value.
        beta_schedule (`str`, defaults to `"linear"`):
            The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
            `linear`, `scaled_linear`, or `squaredcos_cap_v2`.
        variance_type (`str`, defaults to `"fixed_small"`):
            Clip the variance when adding noise to the denoised sample. Choose from `fixed_small`, `fixed_small_log`,
            `fixed_large`, `fixed_large_log`, `learned` or `learned_range`.
        clip_sample (`bool`, defaults to `True`):
            Clip the predicted sample for numerical stability.
        clip_sample_range (`float`, defaults to 1.0):
            The maximum magnitude for sample clipping. Valid only when `clip_sample=True`.
        prediction_type (`str`, defaults to `epsilon`, *optional*):
            Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
            `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
            Video](https://imagen.research.google/video/paper.pdf) paper).
        thresholding (`bool`, defaults to `False`):
            Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
            as Stable Diffusion.
        dynamic_thresholding_ratio (`float`, defaults to 0.995):
            The ratio for the dynamic thresholding method. Valid only when `thresholding=True`.
        sample_max_value (`float`, defaults to 1.0):
            The threshold value for dynamic thresholding. Valid only when `thresholding=True`.
        timestep_spacing (`str`, defaults to `"leading"`):
            The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
            Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
        steps_offset (`int`, defaults to 0):
            An offset added to the inference steps. You can use a combination of `offset=1` and
            `set_alpha_to_one=False` to make the last step use step 0 for the previous alpha product like in Stable
            Diffusion.
133
134
    """

Kashif Rasul's avatar
Kashif Rasul committed
135
    _compatibles = [e.name for e in KarrasDiffusionSchedulers]
136
    order = 1
137

138
    @register_to_config
Patrick von Platen's avatar
improve  
Patrick von Platen committed
139
140
    def __init__(
        self,
Partho's avatar
Partho committed
141
142
143
144
        num_train_timesteps: int = 1000,
        beta_start: float = 0.0001,
        beta_end: float = 0.02,
        beta_schedule: str = "linear",
145
        trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
Partho's avatar
Partho committed
146
147
        variance_type: str = "fixed_small",
        clip_sample: bool = True,
148
        prediction_type: str = "epsilon",
149
150
151
152
        thresholding: bool = False,
        dynamic_thresholding_ratio: float = 0.995,
        clip_sample_range: float = 1.0,
        sample_max_value: float = 1.0,
153
154
        timestep_spacing: str = "leading",
        steps_offset: int = 0,
Patrick von Platen's avatar
improve  
Patrick von Platen committed
155
    ):
156
        if trained_betas is not None:
157
            self.betas = torch.tensor(trained_betas, dtype=torch.float32)
158
        elif beta_schedule == "linear":
159
            self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
160
161
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
162
163
164
            self.betas = (
                torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
            )
anton-l's avatar
anton-l committed
165
        elif beta_schedule == "squaredcos_cap_v2":
Patrick von Platen's avatar
Patrick von Platen committed
166
            # Glide cosine schedule
Nathan Lambert's avatar
Nathan Lambert committed
167
            self.betas = betas_for_alpha_bar(num_train_timesteps)
Nathan Lambert's avatar
Nathan Lambert committed
168
169
170
171
        elif beta_schedule == "sigmoid":
            # GeoDiff sigmoid schedule
            betas = torch.linspace(-6, 6, num_train_timesteps)
            self.betas = torch.sigmoid(betas) * (beta_end - beta_start) + beta_start
Patrick von Platen's avatar
improve  
Patrick von Platen committed
172
173
174
        else:
            raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")

Patrick von Platen's avatar
Patrick von Platen committed
175
        self.alphas = 1.0 - self.betas
176
177
        self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
        self.one = torch.tensor(1.0)
Patrick von Platen's avatar
Patrick von Platen committed
178

179
180
181
        # standard deviation of the initial noise distribution
        self.init_noise_sigma = 1.0

182
        # setable values
Will Berman's avatar
Will Berman committed
183
        self.custom_timesteps = False
184
        self.num_inference_steps = None
185
        self.timesteps = torch.from_numpy(np.arange(0, num_train_timesteps)[::-1].copy())
Patrick von Platen's avatar
Patrick von Platen committed
186

187
188
        self.variance_type = variance_type

189
190
191
192
193
194
    def scale_model_input(self, sample: torch.FloatTensor, timestep: Optional[int] = None) -> torch.FloatTensor:
        """
        Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
        current timestep.

