onnx.cpp 35.7 KB
Newer Older
Paul's avatar
Paul committed
1
2
3
4
5
6
7
8
#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <onnx.pb.h>
#include <iostream>
#include <fstream>
#include <unordered_map>
#include <functional>
#include <array>
Paul's avatar
Paul committed
9
#include <utility>
10
#include <vector>
Paul's avatar
Paul committed
11

Paul's avatar
Paul committed
12
13
14
15
16
17
#include <migraphx/fallthrough.hpp>
#include <migraphx/program.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/config.hpp>
18
#include <migraphx/onnx.hpp>
Paul's avatar
Paul committed
19
20

namespace migraphx {
Paul's avatar
Paul committed
21
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
22
23
24
25
26

struct onnx_parser
{
    using attribute_map = std::unordered_map<std::string, onnx::AttributeProto>;
    using node_map      = std::unordered_map<std::string, onnx::NodeProto>;
Paul's avatar
Paul committed
27
28
    using op_func =
        std::function<std::vector<instruction_ref>(attribute_map, std::vector<instruction_ref>)>;
Paul's avatar
Paul committed
29
30
    node_map nodes;
    std::unordered_map<std::string, instruction_ref> instructions;
Scott Thornton's avatar
Scott Thornton committed
31
    program prog    = program();
32
    bool is_pytorch = false;
Paul's avatar
Paul committed
33
34
35
36
37

    std::unordered_map<std::string, op_func> ops;

    onnx_parser()
    {
Shucai Xiao's avatar
Shucai Xiao committed
38
        add_generic_op("MatMul", op::dot{});
Khalique's avatar
Khalique committed
39
        add_generic_op("Relu", op::relu{});
Khalique's avatar
Khalique committed
40
41
        add_generic_op("Sigmoid", op::sigmoid{});
        add_generic_op("Abs", op::abs{});
Shucai Xiao's avatar
Shucai Xiao committed
42
43
        add_generic_op("Exp", op::exp{});
        add_generic_op("Log", op::log{});
Khalique's avatar
Khalique committed
44
45
        // disable dropout for inference
        add_generic_op("Dropout", op::identity{});
Khalique's avatar
Khalique committed
46
        add_generic_op("Identity", op::identity{});
Shucai Xiao's avatar
Shucai Xiao committed
47
48
49
        add_generic_op("Sin", op::sin{});
        add_generic_op("Cos", op::cos{});
        add_generic_op("Tan", op::tan{});
50
51
        add_generic_op("Sinh", op::sinh{});
        add_generic_op("Cosh", op::cosh{});
52
        add_generic_op("Tanh", op::tanh{});
53
54
55
        add_generic_op("Asin", op::asin{});
        add_generic_op("Acos", op::acos{});
        add_generic_op("Atan", op::atan{});
Paul's avatar
Paul committed
56

Khalique's avatar
Khalique committed
57
58
59
60
61
        add_binary_op("Add", op::add{});
        add_binary_op("Div", op::div{});
        add_binary_op("Mul", op::mul{});
        add_binary_op("Sub", op::sub{});

Khalique's avatar
Khalique committed
62
63
64
        add_variadic_op("Sum", op::add{});
        add_variadic_op("Max", op::max{});
        add_variadic_op("Min", op::min{});
Paul's avatar
Paul committed
65

Khalique's avatar
Khalique committed
66
        add_mem_op("ImageScaler", &onnx_parser::parse_imagescaler);
67
        add_mem_op("LeakyRelu", &onnx_parser::parse_leaky_relu);
Khalique's avatar
Khalique committed
68
        add_mem_op("Elu", &onnx_parser::parse_elu);
Paul's avatar
Paul committed
69
70
        add_mem_op("Constant", &onnx_parser::parse_constant);
        add_mem_op("Conv", &onnx_parser::parse_conv);
Paul's avatar
Paul committed
71
72
        add_mem_op("MaxPool", &onnx_parser::parse_pooling);
        add_mem_op("AveragePool", &onnx_parser::parse_pooling);
73
74
        add_mem_op("GlobalMaxPool", &onnx_parser::parse_pooling);
        add_mem_op("GlobalAveragePool", &onnx_parser::parse_pooling);
Paul's avatar
Paul committed
75
        add_mem_op("Reshape", &onnx_parser::parse_reshape);
Paul's avatar
Paul committed
76
77
        add_mem_op("Flatten", &onnx_parser::parse_flatten);
        add_mem_op("Gemm", &onnx_parser::parse_gemm);
78
        add_mem_op("BatchNormalization", &onnx_parser::parse_batchnorm);
Paul's avatar
Paul committed
79
        add_mem_op("Softmax", &onnx_parser::parse_softmax);
80
81
82
        add_mem_op("Squeeze", &onnx_parser::parse_squeeze);
        add_mem_op("Unsqueeze", &onnx_parser::parse_unsqueeze);
        add_mem_op("Slice", &onnx_parser::parse_slice);
Scott Thornton's avatar
Scott Thornton committed
83
        add_mem_op("Concat", &onnx_parser::parse_concat);
84
85
86
        add_mem_op("Gather", &onnx_parser::parse_gather);
        add_mem_op("Shape", &onnx_parser::parse_shape);
        add_mem_op("ConstantFill", &onnx_parser::parse_constant_fill);
Khalique's avatar
Khalique committed
87
        add_mem_op("Transpose", &onnx_parser::parse_transpose);
Paul's avatar
Paul committed
88
89
90
91
    }

    template <class F>
    void add_op(std::string name, F f)
Paul's avatar
Paul committed
92
93
94
95
96
97
98
99
100
    {
        ops.emplace(name, [=](auto&&... xs) {
            return std::vector<instruction_ref>{f(std::forward<decltype(xs)>(xs)...)};
        });
    }

