scheduling_ddpm.py 28.3 KB
Newer Older
Aryan's avatar
Aryan committed
1
# Copyright 2025 UC Berkeley Team and The HuggingFace Team. All rights reserved.
Patrick von Platen's avatar
improve  
Patrick von Platen committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
15
16

# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim

anton-l's avatar
anton-l committed
17
import math
18
from dataclasses import dataclass
19
from typing import List, Literal, Optional, Tuple, Union
Patrick von Platen's avatar
Patrick von Platen committed
20

Patrick von Platen's avatar
Patrick von Platen committed
21
import numpy as np
22
import torch
Patrick von Platen's avatar
improve  
Patrick von Platen committed
23

24
from ..configuration_utils import ConfigMixin, register_to_config
Dhruv Nair's avatar
Dhruv Nair committed
25
26
from ..utils import BaseOutput
from ..utils.torch_utils import randn_tensor
Kashif Rasul's avatar
Kashif Rasul committed
27
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin
28
29
30
31
32


@dataclass
class DDPMSchedulerOutput(BaseOutput):
    """
33
    Output class for the scheduler's `step` function output.
34
35

    Args:
36
        prev_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
37
            Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
38
            denoising loop.
39
        pred_original_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
40
            The predicted denoised sample `(x_{0})` based on the model output from the current timestep.
41
42
43
            `pred_original_sample` can be used to preview progress or for guidance.
    """

44
45
    prev_sample: torch.Tensor
    pred_original_sample: Optional[torch.Tensor] = None
46
47


YiYi Xu's avatar
YiYi Xu committed
48
def betas_for_alpha_bar(
49
50
51
52
    num_diffusion_timesteps: int,
    max_beta: float = 0.999,
    alpha_transform_type: Literal["cosine", "exp"] = "cosine",
) -> torch.Tensor:
53
    """
Patrick von Platen's avatar
Patrick von Platen committed
54
55
    Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
    (1-beta) over time from t = [0,1].
56

57
58
59
60
    Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
    to that part of the diffusion process.

    Args:
61
62
63
64
65
66
        num_diffusion_timesteps (`int`):
            The number of betas to produce.
        max_beta (`float`, defaults to `0.999`):
            The maximum beta to use; use values lower than 1 to avoid numerical instability.
        alpha_transform_type (`"cosine"` or `"exp"`, defaults to `"cosine"`):
            The type of noise schedule for `alpha_bar`. Choose from `cosine` or `exp`.
67
68

    Returns:
69
70
        `torch.Tensor`:
            The betas used by the scheduler to step the model outputs.
71
    """
YiYi Xu's avatar
YiYi Xu committed
72
    if alpha_transform_type == "cosine":
73

YiYi Xu's avatar
YiYi Xu committed
74
75
76
77
78
79
80
81
82
        def alpha_bar_fn(t):
            return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2

    elif alpha_transform_type == "exp":

        def alpha_bar_fn(t):
            return math.exp(t * -12.0)

    else:
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
83
        raise ValueError(f"Unsupported alpha_transform_type: {alpha_transform_type}")
84
85
86
87
88

    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
YiYi Xu's avatar
YiYi Xu committed
89
        betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta))
90
    return torch.tensor(betas, dtype=torch.float32)
Patrick von Platen's avatar
improve  
Patrick von Platen committed
91
92


93
# Copied from diffusers.schedulers.scheduling_ddim.rescale_zero_terminal_snr
94
def rescale_zero_terminal_snr(betas: torch.Tensor) -> torch.Tensor:
95
    """
Quentin Gallouédec's avatar
Quentin Gallouédec committed
96
    Rescales betas to have zero terminal SNR Based on https://huggingface.co/papers/2305.08891 (Algorithm 1)
97
98

    Args:
99
        betas (`torch.Tensor`):
100
101
102
            the betas that the scheduler is being initialized with.

