scheduling_ddpm.py 12.4 KB
Newer Older
Ryan Russell's avatar
Ryan Russell committed
1
# Copyright 2022 UC Berkeley Team and The HuggingFace Team. All rights reserved.
Patrick von Platen's avatar
improve  
Patrick von Platen committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
15
16

# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim

anton-l's avatar
anton-l committed
17
import math
18
from dataclasses import dataclass
19
from typing import Optional, Tuple, Union
Patrick von Platen's avatar
Patrick von Platen committed
20

Patrick von Platen's avatar
Patrick von Platen committed
21
import numpy as np
22
import torch
Patrick von Platen's avatar
improve  
Patrick von Platen committed
23

24
from ..configuration_utils import ConfigMixin, register_to_config
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
from ..utils import BaseOutput
from .scheduling_utils import SchedulerMixin


@dataclass
class DDPMSchedulerOutput(BaseOutput):
    """
    Output class for the scheduler's step function output.

    Args:
        prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
            Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the
            denoising loop.
        pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
            The predicted denoised sample (x_{0}) based on the model output from the current timestep.
            `pred_original_sample` can be used to preview progress or for guidance.
    """

    prev_sample: torch.FloatTensor
    pred_original_sample: Optional[torch.FloatTensor] = None
45
46
47
48


def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999):
    """
Patrick von Platen's avatar
Patrick von Platen committed
49
50
    Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
    (1-beta) over time from t = [0,1].
51

52
53
54
55
56
57
58
    Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
    to that part of the diffusion process.


    Args:
        num_diffusion_timesteps (`int`): the number of betas to produce.
        max_beta (`float`): the maximum beta to use; use values lower than 1 to
59
                     prevent singularities.
60
61
62

    Returns:
        betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
63
    """
64

65
66
67
68
69
70
71
72
73
    def alpha_bar(time_step):
        return math.cos((time_step + 0.008) / 1.008 * math.pi / 2) ** 2

    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
        betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
    return np.array(betas, dtype=np.float32)
Patrick von Platen's avatar
improve  
Patrick von Platen committed
74
75


Patrick von Platen's avatar
Patrick von Platen committed
76
class DDPMScheduler(SchedulerMixin, ConfigMixin):
77
78
79
80
    """
    Denoising diffusion probabilistic models (DDPMs) explores the connections between denoising score matching and
    Langevin dynamics sampling.

81
82
83
    [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
    function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
    [`~ConfigMixin`] also provides general loading and saving functionality via the [`~ConfigMixin.save_config`] and
Nathan Lambert's avatar
Nathan Lambert committed
84
    [`~ConfigMixin.from_config`] functions.
85

86
87
88
89
90
91
92
93
94
    For more details, see the original paper: https://arxiv.org/abs/2006.11239

    Args:
        num_train_timesteps (`int`): number of diffusion steps used to train the model.
        beta_start (`float`): the starting `beta` value of inference.
        beta_end (`float`): the final `beta` value.
        beta_schedule (`str`):
            the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
            `linear`, `scaled_linear`, or `squaredcos_cap_v2`.
Nathan Lambert's avatar
Nathan Lambert committed
95
96
        trained_betas (`np.ndarray`, optional):
            option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc.
97
98
99
100
101
102
103
104
105
        variance_type (`str`):
            options to clip the variance used when adding noise to the denoised sample. Choose from `fixed_small`,
            `fixed_small_log`, `fixed_large`, `fixed_large_log`, `learned` or `learned_range`.
        clip_sample (`bool`, default `True`):
            option to clip predicted sample between -1 and 1 for numerical stability.
        tensor_format (`str`): whether the scheduler expects pytorch or numpy arrays.

    """

106
    @register_to_config
Patrick von Platen's avatar
improve  
Patrick von Platen committed
107
108
    def __init__(
        self,
Partho's avatar
Partho committed
109
110
111
112
113
114
115
116
        num_train_timesteps: int = 1000,
        beta_start: float = 0.0001,
        beta_end: float = 0.02,
        beta_schedule: str = "linear",
        trained_betas: Optional[np.ndarray] = None,
        variance_type: str = "fixed_small",
        clip_sample: bool = True,
        tensor_format: str = "pt",
Patrick von Platen's avatar
improve  
Patrick von Platen committed
117
    ):
118
119
120
        if trained_betas is not None:
            self.betas = np.asarray(trained_betas)
        elif beta_schedule == "linear":
Nathan Lambert's avatar
Nathan Lambert committed
121
            self.betas = np.linspace(beta_start, beta_end, num_train_timesteps, dtype=np.float32)
122
123
124
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
            self.betas = np.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=np.float32) ** 2
anton-l's avatar
anton-l committed
125
        elif beta_schedule == "squaredcos_cap_v2":
Patrick von Platen's avatar
Patrick von Platen committed
126
            # Glide cosine schedule
Nathan Lambert's avatar
Nathan Lambert committed
127
            self.betas = betas_for_alpha_bar(num_train_timesteps)
Patrick von Platen's avatar
improve  
Patrick von Platen committed
128
129
130
        else:
            raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")