    // Multi output op
    template <class F>
    void add_multi_op(std::string name, F f)
Paul's avatar
Paul committed
101
102
103
104
105
106
107
    {
        ops.emplace(name, f);
    }

    template <class F>
    void add_mem_op(std::string name, F f)
    {
Paul's avatar
Paul committed
108
        add_op(name, [=](auto&&... xs) {
Paul's avatar
Paul committed
109
110
111
            return std::mem_fn(f)(*this, name, std::forward<decltype(xs)>(xs)...);
        });
    }
Khalique's avatar
Khalique committed
112

113
    template <class T>
Khalique's avatar
Khalique committed
114
    void add_binary_op(std::string name, T x)
115
    {
Paul's avatar
Paul committed
116
        add_op(name, [this, x](attribute_map attributes, std::vector<instruction_ref> args) {
Scott Thornton's avatar
Scott Thornton committed
117
            if(args.size() != 2)
Paul's avatar
Paul committed
118
                MIGRAPHX_THROW("binary operators should have 2 operands");
119
120
121
122
123
124
125
126
127
128
129
130
            if(contains(attributes, "broadcast"))
            {
                uint64_t broadcasted = parse_value(attributes.at("broadcast")).at<uint64_t>();
                if(broadcasted != 0)
                {
                    uint64_t axis = (contains(attributes, "axis"))
                                        ? parse_value(attributes.at("axis")).at<uint64_t>()
                                        : 0;
                    auto l =
                        prog.add_instruction(op::broadcast{axis, args[0]->get_shape()}, args[1]);
                    return prog.add_instruction(x, args[0], l);
                }
131
                return prog.add_instruction(x, args);
132
            }
Paul's avatar
Paul committed
133
            else
134
            {
Khalique's avatar
Khalique committed
135
                return add_broadcastable_binary_op(args[0], args[1], x);
136
137
138
139
            }
        });
    }

Khalique's avatar
Khalique committed
140
141
142
143
144
    template <class T>
    instruction_ref add_broadcastable_binary_op(instruction_ref arg0, instruction_ref arg1, T x)
    {
        if(arg0->get_shape() != arg1->get_shape())
        {
Khalique's avatar
Khalique committed
145
146
147
148
149
150
151
152
153
154
155
156
157
            // Example:
            // s0 = (3,2,4,5) and s1 = (2,1,1)
            //
            // In this case we need to broadcast (:,1,1) portion of
            // s1 plus broadcast the 1st dimension of s1
            // giving output_lens = (3,2,4,5)
            //
            // Another example:
            // s0 = (3,2,1,5) and s1 = (2,7,5)
            // In this case we need to broadcast the (:,:,1:,:) axis
            // of s0 plus the 1st dimension of s1 giving
            // output_lens = (3,2,7,5)
            //
Khalique's avatar
Khalique committed
158
159
160
161
162
163
164
165
            // Get lengths for both arguments
            const std::vector<std::size_t>* s0 = &arg0->get_shape().lens();
            const std::vector<std::size_t>* s1 = &arg1->get_shape().lens();

            // Make sure s0 is the smaller size
            if(s0->size() > s1->size())
                std::swap(s0, s1);

Khalique's avatar
Khalique committed
166
            std::vector<std::size_t> output_lens(*s1);
Khalique's avatar
Khalique committed
167
168
            auto offset = s1->size() - s0->size();
            std::transform(s0->begin(),
Khalique's avatar
Khalique committed
169
170
171
172
                           s0->end(),
                           s1->begin() + offset,
                           output_lens.begin() + offset,
                           [](auto a, auto b) { return std::max(a, b); });
Khalique's avatar
Khalique committed
173
174
175
176
177
178
179
180
181

            auto l0 = prog.add_instruction(op::multibroadcast{output_lens}, arg0);
            auto l1 = prog.add_instruction(op::multibroadcast{output_lens}, arg1);
            return prog.add_instruction(x, l0, l1);
        }
        else
        {
            return prog.add_instruction(x, {arg0, arg1});
        }
182
183
    }

Paul's avatar
Paul committed
184
    template <class T>
Paul's avatar
Paul committed
185
186
    void add_generic_op(std::string name, T x)
    {
Paul's avatar
Paul committed
187
        add_op(name, [this, x](attribute_map, std::vector<instruction_ref> args) {
Paul's avatar
Paul committed
188
189
190
191
            return prog.add_instruction(x, args);
        });
    }