    Returns:
103
        `torch.Tensor`: rescaled betas with zero terminal SNR
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
    """
    # Convert betas to alphas_bar_sqrt
    alphas = 1.0 - betas
    alphas_cumprod = torch.cumprod(alphas, dim=0)
    alphas_bar_sqrt = alphas_cumprod.sqrt()

    # Store old values.
    alphas_bar_sqrt_0 = alphas_bar_sqrt[0].clone()
    alphas_bar_sqrt_T = alphas_bar_sqrt[-1].clone()

    # Shift so the last timestep is zero.
    alphas_bar_sqrt -= alphas_bar_sqrt_T

    # Scale so the first timestep is back to the old value.
    alphas_bar_sqrt *= alphas_bar_sqrt_0 / (alphas_bar_sqrt_0 - alphas_bar_sqrt_T)

    # Convert alphas_bar_sqrt to betas
    alphas_bar = alphas_bar_sqrt**2  # Revert sqrt
    alphas = alphas_bar[1:] / alphas_bar[:-1]  # Revert cumprod
    alphas = torch.cat([alphas_bar[0:1], alphas])
    betas = 1 - alphas

    return betas


Patrick von Platen's avatar
Patrick von Platen committed
129
class DDPMScheduler(SchedulerMixin, ConfigMixin):
130
    """
131
    `DDPMScheduler` explores the connections between denoising score matching and Langevin dynamics sampling.
132

133
134
    This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
    methods the library implements for all schedulers such as loading and saving.
135
136

    Args:
137
        num_train_timesteps (`int`, defaults to `1000`):
138
            The number of diffusion steps to train the model.
139
        beta_start (`float`, defaults to `0.0001`):
140
            The starting `beta` value of inference.
141
        beta_end (`float`, defaults to `0.02`):
142
            The final `beta` value.
143
144
        beta_schedule (`"linear"`, `"scaled_linear"`, `"squaredcos_cap_v2"`, or `"sigmoid"`, defaults to `"linear"`):
            The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model.
145
146
        trained_betas (`np.ndarray`, *optional*):
            An array of betas to pass directly to the constructor without using `beta_start` and `beta_end`.
147
148
        variance_type (`"fixed_small"`, `"fixed_small_log"`, `"fixed_large"`, `"fixed_large_log"`, `"learned"`, or `"learned_range"`, defaults to `"fixed_small"`):
            Clip the variance when adding noise to the denoised sample.
149
150
        clip_sample (`bool`, defaults to `True`):
            Clip the predicted sample for numerical stability.
151
        clip_sample_range (`float`, defaults to `1.0`):
152
            The maximum magnitude for sample clipping. Valid only when `clip_sample=True`.
153
        prediction_type (`"epsilon"`, `"sample"`, or `"v_prediction"`, defaults to `"epsilon"`):
154
155
156
157
158
159
            Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
            `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
            Video](https://imagen.research.google/video/paper.pdf) paper).
        thresholding (`bool`, defaults to `False`):
            Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
            as Stable Diffusion.
160
        dynamic_thresholding_ratio (`float`, defaults to `0.995`):
161
            The ratio for the dynamic thresholding method. Valid only when `thresholding=True`.
162
        sample_max_value (`float`, defaults to `1.0`):
163
            The threshold value for dynamic thresholding. Valid only when `thresholding=True`.
164
        timestep_spacing (`"linspace"`, `"leading"`, or `"trailing"`, defaults to `"leading"`):
165
166
            The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
            Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
167
        steps_offset (`int`, defaults to `0`):
168
            An offset added to the inference steps, as required by some model families.
169
170
171
172
        rescale_betas_zero_snr (`bool`, defaults to `False`):
            Whether to rescale the betas to have zero terminal SNR. This enables the model to generate very bright and
            dark samples instead of limiting it to samples with medium brightness. Loosely related to
            [`--offset_noise`](https://github.com/huggingface/diffusers/blob/74fd735eb073eb1d774b1ab4154a0876eb82f055/examples/dreambooth/train_dreambooth.py#L506).
173
174
    """

Kashif Rasul's avatar
Kashif Rasul committed
175
    _compatibles = [e.name for e in KarrasDiffusionSchedulers]
176
    order = 1
177

