scheduling_ddpm.py 23.8 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
# Copyright 2023 UC Berkeley Team and The HuggingFace Team. All rights reserved.
Patrick von Platen's avatar
improve  
Patrick von Platen committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
15
16

# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim

anton-l's avatar
anton-l committed
17
import math
18
from dataclasses import dataclass
19
from typing import List, Optional, Tuple, Union
Patrick von Platen's avatar
Patrick von Platen committed
20

Patrick von Platen's avatar
Patrick von Platen committed
21
import numpy as np
22
import torch
Patrick von Platen's avatar
improve  
Patrick von Platen committed
23

24
from ..configuration_utils import ConfigMixin, register_to_config
25
from ..utils import BaseOutput, randn_tensor
Kashif Rasul's avatar
Kashif Rasul committed
26
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44


@dataclass
class DDPMSchedulerOutput(BaseOutput):
    """
    Output class for the scheduler's step function output.

    Args:
        prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
            Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the
            denoising loop.
        pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
            The predicted denoised sample (x_{0}) based on the model output from the current timestep.
            `pred_original_sample` can be used to preview progress or for guidance.
    """

    prev_sample: torch.FloatTensor
    pred_original_sample: Optional[torch.FloatTensor] = None
45
46


YiYi Xu's avatar
YiYi Xu committed
47
48
49
50
51
def betas_for_alpha_bar(
    num_diffusion_timesteps,
    max_beta=0.999,
    alpha_transform_type="cosine",
):
52
    """
Patrick von Platen's avatar
Patrick von Platen committed
53
54
    Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
    (1-beta) over time from t = [0,1].
55

56
57
58
59
60
61
62
    Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
    to that part of the diffusion process.


    Args:
        num_diffusion_timesteps (`int`): the number of betas to produce.
        max_beta (`float`): the maximum beta to use; use values lower than 1 to
63
                     prevent singularities.
YiYi Xu's avatar
YiYi Xu committed
64
65
        alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar.
                     Choose from `cosine` or `exp`
66
67
68

    Returns:
        betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
69
    """
YiYi Xu's avatar
YiYi Xu committed
70
    if alpha_transform_type == "cosine":
71

YiYi Xu's avatar
YiYi Xu committed
72
73
74
75
76
77
78
79
80
81
        def alpha_bar_fn(t):
            return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2

    elif alpha_transform_type == "exp":

        def alpha_bar_fn(t):
            return math.exp(t * -12.0)

    else:
        raise ValueError(f"Unsupported alpha_tranform_type: {alpha_transform_type}")
82
83
84
85
86

    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
YiYi Xu's avatar
YiYi Xu committed
87
        betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta))
88
    return torch.tensor(betas, dtype=torch.float32)
Patrick von Platen's avatar
improve  
Patrick von Platen committed
89
90


Patrick von Platen's avatar
Patrick von Platen committed
91
class DDPMScheduler(SchedulerMixin, ConfigMixin):
92
93
94
95
    """
    Denoising diffusion probabilistic models (DDPMs) explores the connections between denoising score matching and
    Langevin dynamics sampling.

96
97
    [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
    function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
98
99
    [`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and
    [`~SchedulerMixin.from_pretrained`] functions.
100

101
102
103
104
105
106
107
108
    For more details, see the original paper: https://arxiv.org/abs/2006.11239

    Args:
        num_train_timesteps (`int`): number of diffusion steps used to train the model.
        beta_start (`float`): the starting `beta` value of inference.
        beta_end (`float`): the final `beta` value.
        beta_schedule (`str`):
            the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
109
            `linear`, `scaled_linear`, `squaredcos_cap_v2` or `sigmoid`.
Nathan Lambert's avatar
Nathan Lambert committed
110
111
        trained_betas (`np.ndarray`, optional):
            option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc.
112
113
114
115
        variance_type (`str`):
            options to clip the variance used when adding noise to the denoised sample. Choose from `fixed_small`,
            `fixed_small_log`, `fixed_large`, `fixed_large_log`, `learned` or `learned_range`.
        clip_sample (`bool`, default `True`):
116
117
118
            option to clip predicted sample for numerical stability.
        clip_sample_range (`float`, default `1.0`):
            the maximum magnitude for sample clipping. Valid only when `clip_sample=True`.
119
120
121
122
        prediction_type (`str`, default `epsilon`, optional):
            prediction type of the scheduler function, one of `epsilon` (predicting the noise of the diffusion
            process), `sample` (directly predicting the noisy sample`) or `v_prediction` (see section 2.4
            https://imagen.research.google/video/paper.pdf)
123
124
125
126
127
128
129
130
131
        thresholding (`bool`, default `False`):
            whether to use the "dynamic thresholding" method (introduced by Imagen, https://arxiv.org/abs/2205.11487).
            Note that the thresholding method is unsuitable for latent-space diffusion models (such as
            stable-diffusion).
        dynamic_thresholding_ratio (`float`, default `0.995`):
            the ratio for the dynamic thresholding method. Default is `0.995`, the same as Imagen
            (https://arxiv.org/abs/2205.11487). Valid only when `thresholding=True`.
        sample_max_value (`float`, default `1.0`):
            the threshold value for dynamic thresholding. Valid only when `thresholding=True`.
132
133
134
135
136
137
138
        timestep_spacing (`str`, default `"leading"`):
            The way the timesteps should be scaled. Refer to Table 2. of [Common Diffusion Noise Schedules and Sample
            Steps are Flawed](https://arxiv.org/abs/2305.08891) for more information.
        steps_offset (`int`, default `0`):
            an offset added to the inference steps. You can use a combination of `offset=1` and
            `set_alpha_to_one=False`, to make the last step use step 0 for the previous alpha product, as done in
            stable diffusion.
139
140
    """