Khalique's avatar
Khalique committed
192
    template <class T>
Khalique's avatar
Khalique committed
193
    void add_variadic_op(std::string name, T x)
Khalique's avatar
Khalique committed
194
    {
Paul's avatar
Paul committed
195
        add_op(name, [this, x](attribute_map, std::vector<instruction_ref> args) {
Khalique's avatar
Khalique committed
196
            return std::accumulate(std::next(args.begin()),
Khalique's avatar
Khalique committed
197
198
199
200
201
                                   args.end(),
                                   args.front(),
                                   [this, x](instruction_ref a, instruction_ref b) {
                                       return add_broadcastable_binary_op(a, b, x);
                                   });
Khalique's avatar
Khalique committed
202
        });
Khalique's avatar
Khalique committed
203
204
    }

Paul's avatar
Paul committed
205
    instruction_ref
Paul's avatar
Paul committed
206
    parse_softmax(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
207
208
    {
        auto dims = args.front()->get_shape().lens();
Scott Thornton's avatar
Scott Thornton committed
209
210
        auto r =
            prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1]), 1, 1}}, args.front());
211
212
        auto s = prog.add_instruction(op::softmax{}, r);
        return prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1])}}, s);
Paul's avatar
Paul committed
213
214
    }

Paul's avatar
Paul committed
215
    instruction_ref
Paul's avatar
Paul committed
216
    parse_conv(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
217
    {
218
        op::convolution op;
Paul's avatar
Paul committed
219
220
        if(contains(attributes, "pads"))
        {
Scott Thornton's avatar
Scott Thornton committed
221
            if(contains(attributes, "auto_pad"))
222
            {
Paul's avatar
Paul committed
223
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
224
225
226
            }
            std::vector<std::size_t> padding(4);
            copy(attributes["pads"].ints(), padding.begin());
Scott Thornton's avatar
Scott Thornton committed
227
            if(padding.size() != 4)
228
            {
Paul's avatar
Paul committed
229
                MIGRAPHX_THROW("padding should have 4 values");
230
            }
Scott Thornton's avatar
Scott Thornton committed
231
            if(padding[0] != padding[2] || padding[1] != padding[3])
232
            {
Paul's avatar
Paul committed
233
                MIGRAPHX_THROW("migraphx does not support asymetric padding");
234
235
236
            }
            op.padding[0] = padding[0];
            op.padding[1] = padding[1];
Paul's avatar
Paul committed
237
        }
Paul's avatar
Paul committed
238
239
240
241
242
243
244
245
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "dilations"))
        {
            copy(attributes["dilations"].ints(), op.dilation.begin());
        }
Scott Thornton's avatar
Scott Thornton committed
246
        if(contains(attributes, "auto_pad"))
247
248
        {
            auto s = attributes["auto_pad"].s();
Scott Thornton's avatar
Scott Thornton committed
249
            if(contains(attributes, "pads") and to_upper(s) != "NOTSET")
250
            {
Paul's avatar
Paul committed
251
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
252
253
            }

wsttiger's avatar
fixes  
wsttiger committed
254
            if(s.find("SAME") != std::string::npos)
255
256
257
258
            {
                op.padding_mode = op::convolution::same;
            }
        }
Khalique's avatar
Khalique committed
259
260
261
262
        if(contains(attributes, "group"))
        {
            op.group = parse_value(attributes.at("group")).at<int>();
        }
Paul's avatar
Paul committed
263
264
265
266
        if(args.size() == 3)
        {
            uint64_t axis = 1;
            auto l1       = prog.add_instruction(op, args[0], args[1]);
Scott Thornton's avatar
Scott Thornton committed
267
            auto l2       = prog.add_instruction(op::broadcast{axis, l1->get_shape()}, args[2]);
268
            return prog.add_instruction(op::add{}, l1, l2);
Paul's avatar
Paul committed
269
        }
Paul's avatar
Paul committed
270
271
        return prog.add_instruction(op, args);
    }
Paul's avatar
Paul committed
272

Paul's avatar
Paul committed
273
274
275
    instruction_ref parse_pooling(const std::string& name,
                                  attribute_map attributes,
                                  std::vector<instruction_ref> args)
Paul's avatar
Paul committed
276
    {
Khalique's avatar
Khalique committed
277
278
        op::pooling op{ends_with(name, "MaxPool") ? "max" : "average"};
        if(starts_with(name, "Global"))
279
        {
Khalique's avatar
Khalique committed
280
281
            auto lens  = args.front()->get_shape().lens();
            op.lengths = {lens[2], lens[3]};
282
        }
Paul's avatar
Paul committed
283
284
        if(contains(attributes, "pads"))
        {
285
286
            std::vector<std::size_t> padding(4);
            copy(attributes["pads"].ints(), padding.begin());
Scott Thornton's avatar
Scott Thornton committed
287
            if(padding.size() != 4)
288
            {
Paul's avatar
Paul committed
289
                MIGRAPHX_THROW("padding should have 4 values");
290
            }
Scott Thornton's avatar
Scott Thornton committed
291
            if(padding[0] != padding[2] || padding[1] != padding[3])
292
            {
Paul's avatar
Paul committed
293
                MIGRAPHX_THROW("migraphx does not support asymetric padding");
294
295
296
            }
            op.padding[0] = padding[0];
            op.padding[1] = padding[1];
Paul's avatar
Paul committed
297
298
299
300
301
302
303
304
305
        }
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "kernel_shape"))
        {
            copy(attributes["kernel_shape"].ints(), op.lengths.begin());
        }
Scott Thornton's avatar
Scott Thornton committed
306
        if(contains(attributes, "auto_pad"))
307
308
        {
            auto s = attributes["auto_pad"].s();
Scott Thornton's avatar
Scott Thornton committed
309
            if(to_upper(s) != "NOTSET")
310
            {
Paul's avatar
Paul committed
311
                MIGRAPHX_THROW("auto_pad is not supported for pooling");
312
313
314
            }
        }