Patrick von Platen's avatar
Patrick von Platen committed
131
132
133
134
        self.alphas = 1.0 - self.betas
        self.alphas_cumprod = np.cumprod(self.alphas, axis=0)
        self.one = np.array(1.0)

135
136
137
138
139
        # setable values
        self.num_inference_steps = None
        self.timesteps = np.arange(0, num_train_timesteps)[::-1].copy()

        self.tensor_format = tensor_format
Patrick von Platen's avatar
Patrick von Platen committed
140
141
        self.set_format(tensor_format=tensor_format)

142
143
        self.variance_type = variance_type

Partho's avatar
Partho committed
144
    def set_timesteps(self, num_inference_steps: int):
145
146
147
148
149
150
151
        """
        Sets the discrete timesteps used for the diffusion chain. Supporting function to be run before inference.

        Args:
            num_inference_steps (`int`):
                the number of diffusion steps used when generating samples with a pre-trained model.
        """
Patrick von Platen's avatar
Patrick von Platen committed
152
        num_inference_steps = min(self.config.num_train_timesteps, num_inference_steps)
153
154
155
156
157
158
        self.num_inference_steps = num_inference_steps
        self.timesteps = np.arange(
            0, self.config.num_train_timesteps, self.config.num_train_timesteps // self.num_inference_steps
        )[::-1].copy()
        self.set_format(tensor_format=self.tensor_format)

159
    def _get_variance(self, t, predicted_variance=None, variance_type=None):
160
161
        alpha_prod_t = self.alphas_cumprod[t]
        alpha_prod_t_prev = self.alphas_cumprod[t - 1] if t > 0 else self.one
Patrick von Platen's avatar
Patrick von Platen committed
162

Kashif Rasul's avatar
Kashif Rasul committed
163
        # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf)
164
        # and sample from it to get previous sample
Kashif Rasul's avatar
Kashif Rasul committed
165
        # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample
166
        variance = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * self.betas[t]
Patrick von Platen's avatar
Patrick von Platen committed
167

168
169
170
        if variance_type is None:
            variance_type = self.config.variance_type

171
        # hacks - were probably added for training stability
172
        if variance_type == "fixed_small":
Patrick von Platen's avatar
Patrick von Platen committed
173
            variance = self.clip(variance, min_value=1e-20)
174
        # for rl-diffuser https://arxiv.org/abs/2205.09991
175
        elif variance_type == "fixed_small_log":
176
            variance = self.log(self.clip(variance, min_value=1e-20))
177
        elif variance_type == "fixed_large":
178
            variance = self.betas[t]
179
        elif variance_type == "fixed_large_log":
Patrick von Platen's avatar
Patrick von Platen committed
180
            # Glide max_log
181
            variance = self.log(self.betas[t])
182
183
184
185
186
187
188
        elif variance_type == "learned":
            return predicted_variance
        elif variance_type == "learned_range":
            min_log = variance
            max_log = self.betas[t]
            frac = (predicted_variance + 1) / 2
            variance = frac * max_log + (1 - frac) * min_log
Patrick von Platen's avatar
Patrick von Platen committed
189
190
191

        return variance

192
193
    def step(
        self,
Patrick von Platen's avatar
Patrick von Platen committed
194
        model_output: Union[torch.FloatTensor, np.ndarray],
195
196
197
        timestep: int,
        sample: Union[torch.FloatTensor, np.ndarray],
        predict_epsilon=True,
Patrick von Platen's avatar
Patrick von Platen committed
198
        generator=None,
199
        return_dict: bool = True,
200
    ) -> Union[DDPMSchedulerOutput, Tuple]:
201
202
203
204
205
206
207
208
209
210
211
212
        """
        Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
        process from the learned model outputs (most often the predicted noise).

