tf.cpp 48.5 KB
Newer Older
Khalique's avatar
Khalique committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <graph.pb.h>
#include <iostream>
#include <fstream>
#include <unordered_map>
#include <unordered_set>
#include <functional>
#include <array>
#include <utility>
#include <vector>

#include <migraphx/fallthrough.hpp>
#include <migraphx/program.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/config.hpp>
#include <migraphx/tf.hpp>
Khalique's avatar
Khalique committed
20
#include <migraphx/pad_calc.hpp>
Khalique's avatar
Khalique committed
21
22
23
24
25
26
27

namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {

struct tf_parser
{
    using attribute_map = std::unordered_map<std::string, tensorflow::AttrValue>;
Paul's avatar
Paul committed
28
    using node_map      = std::map<std::string, tensorflow::NodeDef>;
Khalique's avatar
Khalique committed
29
30
    // using input_node_map = std::unordered_map<std::string, std::unordered_set<std::string>>;
    using op_func = std::function<instruction_ref(attribute_map, std::vector<instruction_ref>)>;
Khalique's avatar
Khalique committed
31

Khalique's avatar
Khalique committed
32
33
34
35
36
37
38
39
    node_map nodes;
    std::vector<tensorflow::NodeDef> input_nodes;
    std::unordered_map<std::string, instruction_ref> instructions;
    program prog = program();
    bool is_nhwc = true;

    std::unordered_map<std::string, op_func> ops;

Paul's avatar
Paul committed
40
    bool should_transpose(instruction_ref ins) const
Paul's avatar
Paul committed
41
42
43
44
45
46
    {
        return is_nhwc and ins->get_shape().lens().size() == 4;
    }

    instruction_ref to_nhwc(instruction_ref ins)
    {
Paul's avatar
Paul committed
47
        if(should_transpose(ins))
Paul's avatar
Paul committed
48
49
50
51
52
53
            return prog.add_instruction(op::transpose{{0, 2, 3, 1}}, ins);
        return ins;
    }

    instruction_ref to_nchw(instruction_ref ins)
    {
Paul's avatar
Paul committed
54
        if(should_transpose(ins))
Paul's avatar
Paul committed
55
56
57
58
59
60
            return prog.add_instruction(op::transpose{{0, 3, 1, 2}}, ins);
        return ins;
    }

    instruction_ref to_kcxy(instruction_ref ins)
    {
Paul's avatar
Paul committed
61
        if(should_transpose(ins))
Paul's avatar
Paul committed
62
63
64
65
66
67
            return prog.add_instruction(op::transpose{{3, 2, 0, 1}}, ins);
        return ins;
    }

    instruction_ref make_contiguous(instruction_ref ins)
    {
Paul's avatar
Paul committed
68
        if(ins->get_shape().standard())
Paul's avatar
Paul committed
69
70
71
72
73
74
75
76
            return ins;
        else
            return prog.add_instruction(op::contiguous{}, ins);
    }

    std::vector<instruction_ref> to_nchw(const std::vector<instruction_ref>& args)
    {
        std::vector<instruction_ref> result(args.size());
Paul's avatar
Paul committed
77
        std::transform(
Paul's avatar
Paul committed
78
            args.begin(), args.end(), result.begin(), [&](auto ins) { return this->to_nchw(ins); });
Paul's avatar
Paul committed
79
80
81
        return result;
    }

Khalique's avatar
Khalique committed
82
    std::vector<size_t>
83
    parse_axes(const attribute_map& attributes, const std::string& s, const size_t num_dims) const
84
    {
85
86
87
        auto attrs = attributes.at(s).list().i();
        std::vector<size_t> axes;
        copy(attrs.begin(), attrs.end(), std::back_inserter(axes));
Khalique's avatar
Khalique committed
88
        if(is_nhwc)
89
        {
Khalique's avatar
Khalique committed
90
            std::transform(axes.begin(), axes.end(), axes.begin(), [&](size_t axis) {
Khalique's avatar
Khalique committed
91
                return parse_axis(axis, num_dims);
Khalique's avatar
Khalique committed
92
            });
93
94
95
96
        }
        return axes;
    }