Paul's avatar
Paul committed
315
        return prog.add_instruction(op, std::move(args));
Paul's avatar
Paul committed
316
317
    }

Paul's avatar
Paul committed
318
    instruction_ref
Paul's avatar
Paul committed
319
    parse_reshape(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
320
    {
321
        op::reshape op;
Paul's avatar
Paul committed
322
323
324
325
326
327
328
        if(args.size() == 1)
        {
            literal s = parse_value(attributes.at("shape"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
        }
        if(args.size() == 2)
        {
Paul's avatar
Paul committed
329
            literal s = args[1]->get_literal();
Paul's avatar
Paul committed
330
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
331
        }
Paul's avatar
Paul committed
332
333
334
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
335
    instruction_ref
Paul's avatar
Paul committed
336
    parse_flatten(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
337
    {
338
        uint64_t axis = 1;
Paul's avatar
Paul committed
339
340
341
342
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }
343
        return prog.add_instruction(op::flatten{axis}, args[0]);
Paul's avatar
Paul committed
344
345
    }

346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
    instruction_ref
    parse_squeeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::squeeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

    instruction_ref
    parse_unsqueeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::unsqueeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

Scott Thornton's avatar
Scott Thornton committed
364
365
366
367
368
369
370
    instruction_ref
    parse_concat(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        std::size_t axis = parse_value(attributes.at("axis")).at<int>();
        op::concat op{axis};
        return prog.add_instruction(op, std::move(args));
    }
371

372
373
374
375
376
377
378
379
    instruction_ref
    parse_gather(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        std::size_t axis = 0;
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }
380
        op::gather op{axis};
381
382
383
        return prog.add_instruction(op, std::move(args));
    }

384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
    instruction_ref
    parse_slice(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::slice op;
        if(contains(attributes, "axes"))
        {
            literal s = parse_value(attributes.at("axes"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        }
        {
            literal s = parse_value(attributes.at("ends"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.ends)); });
        }
        {
            literal s = parse_value(attributes.at("starts"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.starts)); });
        }
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
404
405
406
    instruction_ref parse_constant(const std::string&,
                                   attribute_map attributes,
                                   const std::vector<instruction_ref>&)
Paul's avatar
Paul committed
407
408
409
410
    {
        literal v = parse_value(attributes.at("value"));
        return prog.add_literal(v);
    }
Paul's avatar
Paul committed
411

Paul's avatar
Paul committed
412
    instruction_ref
Paul's avatar
Paul committed
413
    parse_gemm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
414
415
    {
        float alpha = 1.0f;
Khalique's avatar
Khalique committed
416
        float beta  = 1.0f;
Paul's avatar
Paul committed
417
418
419
420
421
422
423
424
        bool transa = false;
        bool transb = false;
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        if(contains(attributes, "beta"))
        {
425
            beta = parse_value(attributes.at("beta")).at<float>();
Paul's avatar
Paul committed
426
427
428
429
430
431
432
433
434
435
        }
        if(contains(attributes, "transA"))
        {
            transa = parse_value(attributes.at("transA")).at<bool>();
        }
        if(contains(attributes, "transB"))
        {
            transb = parse_value(attributes.at("transB")).at<bool>();
        }
        std::vector<int64_t> perm = {1, 0};
436
437
        auto l1 = (transa) ? prog.add_instruction(op::transpose{perm}, args[0]) : args[0];
        auto l2 = (transb) ? prog.add_instruction(op::transpose{perm}, args[1]) : args[1];
Paul's avatar
Paul committed
438
439
        if(args.size() == 3)
        {
Khalique's avatar
Khalique committed
440
            if(beta != 0.f)
441
            {
Khalique's avatar
Khalique committed
442
                auto l3 = prog.add_instruction(op::dot{alpha}, l1, l2);
Khalique's avatar
Khalique committed
443
                auto l4 = args[2];
Khalique's avatar
Khalique committed
444
                if(l4->get_shape().scalar()) // ignore args[2] (no C value added to alpha*A*B)
Khalique's avatar
Khalique committed
445
                    return l3;
Khalique's avatar
Khalique committed
446
                if(beta != 1.f)
Khalique's avatar
Khalique committed
447
448
                {
                    auto beta_val = prog.add_literal(beta);
Khalique's avatar
Khalique committed
449
450
                    auto l5 = prog.add_instruction(op::scalar{args[2]->get_shape()}, beta_val);
                    l4      = prog.add_instruction(op::mul{}, args[2], l5);
Khalique's avatar
Khalique committed
451
452
                }
                return add_broadcastable_binary_op(l3, l4, op::add{});
453
            }
Paul's avatar
Paul committed
454
        }
Shucai Xiao's avatar
Shucai Xiao committed
455
        return prog.add_instruction(op::dot{alpha, beta}, l1, l2);
Paul's avatar
Paul committed
456
457
    }