Kashif Rasul's avatar
Kashif Rasul committed
141
    _compatibles = [e.name for e in KarrasDiffusionSchedulers]
142
    order = 1
143

144
    @register_to_config
Patrick von Platen's avatar
improve  
Patrick von Platen committed
145
146
    def __init__(
        self,
Partho's avatar
Partho committed
147
148
149
150
        num_train_timesteps: int = 1000,
        beta_start: float = 0.0001,
        beta_end: float = 0.02,
        beta_schedule: str = "linear",
151
        trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
Partho's avatar
Partho committed
152
153
        variance_type: str = "fixed_small",
        clip_sample: bool = True,
154
        prediction_type: str = "epsilon",
155
156
157
158
        thresholding: bool = False,
        dynamic_thresholding_ratio: float = 0.995,
        clip_sample_range: float = 1.0,
        sample_max_value: float = 1.0,
159
160
        timestep_spacing: str = "leading",
        steps_offset: int = 0,
Patrick von Platen's avatar
improve  
Patrick von Platen committed
161
    ):
162
        if trained_betas is not None:
163
            self.betas = torch.tensor(trained_betas, dtype=torch.float32)
164
        elif beta_schedule == "linear":
165
            self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
166
167
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
168
169
170
            self.betas = (
                torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
            )
anton-l's avatar
anton-l committed
171
        elif beta_schedule == "squaredcos_cap_v2":
Patrick von Platen's avatar
Patrick von Platen committed
172
            # Glide cosine schedule
Nathan Lambert's avatar
Nathan Lambert committed
173
            self.betas = betas_for_alpha_bar(num_train_timesteps)
Nathan Lambert's avatar
Nathan Lambert committed
174
175
176
177
        elif beta_schedule == "sigmoid":
            # GeoDiff sigmoid schedule
            betas = torch.linspace(-6, 6, num_train_timesteps)
            self.betas = torch.sigmoid(betas) * (beta_end - beta_start) + beta_start
Patrick von Platen's avatar
improve  
Patrick von Platen committed
178
179
180
        else:
            raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")

Patrick von Platen's avatar
Patrick von Platen committed
181
        self.alphas = 1.0 - self.betas
182
183
        self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
        self.one = torch.tensor(1.0)
Patrick von Platen's avatar
Patrick von Platen committed
184

185
186
187
        # standard deviation of the initial noise distribution
        self.init_noise_sigma = 1.0

188
        # setable values
Will Berman's avatar
Will Berman committed
189
        self.custom_timesteps = False
190
        self.num_inference_steps = None
191
        self.timesteps = torch.from_numpy(np.arange(0, num_train_timesteps)[::-1].copy())
Patrick von Platen's avatar
Patrick von Platen committed
192

193
194
        self.variance_type = variance_type

195
196
197
198
199
200
201
202
203
204
205
206
207
208
    def scale_model_input(self, sample: torch.FloatTensor, timestep: Optional[int] = None) -> torch.FloatTensor:
        """
        Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
        current timestep.

        Args:
            sample (`torch.FloatTensor`): input sample
            timestep (`int`, optional): current timestep

        Returns:
            `torch.FloatTensor`: scaled input sample
        """
        return sample

Will Berman's avatar
Will Berman committed
209
210
211
212
213
214
    def set_timesteps(
        self,
        num_inference_steps: Optional[int] = None,
        device: Union[str, torch.device] = None,
        timesteps: Optional[List[int]] = None,
    ):
215
216
217
218
        """
        Sets the discrete timesteps used for the diffusion chain. Supporting function to be run before inference.