Khalique's avatar
Khalique committed
97
    template <class T>
98
    std::vector<T> parse_axes(std::vector<T> axes, const size_t num_dims) const
Khalique's avatar
Khalique committed
99
100
101
    {
        if(is_nhwc)
        {
102
            std::vector<T> new_axes;
Khalique's avatar
Khalique committed
103
104
105
            std::transform(axes.begin(),
                           axes.end(),
                           std::back_inserter(new_axes),
Khalique's avatar
Khalique committed
106
                           [&](size_t axis) { return parse_axis(axis, num_dims); });
107
            return new_axes;
Khalique's avatar
Khalique committed
108
        }
109
        return axes;
Khalique's avatar
Khalique committed
110
111
    }

Khalique's avatar
Khalique committed
112
113
114
    // tf stores certain attributes such as strides, dilations, as a 4D input.
    // The first and last dims are equal to 1, and the relevant data is in dims 2 and 3.
    // This helper function reorders the data to store for the respective operator member variables.
115
    template <class T>
116
    void reorder_data(std::vector<T>& prev_data) const
117
118
    {
        std::vector<T> new_data(prev_data.size());
119
        for(size_t i = 0; i < new_data.size(); i++)
120
        {
Khalique's avatar
Khalique committed
121
            auto new_idx         = parse_axis(i, new_data.size());
122
            new_data.at(new_idx) = prev_data.at(i);
123
        }
124
125
126
127
        prev_data = new_data;
    }

    template <class T>
128
    T parse_axis(const T& dim, const size_t num_dims) const
129
    {
Khalique's avatar
Khalique committed
130
        T new_dim = dim;
Khalique's avatar
Khalique committed
131
        if(is_nhwc and num_dims >= 4)
132
133
134
        {
            switch(dim)
            {
Khalique's avatar
Khalique committed
135
136
137
138
139
            case 0: new_dim = 0; break;
            case 1: new_dim = 2; break;
            case 2: new_dim = 3; break;
            case 3: new_dim = 1; break;
            default: break;
140
141
            }
        }
Khalique's avatar
Khalique committed
142
        return new_dim;
143
144
    }

145
146
147
148
149
150
151
    std::vector<int64_t> get_axes(size_t num_axes) const
    {
        std::vector<int64_t> axes(num_axes);
        std::iota(axes.begin(), axes.end(), 0);
        return axes;
    }

Khalique's avatar
Khalique committed
152
153
    tf_parser()
    {
Khalique's avatar
Khalique committed
154
        add_generic_op("All", op::identity{});
Khalique's avatar
Khalique committed
155
        add_generic_op("Identity", op::identity{});
Khalique's avatar
Khalique committed
156
        add_generic_op("LessEqual", op::identity{});
Khalique's avatar
Khalique committed
157
        add_generic_op("Relu", op::relu{});
Khalique's avatar
Khalique committed
158
        add_generic_op("Relu6", op::clip{6.0, 0.0});
Khalique's avatar
Khalique committed
159
        add_generic_op("Rsqrt", op::rsqrt{});
Khalique's avatar
Khalique committed
160
        add_generic_op("Tanh", op::tanh{});
Khalique's avatar
Khalique committed
161
        add_generic_op("StopGradient", op::identity{});
Khalique's avatar
Khalique committed
162

163
        add_binary_op("Add", op::add{});
Khalique's avatar
Khalique committed
164
        add_binary_op("Mul", op::mul{});
Khalique's avatar
Khalique committed
165
        add_binary_op("Pow", op::pow{});
Khalique's avatar
Khalique committed
166
        add_binary_op("SquaredDifference", op::sqdiff{});
Khalique's avatar
Khalique committed
167
        add_binary_op("Sub", op::sub{});
Khalique's avatar
Khalique committed
168