458
    instruction_ref
Paul's avatar
Paul committed
459
    parse_batchnorm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
460
    {
Scott Thornton's avatar
Scott Thornton committed
461
462
        float epsilon                                     = 1e-5f;
        float momentum                                    = 0.9f;
463
        op::batch_norm_inference::bn_infer_mode_t bn_mode = op::batch_norm_inference::spatial;
Scott Thornton's avatar
Scott Thornton committed
464
        bool is_test                                      = false;
465
466
467
468
469
470
        if(contains(attributes, "epsilon"))
        {
            epsilon = parse_value(attributes.at("epsilon")).at<float>();
        }
        if(contains(attributes, "momentum"))
        {
471
            momentum = parse_value(attributes.at("momentum")).at<float>();
472
473
474
        }
        if(contains(attributes, "is_test"))
        {
wsttiger's avatar
wsttiger committed
475
            is_test = parse_value(attributes.at("is_test")).at<uint64_t>() > 0;
476
477
478
        }
        if(contains(attributes, "spatial"))
        {
479
            bn_mode = (parse_value(attributes.at("spatial")).at<uint64_t>() > 0)
480
481
                          ? op::batch_norm_inference::spatial
                          : op::batch_norm_inference::per_activation;
482
        }
Paul's avatar
Paul committed
483
        (void)is_test;
Paul's avatar
Paul committed
484
        op::batch_norm_inference op{epsilon, momentum, bn_mode};
Paul's avatar
Paul committed
485
        return prog.add_instruction(op, std::move(args));
486
487
    }

488
489
490
491
    instruction_ref parse_leaky_relu(const std::string&,
                                     attribute_map attributes,
                                     std::vector<instruction_ref> args)
    {
Khalique's avatar
Khalique committed
492
        float alpha = 0.01; // default alpha val for leaky relu
493
494
495
496
497
498
499
500
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        op::leaky_relu op{alpha};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
501
502
    instruction_ref
    parse_elu(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
503
504
505
506
507
508
509
510
511
512
    {
        float alpha = 1.0; // default alpha val for elu
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        op::elu op{alpha};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
    instruction_ref parse_imagescaler(const std::string&,
                                      attribute_map attributes,
                                      std::vector<instruction_ref> args)
    {
        float scale = 1.0;
        std::vector<float> bias{};
        if(contains(attributes, "scale"))
        {
            scale = parse_value(attributes.at("scale")).at<float>();
        }

        if(contains(attributes, "bias"))
        {
            auto&& bias_floats = attributes["bias"].floats();
            bias               = std::vector<float>(bias_floats.begin(), bias_floats.end());
        }
        auto input_shape = args.front()->get_shape();
Khalique's avatar
Khalique committed
530

Khalique's avatar
Khalique committed
531
532
        auto scale_val = prog.add_literal(scale);
        auto bias_vals = prog.add_literal(
Paul's avatar
Paul committed
533
            migraphx::literal{migraphx::shape{migraphx::shape::float_type, {bias.size()}}, bias});
Khalique's avatar
Khalique committed
534

Paul's avatar
Paul committed
535
536
        auto scale_tensor = prog.add_instruction(migraphx::op::scalar{input_shape}, scale_val);
        auto img_scaled   = prog.add_instruction(migraphx::op::mul{}, args.front(), scale_tensor);
Paul's avatar
Paul committed
537
        auto bias_bcast = prog.add_instruction(migraphx::op::broadcast{1, input_shape}, bias_vals);
Paul's avatar
Paul committed
538
        return prog.add_instruction(migraphx::op::add{}, img_scaled, bias_bcast);
Khalique's avatar
Khalique committed
539
    }
Khalique's avatar
Khalique committed
540

Khalique's avatar
Khalique committed
541
542
    instruction_ref
    parse_transpose(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
543
544
545
546
547
548
549
    {
        std::vector<int64_t> perm{};
        if(contains(attributes, "perm"))
        {
            auto&& perm_vals = attributes["perm"].ints();
            perm             = std::vector<int64_t>(perm_vals.begin(), perm_vals.end());
        }
Paul's avatar
Paul committed
550
        return prog.add_instruction(migraphx::op::transpose{perm}, args.front());
Khalique's avatar
Khalique committed
551
552
    }

553
554
555
    // Use a literal instruction to replace the shape since, output of
    // shape operator are literals in migraphx
    instruction_ref
Shucai Xiao's avatar
Shucai Xiao committed
556
    parse_shape(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
557
558
    {
        if(args.size() != 1)
559
            MIGRAPHX_THROW("Shape: operator should have 1 operand");
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
        std::vector<std::size_t> arg_shape = args[0]->get_shape().lens();
        std::vector<int64_t> vec_shape(arg_shape.size());
        migraphx::shape s(migraphx::shape::int64_type, {arg_shape.size()});
        std::transform(arg_shape.begin(), arg_shape.end(), vec_shape.begin(), [](auto i) {
            return int64_t(i);
        });
        return prog.add_literal(migraphx::literal{s, vec_shape});
    }

