scheduling_ddpm.py 7.06 KB
Newer Older
Patrick von Platen's avatar
improve  
Patrick von Platen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
anton-l's avatar
anton-l committed
14
import math
Patrick von Platen's avatar
Patrick von Platen committed
15

Patrick von Platen's avatar
Patrick von Platen committed
16
import numpy as np
Patrick von Platen's avatar
improve  
Patrick von Platen committed
17

Patrick von Platen's avatar
Patrick von Platen committed
18
from ..configuration_utils import ConfigMixin
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
from .scheduling_utils import SchedulerMixin


def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999):
    """
    Create a beta schedule that discretizes the given alpha_t_bar function,
    which defines the cumulative product of (1-beta) over time from t = [0,1].

    :param num_diffusion_timesteps: the number of betas to produce.
    :param alpha_bar: a lambda that takes an argument t from 0 to 1 and
                      produces the cumulative product of (1-beta) up to that
                      part of the diffusion process.
    :param max_beta: the maximum beta to use; use values lower than 1 to
                     prevent singularities.
    """
    def alpha_bar(time_step):
        return math.cos((time_step + 0.008) / 1.008 * math.pi / 2) ** 2

    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
        betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
    return np.array(betas, dtype=np.float32)
Patrick von Platen's avatar
improve  
Patrick von Platen committed
43
44


Patrick von Platen's avatar
Patrick von Platen committed
45
class DDPMScheduler(SchedulerMixin, ConfigMixin):
Patrick von Platen's avatar
improve  
Patrick von Platen committed
46
47
48
49
50
51
    def __init__(
        self,
        timesteps=1000,
        beta_start=0.0001,
        beta_end=0.02,
        beta_schedule="linear",
52
53
        trained_betas=None,
        timestep_values=None,
Patrick von Platen's avatar
improve  
Patrick von Platen committed
54
        variance_type="fixed_small",
Patrick von Platen's avatar
Patrick von Platen committed
55
        clip_sample=True,
Patrick von Platen's avatar
Patrick von Platen committed
56
        tensor_format="np",
Patrick von Platen's avatar
improve  
Patrick von Platen committed
57
58
    ):
        super().__init__()
59
        self.register_to_config(
Patrick von Platen's avatar
improve  
Patrick von Platen committed
60
61
62
63
            timesteps=timesteps,
            beta_start=beta_start,
            beta_end=beta_end,
            beta_schedule=beta_schedule,
64
65
            trained_betas=trained_betas,
            timestep_values=timestep_values,
Patrick von Platen's avatar
improve  
Patrick von Platen committed
66
            variance_type=variance_type,
Patrick von Platen's avatar
Patrick von Platen committed
67
            clip_sample=clip_sample,
Patrick von Platen's avatar
improve  
Patrick von Platen committed
68
69
        )

70
71
72
        if trained_betas is not None:
            self.betas = np.asarray(trained_betas)
        elif beta_schedule == "linear":
73
            self.betas = np.linspace(beta_start, beta_end, timesteps, dtype=np.float32)
anton-l's avatar
anton-l committed
74
75
        elif beta_schedule == "squaredcos_cap_v2":
            # GLIDE cosine schedule
76
            self.betas = betas_for_alpha_bar(timesteps)
Patrick von Platen's avatar
improve  
Patrick von Platen committed
77
78
79
        else:
            raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")

Patrick von Platen's avatar
Patrick von Platen committed
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
        self.alphas = 1.0 - self.betas
        self.alphas_cumprod = np.cumprod(self.alphas, axis=0)
        self.one = np.array(1.0)

        self.set_format(tensor_format=tensor_format)

    #        self.register_buffer("betas", betas.to(torch.float32))
    #        self.register_buffer("alphas", alphas.to(torch.float32))
    #        self.register_buffer("alphas_cumprod", alphas_cumprod.to(torch.float32))

    #        alphas_cumprod_prev = torch.nn.functional.pad(alphas_cumprod[:-1], (1, 0), value=1.0)
    # TODO(PVP) - check how much of these is actually necessary!
    # LDM only uses "fixed_small"; glide seems to use a weird mix of the two, ...
    # https://github.com/openai/glide-text2im/blob/69b530740eb6cef69442d6180579ef5ba9ef063e/glide_text2im/gaussian_diffusion.py#L246
    #        variance = betas * (1.0 - alphas_cumprod_prev) / (1.0 - alphas_cumprod)
    #        if variance_type == "fixed_small":
    #            log_variance = torch.log(variance.clamp(min=1e-20))
    #        elif variance_type == "fixed_large":
    #            log_variance = torch.log(torch.cat([variance[1:2], betas[1:]], dim=0))
    #
    #
    #        self.register_buffer("log_variance", log_variance.to(torch.float32))
102
103
    def get_timestep_values(self):
        return self.config.timestep_values
Patrick von Platen's avatar
improve  
Patrick von Platen committed
104
105
106
107
108
109
110
111
112