169
        add_mem_op("AvgPool", &tf_parser::parse_pooling);
Khalique's avatar
Khalique committed
170
        add_mem_op("BatchMatMul", &tf_parser::parse_matmul, false);
171
        add_mem_op("BiasAdd", &tf_parser::parse_biasadd);
Khalique's avatar
Khalique committed
172
        add_mem_op("Cast", &tf_parser::parse_cast, false);
Paul's avatar
Paul committed
173
        add_mem_op("ConcatV2", &tf_parser::parse_concat, false);
Khalique's avatar
Khalique committed
174
        add_mem_op("Const", &tf_parser::parse_constant);
Paul's avatar
Paul committed
175
        add_mem_op("Conv2D", &tf_parser::parse_conv);
Paul's avatar
Paul committed
176
        add_mem_op("DepthwiseConv2dNative", &tf_parser::parse_depthwiseconv);
177
        add_mem_op("ExpandDims", &tf_parser::parse_expanddims, false);
Khalique's avatar
Khalique committed
178
        add_mem_op("FusedBatchNorm", &tf_parser::parse_batchnorm);
Khalique's avatar
Khalique committed
179
        add_mem_op("GatherV2", &tf_parser::parse_gather, false);
Paul's avatar
Paul committed
180
        add_mem_op("MatMul", &tf_parser::parse_matmul, false);
181
        add_mem_op("MaxPool", &tf_parser::parse_pooling);
Khalique's avatar
Khalique committed
182
        add_mem_op("Mean", &tf_parser::parse_mean, false);
Khalique's avatar
Khalique committed
183
        add_mem_op("OneHot", &tf_parser::parse_onehot, false);
Paul's avatar
Paul committed
184
        add_mem_op("Pack", &tf_parser::parse_pack, false);
Paul's avatar
Paul committed
185
        add_mem_op("Pad", &tf_parser::parse_pad);
Paul's avatar
Paul committed
186
        add_mem_op("Reshape", &tf_parser::parse_reshape, false);
Khalique's avatar
Khalique committed
187
        add_mem_op("Slice", &tf_parser::parse_slice, false);
188
        add_mem_op("Softmax", &tf_parser::parse_softmax<op::softmax>);
Paul's avatar
Paul committed
189
        add_mem_op("Squeeze", &tf_parser::parse_squeeze, false);
190
        add_mem_op("StridedSlice", &tf_parser::parse_stridedslice, false);
Khalique's avatar
Khalique committed
191
        add_mem_op("Transpose", &tf_parser::parse_transpose, false);
Khalique's avatar
Khalique committed
192
193
    }

194
    template <class F>
Paul's avatar
Paul committed
195
    void add_op(std::string name, F f, bool transpose = true)
196
    {
Paul's avatar
Paul committed
197
        if(transpose)
Paul's avatar
Paul committed
198
        {
Paul's avatar
Paul committed
199
200
            ops.emplace(name,
                        op_func{[=](const attribute_map& attributes,
Paul's avatar
Paul committed
201
                                    const std::vector<instruction_ref>& args) -> instruction_ref {
Paul's avatar
Paul committed
202
203
                            return to_nhwc(f(attributes, to_nchw(args)));
                        }});
Paul's avatar
Paul committed
204
205
206
207
208
        }
        else
        {
            ops.emplace(name, f);
        }
209
210
    }

Khalique's avatar
Khalique committed
211
    template <class F>
Paul's avatar
Paul committed
212
    void add_mem_op(std::string name, F f, bool transpose = true)
Khalique's avatar
Khalique committed
213
    {
Paul's avatar
Paul committed
214
215
216
217
218
        add_op(name,
               [=](auto&&... xs) {
                   return std::mem_fn(f)(*this, name, std::forward<decltype(xs)>(xs)...);
               },
               transpose);
Khalique's avatar
Khalique committed
219
220
221
222
223
    }

    template <class T>
    void add_binary_op(std::string name, T x)
    {
Paul's avatar
Paul committed
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
        add_op(name,
               [this, x](const attribute_map&, std::vector<instruction_ref> args) {
                   if(args.size() != 2)
                       MIGRAPHX_THROW("binary operators should have 2 operands");
                   // TODO
                   // if(contains(attributes, "data_format"))
                   // {
                   //     if(is_nhwc)
                   //     {
                   //         l0 = prog.add_instruction(op::transpose{{0, 3, 1, 2}}, args[1]);
                   //     }
                   // }
                   return add_broadcastable_binary_op(args[0], args[1], x);
               },
               false);
Khalique's avatar
Khalique committed
239
240
241
242
243
    }

    template <class T>
    instruction_ref add_broadcastable_binary_op(instruction_ref arg0, instruction_ref arg1, T x)
    {
Khalique's avatar
Khalique committed
244
        if(arg0->get_shape().lens() != arg1->get_shape().lens())
Khalique's avatar
Khalique committed
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
        {
            // Example:
            // s0 = (3,2,4,5) and s1 = (2,1,1)
            //
            // In this case we need to broadcast (:,1,1) portion of
            // s1 plus broadcast the 1st dimension of s1
            // giving output_lens = (3,2,4,5)
            //
            // Another example:
            // s0 = (3,2,1,5) and s1 = (2,7,5)
            // In this case we need to broadcast the (:,:,1:,:) axis
            // of s0 plus the 1st dimension of s1 giving
            // output_lens = (3,2,7,5)
            //
            // Get lengths for both arguments
260
261
            const std::vector<size_t>* s0 = &arg0->get_shape().lens();
            const std::vector<size_t>* s1 = &arg1->get_shape().lens();
Khalique's avatar
Khalique committed
262
263
264
265
266

            // Make sure s0 is the smaller size
            if(s0->size() > s1->size())
                std::swap(s0, s1);

267
            std::vector<size_t> output_lens(*s1);
Khalique's avatar
Khalique committed
268
269
270
271
272
273
274
275
276
            auto offset = s1->size() - s0->size();
            std::transform(s0->begin(),
                           s0->end(),
                           s1->begin() + offset,
                           output_lens.begin() + offset,
                           [](auto a, auto b) { return std::max(a, b); });

            auto l0 = prog.add_instruction(op::multibroadcast{output_lens}, arg0);
            auto l1 = prog.add_instruction(op::multibroadcast{output_lens}, arg1);
Paul's avatar
Paul committed
277
            return to_nhwc(prog.add_instruction(x, to_nchw(l0), to_nchw(l1)));
Khalique's avatar
Khalique committed
278
279
280
        }
        else
        {
Paul's avatar
Paul committed
281
            return to_nhwc(prog.add_instruction(x, {to_nchw(arg0), to_nchw(arg1)}));
Khalique's avatar
Khalique committed
282
283
284
285
        }
    }

    template <class T>
Paul's avatar
Paul committed
286
    void add_generic_op(std::string name, T x, bool transpose = true)
Khalique's avatar
Khalique committed
287
    {
Paul's avatar
Paul committed
288
289
290
291
292
        add_op(name,
               [this, x](const attribute_map&, std::vector<instruction_ref> args) {
                   return prog.add_instruction(x, args);
               },
               transpose);
Khalique's avatar
Khalique committed
293
294
295
296
297
    }

    instruction_ref
    parse_batchnorm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
Khalique's avatar
Khalique committed
298
299
300
        float epsilon                                     = 1e-5f;
        float momentum                                    = 0.9f;
        op::batch_norm_inference::bn_infer_mode_t bn_mode = op::batch_norm_inference::spatial;
Khalique's avatar
Khalique committed
301
302
303
304
305
306
307
308
        if(contains(attributes, "epsilon"))
        {
            epsilon = attributes.at("epsilon").f();
        }
        op::batch_norm_inference op{epsilon, momentum, bn_mode};
        return prog.add_instruction(op, std::move(args));
    }

309
    instruction_ref
Khalique's avatar
Khalique committed
310
    parse_biasadd(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
311
    {
312
        uint64_t axis = 1; // assume output of previous layer is in NCHW (broadcast on channel)
Shucai Xiao's avatar
Shucai Xiao committed
313
        auto l0 = prog.add_instruction(op::broadcast{axis, args[0]->get_shape().lens()}, args[1]);
314
        return prog.add_instruction(op::add{}, args[0], l0);
315
316
    }

Khalique's avatar
Khalique committed
317
318
319
320
321
322
323
    instruction_ref
    parse_cast(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        shape::type_t type = parse_type(attributes.at("DstT").type());
        return prog.add_instruction(op::convert{type}, std::move(args));
    }

Khalique's avatar
Khalique committed
324
325
326
327
    instruction_ref
    parse_concat(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        // get index for axis within args
328
        size_t axis_idx = attributes.at("N").i();
Paul's avatar
Paul committed
329
        size_t axis     = args[axis_idx]->eval().at<int64_t>();
Khalique's avatar
Khalique committed
330
        op::concat op{axis};
331
        // return only first N arguments (assuming last index is the axis value)
Paul's avatar
Paul committed
332
333
        return prog.add_instruction(
            op, std::vector<instruction_ref>(args.begin(), args.begin() + args.size() - 1));
Khalique's avatar
Khalique committed
334
335
336
337
338
339
    }

    instruction_ref parse_constant(const std::string&,
                                   attribute_map attributes,
                                   const std::vector<instruction_ref>&)
    {
Paul's avatar
Paul committed
340
        literal v = parse_tensor(attributes.at("value").tensor());
Paul's avatar
Paul committed
341
        return prog.add_literal(v);
Khalique's avatar
Khalique committed
342
343
344
345
346
347
348
349
    }

    instruction_ref
    parse_conv(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::convolution op;
        if(contains(attributes, "strides"))
        {
350
            std::vector<size_t> stride;
351
            copy(attributes.at("strides").list().i(), std::back_inserter(stride));
352
            reorder_data(stride);
353
354
            if(stride.size() != 4)
            {
355
                MIGRAPHX_THROW("strides should have 4 values");
356
            }
357
358
            op.stride[0] = stride[2];
            op.stride[1] = stride[3];
Khalique's avatar
Khalique committed
359
360
361
        }
        if(contains(attributes, "dilations"))
        {
362
            std::vector<size_t> dilation;
363
            copy(attributes.at("dilations").list().i(), std::back_inserter(dilation));
364
            reorder_data(dilation);
365
366
367
368
            if(dilation.size() != 4)
            {
                MIGRAPHX_THROW("dilation should have 4 values");
            }
369
370
            op.dilation[0] = dilation[2];
            op.dilation[1] = dilation[3];
Khalique's avatar
Khalique committed
371
        }
Khalique's avatar
Khalique committed
372

Paul's avatar
Paul committed
373
        auto weights = to_kcxy(args[1]);
Paul's avatar
Paul committed
374
        auto l0      = args[0];
Khalique's avatar
Khalique committed
375
376
377
378
379
        if(contains(attributes, "padding"))
        {
            const std::string& pad_mode = attributes.at("padding").s();
            if(pad_mode.find("SAME") != std::string::npos)
            {
Khalique's avatar
Khalique committed
380
                op.padding_mode                 = op::padding_mode_t::same;
Khalique's avatar
Khalique committed
381
382
383
                std::vector<size_t> weight_dims = weights->get_shape().lens();
                size_t weight_h                 = weight_dims[2];
                size_t weight_w                 = weight_dims[3];
Khalique's avatar
Khalique committed
384
385

                auto input_dims = l0->get_shape().lens();
Khalique's avatar
Khalique committed
386
387
                size_t input_h  = input_dims[2];
                size_t input_w  = input_dims[3];
Khalique's avatar
Khalique committed
388
389
390
391
392
393
394
395
396
397
398
                std::vector<int64_t> pads(input_dims.size());
                calculate_padding(0, pads, input_h, op.stride[0], op.dilation[0], weight_h);
                calculate_padding(1, pads, input_w, op.stride[1], op.dilation[1], weight_w);

