Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
renzhc
diffusers_dcu
Commits
675ef1ff
Unverified
Commit
675ef1ff
authored
Jan 04, 2023
by
Joqsan
Committed by
GitHub
Jan 04, 2023
Browse files
fix: DDPMScheduler.set_timesteps() (#1912)
parent
d67c3051
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
19 additions
and
4 deletions
+19
-4
src/diffusers/schedulers/scheduling_ddim.py
src/diffusers/schedulers/scheduling_ddim.py
+8
-0
src/diffusers/schedulers/scheduling_ddpm.py
src/diffusers/schedulers/scheduling_ddpm.py
+11
-4
No files found.
src/diffusers/schedulers/scheduling_ddim.py
View file @
675ef1ff
...
@@ -201,6 +201,14 @@ class DDIMScheduler(SchedulerMixin, ConfigMixin):
...
@@ -201,6 +201,14 @@ class DDIMScheduler(SchedulerMixin, ConfigMixin):
num_inference_steps (`int`):
num_inference_steps (`int`):
the number of diffusion steps used when generating samples with a pre-trained model.
the number of diffusion steps used when generating samples with a pre-trained model.
"""
"""
if
num_inference_steps
>
self
.
config
.
num_train_timesteps
:
raise
ValueError
(
f
"`num_inference_steps`:
{
num_inference_steps
}
cannot be larger than `self.config.train_timesteps`:"
f
"
{
self
.
config
.
num_train_timesteps
}
as the unet model trained with this scheduler can only handle"
f
" maximal
{
self
.
config
.
num_train_timesteps
}
timesteps."
)
self
.
num_inference_steps
=
num_inference_steps
self
.
num_inference_steps
=
num_inference_steps
step_ratio
=
self
.
config
.
num_train_timesteps
//
self
.
num_inference_steps
step_ratio
=
self
.
config
.
num_train_timesteps
//
self
.
num_inference_steps
# creates integer timesteps by multiplying by ratio
# creates integer timesteps by multiplying by ratio
...
...
src/diffusers/schedulers/scheduling_ddpm.py
View file @
675ef1ff
...
@@ -184,11 +184,18 @@ class DDPMScheduler(SchedulerMixin, ConfigMixin):
...
@@ -184,11 +184,18 @@ class DDPMScheduler(SchedulerMixin, ConfigMixin):
num_inference_steps (`int`):
num_inference_steps (`int`):
the number of diffusion steps used when generating samples with a pre-trained model.
the number of diffusion steps used when generating samples with a pre-trained model.
"""
"""
num_inference_steps
=
min
(
self
.
config
.
num_train_timesteps
,
num_inference_steps
)
if
num_inference_steps
>
self
.
config
.
num_train_timesteps
:
raise
ValueError
(
f
"`num_inference_steps`:
{
num_inference_steps
}
cannot be larger than `self.config.train_timesteps`:"
f
"
{
self
.
config
.
num_train_timesteps
}
as the unet model trained with this scheduler can only handle"
f
" maximal
{
self
.
config
.
num_train_timesteps
}
timesteps."
)
self
.
num_inference_steps
=
num_inference_steps
self
.
num_inference_steps
=
num_inference_steps
timesteps
=
np
.
arange
(
0
,
self
.
config
.
num_train_timesteps
,
self
.
config
.
num_train_timesteps
//
self
.
num_inference_steps
step_ratio
=
self
.
config
.
num_train_timesteps
//
self
.
num_inference_steps
)[::
-
1
].
copy
(
)
timesteps
=
(
np
.
arange
(
0
,
num_inference_steps
)
*
step_ratio
).
round
()[::
-
1
].
copy
().
astype
(
np
.
int64
)
self
.
timesteps
=
torch
.
from_numpy
(
timesteps
).
to
(
device
)
self
.
timesteps
=
torch
.
from_numpy
(
timesteps
).
to
(
device
)
def
_get_variance
(
self
,
t
,
predicted_variance
=
None
,
variance_type
=
None
):
def
_get_variance
(
self
,
t
,
predicted_variance
=
None
,
variance_type
=
None
):
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment