scheduling_ddpm.py 5.72 KB
Newer Older
Patrick von Platen's avatar
improve  
Patrick von Platen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
anton-l's avatar
anton-l committed
14
import math
Patrick von Platen's avatar
Patrick von Platen committed
15

Patrick von Platen's avatar
Patrick von Platen committed
16
import numpy as np
Patrick von Platen's avatar
improve  
Patrick von Platen committed
17

Patrick von Platen's avatar
Patrick von Platen committed
18
from ..configuration_utils import ConfigMixin
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
from .scheduling_utils import SchedulerMixin


def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999):
    """
    Create a beta schedule that discretizes the given alpha_t_bar function,
    which defines the cumulative product of (1-beta) over time from t = [0,1].

    :param num_diffusion_timesteps: the number of betas to produce.
    :param alpha_bar: a lambda that takes an argument t from 0 to 1 and
                      produces the cumulative product of (1-beta) up to that
                      part of the diffusion process.
    :param max_beta: the maximum beta to use; use values lower than 1 to
                     prevent singularities.
    """
    def alpha_bar(time_step):
        return math.cos((time_step + 0.008) / 1.008 * math.pi / 2) ** 2

    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
        betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
    return np.array(betas, dtype=np.float32)
Patrick von Platen's avatar
improve  
Patrick von Platen committed
43
44


Patrick von Platen's avatar
Patrick von Platen committed
45
class DDPMScheduler(SchedulerMixin, ConfigMixin):
Patrick von Platen's avatar
improve  
Patrick von Platen committed
46
47
48
49
50
51
    def __init__(
        self,
        timesteps=1000,
        beta_start=0.0001,
        beta_end=0.02,
        beta_schedule="linear",
52
53
        trained_betas=None,
        timestep_values=None,
Patrick von Platen's avatar
improve  
Patrick von Platen committed
54
        variance_type="fixed_small",
Patrick von Platen's avatar
Patrick von Platen committed
55
        clip_sample=True,
Patrick von Platen's avatar
Patrick von Platen committed
56
        tensor_format="np",
Patrick von Platen's avatar
improve  
Patrick von Platen committed
57
58
    ):
        super().__init__()
59
        self.register_to_config(
Patrick von Platen's avatar
improve  
Patrick von Platen committed
60
61
62
63
            timesteps=timesteps,
            beta_start=beta_start,
            beta_end=beta_end,
            beta_schedule=beta_schedule,
64
65
            trained_betas=trained_betas,
            timestep_values=timestep_values,
Patrick von Platen's avatar
improve  
Patrick von Platen committed
66
            variance_type=variance_type,
Patrick von Platen's avatar
Patrick von Platen committed
67
            clip_sample=clip_sample,
Patrick von Platen's avatar
improve  
Patrick von Platen committed
68
69
        )

70
71
72
        if trained_betas is not None:
            self.betas = np.asarray(trained_betas)
        elif beta_schedule == "linear":
73
            self.betas = np.linspace(beta_start, beta_end, timesteps, dtype=np.float32)
anton-l's avatar
anton-l committed
74
75
        elif beta_schedule == "squaredcos_cap_v2":
            # GLIDE cosine schedule
76
            self.betas = betas_for_alpha_bar(timesteps)
Patrick von Platen's avatar
improve  
Patrick von Platen committed
77
78
79
        else:
            raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")

Patrick von Platen's avatar
Patrick von Platen committed
80
81
82
83
84
85
        self.alphas = 1.0 - self.betas
        self.alphas_cumprod = np.cumprod(self.alphas, axis=0)
        self.one = np.array(1.0)

        self.set_format(tensor_format=tensor_format)

Patrick von Platen's avatar
Patrick von Platen committed
86
    def get_variance(self, t):
87
88
        alpha_prod_t = self.alphas_cumprod[t]
        alpha_prod_t_prev = self.alphas_cumprod[t - 1] if t > 0 else self.one
Patrick von Platen's avatar
Patrick von Platen committed
89
90

        # For t > 0, compute predicted variance βt (see formala (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf)
91
92
        # and sample from it to get previous sample
        # x_{t-1} ~ N(pred_prev_sample, variance) == add variane to pred_sample
93
        variance = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * self.betas[t]
Patrick von Platen's avatar
Patrick von Platen committed
94
95

        # hacks - were probs added for training stability
96
        if self.config.variance_type == "fixed_small":
Patrick von Platen's avatar
Patrick von Platen committed
97
            variance = self.clip(variance, min_value=1e-20)
98
99
100
        # for rl-diffuser https://arxiv.org/abs/2205.09991
        elif self.config.variance_type == "fixed_small_log":
            variance = self.log(self.clip(variance, min_value=1e-20))
101
        elif self.config.variance_type == "fixed_large":
102
            variance = self.betas[t]
Patrick von Platen's avatar
Patrick von Platen committed
103
104
105

        return variance

106
    def step(self, residual, sample, t, predict_epsilon=True):
Patrick von Platen's avatar
Patrick von Platen committed
107
        # 1. compute alphas, betas
108
109
        alpha_prod_t = self.alphas_cumprod[t]
        alpha_prod_t_prev = self.alphas_cumprod[t - 1] if t > 0 else self.one
Patrick von Platen's avatar
Patrick von Platen committed
110
111
112
        beta_prod_t = 1 - alpha_prod_t
        beta_prod_t_prev = 1 - alpha_prod_t_prev

113
        # 2. compute predicted original sample from predicted noise also called
Patrick von Platen's avatar
Patrick von Platen committed
114
        # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
115
116
117
118
        if predict_epsilon:
            pred_original_sample = (sample - beta_prod_t ** (0.5) * residual) / alpha_prod_t ** (0.5)
        else:
            pred_original_sample = residual
Patrick von Platen's avatar
Patrick von Platen committed
119
120

        # 3. Clip "predicted x_0"
121
        if self.config.clip_sample:
122
            pred_original_sample = self.clip(pred_original_sample, -1, 1)
Patrick von Platen's avatar
Patrick von Platen committed
123

124
        # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
Patrick von Platen's avatar
Patrick von Platen committed
125
        # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
126
127
        pred_original_sample_coeff = (alpha_prod_t_prev ** (0.5) * self.betas[t]) / beta_prod_t
        current_sample_coeff = self.alphas[t] ** (0.5) * beta_prod_t_prev / beta_prod_t
Patrick von Platen's avatar
Patrick von Platen committed
128

129
        # 5. Compute predicted previous sample µ_t
Patrick von Platen's avatar
Patrick von Platen committed
130
        # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
131
        pred_prev_sample = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
Patrick von Platen's avatar
Patrick von Platen committed
132

133
        return pred_prev_sample
Patrick von Platen's avatar
Patrick von Platen committed
134

135
    def forward_step(self, original_sample, noise, t):
136
137
        sqrt_alpha_prod = self.alpha_prod_t[t] ** 0.5
        sqrt_one_minus_alpha_prod = (1 - self.alpha_prod_t[t]) ** 0.5
138
139
        noisy_sample = sqrt_alpha_prod * original_sample + sqrt_one_minus_alpha_prod * noise
        return noisy_sample
anton-l's avatar
anton-l committed
140

Patrick von Platen's avatar
improve  
Patrick von Platen committed
141
    def __len__(self):
142
        return self.config.timesteps