    // Use a literal instruction to replace the constantFill operator. In RNN, input shape
    // and value are fixed, so no need to do the actual computation for the constantFill
    // operator
    instruction_ref parse_constant_fill(const std::string&,
                                        attribute_map attributes,
                                        std::vector<instruction_ref> args)
    {
        int input_as_shape = 0;
        int dtype          = 1;
        float value        = 0.0f;

        if(contains(attributes, "dtype"))
        {
            dtype = parse_value(attributes.at("dtype")).at<int>();
        }
        migraphx::shape::type_t type = get_type(dtype);

        if(contains(attributes, "input_as_shape"))
        {
            input_as_shape = parse_value(attributes.at("input_as_shape")).at<int>();
        }

        if(contains(attributes, "value"))
        {
            value = parse_value(attributes.at("value")).at<float>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
596
597
        if(contains(attributes, "extra_shape"))
        {
598
            MIGRAPHX_THROW("ConstantFill: cannot handle extra shape attribute");
599
600
        }

601
602
        if(input_as_shape == 1)
        {
Shucai Xiao's avatar
Shucai Xiao committed
603
            if(args.size() != 1)
604
            {
605
                MIGRAPHX_THROW("ConstantFill: need an input argument as output shape");
606
607
            }

Shucai Xiao's avatar
Shucai Xiao committed
608
609
            if(contains(attributes, "shape"))
            {
610
                MIGRAPHX_THROW("ConstantFill: cannot set the shape argument and pass in an input "
Shucai Xiao's avatar
Shucai Xiao committed
611
                               "at the same time");
612
613
            }

614
615
616
            migraphx::argument in = args[0]->eval();
            if(in.empty())
            {
617
                MIGRAPHX_THROW("ConstantFill: cannot handle dynamic shape as input");
618
            }
619

620
621
622
            std::vector<std::size_t> dims;
            in.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
            migraphx::shape s(type, dims);
623
624
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
625
626
627
        }
        else if(input_as_shape == 0)
        {
Shucai Xiao's avatar
Shucai Xiao committed
628
629
            if(!contains(attributes, "shape"))
            {
630
                MIGRAPHX_THROW("ConstantFill: attribute output shape is needed");
631
632
633
            }

            literal ls = parse_value(attributes.at("shape"));
634
            std::vector<std::size_t> dims;
Shucai Xiao's avatar
Shucai Xiao committed
635
            ls.visit([&](auto s) { dims.assign(s.begin(), s.end()); });
636
            migraphx::shape s{type, dims};
637
638
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
639
640
641
        }
        else
        {
642
            MIGRAPHX_THROW("ConstantFill: wrong value of attribute input_as_shape");
643
644
645
        }
    }

Paul's avatar
Paul committed
646
647
648
649
650
651
652
653
654
655
656
657
    void parse_from(std::istream& is)
    {
        onnx::ModelProto model;
        if(model.ParseFromIstream(&is))
        {
            if(model.has_graph())
            {
                this->parse_graph(model.graph());
            }
        }
        else
        {
Paul's avatar
Paul committed
658
            MIGRAPHX_THROW("Failed reading onnx file.");
Paul's avatar
Paul committed
659
660
661
662
663
664
        }
    }

    void parse_graph(const onnx::GraphProto& graph)
    {
        nodes = get_nodes(graph);
665
666
667
668
669
        std::unordered_map<std::string, onnx::TensorProto> initializer_data;
        for(auto&& f : graph.initializer())
        {
            initializer_data[f.name()] = f;
        }
Paul's avatar
Paul committed
670
671
672
        for(auto&& input : graph.input())
        {
            const std::string& name = input.name();
673
674
675
676
677
678
679
680
681
682
683
684
            // Does the input have an initializer?
            if(contains(initializer_data, name))
            {
                auto t             = initializer_data[name];
                instructions[name] = prog.add_literal(parse_tensor(t));
            }
            else
            {
                // TODO: Get shape of input parameter
                shape s            = parse_type(input.type());
                instructions[name] = prog.add_parameter(name, s);
            }
Paul's avatar
Paul committed
685
686
687
        }
        for(auto&& p : nodes)
        {
Paul's avatar
Paul committed
688
            this->parse_node(p.first);
Paul's avatar
Paul committed
689
690
691
        }
    }

Paul's avatar
Paul committed
692
    void parse_node(const std::string& name)
Paul's avatar
Paul committed
693
    {
Paul's avatar
Paul committed
694
        if(name.empty())
Paul's avatar
Paul committed
695
            MIGRAPHX_THROW("Onnx node must have a name");
Paul's avatar
Paul committed
696
697
698
699
700
701
702
703
        if(instructions.count(name) == 0)
        {
            auto&& node = nodes.at(name);
            std::vector<instruction_ref> args;
            for(auto&& input : node.input())
            {
                if(nodes.count(input) > 0)
                {
Paul's avatar
Paul committed
704
705
706
                    assert(name != input);
                    this->parse_node(input);
                    args.push_back(instructions.at(input));
Paul's avatar
Paul committed
707
708
709
710
711
712
                }
                else
                {
                    args.push_back(instructions.at(input));
                }
            }
Paul's avatar
Paul committed
713
            std::vector<instruction_ref> result;
Paul's avatar
Paul committed
714
715
            if(ops.count(node.op_type()) == 0)
            {
Paul's avatar
Paul committed
716
                result.push_back(prog.add_instruction(unknown{node.op_type()}, args));
Paul's avatar
Paul committed
717
718
719
            }
            else
            {
Paul's avatar
Paul committed
720
                result = ops[node.op_type()](get_attributes(node), args);
Paul's avatar
Paul committed
721
            }
Paul's avatar
Paul committed
722
            // Even no output nodes produce output in migraphx
Paul's avatar
Paul committed
723
            if(node.output().empty() and result.size() == 1)
Paul's avatar
Paul committed
724
725
726
727
728
729
730
731
732
733
734
735
            {
                instructions[name] = result.front();
            }
            else
            {
                assert(node.output().size() >= result.size());
                std::transform(result.begin(),
                               result.end(),
                               node.output().begin(),
                               std::inserter(instructions, instructions.end()),
                               [](auto&& x, auto&& y) { return std::make_pair(y, x); });
            }
Paul's avatar
Paul committed
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
        }
    }