        Args:
Will Berman's avatar
Will Berman committed
219
220
221
222
223
224
225
226
227
228
            num_inference_steps (`Optional[int]`):
                the number of diffusion steps used when generating samples with a pre-trained model. If passed, then
                `timesteps` must be `None`.
            device (`str` or `torch.device`, optional):
                the device to which the timesteps are moved to.
            custom_timesteps (`List[int]`, optional):
                custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
                timestep spacing strategy of equal spacing between timesteps is used. If passed, `num_inference_steps`
                must be `None`.

229
        """
Will Berman's avatar
Will Berman committed
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
        if num_inference_steps is not None and timesteps is not None:
            raise ValueError("Can only pass one of `num_inference_steps` or `custom_timesteps`.")

        if timesteps is not None:
            for i in range(1, len(timesteps)):
                if timesteps[i] >= timesteps[i - 1]:
                    raise ValueError("`custom_timesteps` must be in descending order.")

            if timesteps[0] >= self.config.num_train_timesteps:
                raise ValueError(
                    f"`timesteps` must start before `self.config.train_timesteps`:"
                    f" {self.config.num_train_timesteps}."
                )

            timesteps = np.array(timesteps, dtype=np.int64)
            self.custom_timesteps = True
        else:
            if num_inference_steps > self.config.num_train_timesteps:
                raise ValueError(
                    f"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:"
                    f" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle"
                    f" maximal {self.config.num_train_timesteps} timesteps."
                )
253

Will Berman's avatar
Will Berman committed
254
255
            self.num_inference_steps = num_inference_steps
            self.custom_timesteps = False
256

257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
            # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891
            if self.config.timestep_spacing == "linspace":
                timesteps = (
                    np.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps)
                    .round()[::-1]
                    .copy()
                    .astype(np.int64)
                )
            elif self.config.timestep_spacing == "leading":
                step_ratio = self.config.num_train_timesteps // self.num_inference_steps
                # creates integer timesteps by multiplying by ratio
                # casting to int to avoid issues when num_inference_step is power of 3
                timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.int64)
                timesteps += self.config.steps_offset
            elif self.config.timestep_spacing == "trailing":
                step_ratio = self.config.num_train_timesteps / self.num_inference_steps
                # creates integer timesteps by multiplying by ratio
                # casting to int to avoid issues when num_inference_step is power of 3
                timesteps = np.round(np.arange(self.config.num_train_timesteps, 0, -step_ratio)).astype(np.int64)
                timesteps -= 1
            else:
                raise ValueError(
                    f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'."
                )

282
        self.timesteps = torch.from_numpy(timesteps).to(device)
283

284
    def _get_variance(self, t, predicted_variance=None, variance_type=None):
Will Berman's avatar
Will Berman committed
285
286
        prev_t = self.previous_timestep(t)

287
        alpha_prod_t = self.alphas_cumprod[t]
288
289
        alpha_prod_t_prev = self.alphas_cumprod[prev_t] if prev_t >= 0 else self.one
        current_beta_t = 1 - alpha_prod_t / alpha_prod_t_prev
Patrick von Platen's avatar
Patrick von Platen committed
290

Kashif Rasul's avatar
Kashif Rasul committed
291
        # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf)
292
        # and sample from it to get previous sample
Kashif Rasul's avatar
Kashif Rasul committed
293
        # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample
294
        variance = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * current_beta_t
William Berman's avatar
William Berman committed
295
296

        # we always take the log of variance, so clamp it to ensure it's not 0
William Berman's avatar
William Berman committed
297
        variance = torch.clamp(variance, min=1e-20)
Patrick von Platen's avatar
Patrick von Platen committed
298

299
300
301
        if variance_type is None:
            variance_type = self.config.variance_type

302
        # hacks - were probably added for training stability
303
        if variance_type == "fixed_small":
William Berman's avatar
William Berman committed
304
            variance = variance
305
        # for rl-diffuser https://arxiv.org/abs/2205.09991
306
        elif variance_type == "fixed_small_log":
307
            variance = torch.log(variance)
308
            variance = torch.exp(0.5 * variance)
309
        elif variance_type == "fixed_large":
310
            variance = current_beta_t
311
        elif variance_type == "fixed_large_log":
Patrick von Platen's avatar
Patrick von Platen committed
312
            # Glide max_log
313
            variance = torch.log(current_beta_t)
314
315
316
        elif variance_type == "learned":
            return predicted_variance
        elif variance_type == "learned_range":
317
            min_log = torch.log(variance)
William Berman's avatar
William Berman committed
318
            max_log = torch.log(current_beta_t)
319
320
            frac = (predicted_variance + 1) / 2
            variance = frac * max_log + (1 - frac) * min_log
Patrick von Platen's avatar
Patrick von Platen committed
321
322
323

        return variance

324
    def _threshold_sample(self, sample: torch.FloatTensor) -> torch.FloatTensor:
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
        """
        "Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the
        prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by
        s. Dynamic thresholding pushes saturated pixels (those near -1 and 1) inwards, thereby actively preventing
        pixels from saturation at each step. We find that dynamic thresholding results in significantly better
        photorealism as well as better image-text alignment, especially when using very large guidance weights."