        Args:
195
196
197
198
            sample (`torch.FloatTensor`):
                The input sample.
            timestep (`int`, *optional*):
                The current timestep in the diffusion chain.
199
200

        Returns:
201
202
            `torch.FloatTensor`:
                A scaled input sample.
203
204
205
        """
        return sample

Will Berman's avatar
Will Berman committed
206
207
208
209
210
211
    def set_timesteps(
        self,
        num_inference_steps: Optional[int] = None,
        device: Union[str, torch.device] = None,
        timesteps: Optional[List[int]] = None,
    ):
212
        """
213
        Sets the discrete timesteps used for the diffusion chain (to be run before inference).
214
215

        Args:
216
217
            num_inference_steps (`int`):
                The number of diffusion steps used when generating samples with a pre-trained model. If used,
Will Berman's avatar
Will Berman committed
218
                `timesteps` must be `None`.
219
220
221
222
223
224
            device (`str` or `torch.device`, *optional*):
                The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
            timesteps (`List[int]`, *optional*):
                Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
                timestep spacing strategy of equal spacing between timesteps is used. If `timesteps` is passed,
                `num_inference_steps` must be `None`.
Will Berman's avatar
Will Berman committed
225

226
        """
Will Berman's avatar
Will Berman committed
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
        if num_inference_steps is not None and timesteps is not None:
            raise ValueError("Can only pass one of `num_inference_steps` or `custom_timesteps`.")

        if timesteps is not None:
            for i in range(1, len(timesteps)):
                if timesteps[i] >= timesteps[i - 1]:
                    raise ValueError("`custom_timesteps` must be in descending order.")

            if timesteps[0] >= self.config.num_train_timesteps:
                raise ValueError(
                    f"`timesteps` must start before `self.config.train_timesteps`:"
                    f" {self.config.num_train_timesteps}."
                )

            timesteps = np.array(timesteps, dtype=np.int64)
            self.custom_timesteps = True
        else:
            if num_inference_steps > self.config.num_train_timesteps:
                raise ValueError(
                    f"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:"
                    f" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle"
                    f" maximal {self.config.num_train_timesteps} timesteps."
                )
250

Will Berman's avatar
Will Berman committed
251
252
            self.num_inference_steps = num_inference_steps
            self.custom_timesteps = False
253

254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
            # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891
            if self.config.timestep_spacing == "linspace":
                timesteps = (
                    np.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps)
                    .round()[::-1]
                    .copy()
                    .astype(np.int64)
                )
            elif self.config.timestep_spacing == "leading":
                step_ratio = self.config.num_train_timesteps // self.num_inference_steps
                # creates integer timesteps by multiplying by ratio
                # casting to int to avoid issues when num_inference_step is power of 3
                timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.int64)
                timesteps += self.config.steps_offset
            elif self.config.timestep_spacing == "trailing":
                step_ratio = self.config.num_train_timesteps / self.num_inference_steps
                # creates integer timesteps by multiplying by ratio
                # casting to int to avoid issues when num_inference_step is power of 3
                timesteps = np.round(np.arange(self.config.num_train_timesteps, 0, -step_ratio)).astype(np.int64)
                timesteps -= 1
            else:
                raise ValueError(
                    f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'."
                )

279
        self.timesteps = torch.from_numpy(timesteps).to(device)
280

281
    def _get_variance(self, t, predicted_variance=None, variance_type=None):
Will Berman's avatar
Will Berman committed
282
283
        prev_t = self.previous_timestep(t)

284
        alpha_prod_t = self.alphas_cumprod[t]
285
286
        alpha_prod_t_prev = self.alphas_cumprod[prev_t] if prev_t >= 0 else self.one
        current_beta_t = 1 - alpha_prod_t / alpha_prod_t_prev
Patrick von Platen's avatar
Patrick von Platen committed
287

Kashif Rasul's avatar
Kashif Rasul committed
288
        # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf)
289
        # and sample from it to get previous sample
Kashif Rasul's avatar
Kashif Rasul committed
290
        # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample
291
        variance = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * current_beta_t
William Berman's avatar
William Berman committed
292
293

        # we always take the log of variance, so clamp it to ensure it's not 0
William Berman's avatar
William Berman committed
294
        variance = torch.clamp(variance, min=1e-20)
Patrick von Platen's avatar
Patrick von Platen committed
295

296
297
298
        if variance_type is None:
            variance_type = self.config.variance_type