    static attribute_map get_attributes(const onnx::NodeProto& node)
    {
        std::unordered_map<std::string, onnx::AttributeProto> result;
        for(auto&& attr : node.attribute())
        {
            result[attr.name()] = attr;
        }
        return result;
    }

    static node_map get_nodes(const onnx::GraphProto& graph)
    {
        std::unordered_map<std::string, onnx::NodeProto> result;
Paul's avatar
Paul committed
752
        std::size_t n = 0;
Paul's avatar
Paul committed
753
754
        for(auto&& node : graph.node())
        {
Paul's avatar
Paul committed
755
            if(node.output().empty())
Paul's avatar
Paul committed
756
            {
Paul's avatar
Paul committed
757
                if(node.name().empty())
Paul's avatar
Paul committed
758
759
760
761
762
763
764
765
766
                {
                    result["migraphx_unamed_node_" + std::to_string(n)] = node;
                    n++;
                }
                else
                {
                    result[node.name()] = node;
                }
            }
Paul's avatar
Paul committed
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
            for(auto&& output : node.output())
            {
                result[output] = node;
            }
        }
        return result;
    }

    template <class T>
    static literal from_repeated(shape::type_t t, const T& r)
    {
        std::size_t size = r.size();
        return literal{{t, {size}}, r.begin(), r.end()};
    }

    static literal parse_value(const onnx::AttributeProto& attr)
    {
        switch(attr.type())
        {
        case onnx::AttributeProto::UNDEFINED: return {};
        case onnx::AttributeProto::FLOAT: return literal{attr.f()};
        case onnx::AttributeProto::INT: return literal{attr.i()};
        case onnx::AttributeProto::STRING: return {};
        case onnx::AttributeProto::TENSOR: return parse_tensor(attr.t());
        case onnx::AttributeProto::GRAPH: return {};
Paul's avatar
Paul committed
792
        case onnx::AttributeProto::FLOATS: return from_repeated(shape::float_type, attr.floats());
Paul's avatar
Paul committed
793
794
795
796
797
        case onnx::AttributeProto::INTS: return from_repeated(shape::int64_type, attr.ints());
        case onnx::AttributeProto::STRINGS: return {};
        case onnx::AttributeProto::TENSORS: return {};
        case onnx::AttributeProto::GRAPHS: return {};
        }
Paul's avatar
Paul committed
798
        MIGRAPHX_THROW("Invalid attribute type");
Paul's avatar
Paul committed
799
800
801
802
803
    }

    static literal parse_tensor(const onnx::TensorProto& t)
    {
        std::vector<std::size_t> dims(t.dims().begin(), t.dims().end());
Khalique's avatar
Khalique committed
804
        // in case of scalar constants in onnx file, use dims=1 to fill initializer data
805
        if(dims.empty())
Khalique's avatar
Khalique committed
806
807
808
        {
            dims = {1};
        }
809
810
        if(t.has_raw_data())
        {
wsttiger's avatar
wsttiger committed
811
            const std::string& s = t.raw_data();
Scott Thornton's avatar
Scott Thornton committed
812
813
814
815
816
817
818
819
820
821
822
823
            switch(t.data_type())
            {
            case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
            case onnx::TensorProto::FLOAT: return literal{{shape::float_type, dims}, s.data()};
            case onnx::TensorProto::UINT8: throw std::runtime_error("");
            case onnx::TensorProto::INT8: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::UINT16: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::INT16: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::INT32: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::INT64: return literal{{shape::int64_type, dims}, s.data()};
            case onnx::TensorProto::STRING: throw std::runtime_error("");
            case onnx::TensorProto::BOOL: return literal{{shape::int32_type, dims}, s.data()};
Paul's avatar
Paul committed
824
            case onnx::TensorProto::FLOAT16: return literal{{shape::half_type, dims}, s.data()};
Scott Thornton's avatar
Scott Thornton committed
825
826
827
828
829
830
            case onnx::TensorProto::DOUBLE: return literal{{shape::double_type, dims}, s.data()};
            case onnx::TensorProto::UINT32: throw std::runtime_error("");
            case onnx::TensorProto::UINT64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
            }
Paul's avatar
Paul committed
831
            MIGRAPHX_THROW("Invalid tensor type");
832
        }
Paul's avatar
Paul committed
833
834
835
836
        switch(t.data_type())
        {
        case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
        case onnx::TensorProto::FLOAT:
Paul's avatar
Paul committed
837
            return literal{{shape::float_type, dims}, t.float_data().begin(), t.float_data().end()};
Paul's avatar
Paul committed
838
839
        case onnx::TensorProto::UINT8: throw std::runtime_error("");
        case onnx::TensorProto::INT8:
Paul's avatar
Paul committed
840
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
841
        case onnx::TensorProto::UINT16:
Paul's avatar
Paul committed
842
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
843
        case onnx::TensorProto::INT16:
Paul's avatar
Paul committed
844
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
845
        case onnx::TensorProto::INT32:
Paul's avatar
Paul committed
846
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
847
        case onnx::TensorProto::INT64:
Paul's avatar
Paul committed
848
            return literal{{shape::int64_type, dims}, t.int64_data().begin(), t.int64_data().end()};
Paul's avatar
Paul committed
849
850
        case onnx::TensorProto::STRING: throw std::runtime_error("");
        case onnx::TensorProto::BOOL:
Paul's avatar
Paul committed
851
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
852
853
        case onnx::TensorProto::FLOAT16:
            return literal{{shape::half_type, dims}, t.float_data().begin(), t.float_data().end()};
Paul's avatar
Paul committed
854
855
856
857
858
859
860
861
        case onnx::TensorProto::DOUBLE:
            return literal{
                {shape::double_type, dims}, t.double_data().begin(), t.double_data().end()};
        case onnx::TensorProto::UINT32: throw std::runtime_error("");
        case onnx::TensorProto::UINT64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
        }
Paul's avatar
Paul committed
862
        MIGRAPHX_THROW("Invalid tensor type");
Paul's avatar
Paul committed
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
    }

