scheduling_ddpm.py 12.8 KB
Newer Older
Ryan Russell's avatar
Ryan Russell committed
1
# Copyright 2022 UC Berkeley Team and The HuggingFace Team. All rights reserved.
Patrick von Platen's avatar
improve  
Patrick von Platen committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
15
16

# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim

anton-l's avatar
anton-l committed
17
import math
18
from dataclasses import dataclass
19
from typing import Optional, Tuple, Union
Patrick von Platen's avatar
Patrick von Platen committed
20

Patrick von Platen's avatar
Patrick von Platen committed
21
import numpy as np
22
import torch
Patrick von Platen's avatar
improve  
Patrick von Platen committed
23

24
from ..configuration_utils import ConfigMixin, register_to_config
25
from ..utils import BaseOutput, deprecate
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
from .scheduling_utils import SchedulerMixin


@dataclass
class DDPMSchedulerOutput(BaseOutput):
    """
    Output class for the scheduler's step function output.

    Args:
        prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
            Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the
            denoising loop.
        pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
            The predicted denoised sample (x_{0}) based on the model output from the current timestep.
            `pred_original_sample` can be used to preview progress or for guidance.
    """

    prev_sample: torch.FloatTensor
    pred_original_sample: Optional[torch.FloatTensor] = None
45
46
47
48


def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999):
    """
Patrick von Platen's avatar
Patrick von Platen committed
49
50
    Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
    (1-beta) over time from t = [0,1].
51

52
53
54
55
56
57
58
    Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
    to that part of the diffusion process.


    Args:
        num_diffusion_timesteps (`int`): the number of betas to produce.
        max_beta (`float`): the maximum beta to use; use values lower than 1 to
59
                     prevent singularities.
60
61
62

    Returns:
        betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
63
    """
64

65
66
67
68
69
70
71
72
    def alpha_bar(time_step):
        return math.cos((time_step + 0.008) / 1.008 * math.pi / 2) ** 2

    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
        betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
73
    return torch.tensor(betas, dtype=torch.float32)
Patrick von Platen's avatar
improve  
Patrick von Platen committed
74
75


Patrick von Platen's avatar
Patrick von Platen committed
76
class DDPMScheduler(SchedulerMixin, ConfigMixin):
77
78
79
80
    """
    Denoising diffusion probabilistic models (DDPMs) explores the connections between denoising score matching and
    Langevin dynamics sampling.

81
82
83
    [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
    function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
    [`~ConfigMixin`] also provides general loading and saving functionality via the [`~ConfigMixin.save_config`] and
Nathan Lambert's avatar
Nathan Lambert committed
84
    [`~ConfigMixin.from_config`] functions.
85

86
87
88
89
90
91
92
93
94
    For more details, see the original paper: https://arxiv.org/abs/2006.11239

    Args:
        num_train_timesteps (`int`): number of diffusion steps used to train the model.
        beta_start (`float`): the starting `beta` value of inference.
        beta_end (`float`): the final `beta` value.
        beta_schedule (`str`):
            the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
            `linear`, `scaled_linear`, or `squaredcos_cap_v2`.
Nathan Lambert's avatar
Nathan Lambert committed
95
96
        trained_betas (`np.ndarray`, optional):
            option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc.
97
98
99
100
101
102
103
104
        variance_type (`str`):
            options to clip the variance used when adding noise to the denoised sample. Choose from `fixed_small`,
            `fixed_small_log`, `fixed_large`, `fixed_large_log`, `learned` or `learned_range`.
        clip_sample (`bool`, default `True`):
            option to clip predicted sample between -1 and 1 for numerical stability.

    """

105
    @register_to_config
Patrick von Platen's avatar
improve  
Patrick von Platen committed
106
107
    def __init__(
        self,
Partho's avatar
Partho committed
108
109
110
111
112
113
114
        num_train_timesteps: int = 1000,
        beta_start: float = 0.0001,
        beta_end: float = 0.02,
        beta_schedule: str = "linear",
        trained_betas: Optional[np.ndarray] = None,
        variance_type: str = "fixed_small",
        clip_sample: bool = True,
115
        **kwargs,
Patrick von Platen's avatar
improve  
Patrick von Platen committed
116
    ):
117
118
119
120
121
122
        deprecate(
            "tensor_format",
            "0.5.0",
            "If you're running your code in PyTorch, you can safely remove this argument.",
            take_from=kwargs,
        )
123