299
        # hacks - were probably added for training stability
300
        if variance_type == "fixed_small":
William Berman's avatar
William Berman committed
301
            variance = variance
302
        # for rl-diffuser https://arxiv.org/abs/2205.09991
303
        elif variance_type == "fixed_small_log":
304
            variance = torch.log(variance)
305
            variance = torch.exp(0.5 * variance)
306
        elif variance_type == "fixed_large":
307
            variance = current_beta_t
308
        elif variance_type == "fixed_large_log":
Patrick von Platen's avatar
Patrick von Platen committed
309
            # Glide max_log
310
            variance = torch.log(current_beta_t)
311
312
313
        elif variance_type == "learned":
            return predicted_variance
        elif variance_type == "learned_range":
314
            min_log = torch.log(variance)
William Berman's avatar
William Berman committed
315
            max_log = torch.log(current_beta_t)
316
317
            frac = (predicted_variance + 1) / 2
            variance = frac * max_log + (1 - frac) * min_log
Patrick von Platen's avatar
Patrick von Platen committed
318
319
320

        return variance

321
    def _threshold_sample(self, sample: torch.FloatTensor) -> torch.FloatTensor:
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
        """
        "Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the
        prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by
        s. Dynamic thresholding pushes saturated pixels (those near -1 and 1) inwards, thereby actively preventing
        pixels from saturation at each step. We find that dynamic thresholding results in significantly better
        photorealism as well as better image-text alignment, especially when using very large guidance weights."

        https://arxiv.org/abs/2205.11487
        """
        dtype = sample.dtype
        batch_size, channels, height, width = sample.shape

        if dtype not in (torch.float32, torch.float64):
            sample = sample.float()  # upcast for quantile calculation, and clamp not implemented for cpu half

        # Flatten sample for doing quantile calculation along each image
        sample = sample.reshape(batch_size, channels * height * width)

        abs_sample = sample.abs()  # "a certain percentile absolute pixel value"

        s = torch.quantile(abs_sample, self.config.dynamic_thresholding_ratio, dim=1)
        s = torch.clamp(
            s, min=1, max=self.config.sample_max_value
        )  # When clamped to min=1, equivalent to standard clipping to [-1, 1]

        s = s.unsqueeze(1)  # (batch_size, 1) because clamp will broadcast along dim=0
        sample = torch.clamp(sample, -s, s) / s  # "we threshold xt0 to the range [-s, s] and then divide by s"

        sample = sample.reshape(batch_size, channels, height, width)
        sample = sample.to(dtype)

        return sample
354

355
356
    def step(
        self,
357
        model_output: torch.FloatTensor,
358
        timestep: int,
359
        sample: torch.FloatTensor,
Patrick von Platen's avatar
Patrick von Platen committed
360
        generator=None,
361
        return_dict: bool = True,
362
    ) -> Union[DDPMSchedulerOutput, Tuple]:
363
        """
364
        Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
365
366
367
        process from the learned model outputs (most often the predicted noise).

        Args:
368
369
370
371
            model_output (`torch.FloatTensor`):
                The direct output from learned diffusion model.
            timestep (`float`):
                The current discrete timestep in the diffusion chain.
372
            sample (`torch.FloatTensor`):
373
374
375
376
377
                A current instance of a sample created by the diffusion process.
            generator (`torch.Generator`, *optional*):
                A random number generator.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~schedulers.scheduling_ddpm.DDPMSchedulerOutput`] or `tuple`.
378
379

        Returns:
380
381
382
            [`~schedulers.scheduling_ddpm.DDPMSchedulerOutput`] or `tuple`:
                If return_dict is `True`, [`~schedulers.scheduling_ddpm.DDPMSchedulerOutput`] is returned, otherwise a
                tuple is returned where the first element is the sample tensor.
383
384

        """
385
        t = timestep
Will Berman's avatar
Will Berman committed
386
387

        prev_t = self.previous_timestep(t)
388

389
390
391
392
393
        if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]:
            model_output, predicted_variance = torch.split(model_output, sample.shape[1], dim=1)
        else:
            predicted_variance = None

Patrick von Platen's avatar
Patrick von Platen committed
394
        # 1. compute alphas, betas
395
        alpha_prod_t = self.alphas_cumprod[t]
396
        alpha_prod_t_prev = self.alphas_cumprod[prev_t] if prev_t >= 0 else self.one
Patrick von Platen's avatar
Patrick von Platen committed
397
398
        beta_prod_t = 1 - alpha_prod_t
        beta_prod_t_prev = 1 - alpha_prod_t_prev
399
400
        current_alpha_t = alpha_prod_t / alpha_prod_t_prev
        current_beta_t = 1 - current_alpha_t
Patrick von Platen's avatar
Patrick von Platen committed
401

402
        # 2. compute predicted original sample from predicted noise also called
Patrick von Platen's avatar
Patrick von Platen committed
403
        # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
404
        if self.config.prediction_type == "epsilon":
Patrick von Platen's avatar
Patrick von Platen committed
405
            pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
406
        elif self.config.prediction_type == "sample":
Patrick von Platen's avatar
Patrick von Platen committed
407
            pred_original_sample = model_output
408
409
        elif self.config.prediction_type == "v_prediction":
            pred_original_sample = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output
410
411
        else:
            raise ValueError(
412
413
                f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` or"
                " `v_prediction`  for the DDPMScheduler."
414
            )
Patrick von Platen's avatar
Patrick von Platen committed
415