178
    @register_to_config
Patrick von Platen's avatar
improve  
Patrick von Platen committed
179
180
    def __init__(
        self,
Partho's avatar
Partho committed
181
182
183
        num_train_timesteps: int = 1000,
        beta_start: float = 0.0001,
        beta_end: float = 0.02,
184
        beta_schedule: Literal["linear", "scaled_linear", "squaredcos_cap_v2", "sigmoid"] = "linear",
185
        trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
186
187
188
        variance_type: Literal[
            "fixed_small", "fixed_small_log", "fixed_large", "fixed_large_log", "learned", "learned_range"
        ] = "fixed_small",
Partho's avatar
Partho committed
189
        clip_sample: bool = True,
190
        prediction_type: Literal["epsilon", "sample", "v_prediction"] = "epsilon",
191
192
193
194
        thresholding: bool = False,
        dynamic_thresholding_ratio: float = 0.995,
        clip_sample_range: float = 1.0,
        sample_max_value: float = 1.0,
195
        timestep_spacing: Literal["linspace", "leading", "trailing"] = "leading",
196
        steps_offset: int = 0,
197
        rescale_betas_zero_snr: bool = False,
Patrick von Platen's avatar
improve  
Patrick von Platen committed
198
    ):
199
        if trained_betas is not None:
200
            self.betas = torch.tensor(trained_betas, dtype=torch.float32)
201
        elif beta_schedule == "linear":
202
            self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
203
204
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
205
            self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
anton-l's avatar
anton-l committed
206
        elif beta_schedule == "squaredcos_cap_v2":
Patrick von Platen's avatar
Patrick von Platen committed
207
            # Glide cosine schedule
Nathan Lambert's avatar
Nathan Lambert committed
208
            self.betas = betas_for_alpha_bar(num_train_timesteps)
Nathan Lambert's avatar
Nathan Lambert committed
209
210
211
212
        elif beta_schedule == "sigmoid":
            # GeoDiff sigmoid schedule
            betas = torch.linspace(-6, 6, num_train_timesteps)
            self.betas = torch.sigmoid(betas) * (beta_end - beta_start) + beta_start
Patrick von Platen's avatar
improve  
Patrick von Platen committed
213
        else:
214
            raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")
Patrick von Platen's avatar
improve  
Patrick von Platen committed
215

216
217
218
219
        # Rescale for zero SNR
        if rescale_betas_zero_snr:
            self.betas = rescale_zero_terminal_snr(self.betas)

Patrick von Platen's avatar
Patrick von Platen committed
220
        self.alphas = 1.0 - self.betas
221
222
        self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
        self.one = torch.tensor(1.0)
Patrick von Platen's avatar
Patrick von Platen committed
223

224
225
226
        # standard deviation of the initial noise distribution
        self.init_noise_sigma = 1.0

227
        # setable values
Will Berman's avatar
Will Berman committed
228
        self.custom_timesteps = False
229
        self.num_inference_steps = None
230
        self.timesteps = torch.from_numpy(np.arange(0, num_train_timesteps)[::-1].copy())
Patrick von Platen's avatar
Patrick von Platen committed
231

232
233
        self.variance_type = variance_type

234
    def scale_model_input(self, sample: torch.Tensor, timestep: Optional[int] = None) -> torch.Tensor:
235
236
237
238
239
        """
        Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
        current timestep.

        Args:
240
            sample (`torch.Tensor`):
241
242
243
                The input sample.
            timestep (`int`, *optional*):
                The current timestep in the diffusion chain.
244
245

        Returns:
246
            `torch.Tensor`:
247
                A scaled input sample.
248
249
250
        """
        return sample

Will Berman's avatar
Will Berman committed
251
252
253
254
255
256
    def set_timesteps(
        self,
        num_inference_steps: Optional[int] = None,
        device: Union[str, torch.device] = None,
        timesteps: Optional[List[int]] = None,
    ):
257
        """
258
        Sets the discrete timesteps used for the diffusion chain (to be run before inference).
259
260

        Args:
261
262
            num_inference_steps (`int`):
                The number of diffusion steps used when generating samples with a pre-trained model. If used,
Will Berman's avatar
Will Berman committed
263
                `timesteps` must be `None`.
264
265
266
267
268
269
            device (`str` or `torch.device`, *optional*):
                The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
            timesteps (`List[int]`, *optional*):
                Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
                timestep spacing strategy of equal spacing between timesteps is used. If `timesteps` is passed,
                `num_inference_steps` must be `None`.
Will Berman's avatar
Will Berman committed
270

