scheduling_ddpm.py 16.5 KB
Newer Older
Ryan Russell's avatar
Ryan Russell committed
1
# Copyright 2022 UC Berkeley Team and The HuggingFace Team. All rights reserved.
Patrick von Platen's avatar
improve  
Patrick von Platen committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
15
16

# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim

anton-l's avatar
anton-l committed
17
import math
18
from dataclasses import dataclass
19
from typing import List, Optional, Tuple, Union
Patrick von Platen's avatar
Patrick von Platen committed
20

Patrick von Platen's avatar
Patrick von Platen committed
21
import numpy as np
22
import torch
Patrick von Platen's avatar
improve  
Patrick von Platen committed
23

24
25
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, randn_tensor
Kashif Rasul's avatar
Kashif Rasul committed
26
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44


@dataclass
class DDPMSchedulerOutput(BaseOutput):
    """
    Output class for the scheduler's step function output.

    Args:
        prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
            Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the
            denoising loop.
        pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
            The predicted denoised sample (x_{0}) based on the model output from the current timestep.
            `pred_original_sample` can be used to preview progress or for guidance.
    """

    prev_sample: torch.FloatTensor
    pred_original_sample: Optional[torch.FloatTensor] = None
45
46
47
48


def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999):
    """
Patrick von Platen's avatar
Patrick von Platen committed
49
50
    Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
    (1-beta) over time from t = [0,1].
51

52
53
54
55
56
57
58
    Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
    to that part of the diffusion process.


    Args:
        num_diffusion_timesteps (`int`): the number of betas to produce.
        max_beta (`float`): the maximum beta to use; use values lower than 1 to
59
                     prevent singularities.
60
61
62

    Returns:
        betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
63
    """
64

65
66
67
68
69
70
71
72
    def alpha_bar(time_step):
        return math.cos((time_step + 0.008) / 1.008 * math.pi / 2) ** 2

    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
        betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
73
    return torch.tensor(betas, dtype=torch.float32)
Patrick von Platen's avatar
improve  
Patrick von Platen committed
74
75


Patrick von Platen's avatar
Patrick von Platen committed
76
class DDPMScheduler(SchedulerMixin, ConfigMixin):
77
78
79
80
    """
    Denoising diffusion probabilistic models (DDPMs) explores the connections between denoising score matching and
    Langevin dynamics sampling.

81
82
    [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
    function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
83
84
    [`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and
    [`~SchedulerMixin.from_pretrained`] functions.
85

86
87
88
89
90
91
92
93
94
    For more details, see the original paper: https://arxiv.org/abs/2006.11239

    Args:
        num_train_timesteps (`int`): number of diffusion steps used to train the model.
        beta_start (`float`): the starting `beta` value of inference.
        beta_end (`float`): the final `beta` value.
        beta_schedule (`str`):
            the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
            `linear`, `scaled_linear`, or `squaredcos_cap_v2`.
Nathan Lambert's avatar
Nathan Lambert committed
95
96
        trained_betas (`np.ndarray`, optional):
            option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc.
97
98
99
100
101
        variance_type (`str`):
            options to clip the variance used when adding noise to the denoised sample. Choose from `fixed_small`,
            `fixed_small_log`, `fixed_large`, `fixed_large_log`, `learned` or `learned_range`.
        clip_sample (`bool`, default `True`):
            option to clip predicted sample between -1 and 1 for numerical stability.
102
103
104
105
        prediction_type (`str`, default `epsilon`, optional):
            prediction type of the scheduler function, one of `epsilon` (predicting the noise of the diffusion
            process), `sample` (directly predicting the noisy sample`) or `v_prediction` (see section 2.4
            https://imagen.research.google/video/paper.pdf)
106
107
    """

Kashif Rasul's avatar
Kashif Rasul committed
108
    _compatibles = [e.name for e in KarrasDiffusionSchedulers]
109
    order = 1
110