                if(pads[0] != pads[2] || pads[1] != pads[3])
                {
                    std::vector<int64_t> padding = {0, 0, pads[0], pads[1], 0, 0, pads[2], pads[3]};
                    l0 = prog.add_instruction(migraphx::op::pad{padding}, l0);
                }
                else
                {
Khalique's avatar
Khalique committed
399
400
                    op.padding[0] = pads[0];
                    op.padding[1] = pads[1];
Khalique's avatar
Khalique committed
401
                }
402
403
404
            }
            else if(pad_mode.find("VALID") != std::string::npos)
            {
405
                op.padding_mode = op::padding_mode_t::valid;
Khalique's avatar
Khalique committed
406
            }
Khalique's avatar
Khalique committed
407
            else if(pad_mode.find("EXPLICIT") != std::string::npos)
Khalique's avatar
Khalique committed
408
            {
409
                std::vector<size_t> padding;
410
                copy(attributes.at("explicit_paddings").list().i(), std::back_inserter(padding));
Khalique's avatar
Khalique committed
411
412
413
414
415
416
417
418
419
420
421
422
                if(padding.size() != 4)
                {
                    MIGRAPHX_THROW("padding should have 4 values");
                }
                if(padding[0] != padding[2] || padding[1] != padding[3])
                {
                    MIGRAPHX_THROW("migraphx does not support asymetric padding");
                }
                op.padding[0] = padding[0];
                op.padding[1] = padding[1];
            }
        }
Paul's avatar
Paul committed
423
        return prog.add_instruction(op, {l0, to_kcxy(args[1])});
Khalique's avatar
Khalique committed
424
425
    }

Khalique's avatar
Khalique committed
426
427
428
    instruction_ref parse_depthwiseconv(const std::string&,
                                        attribute_map attributes,
                                        std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
429
430
431
    {
        op::convolution op;
        size_t num_channels = args[0]->get_shape().lens()[1];
Khalique's avatar
Khalique committed
432
        op.group            = num_channels;
Khalique's avatar
Khalique committed
433

Khalique's avatar
Khalique committed
434
435
        if(contains(attributes, "strides"))
        {
436
            std::vector<size_t> stride;
437
            copy(attributes.at("strides").list().i(), std::back_inserter(stride));
438
            reorder_data(stride);
439
440
            if(stride.size() != 4)
            {
441
                MIGRAPHX_THROW("strides should have 4 values");
442
            }
443
444
            op.stride[0] = stride[2];
            op.stride[1] = stride[3];
Khalique's avatar
Khalique committed
445
        }
Paul's avatar
Paul committed
446
447

        auto weights = to_kcxy(args[1]);
Khalique's avatar
Khalique committed
448
449
        if(contains(attributes, "dilations"))
        {
450
            std::vector<size_t> dilation;
451
            copy(attributes.at("dilations").list().i(), std::back_inserter(dilation));
452
            reorder_data(dilation);
453
454
455
456
            if(dilation.size() != 4)
            {
                MIGRAPHX_THROW("dilation should have 4 values");
            }
457
458
            op.dilation[0] = dilation[2];
            op.dilation[1] = dilation[3];
Khalique's avatar
Khalique committed
459
460
        }

Khalique's avatar
Khalique committed
461
        auto l0 = args[0];
Khalique's avatar
Khalique committed
462
463
464
        if(contains(attributes, "padding"))
        {
            const std::string& pad_mode = attributes.at("padding").s();
Khalique's avatar
Khalique committed
465

Khalique's avatar
Khalique committed
466
467
            if(pad_mode.find("SAME") != std::string::npos)
            {
Khalique's avatar
Khalique committed
468
                op.padding_mode                 = op::padding_mode_t::same;
Khalique's avatar
Khalique committed
469
470
471
472
473
                std::vector<size_t> weight_dims = weights->get_shape().lens();
                size_t weight_h                 = weight_dims[2];
                size_t weight_w                 = weight_dims[3];

                auto input_dims = l0->get_shape().lens();
Khalique's avatar
Khalique committed
474
475
                size_t input_h  = input_dims[2];
                size_t input_w  = input_dims[3];
Khalique's avatar
Khalique committed
476
477
478
479
480
481
482
483
484
485
486
                std::vector<int64_t> pads(input_dims.size());
                calculate_padding(0, pads, input_h, op.stride[0], op.dilation[0], weight_h);
                calculate_padding(1, pads, input_w, op.stride[1], op.dilation[1], weight_w);