    static shape parse_type(const onnx::TypeProto& t)
    {
        shape::type_t shape_type{};
        switch(t.tensor_type().elem_type())
        {
        case onnx::TensorProto::UNDEFINED:
            break; // throw std::runtime_error("Unsupported type UNDEFINED");
        case onnx::TensorProto::FLOAT: shape_type = shape::float_type; break;
        case onnx::TensorProto::UINT8:
            break; // throw std::runtime_error("Unsupported type UINT8");
        case onnx::TensorProto::INT8: shape_type = shape::int8_type; break;
        case onnx::TensorProto::UINT16: shape_type = shape::uint16_type; break;
        case onnx::TensorProto::INT16: shape_type = shape::int16_type; break;
        case onnx::TensorProto::INT32: shape_type = shape::int32_type; break;
        case onnx::TensorProto::INT64: shape_type = shape::int64_type; break;
        case onnx::TensorProto::STRING:
            break; // throw std::runtime_error("Unsupported type STRING");
        case onnx::TensorProto::BOOL:
            break; // throw std::runtime_error("Unsupported type BOOL");
Paul's avatar
Paul committed
884
        case onnx::TensorProto::FLOAT16: shape_type = shape::half_type; break;
Paul's avatar
Paul committed
885
886
887
888
889
890
891
892
893
        case onnx::TensorProto::DOUBLE: shape_type = shape::double_type; break;
        case onnx::TensorProto::UINT32: shape_type = shape::uint32_type; break;
        case onnx::TensorProto::UINT64: shape_type = shape::uint64_type; break;
        case onnx::TensorProto::COMPLEX64:
            break; // throw std::runtime_error("Unsupported type COMPLEX64");
        case onnx::TensorProto::COMPLEX128:
            break; // throw std::runtime_error("Unsupported type COMPLEX128");
        }
        std::vector<std::size_t> dims;
Paul's avatar
Paul committed
894
        auto&& tensor_dims = t.tensor_type().shape().dim();
895
896
897
898
899
900
901
902
903
904
905
        std::transform(tensor_dims.begin(),
                       tensor_dims.end(),
                       std::back_inserter(dims),
                       [](auto&& d) -> std::size_t {
                           if(not d.has_dim_value())
                           {
                               long default_batch_size = 1; // FIXME
                               return default_batch_size;
                           }
                           return d.dim_value();
                       });
Paul's avatar
Paul committed
906
907
        return {shape_type, dims};
    }
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929

    shape::type_t get_type(int dtype)
    {
        switch(dtype)
        {
        case 1: return shape::float_type;
        case 2: return shape::uint8_type;
        case 3: return shape::int8_type;
        case 4: return shape::uint16_type;
        case 5: return shape::int16_type;
        case 6: return shape::int32_type;
        case 7: return shape::int64_type;
        case 10: return shape::half_type;
        case 11: return shape::double_type;
        case 12: return shape::uint32_type;
        case 13: return shape::uint64_type;
        default:
        {
            MIGRAPHX_THROW("Prototensor data type " + std::to_string(dtype) + " not supported");
        }
        }
    }
Paul's avatar
Paul committed
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
};

program parse_onnx(const std::string& name)
{
    std::fstream input(name.c_str(), std::ios::in | std::ios::binary);
    onnx_parser parser;
#ifndef NDEBUG
    // Log the program when it can't be parsed
    try
    {
        parser.parse_from(input);
    }
    catch(...)
    {
        std::cerr << parser.prog << std::endl;
        throw;
    }
#else
    parser.parse_from(input);
#endif
    return std::move(parser.prog);
}

Paul's avatar
Paul committed
953
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
954
} // namespace migraphx