111
    @register_to_config
Patrick von Platen's avatar
improve  
Patrick von Platen committed
112
113
    def __init__(
        self,
Partho's avatar
Partho committed
114
115
116
117
        num_train_timesteps: int = 1000,
        beta_start: float = 0.0001,
        beta_end: float = 0.02,
        beta_schedule: str = "linear",
118
        trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
Partho's avatar
Partho committed
119
120
        variance_type: str = "fixed_small",
        clip_sample: bool = True,
121
        prediction_type: str = "epsilon",
Patrick von Platen's avatar
improve  
Patrick von Platen committed
122
    ):
123
        if trained_betas is not None:
124
            self.betas = torch.tensor(trained_betas, dtype=torch.float32)
125
        elif beta_schedule == "linear":
126
            self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
127
128
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
129
130
131
            self.betas = (
                torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
            )
anton-l's avatar
anton-l committed
132
        elif beta_schedule == "squaredcos_cap_v2":
Patrick von Platen's avatar
Patrick von Platen committed
133
            # Glide cosine schedule
Nathan Lambert's avatar
Nathan Lambert committed
134
            self.betas = betas_for_alpha_bar(num_train_timesteps)
Nathan Lambert's avatar
Nathan Lambert committed
135
136
137
138
        elif beta_schedule == "sigmoid":
            # GeoDiff sigmoid schedule
            betas = torch.linspace(-6, 6, num_train_timesteps)
            self.betas = torch.sigmoid(betas) * (beta_end - beta_start) + beta_start
Patrick von Platen's avatar
improve  
Patrick von Platen committed
139
140
141
        else:
            raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")

Patrick von Platen's avatar
Patrick von Platen committed
142
        self.alphas = 1.0 - self.betas
143
144
        self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
        self.one = torch.tensor(1.0)
Patrick von Platen's avatar
Patrick von Platen committed
145

146
147
148
        # standard deviation of the initial noise distribution
        self.init_noise_sigma = 1.0

149
150
        # setable values
        self.num_inference_steps = None
151
        self.timesteps = torch.from_numpy(np.arange(0, num_train_timesteps)[::-1].copy())
Patrick von Platen's avatar
Patrick von Platen committed
152

153
154
        self.variance_type = variance_type

155
156
157
158
159
160
161
162
163
164
165
166
167
168
    def scale_model_input(self, sample: torch.FloatTensor, timestep: Optional[int] = None) -> torch.FloatTensor:
        """
        Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
        current timestep.

        Args:
            sample (`torch.FloatTensor`): input sample
            timestep (`int`, optional): current timestep

        Returns:
            `torch.FloatTensor`: scaled input sample
        """
        return sample

169
    def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None):
170
171
172
173
174
175
176
        """
        Sets the discrete timesteps used for the diffusion chain. Supporting function to be run before inference.

        Args:
            num_inference_steps (`int`):
                the number of diffusion steps used when generating samples with a pre-trained model.
        """
177
178
179
180
181
182
183
184

        if num_inference_steps > self.config.num_train_timesteps:
            raise ValueError(
                f"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:"
                f" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle"
                f" maximal {self.config.num_train_timesteps} timesteps."
            )

185
        self.num_inference_steps = num_inference_steps
186
187
188

        step_ratio = self.config.num_train_timesteps // self.num_inference_steps
        timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.int64)
189
        self.timesteps = torch.from_numpy(timesteps).to(device)
190

191
    def _get_variance(self, t, predicted_variance=None, variance_type=None):
192
193
        num_inference_steps = self.num_inference_steps if self.num_inference_steps else self.config.num_train_timesteps
        prev_t = t - self.config.num_train_timesteps // num_inference_steps
194
        alpha_prod_t = self.alphas_cumprod[t]
195
196
        alpha_prod_t_prev = self.alphas_cumprod[prev_t] if prev_t >= 0 else self.one
        current_beta_t = 1 - alpha_prod_t / alpha_prod_t_prev
Patrick von Platen's avatar
Patrick von Platen committed
197

Kashif Rasul's avatar
Kashif Rasul committed
198
        # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf)
199
        # and sample from it to get previous sample
Kashif Rasul's avatar
Kashif Rasul committed
200
        # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample
201
        variance = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * current_beta_t
Patrick von Platen's avatar
Patrick von Platen committed
202