                if(pads[0] != pads[2] || pads[1] != pads[3])
                {
                    std::vector<int64_t> padding = {0, 0, pads[0], pads[1], 0, 0, pads[2], pads[3]};
                    l0 = prog.add_instruction(migraphx::op::pad{padding}, l0);
                }
                else
                {
Khalique's avatar
Khalique committed
487
488
                    op.padding[0] = pads[0];
                    op.padding[1] = pads[1];
Khalique's avatar
Khalique committed
489
                }
Khalique's avatar
Khalique committed
490
            }
Khalique's avatar
Khalique committed
491
            else if(pad_mode.find("VALID") != std::string::npos)
Khalique's avatar
Khalique committed
492
            {
Khalique's avatar
Khalique committed
493
                op.padding_mode = op::padding_mode_t::valid;
Khalique's avatar
Khalique committed
494
495
            }
        }
Khalique's avatar
Khalique committed
496

Khalique's avatar
Khalique committed
497
498
        std::vector<int64_t> new_weights_shape;
        copy(weights->get_shape().lens(), std::back_inserter(new_weights_shape));
Khalique's avatar
Khalique committed
499
500
501
502

        // weight format is (out_channels, in_channels, h, w), but in depthwise_conv,
        // out_channels is equal to the multiplier. Adjust by inserting a reshape and
        // setting in_channels to 1
Khalique's avatar
Khalique committed
503
        int64_t multiplier   = new_weights_shape[0];
Khalique's avatar
Khalique committed
504
505
506
        int64_t out_channels = num_channels * multiplier;
        new_weights_shape[0] = out_channels;
        new_weights_shape[1] = 1;
Paul's avatar
Paul committed
507
        // Make sure weights are contiguous before doing reshape
Paul's avatar
Paul committed
508
509
        auto new_weights =
            prog.add_instruction(op::reshape{new_weights_shape}, make_contiguous(weights));
Khalique's avatar
Khalique committed
510

Khalique's avatar
Khalique committed
511
        return prog.add_instruction(op, {l0, new_weights});
Khalique's avatar
Khalique committed
512
513
    }

Khalique's avatar
Khalique committed
514
515
    instruction_ref
    parse_expanddims(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
516
517
    {
        std::vector<size_t> input_dims = args[0]->get_shape().lens();
Khalique's avatar
Khalique committed
518
        std::vector<int64_t> new_dims(input_dims.begin(), input_dims.end());
Khalique's avatar
Khalique committed
519
        size_t num_dims = input_dims.size();
520
        int32_t dim     = args[1]->eval().at<int32_t>();
Khalique's avatar
Khalique committed
521
522

        if(dim < 0)
Khalique's avatar
Khalique committed
523
524
525
526
527
528
529
530
531
532
        {
            new_dims.insert(new_dims.begin() + (num_dims + dim + 1), 1);
        }
        else
        {
            new_dims.insert(new_dims.begin() + dim, 1);
        }
        return prog.add_instruction(op::reshape{new_dims}, args[0]);
    }

Khalique's avatar
Khalique committed
533
534
535
536
537
538
539
540
    instruction_ref
    parse_gather(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
    {
        int axis = args[2]->eval().at<int32_t>();
        op::gather op{axis};
        return prog.add_instruction(op, {args[0], args[1]});
    }

Khalique's avatar
Khalique committed
541
542
    instruction_ref
    parse_matmul(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
543
544
545
    {
        bool transa = false;
        bool transb = false;
Khalique's avatar
Khalique committed
546

547
548
549
550
551
552
        if(contains(attributes, "transpose_a"))
        {
            transa = attributes.at("transpose_a").b();
        }
        if(contains(attributes, "transpose_b"))
        {
Khalique's avatar
Khalique committed
553
            transb = attributes.at("transpose_b").b();
554
555
        }

Khalique's avatar
Khalique committed
556
557
558
559
560
561
562
563
564
        if(contains(attributes, "adj_x"))
        {
            transa = attributes.at("adj_x").b();
        }
        if(contains(attributes, "adj_y"))
        {
            transb = attributes.at("adj_y").b();
        }