    def get_alpha(self, time_step):
        return self.alphas[time_step]

    def get_beta(self, time_step):
        return self.betas[time_step]

    def get_alpha_prod(self, time_step):
        if time_step < 0:
Patrick von Platen's avatar
Patrick von Platen committed
113
            return self.one
Patrick von Platen's avatar
improve  
Patrick von Platen committed
114
115
        return self.alphas_cumprod[time_step]

Patrick von Platen's avatar
Patrick von Platen committed
116
117
118
119
120
    def get_variance(self, t):
        alpha_prod_t = self.get_alpha_prod(t)
        alpha_prod_t_prev = self.get_alpha_prod(t - 1)

        # For t > 0, compute predicted variance βt (see formala (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf)
121
122
        # and sample from it to get previous sample
        # x_{t-1} ~ N(pred_prev_sample, variance) == add variane to pred_sample
Patrick von Platen's avatar
Patrick von Platen committed
123
        variance = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * self.get_beta(t)
Patrick von Platen's avatar
Patrick von Platen committed
124
125

        # hacks - were probs added for training stability
126
        if self.config.variance_type == "fixed_small":
Patrick von Platen's avatar
Patrick von Platen committed
127
            variance = self.clip(variance, min_value=1e-20)
128
129
130
        # for rl-diffuser https://arxiv.org/abs/2205.09991
        elif self.config.variance_type == "fixed_small_log":
            variance = self.log(self.clip(variance, min_value=1e-20))
131
        elif self.config.variance_type == "fixed_large":
Patrick von Platen's avatar
Patrick von Platen committed
132
            variance = self.get_beta(t)
Patrick von Platen's avatar
Patrick von Platen committed
133
134
135

        return variance

136
    def step(self, residual, sample, t, predict_epsilon=True):
Patrick von Platen's avatar
Patrick von Platen committed
137
138
139
140
141
142
        # 1. compute alphas, betas
        alpha_prod_t = self.get_alpha_prod(t)
        alpha_prod_t_prev = self.get_alpha_prod(t - 1)
        beta_prod_t = 1 - alpha_prod_t
        beta_prod_t_prev = 1 - alpha_prod_t_prev

143
        # 2. compute predicted original sample from predicted noise also called
Patrick von Platen's avatar
Patrick von Platen committed
144
        # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
145
146
147
148
        if predict_epsilon:
            pred_original_sample = (sample - beta_prod_t ** (0.5) * residual) / alpha_prod_t ** (0.5)
        else:
            pred_original_sample = residual
Patrick von Platen's avatar
Patrick von Platen committed
149
150

        # 3. Clip "predicted x_0"
151
        if self.config.clip_sample:
152
            pred_original_sample = self.clip(pred_original_sample, -1, 1)
Patrick von Platen's avatar
Patrick von Platen committed
153

154
        # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
Patrick von Platen's avatar
Patrick von Platen committed
155
        # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
156
157
        pred_original_sample_coeff = (alpha_prod_t_prev ** (0.5) * self.get_beta(t)) / beta_prod_t
        current_sample_coeff = self.get_alpha(t) ** (0.5) * beta_prod_t_prev / beta_prod_t
Patrick von Platen's avatar
Patrick von Platen committed
158

159
        # 5. Compute predicted previous sample µ_t
Patrick von Platen's avatar
Patrick von Platen committed
160
        # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
161
        pred_prev_sample = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
Patrick von Platen's avatar
Patrick von Platen committed
162

163
        return pred_prev_sample
Patrick von Platen's avatar
Patrick von Platen committed
164

165
    def forward_step(self, original_sample, noise, t):
anton-l's avatar
anton-l committed
166
167
        sqrt_alpha_prod = self.get_alpha_prod(t) ** 0.5
        sqrt_one_minus_alpha_prod = (1 - self.get_alpha_prod(t)) ** 0.5
168
169
        noisy_sample = sqrt_alpha_prod * original_sample + sqrt_one_minus_alpha_prod * noise
        return noisy_sample
anton-l's avatar
anton-l committed
170

Patrick von Platen's avatar
improve  
Patrick von Platen committed
171
    def __len__(self):
172
        return self.config.timesteps