271
        """
Will Berman's avatar
Will Berman committed
272
273
274
275
276
277
278
279
280
281
        if num_inference_steps is not None and timesteps is not None:
            raise ValueError("Can only pass one of `num_inference_steps` or `custom_timesteps`.")

        if timesteps is not None:
            for i in range(1, len(timesteps)):
                if timesteps[i] >= timesteps[i - 1]:
                    raise ValueError("`custom_timesteps` must be in descending order.")

            if timesteps[0] >= self.config.num_train_timesteps:
                raise ValueError(
282
                    f"`timesteps` must start before `self.config.train_timesteps`: {self.config.num_train_timesteps}."
Will Berman's avatar
Will Berman committed
283
284
285
286
287
288
289
290
291
292
293
                )

            timesteps = np.array(timesteps, dtype=np.int64)
            self.custom_timesteps = True
        else:
            if num_inference_steps > self.config.num_train_timesteps:
                raise ValueError(
                    f"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:"
                    f" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle"
                    f" maximal {self.config.num_train_timesteps} timesteps."
                )
294

Will Berman's avatar
Will Berman committed
295
296
            self.num_inference_steps = num_inference_steps
            self.custom_timesteps = False
297

Quentin Gallouédec's avatar
Quentin Gallouédec committed
298
            # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://huggingface.co/papers/2305.08891
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
            if self.config.timestep_spacing == "linspace":
                timesteps = (
                    np.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps)
                    .round()[::-1]
                    .copy()
                    .astype(np.int64)
                )
            elif self.config.timestep_spacing == "leading":
                step_ratio = self.config.num_train_timesteps // self.num_inference_steps
                # creates integer timesteps by multiplying by ratio
                # casting to int to avoid issues when num_inference_step is power of 3
                timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.int64)
                timesteps += self.config.steps_offset
            elif self.config.timestep_spacing == "trailing":
                step_ratio = self.config.num_train_timesteps / self.num_inference_steps
                # creates integer timesteps by multiplying by ratio
                # casting to int to avoid issues when num_inference_step is power of 3
                timesteps = np.round(np.arange(self.config.num_train_timesteps, 0, -step_ratio)).astype(np.int64)
                timesteps -= 1
            else:
                raise ValueError(
                    f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'."
                )

323
        self.timesteps = torch.from_numpy(timesteps).to(device)
324

325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
    def _get_variance(
        self,
        t: int,
        predicted_variance: Optional[torch.Tensor] = None,
        variance_type: Optional[
            Literal["fixed_small", "fixed_small_log", "fixed_large", "fixed_large_log", "learned", "learned_range"]
        ] = None,
    ) -> torch.Tensor:
        """
        Compute the variance for a given timestep according to the specified variance type.

        Args:
            t (`int`):
                The current timestep.
            predicted_variance (`torch.Tensor`, *optional*):
                The predicted variance from the model. Used only when `variance_type` is `"learned"` or
                `"learned_range"`.
            variance_type (`"fixed_small"`, `"fixed_small_log"`, `"fixed_large"`, `"fixed_large_log"`, `"learned"`, or `"learned_range"`, *optional*):
                The type of variance to compute. If `None`, uses the variance type specified in the scheduler
                configuration.

        Returns:
            `torch.Tensor`:
                The computed variance.
        """
Will Berman's avatar
Will Berman committed
350
351
        prev_t = self.previous_timestep(t)

352
        alpha_prod_t = self.alphas_cumprod[t]
353
354
        alpha_prod_t_prev = self.alphas_cumprod[prev_t] if prev_t >= 0 else self.one
        current_beta_t = 1 - alpha_prod_t / alpha_prod_t_prev
Patrick von Platen's avatar
Patrick von Platen committed
355

Quentin Gallouédec's avatar
Quentin Gallouédec committed
356
        # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://huggingface.co/papers/2006.11239)
357
        # and sample from it to get previous sample
Kashif Rasul's avatar
Kashif Rasul committed
358
        # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample
359
        variance = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * current_beta_t
William Berman's avatar
William Berman committed
360
361