203
204
205
        if variance_type is None:
            variance_type = self.config.variance_type

206
        # hacks - were probably added for training stability
207
        if variance_type == "fixed_small":
208
            variance = torch.clamp(variance, min=1e-20)
209
        # for rl-diffuser https://arxiv.org/abs/2205.09991
210
        elif variance_type == "fixed_small_log":
211
            variance = torch.log(torch.clamp(variance, min=1e-20))
212
            variance = torch.exp(0.5 * variance)
213
        elif variance_type == "fixed_large":
214
            variance = current_beta_t
215
        elif variance_type == "fixed_large_log":
Patrick von Platen's avatar
Patrick von Platen committed
216
            # Glide max_log
217
            variance = torch.log(current_beta_t)
218
219
220
221
222
223
224
        elif variance_type == "learned":
            return predicted_variance
        elif variance_type == "learned_range":
            min_log = variance
            max_log = self.betas[t]
            frac = (predicted_variance + 1) / 2
            variance = frac * max_log + (1 - frac) * min_log
Patrick von Platen's avatar
Patrick von Platen committed
225
226
227

        return variance

228
229
    def step(
        self,
230
        model_output: torch.FloatTensor,
231
        timestep: int,
232
        sample: torch.FloatTensor,
Patrick von Platen's avatar
Patrick von Platen committed
233
        generator=None,
234
        return_dict: bool = True,
235
    ) -> Union[DDPMSchedulerOutput, Tuple]:
236
237
238
239
240
        """
        Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
        process from the learned model outputs (most often the predicted noise).

        Args:
241
            model_output (`torch.FloatTensor`): direct output from learned diffusion model.
242
            timestep (`int`): current discrete timestep in the diffusion chain.
243
            sample (`torch.FloatTensor`):
244
245
                current instance of sample being created by diffusion process.
            generator: random number generator.
246
            return_dict (`bool`): option for returning tuple rather than DDPMSchedulerOutput class
247
248

        Returns:
249
250
            [`~schedulers.scheduling_utils.DDPMSchedulerOutput`] or `tuple`:
            [`~schedulers.scheduling_utils.DDPMSchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. When
251
            returning a tuple, the first element is the sample tensor.
252
253

        """
254
        t = timestep
255
256
        num_inference_steps = self.num_inference_steps if self.num_inference_steps else self.config.num_train_timesteps
        prev_t = timestep - self.config.num_train_timesteps // num_inference_steps
257

258
259
260
261
262
        if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]:
            model_output, predicted_variance = torch.split(model_output, sample.shape[1], dim=1)
        else:
            predicted_variance = None

Patrick von Platen's avatar
Patrick von Platen committed
263
        # 1. compute alphas, betas
264
        alpha_prod_t = self.alphas_cumprod[t]
265
        alpha_prod_t_prev = self.alphas_cumprod[prev_t] if prev_t >= 0 else self.one
Patrick von Platen's avatar
Patrick von Platen committed
266
267
        beta_prod_t = 1 - alpha_prod_t
        beta_prod_t_prev = 1 - alpha_prod_t_prev
268
269
        current_alpha_t = alpha_prod_t / alpha_prod_t_prev
        current_beta_t = 1 - current_alpha_t
Patrick von Platen's avatar
Patrick von Platen committed
270

271
        # 2. compute predicted original sample from predicted noise also called
Patrick von Platen's avatar
Patrick von Platen committed
272
        # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
273
        if self.config.prediction_type == "epsilon":
Patrick von Platen's avatar
Patrick von Platen committed
274
            pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
275
        elif self.config.prediction_type == "sample":
Patrick von Platen's avatar
Patrick von Platen committed
276
            pred_original_sample = model_output
277
278
        elif self.config.prediction_type == "v_prediction":
            pred_original_sample = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output
279
280
        else:
            raise ValueError(
281
282
                f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` or"
                " `v_prediction`  for the DDPMScheduler."
283
            )
Patrick von Platen's avatar
Patrick von Platen committed
284
285