416
        # 3. Clip or threshold "predicted x_0"
417
418
419
        if self.config.thresholding:
            pred_original_sample = self._threshold_sample(pred_original_sample)
        elif self.config.clip_sample:
420
421
            pred_original_sample = pred_original_sample.clamp(
                -self.config.clip_sample_range, self.config.clip_sample_range
Will Berman's avatar
Will Berman committed
422
            )
Patrick von Platen's avatar
Patrick von Platen committed
423

424
        # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
Patrick von Platen's avatar
Patrick von Platen committed
425
        # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
426
427
        pred_original_sample_coeff = (alpha_prod_t_prev ** (0.5) * current_beta_t) / beta_prod_t
        current_sample_coeff = current_alpha_t ** (0.5) * beta_prod_t_prev / beta_prod_t
Patrick von Platen's avatar
Patrick von Platen committed
428

429
        # 5. Compute predicted previous sample µ_t
Patrick von Platen's avatar
Patrick von Platen committed
430
        # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
431
        pred_prev_sample = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
Patrick von Platen's avatar
Patrick von Platen committed
432

Patrick von Platen's avatar
Patrick von Platen committed
433
434
435
        # 6. Add noise
        variance = 0
        if t > 0:
436
            device = model_output.device
437
438
439
            variance_noise = randn_tensor(
                model_output.shape, generator=generator, device=device, dtype=model_output.dtype
            )
440
441
            if self.variance_type == "fixed_small_log":
                variance = self._get_variance(t, predicted_variance=predicted_variance) * variance_noise
442
443
444
            elif self.variance_type == "learned_range":
                variance = self._get_variance(t, predicted_variance=predicted_variance)
                variance = torch.exp(0.5 * variance) * variance_noise
445
446
            else:
                variance = (self._get_variance(t, predicted_variance=predicted_variance) ** 0.5) * variance_noise
Patrick von Platen's avatar
Patrick von Platen committed
447
448
449

        pred_prev_sample = pred_prev_sample + variance

450
451
452
        if not return_dict:
            return (pred_prev_sample,)

453
        return DDPMSchedulerOutput(prev_sample=pred_prev_sample, pred_original_sample=pred_original_sample)
Patrick von Platen's avatar
Patrick von Platen committed
454

Partho's avatar
Partho committed
455
456
    def add_noise(
        self,
457
458
459
460
        original_samples: torch.FloatTensor,
        noise: torch.FloatTensor,
        timesteps: torch.IntTensor,
    ) -> torch.FloatTensor:
461
        # Make sure alphas_cumprod and timestep have same device and dtype as original_samples
462
        alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device, dtype=original_samples.dtype)
463
        timesteps = timesteps.to(original_samples.device)
464

465
        sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
466
467
468
469
        sqrt_alpha_prod = sqrt_alpha_prod.flatten()
        while len(sqrt_alpha_prod.shape) < len(original_samples.shape):
            sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)

470
        sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
471
        sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
472
473
        while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape):
            sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
474
475

        noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
anton-l's avatar
anton-l committed
476
        return noisy_samples
anton-l's avatar
anton-l committed
477

478
479
480
481
    def get_velocity(
        self, sample: torch.FloatTensor, noise: torch.FloatTensor, timesteps: torch.IntTensor
    ) -> torch.FloatTensor:
        # Make sure alphas_cumprod and timestep have same device and dtype as sample
482
        alphas_cumprod = self.alphas_cumprod.to(device=sample.device, dtype=sample.dtype)
483
484
        timesteps = timesteps.to(sample.device)

485
        sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
486
487
488
489
        sqrt_alpha_prod = sqrt_alpha_prod.flatten()
        while len(sqrt_alpha_prod.shape) < len(sample.shape):
            sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)

490
        sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
491
492
493
494
495
496
497
        sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
        while len(sqrt_one_minus_alpha_prod.shape) < len(sample.shape):
            sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)

        velocity = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample
        return velocity

Patrick von Platen's avatar
improve  
Patrick von Platen committed
498
    def __len__(self):
Nathan Lambert's avatar
Nathan Lambert committed
499
        return self.config.num_train_timesteps
Will Berman's avatar
Will Berman committed
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514

    def previous_timestep(self, timestep):
        if self.custom_timesteps:
            index = (self.timesteps == timestep).nonzero(as_tuple=True)[0][0]
            if index == self.timesteps.shape[0] - 1:
                prev_t = torch.tensor(-1)
            else:
                prev_t = self.timesteps[index + 1]
        else:
            num_inference_steps = (
                self.num_inference_steps if self.num_inference_steps else self.config.num_train_timesteps
            )
            prev_t = timestep - self.config.num_train_timesteps // num_inference_steps

        return prev_t