124
        if trained_betas is not None:
125
            self.betas = torch.from_numpy(trained_betas)
126
        elif beta_schedule == "linear":
127
            self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
128
129
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
130
131
132
            self.betas = (
                torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
            )
anton-l's avatar
anton-l committed
133
        elif beta_schedule == "squaredcos_cap_v2":
Patrick von Platen's avatar
Patrick von Platen committed
134
            # Glide cosine schedule
Nathan Lambert's avatar
Nathan Lambert committed
135
            self.betas = betas_for_alpha_bar(num_train_timesteps)
Patrick von Platen's avatar
improve  
Patrick von Platen committed
136
137
138
        else:
            raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")

Patrick von Platen's avatar
Patrick von Platen committed
139
        self.alphas = 1.0 - self.betas
140
141
        self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
        self.one = torch.tensor(1.0)
Patrick von Platen's avatar
Patrick von Platen committed
142

143
144
        # setable values
        self.num_inference_steps = None
145
        self.timesteps = np.arange(0, num_train_timesteps)[::-1]
Patrick von Platen's avatar
Patrick von Platen committed
146

147
148
        self.variance_type = variance_type

Partho's avatar
Partho committed
149
    def set_timesteps(self, num_inference_steps: int):
150
151
152
153
154
155
156
        """
        Sets the discrete timesteps used for the diffusion chain. Supporting function to be run before inference.

        Args:
            num_inference_steps (`int`):
                the number of diffusion steps used when generating samples with a pre-trained model.
        """
Patrick von Platen's avatar
Patrick von Platen committed
157
        num_inference_steps = min(self.config.num_train_timesteps, num_inference_steps)
158
159
160
        self.num_inference_steps = num_inference_steps
        self.timesteps = np.arange(
            0, self.config.num_train_timesteps, self.config.num_train_timesteps // self.num_inference_steps
161
        )[::-1]
162

163
    def _get_variance(self, t, predicted_variance=None, variance_type=None):
164
165
        alpha_prod_t = self.alphas_cumprod[t]
        alpha_prod_t_prev = self.alphas_cumprod[t - 1] if t > 0 else self.one
Patrick von Platen's avatar
Patrick von Platen committed
166

Kashif Rasul's avatar
Kashif Rasul committed
167
        # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf)
168
        # and sample from it to get previous sample
Kashif Rasul's avatar
Kashif Rasul committed
169
        # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample
170
        variance = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * self.betas[t]
Patrick von Platen's avatar
Patrick von Platen committed
171

172
173
174
        if variance_type is None:
            variance_type = self.config.variance_type

175
        # hacks - were probably added for training stability
176
        if variance_type == "fixed_small":
177
            variance = torch.clamp(variance, min=1e-20)
178
        # for rl-diffuser https://arxiv.org/abs/2205.09991
179
        elif variance_type == "fixed_small_log":
180
            variance = torch.log(torch.clamp(variance, min=1e-20))
181
        elif variance_type == "fixed_large":
182
            variance = self.betas[t]
183
        elif variance_type == "fixed_large_log":
Patrick von Platen's avatar
Patrick von Platen committed
184
            # Glide max_log
185
            variance = torch.log(self.betas[t])
186
187
188
189
190
191
192
        elif variance_type == "learned":
            return predicted_variance
        elif variance_type == "learned_range":
            min_log = variance
            max_log = self.betas[t]
            frac = (predicted_variance + 1) / 2
            variance = frac * max_log + (1 - frac) * min_log
Patrick von Platen's avatar
Patrick von Platen committed
193
194
195

        return variance

196
197
    def step(
        self,
198
        model_output: torch.FloatTensor,
199
        timestep: int,
200
        sample: torch.FloatTensor,
201
        predict_epsilon=True,
Patrick von Platen's avatar
Patrick von Platen committed
202
        generator=None,
203
        return_dict: bool = True,
204
    ) -> Union[DDPMSchedulerOutput, Tuple]:
205
206
207
208
209
        """
        Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
        process from the learned model outputs (most often the predicted noise).