        https://arxiv.org/abs/2205.11487
        """
        dtype = sample.dtype
        batch_size, channels, height, width = sample.shape

        if dtype not in (torch.float32, torch.float64):
            sample = sample.float()  # upcast for quantile calculation, and clamp not implemented for cpu half

        # Flatten sample for doing quantile calculation along each image
        sample = sample.reshape(batch_size, channels * height * width)

        abs_sample = sample.abs()  # "a certain percentile absolute pixel value"

        s = torch.quantile(abs_sample, self.config.dynamic_thresholding_ratio, dim=1)
        s = torch.clamp(
            s, min=1, max=self.config.sample_max_value
        )  # When clamped to min=1, equivalent to standard clipping to [-1, 1]

        s = s.unsqueeze(1)  # (batch_size, 1) because clamp will broadcast along dim=0
        sample = torch.clamp(sample, -s, s) / s  # "we threshold xt0 to the range [-s, s] and then divide by s"

        sample = sample.reshape(batch_size, channels, height, width)
        sample = sample.to(dtype)

        return sample
357

358
359
    def step(
        self,
360
        model_output: torch.FloatTensor,
361
        timestep: int,
362
        sample: torch.FloatTensor,
Patrick von Platen's avatar
Patrick von Platen committed
363
        generator=None,
364
        return_dict: bool = True,
365
    ) -> Union[DDPMSchedulerOutput, Tuple]:
366
367
368
369
370
        """
        Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
        process from the learned model outputs (most often the predicted noise).

        Args:
371
            model_output (`torch.FloatTensor`): direct output from learned diffusion model.
372
            timestep (`int`): current discrete timestep in the diffusion chain.
373
            sample (`torch.FloatTensor`):
374
375
                current instance of sample being created by diffusion process.
            generator: random number generator.
376
            return_dict (`bool`): option for returning tuple rather than DDPMSchedulerOutput class
377
378

        Returns:
379
380
            [`~schedulers.scheduling_utils.DDPMSchedulerOutput`] or `tuple`:
            [`~schedulers.scheduling_utils.DDPMSchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. When
381
            returning a tuple, the first element is the sample tensor.
382
383

        """
384
        t = timestep
Will Berman's avatar
Will Berman committed
385
386

        prev_t = self.previous_timestep(t)
387

388
389
390
391
392
        if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]:
            model_output, predicted_variance = torch.split(model_output, sample.shape[1], dim=1)
        else:
            predicted_variance = None

Patrick von Platen's avatar
Patrick von Platen committed
393
        # 1. compute alphas, betas
394
        alpha_prod_t = self.alphas_cumprod[t]
395
        alpha_prod_t_prev = self.alphas_cumprod[prev_t] if prev_t >= 0 else self.one
Patrick von Platen's avatar
Patrick von Platen committed
396
397
        beta_prod_t = 1 - alpha_prod_t
        beta_prod_t_prev = 1 - alpha_prod_t_prev
398
399
        current_alpha_t = alpha_prod_t / alpha_prod_t_prev
        current_beta_t = 1 - current_alpha_t
Patrick von Platen's avatar
Patrick von Platen committed
400

401
        # 2. compute predicted original sample from predicted noise also called
Patrick von Platen's avatar
Patrick von Platen committed
402
        # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
403
        if self.config.prediction_type == "epsilon":
Patrick von Platen's avatar
Patrick von Platen committed
404
            pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
405
        elif self.config.prediction_type == "sample":
Patrick von Platen's avatar
Patrick von Platen committed
406
            pred_original_sample = model_output
407
408
        elif self.config.prediction_type == "v_prediction":
            pred_original_sample = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output
409
410
        else:
            raise ValueError(
411
412
                f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` or"
                " `v_prediction`  for the DDPMScheduler."
413
            )
Patrick von Platen's avatar
Patrick von Platen committed
414