        Args:
            model_output (`torch.FloatTensor` or `np.ndarray`): direct output from learned diffusion model.
            timestep (`int`): current discrete timestep in the diffusion chain.
            sample (`torch.FloatTensor` or `np.ndarray`):
                current instance of sample being created by diffusion process.
            predict_epsilon (`bool`):
                optional flag to use when model predicts the samples directly instead of the noise, epsilon.
            generator: random number generator.
213
            return_dict (`bool`): option for returning tuple rather than DDPMSchedulerOutput class
214
215

        Returns:
216
217
            [`~schedulers.scheduling_utils.DDPMSchedulerOutput`] or `tuple`:
            [`~schedulers.scheduling_utils.DDPMSchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. When
218
            returning a tuple, the first element is the sample tensor.
219
220

        """
221
        t = timestep
222

223
224
225
226
227
        if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]:
            model_output, predicted_variance = torch.split(model_output, sample.shape[1], dim=1)
        else:
            predicted_variance = None

Patrick von Platen's avatar
Patrick von Platen committed
228
        # 1. compute alphas, betas
229
230
        alpha_prod_t = self.alphas_cumprod[t]
        alpha_prod_t_prev = self.alphas_cumprod[t - 1] if t > 0 else self.one
Patrick von Platen's avatar
Patrick von Platen committed
231
232
233
        beta_prod_t = 1 - alpha_prod_t
        beta_prod_t_prev = 1 - alpha_prod_t_prev

234
        # 2. compute predicted original sample from predicted noise also called
Patrick von Platen's avatar
Patrick von Platen committed
235
        # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
236
        if predict_epsilon:
Patrick von Platen's avatar
Patrick von Platen committed
237
            pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
238
        else:
Patrick von Platen's avatar
Patrick von Platen committed
239
            pred_original_sample = model_output
Patrick von Platen's avatar
Patrick von Platen committed
240
241

        # 3. Clip "predicted x_0"
242
        if self.config.clip_sample:
243
            pred_original_sample = self.clip(pred_original_sample, -1, 1)
Patrick von Platen's avatar
Patrick von Platen committed
244

245
        # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
Patrick von Platen's avatar
Patrick von Platen committed
246
        # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
247
248
        pred_original_sample_coeff = (alpha_prod_t_prev ** (0.5) * self.betas[t]) / beta_prod_t
        current_sample_coeff = self.alphas[t] ** (0.5) * beta_prod_t_prev / beta_prod_t
Patrick von Platen's avatar
Patrick von Platen committed
249

250
        # 5. Compute predicted previous sample µ_t
Patrick von Platen's avatar
Patrick von Platen committed
251
        # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
252
        pred_prev_sample = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
Patrick von Platen's avatar
Patrick von Platen committed
253

Patrick von Platen's avatar
Patrick von Platen committed
254
255
256
        # 6. Add noise
        variance = 0
        if t > 0:
257
            noise = self.randn_like(model_output, generator=generator)
258
            variance = (self._get_variance(t, predicted_variance=predicted_variance) ** 0.5) * noise
Patrick von Platen's avatar
Patrick von Platen committed
259
260
261

        pred_prev_sample = pred_prev_sample + variance

262
263
264
        if not return_dict:
            return (pred_prev_sample,)

265
        return DDPMSchedulerOutput(prev_sample=pred_prev_sample, pred_original_sample=pred_original_sample)
Patrick von Platen's avatar
Patrick von Platen committed
266

Partho's avatar
Partho committed
267
268
269
270
271
272
    def add_noise(
        self,
        original_samples: Union[torch.FloatTensor, np.ndarray],
        noise: Union[torch.FloatTensor, np.ndarray],
        timesteps: Union[torch.IntTensor, np.ndarray],
    ) -> Union[torch.FloatTensor, np.ndarray]:
273
274
        if self.tensor_format == "pt":
            timesteps = timesteps.to(self.alphas_cumprod.device)
anton-l's avatar
anton-l committed
275
        sqrt_alpha_prod = self.alphas_cumprod[timesteps] ** 0.5
276
        sqrt_alpha_prod = self.match_shape(sqrt_alpha_prod, original_samples)
anton-l's avatar
anton-l committed
277
        sqrt_one_minus_alpha_prod = (1 - self.alphas_cumprod[timesteps]) ** 0.5
278
279
280
        sqrt_one_minus_alpha_prod = self.match_shape(sqrt_one_minus_alpha_prod, original_samples)

        noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
anton-l's avatar
anton-l committed
281
        return noisy_samples
anton-l's avatar
anton-l committed
282

Patrick von Platen's avatar
improve  
Patrick von Platen committed
283
    def __len__(self):
Nathan Lambert's avatar
Nathan Lambert committed
284
        return self.config.num_train_timesteps