        Args:
210
            model_output (`torch.FloatTensor`): direct output from learned diffusion model.
211
            timestep (`int`): current discrete timestep in the diffusion chain.
212
            sample (`torch.FloatTensor`):
213
214
215
216
                current instance of sample being created by diffusion process.
            predict_epsilon (`bool`):
                optional flag to use when model predicts the samples directly instead of the noise, epsilon.
            generator: random number generator.
217
            return_dict (`bool`): option for returning tuple rather than DDPMSchedulerOutput class
218
219

        Returns:
220
221
            [`~schedulers.scheduling_utils.DDPMSchedulerOutput`] or `tuple`:
            [`~schedulers.scheduling_utils.DDPMSchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. When
222
            returning a tuple, the first element is the sample tensor.
223
224

        """
225
        t = timestep
226

227
228
229
230
231
        if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]:
            model_output, predicted_variance = torch.split(model_output, sample.shape[1], dim=1)
        else:
            predicted_variance = None

Patrick von Platen's avatar
Patrick von Platen committed
232
        # 1. compute alphas, betas
233
234
        alpha_prod_t = self.alphas_cumprod[t]
        alpha_prod_t_prev = self.alphas_cumprod[t - 1] if t > 0 else self.one
Patrick von Platen's avatar
Patrick von Platen committed
235
236
237
        beta_prod_t = 1 - alpha_prod_t
        beta_prod_t_prev = 1 - alpha_prod_t_prev

238
        # 2. compute predicted original sample from predicted noise also called
Patrick von Platen's avatar
Patrick von Platen committed
239
        # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
240
        if predict_epsilon:
Patrick von Platen's avatar
Patrick von Platen committed
241
            pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
242
        else:
Patrick von Platen's avatar
Patrick von Platen committed
243
            pred_original_sample = model_output
Patrick von Platen's avatar
Patrick von Platen committed
244
245

        # 3. Clip "predicted x_0"
246
        if self.config.clip_sample:
247
            pred_original_sample = torch.clamp(pred_original_sample, -1, 1)
Patrick von Platen's avatar
Patrick von Platen committed
248

249
        # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
Patrick von Platen's avatar
Patrick von Platen committed
250
        # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
251
252
        pred_original_sample_coeff = (alpha_prod_t_prev ** (0.5) * self.betas[t]) / beta_prod_t
        current_sample_coeff = self.alphas[t] ** (0.5) * beta_prod_t_prev / beta_prod_t
Patrick von Platen's avatar
Patrick von Platen committed
253

254
        # 5. Compute predicted previous sample µ_t
Patrick von Platen's avatar
Patrick von Platen committed
255
        # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
256
        pred_prev_sample = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
Patrick von Platen's avatar
Patrick von Platen committed
257

Patrick von Platen's avatar
Patrick von Platen committed
258
259
260
        # 6. Add noise
        variance = 0
        if t > 0:
261
262
263
            noise = torch.randn(
                model_output.size(), dtype=model_output.dtype, layout=model_output.layout, generator=generator
            ).to(model_output.device)
264
            variance = (self._get_variance(t, predicted_variance=predicted_variance) ** 0.5) * noise
Patrick von Platen's avatar
Patrick von Platen committed
265
266
267

        pred_prev_sample = pred_prev_sample + variance

268
269
270
        if not return_dict:
            return (pred_prev_sample,)

271
        return DDPMSchedulerOutput(prev_sample=pred_prev_sample, pred_original_sample=pred_original_sample)
Patrick von Platen's avatar
Patrick von Platen committed
272

Partho's avatar
Partho committed
273
274
    def add_noise(
        self,
275
276
277
278
        original_samples: torch.FloatTensor,
        noise: torch.FloatTensor,
        timesteps: torch.IntTensor,
    ) -> torch.FloatTensor:
279
280
281
282
283
        if self.alphas_cumprod.device != original_samples.device:
            self.alphas_cumprod = self.alphas_cumprod.to(original_samples.device)

        if timesteps.device != original_samples.device:
            timesteps = timesteps.to(original_samples.device)
284

anton-l's avatar
anton-l committed
285
        sqrt_alpha_prod = self.alphas_cumprod[timesteps] ** 0.5
286
287
288
289
        sqrt_alpha_prod = sqrt_alpha_prod.flatten()
        while len(sqrt_alpha_prod.shape) < len(original_samples.shape):
            sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)

anton-l's avatar
anton-l committed
290
        sqrt_one_minus_alpha_prod = (1 - self.alphas_cumprod[timesteps]) ** 0.5
291
        sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
292
293
        while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape):
            sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
294
295

        noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
anton-l's avatar
anton-l committed
296
        return noisy_samples
anton-l's avatar
anton-l committed
297

Patrick von Platen's avatar
improve  
Patrick von Platen committed
298
    def __len__(self):
Nathan Lambert's avatar
Nathan Lambert committed
299
        return self.config.num_train_timesteps