        # we always take the log of variance, so clamp it to ensure it's not 0
William Berman's avatar
William Berman committed
362
        variance = torch.clamp(variance, min=1e-20)
Patrick von Platen's avatar
Patrick von Platen committed
363

364
365
366
        if variance_type is None:
            variance_type = self.config.variance_type

367
        # hacks - were probably added for training stability
368
        if variance_type == "fixed_small":
William Berman's avatar
William Berman committed
369
            variance = variance
Quentin Gallouédec's avatar
Quentin Gallouédec committed
370
        # for rl-diffuser https://huggingface.co/papers/2205.09991
371
        elif variance_type == "fixed_small_log":
372
            variance = torch.log(variance)
373
            variance = torch.exp(0.5 * variance)
374
        elif variance_type == "fixed_large":
375
            variance = current_beta_t
376
        elif variance_type == "fixed_large_log":
Patrick von Platen's avatar
Patrick von Platen committed
377
            # Glide max_log
378
            variance = torch.log(current_beta_t)
379
380
381
        elif variance_type == "learned":
            return predicted_variance
        elif variance_type == "learned_range":
382
            min_log = torch.log(variance)
William Berman's avatar
William Berman committed
383
            max_log = torch.log(current_beta_t)
384
385
            frac = (predicted_variance + 1) / 2
            variance = frac * max_log + (1 - frac) * min_log
Patrick von Platen's avatar
Patrick von Platen committed
386
387
388

        return variance

389
    def _threshold_sample(self, sample: torch.Tensor) -> torch.Tensor:
390
        """
391
392
        Apply dynamic thresholding to the predicted sample.

393
394
395
396
397
398
        "Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the
        prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by
        s. Dynamic thresholding pushes saturated pixels (those near -1 and 1) inwards, thereby actively preventing
        pixels from saturation at each step. We find that dynamic thresholding results in significantly better
        photorealism as well as better image-text alignment, especially when using very large guidance weights."

Quentin Gallouédec's avatar
Quentin Gallouédec committed
399
        https://huggingface.co/papers/2205.11487
400
401
402
403
404
405
406
407

        Args:
            sample (`torch.Tensor`):
                The predicted sample to be thresholded.

        Returns:
            `torch.Tensor`:
                The thresholded sample.
408
409
        """
        dtype = sample.dtype
410
        batch_size, channels, *remaining_dims = sample.shape
411
412
413
414
415

        if dtype not in (torch.float32, torch.float64):
            sample = sample.float()  # upcast for quantile calculation, and clamp not implemented for cpu half

        # Flatten sample for doing quantile calculation along each image
416
        sample = sample.reshape(batch_size, channels * np.prod(remaining_dims))
417
418
419
420
421
422
423
424
425
426

        abs_sample = sample.abs()  # "a certain percentile absolute pixel value"

        s = torch.quantile(abs_sample, self.config.dynamic_thresholding_ratio, dim=1)
        s = torch.clamp(
            s, min=1, max=self.config.sample_max_value
        )  # When clamped to min=1, equivalent to standard clipping to [-1, 1]
        s = s.unsqueeze(1)  # (batch_size, 1) because clamp will broadcast along dim=0
        sample = torch.clamp(sample, -s, s) / s  # "we threshold xt0 to the range [-s, s] and then divide by s"

427
        sample = sample.reshape(batch_size, channels, *remaining_dims)
428
429
430
        sample = sample.to(dtype)

        return sample
431

432
433
    def step(
        self,
434
        model_output: torch.Tensor,
435
        timestep: int,
436
        sample: torch.Tensor,
437
        generator: Optional[torch.Generator] = None,
438
        return_dict: bool = True,
439
    ) -> Union[DDPMSchedulerOutput, Tuple]:
440
        """
441
        Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
442
443
444
        process from the learned model outputs (most often the predicted noise).