415
        # 3. Clip or threshold "predicted x_0"
416
417
418
        if self.config.thresholding:
            pred_original_sample = self._threshold_sample(pred_original_sample)
        elif self.config.clip_sample:
419
420
            pred_original_sample = pred_original_sample.clamp(
                -self.config.clip_sample_range, self.config.clip_sample_range
Will Berman's avatar
Will Berman committed
421
            )
Patrick von Platen's avatar
Patrick von Platen committed
422

423
        # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
Patrick von Platen's avatar
Patrick von Platen committed
424
        # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
425
426
        pred_original_sample_coeff = (alpha_prod_t_prev ** (0.5) * current_beta_t) / beta_prod_t
        current_sample_coeff = current_alpha_t ** (0.5) * beta_prod_t_prev / beta_prod_t
Patrick von Platen's avatar
Patrick von Platen committed
427

428
        # 5. Compute predicted previous sample µ_t
Patrick von Platen's avatar
Patrick von Platen committed
429
        # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
430
        pred_prev_sample = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
Patrick von Platen's avatar
Patrick von Platen committed
431

Patrick von Platen's avatar
Patrick von Platen committed
432
433
434
        # 6. Add noise
        variance = 0
        if t > 0:
435
            device = model_output.device
436
437
438
            variance_noise = randn_tensor(
                model_output.shape, generator=generator, device=device, dtype=model_output.dtype
            )
439
440
            if self.variance_type == "fixed_small_log":
                variance = self._get_variance(t, predicted_variance=predicted_variance) * variance_noise
441
442
443
            elif self.variance_type == "learned_range":
                variance = self._get_variance(t, predicted_variance=predicted_variance)
                variance = torch.exp(0.5 * variance) * variance_noise
444
445
            else:
                variance = (self._get_variance(t, predicted_variance=predicted_variance) ** 0.5) * variance_noise
Patrick von Platen's avatar
Patrick von Platen committed
446
447
448

        pred_prev_sample = pred_prev_sample + variance

449
450
451
        if not return_dict:
            return (pred_prev_sample,)

452
        return DDPMSchedulerOutput(prev_sample=pred_prev_sample, pred_original_sample=pred_original_sample)
Patrick von Platen's avatar
Patrick von Platen committed
453

Partho's avatar
Partho committed
454
455
    def add_noise(
        self,
456
457
458
459
        original_samples: torch.FloatTensor,
        noise: torch.FloatTensor,
        timesteps: torch.IntTensor,
    ) -> torch.FloatTensor:
460
        # Make sure alphas_cumprod and timestep have same device and dtype as original_samples
461
        alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device, dtype=original_samples.dtype)
462
        timesteps = timesteps.to(original_samples.device)
463

464
        sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
465
466
467
468
        sqrt_alpha_prod = sqrt_alpha_prod.flatten()
        while len(sqrt_alpha_prod.shape) < len(original_samples.shape):
            sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)

469
        sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
470
        sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
471
472
        while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape):
            sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
473
474

        noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
anton-l's avatar
anton-l committed
475
        return noisy_samples
anton-l's avatar
anton-l committed
476

477
478
479
480
    def get_velocity(
        self, sample: torch.FloatTensor, noise: torch.FloatTensor, timesteps: torch.IntTensor
    ) -> torch.FloatTensor:
        # Make sure alphas_cumprod and timestep have same device and dtype as sample
481
        alphas_cumprod = self.alphas_cumprod.to(device=sample.device, dtype=sample.dtype)
482
483
        timesteps = timesteps.to(sample.device)

484
        sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
485
486
487
488
        sqrt_alpha_prod = sqrt_alpha_prod.flatten()
        while len(sqrt_alpha_prod.shape) < len(sample.shape):
            sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)

489
        sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
490
491
492
493
494
495
496
        sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
        while len(sqrt_one_minus_alpha_prod.shape) < len(sample.shape):
            sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)

        velocity = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample
        return velocity

Patrick von Platen's avatar
improve  
Patrick von Platen committed
497
    def __len__(self):
Nathan Lambert's avatar
Nathan Lambert committed
498
        return self.config.num_train_timesteps
Will Berman's avatar
Will Berman committed
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513

    def previous_timestep(self, timestep):
        if self.custom_timesteps:
            index = (self.timesteps == timestep).nonzero(as_tuple=True)[0][0]
            if index == self.timesteps.shape[0] - 1:
                prev_t = torch.tensor(-1)
            else:
                prev_t = self.timesteps[index + 1]
        else:
            num_inference_steps = (
                self.num_inference_steps if self.num_inference_steps else self.config.num_train_timesteps
            )
            prev_t = timestep - self.config.num_train_timesteps // num_inference_steps

        return prev_t