        # 3. Clip "predicted x_0"
286
        if self.config.clip_sample:
287
            pred_original_sample = torch.clamp(pred_original_sample, -1, 1)
Patrick von Platen's avatar
Patrick von Platen committed
288

289
        # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
Patrick von Platen's avatar
Patrick von Platen committed
290
        # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
291
292
        pred_original_sample_coeff = (alpha_prod_t_prev ** (0.5) * current_beta_t) / beta_prod_t
        current_sample_coeff = current_alpha_t ** (0.5) * beta_prod_t_prev / beta_prod_t
Patrick von Platen's avatar
Patrick von Platen committed
293

294
        # 5. Compute predicted previous sample µ_t
Patrick von Platen's avatar
Patrick von Platen committed
295
        # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
296
        pred_prev_sample = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
Patrick von Platen's avatar
Patrick von Platen committed
297

Patrick von Platen's avatar
Patrick von Platen committed
298
299
300
        # 6. Add noise
        variance = 0
        if t > 0:
301
            device = model_output.device
302
303
304
            variance_noise = randn_tensor(
                model_output.shape, generator=generator, device=device, dtype=model_output.dtype
            )
305
306
307
308
            if self.variance_type == "fixed_small_log":
                variance = self._get_variance(t, predicted_variance=predicted_variance) * variance_noise
            else:
                variance = (self._get_variance(t, predicted_variance=predicted_variance) ** 0.5) * variance_noise
Patrick von Platen's avatar
Patrick von Platen committed
309
310
311

        pred_prev_sample = pred_prev_sample + variance

312
313
314
        if not return_dict:
            return (pred_prev_sample,)

315
        return DDPMSchedulerOutput(prev_sample=pred_prev_sample, pred_original_sample=pred_original_sample)
Patrick von Platen's avatar
Patrick von Platen committed
316

Partho's avatar
Partho committed
317
318
    def add_noise(
        self,
319
320
321
322
        original_samples: torch.FloatTensor,
        noise: torch.FloatTensor,
        timesteps: torch.IntTensor,
    ) -> torch.FloatTensor:
323
324
325
        # Make sure alphas_cumprod and timestep have same device and dtype as original_samples
        self.alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device, dtype=original_samples.dtype)
        timesteps = timesteps.to(original_samples.device)
326

anton-l's avatar
anton-l committed
327
        sqrt_alpha_prod = self.alphas_cumprod[timesteps] ** 0.5
328
329
330
331
        sqrt_alpha_prod = sqrt_alpha_prod.flatten()
        while len(sqrt_alpha_prod.shape) < len(original_samples.shape):
            sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)

anton-l's avatar
anton-l committed
332
        sqrt_one_minus_alpha_prod = (1 - self.alphas_cumprod[timesteps]) ** 0.5
333
        sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
334
335
        while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape):
            sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
336
337

        noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
anton-l's avatar
anton-l committed
338
        return noisy_samples
anton-l's avatar
anton-l committed
339

340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
    def get_velocity(
        self, sample: torch.FloatTensor, noise: torch.FloatTensor, timesteps: torch.IntTensor
    ) -> torch.FloatTensor:
        # Make sure alphas_cumprod and timestep have same device and dtype as sample
        self.alphas_cumprod = self.alphas_cumprod.to(device=sample.device, dtype=sample.dtype)
        timesteps = timesteps.to(sample.device)

        sqrt_alpha_prod = self.alphas_cumprod[timesteps] ** 0.5
        sqrt_alpha_prod = sqrt_alpha_prod.flatten()
        while len(sqrt_alpha_prod.shape) < len(sample.shape):
            sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)

        sqrt_one_minus_alpha_prod = (1 - self.alphas_cumprod[timesteps]) ** 0.5
        sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
        while len(sqrt_one_minus_alpha_prod.shape) < len(sample.shape):
            sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)

        velocity = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample
        return velocity

Patrick von Platen's avatar
improve  
Patrick von Platen committed
360
    def __len__(self):
Nathan Lambert's avatar
Nathan Lambert committed
361
        return self.config.num_train_timesteps