        Args:
445
            model_output (`torch.Tensor`):
446
                The direct output from learned diffusion model.
447
            timestep (`int`):
448
                The current discrete timestep in the diffusion chain.
449
            sample (`torch.Tensor`):
450
451
452
                A current instance of a sample created by the diffusion process.
            generator (`torch.Generator`, *optional*):
                A random number generator.
453
            return_dict (`bool`, defaults to `True`):
454
                Whether or not to return a [`~schedulers.scheduling_ddpm.DDPMSchedulerOutput`] or `tuple`.
455
456

        Returns:
457
458
459
            [`~schedulers.scheduling_ddpm.DDPMSchedulerOutput`] or `tuple`:
                If return_dict is `True`, [`~schedulers.scheduling_ddpm.DDPMSchedulerOutput`] is returned, otherwise a
                tuple is returned where the first element is the sample tensor.
460
        """
461
        t = timestep
Will Berman's avatar
Will Berman committed
462
463

        prev_t = self.previous_timestep(t)
464

465
466
467
468
469
        if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]:
            model_output, predicted_variance = torch.split(model_output, sample.shape[1], dim=1)
        else:
            predicted_variance = None

Patrick von Platen's avatar
Patrick von Platen committed
470
        # 1. compute alphas, betas
471
        alpha_prod_t = self.alphas_cumprod[t]
472
        alpha_prod_t_prev = self.alphas_cumprod[prev_t] if prev_t >= 0 else self.one
Patrick von Platen's avatar
Patrick von Platen committed
473
474
        beta_prod_t = 1 - alpha_prod_t
        beta_prod_t_prev = 1 - alpha_prod_t_prev
475
476
        current_alpha_t = alpha_prod_t / alpha_prod_t_prev
        current_beta_t = 1 - current_alpha_t
Patrick von Platen's avatar
Patrick von Platen committed
477

478
        # 2. compute predicted original sample from predicted noise also called
Quentin Gallouédec's avatar
Quentin Gallouédec committed
479
        # "predicted x_0" of formula (15) from https://huggingface.co/papers/2006.11239
480
        if self.config.prediction_type == "epsilon":
Patrick von Platen's avatar
Patrick von Platen committed
481
            pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
482
        elif self.config.prediction_type == "sample":
Patrick von Platen's avatar
Patrick von Platen committed
483
            pred_original_sample = model_output
484
485
        elif self.config.prediction_type == "v_prediction":
            pred_original_sample = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output
486
487
        else:
            raise ValueError(
488
489
                f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` or"
                " `v_prediction`  for the DDPMScheduler."
490
            )
Patrick von Platen's avatar
Patrick von Platen committed
491

492
        # 3. Clip or threshold "predicted x_0"
493
494
495
        if self.config.thresholding:
            pred_original_sample = self._threshold_sample(pred_original_sample)
        elif self.config.clip_sample:
496
497
            pred_original_sample = pred_original_sample.clamp(
                -self.config.clip_sample_range, self.config.clip_sample_range
Will Berman's avatar
Will Berman committed
498
            )
Patrick von Platen's avatar
Patrick von Platen committed
499

500
        # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
Quentin Gallouédec's avatar
Quentin Gallouédec committed
501
        # See formula (7) from https://huggingface.co/papers/2006.11239
502
503
        pred_original_sample_coeff = (alpha_prod_t_prev ** (0.5) * current_beta_t) / beta_prod_t
        current_sample_coeff = current_alpha_t ** (0.5) * beta_prod_t_prev / beta_prod_t
Patrick von Platen's avatar
Patrick von Platen committed
504

505
        # 5. Compute predicted previous sample µ_t
Quentin Gallouédec's avatar
Quentin Gallouédec committed
506
        # See formula (7) from https://huggingface.co/papers/2006.11239
507
        pred_prev_sample = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
Patrick von Platen's avatar
Patrick von Platen committed
508

Patrick von Platen's avatar
Patrick von Platen committed
509
510
511
        # 6. Add noise
        variance = 0
        if t > 0:
512
            device = model_output.device
513
514
515
            variance_noise = randn_tensor(
                model_output.shape, generator=generator, device=device, dtype=model_output.dtype
            )
516
517
            if self.variance_type == "fixed_small_log":
                variance = self._get_variance(t, predicted_variance=predicted_variance) * variance_noise
518
519
520
            elif self.variance_type == "learned_range":
                variance = self._get_variance(t, predicted_variance=predicted_variance)
                variance = torch.exp(0.5 * variance) * variance_noise
521
522
            else:
                variance = (self._get_variance(t, predicted_variance=predicted_variance) ** 0.5) * variance_noise
Patrick von Platen's avatar
Patrick von Platen committed
523
524
525

        pred_prev_sample = pred_prev_sample + variance

526
        if not return_dict:
527
528
529
530
            return (
                pred_prev_sample,
                pred_original_sample,
            )
531

532
        return DDPMSchedulerOutput(prev_sample=pred_prev_sample, pred_original_sample=pred_original_sample)
Patrick von Platen's avatar
Patrick von Platen committed
533

Partho's avatar
Partho committed
534
535
    def add_noise(
        self,
536
537
        original_samples: torch.Tensor,
        noise: torch.Tensor,
538
        timesteps: torch.IntTensor,
539
    ) -> torch.Tensor:
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
        """
        Add noise to the original samples according to the noise magnitude at each timestep (this is the forward
        diffusion process).

        Args:
            original_samples (`torch.Tensor`):
                The original samples to which noise will be added.
            noise (`torch.Tensor`):
                The noise to add to the samples.
            timesteps (`torch.IntTensor`):
                The timesteps indicating the noise level for each sample.

        Returns:
            `torch.Tensor`:
                The noisy samples.
        """
556
        # Make sure alphas_cumprod and timestep have same device and dtype as original_samples
557
558
559
560
        # Move the self.alphas_cumprod to device to avoid redundant CPU to GPU data movement
        # for the subsequent add_noise calls
        self.alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device)
        alphas_cumprod = self.alphas_cumprod.to(dtype=original_samples.dtype)
561
        timesteps = timesteps.to(original_samples.device)
562

563
        sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
564
565
566
567
        sqrt_alpha_prod = sqrt_alpha_prod.flatten()
        while len(sqrt_alpha_prod.shape) < len(original_samples.shape):
            sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)

568
        sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
569
        sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
570
571
        while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape):
            sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
572
573

        noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
anton-l's avatar
anton-l committed
574
        return noisy_samples
anton-l's avatar
anton-l committed
575

576
    def get_velocity(self, sample: torch.Tensor, noise: torch.Tensor, timesteps: torch.IntTensor) -> torch.Tensor:
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
        """
        Compute the velocity prediction from the sample and noise according to the velocity formula.

        Args:
            sample (`torch.Tensor`):
                The input sample.
            noise (`torch.Tensor`):
                The noise tensor.
            timesteps (`torch.IntTensor`):
                The timesteps for velocity computation.

        Returns:
            `torch.Tensor`:
                The computed velocity.
        """
592
        # Make sure alphas_cumprod and timestep have same device and dtype as sample
593
594
        self.alphas_cumprod = self.alphas_cumprod.to(device=sample.device)
        alphas_cumprod = self.alphas_cumprod.to(dtype=sample.dtype)
595
596
        timesteps = timesteps.to(sample.device)

597
        sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
598
599
600
601
        sqrt_alpha_prod = sqrt_alpha_prod.flatten()
        while len(sqrt_alpha_prod.shape) < len(sample.shape):
            sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)

602
        sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
603
604
605
606
607
608
609
        sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
        while len(sqrt_one_minus_alpha_prod.shape) < len(sample.shape):
            sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)

        velocity = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample
        return velocity

610
    def __len__(self) -> int:
Nathan Lambert's avatar
Nathan Lambert committed
611
        return self.config.num_train_timesteps
Will Berman's avatar
Will Berman committed
612

613
614
615
616
617
618
619
620
621
622
623
624
    def previous_timestep(self, timestep: int) -> int:
        """
        Compute the previous timestep in the diffusion chain.

        Args:
            timestep (`int`):
                The current timestep.

        Returns:
            `int`:
                The previous timestep.
        """
625
        if self.custom_timesteps or self.num_inference_steps:
Will Berman's avatar
Will Berman committed
626
627
628
629
630
631
            index = (self.timesteps == timestep).nonzero(as_tuple=True)[0][0]
            if index == self.timesteps.shape[0] - 1:
                prev_t = torch.tensor(-1)
            else:
                prev_t = self.timesteps[index + 1]
        else:
632
            prev_t = timestep - 1
Will Berman's avatar
Will Berman committed
633
        return prev_t