565
566
567
        std::vector<int64_t> perm(args[0]->get_shape().lens().size());
        std::iota(perm.begin(), perm.end(), int64_t{0});
        // swap the last two elements
Khalique's avatar
Khalique committed
568
        std::iter_swap(perm.end() - 1, perm.end() - 2);
569
570
571
572
573
574
575

        auto l1 = (transa) ? prog.add_instruction(op::transpose{perm}, args[0]) : args[0];
        auto l2 = (transb) ? prog.add_instruction(op::transpose{perm}, args[1]) : args[1];

        return prog.add_instruction(op::dot{}, l1, l2);
    }

Khalique's avatar
Khalique committed
576
577
    instruction_ref
    parse_mean(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
578
579
    {
        bool keep_dims = attributes.at("keep_dims").b();
Khalique's avatar
Khalique committed
580
        // std::vector<int32_t> hw_axes{2, 3};
Khalique's avatar
Khalique committed
581
        // check if conditions for GlobalAvgPool are met
Khalique's avatar
Khalique committed
582
583
        auto lens                       = args[0]->get_shape().lens();
        auto axes                       = args[1]->eval().get<int32_t>().to_vector();
Khalique's avatar
Khalique committed
584
585
586
587
588
589
590
        std::vector<int64_t> axes_int64 = std::vector<int64_t>(axes.begin(), axes.end());

        // if(axes == hw_axes and lens.size() == 4)
        // {
        // op::pooling op{"average"};
        // op.lengths[0] = lens[2];
        // op.lengths[1] = lens[3];
Khalique's avatar
Khalique committed
591
        auto l0 = prog.add_instruction(op::reduce_mean{axes_int64}, args.front());
Khalique's avatar
Khalique committed
592
593
        if(keep_dims)
            return l0;
Khalique's avatar
Khalique committed
594
        return prog.add_instruction(op::squeeze{axes_int64}, l0);
Khalique's avatar
Khalique committed
595
596
        // }
        // MIGRAPHX_THROW("MIGraphX does not support mean outside of GlobalAvgPool transformation");
Khalique's avatar
Khalique committed
597
598
    }

Khalique's avatar
Khalique committed
599
600
601
    instruction_ref
    parse_onehot(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
Khalique's avatar
Khalique committed
602
        // auto indices       = args[0]->eval().get<int32_t>().to_vector();
Khalique's avatar
Khalique committed
603
604
605
        size_t depth = static_cast<size_t>(args[1]->eval().at<int32_t>());

        int64_t axis = -1;
Khalique's avatar
Khalique committed
606
        // size_t num_indices = indices.size();
Khalique's avatar
Khalique committed
607
608
        float on_value  = args[2]->eval().at<float>();
        float off_value = args[3]->eval().at<float>();
Khalique's avatar
Khalique committed
609

Khalique's avatar
Khalique committed
610
        std::vector<float> depth_input(depth * depth, off_value);
Khalique's avatar
Khalique committed
611
612
        for(int i = 0; i < depth; i++)
        {
Khalique's avatar
Khalique committed
613
            depth_input[depth * i + i] = on_value;
Khalique's avatar
Khalique committed
614
        }
Khalique's avatar
Khalique committed
615

Khalique's avatar
Khalique committed
616
        if(contains(attributes, "axis"))
Khalique's avatar
Khalique committed
617
618
619
            axis = attributes.at("axis").i();
        if(axis == -1)
        {
Khalique's avatar
Khalique committed
620
621
622
            shape s{shape::float_type, {depth, depth}};
            auto l0 = prog.add_literal({s, depth_input});
            return prog.add_instruction(op::gather{0}, {l0, args[0]});
Khalique's avatar
Khalique committed
623
624
625
626
        }
        MIGRAPHX_THROW("MIGraphX does not support axis != -1");
    }

Khalique's avatar
Khalique committed
627
628
629
    instruction_ref parse_pack(const std::string&,
                               const attribute_map& attributes,
                               std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
630
631
632
633
634
635
    {
        // reinterpret as unsqueeze with concat
        std::vector<instruction_ref> unsqueezed_args;
        int64_t axis = 0;
        if(contains(attributes, "axis"))
            axis = attributes.at("axis").i();
636
637
638
        size_t input_size = args.front()->get_shape().lens().size();
        if(axis > input_size)
        {
Khalique's avatar
Khalique committed
639
640
            MIGRAPHX_THROW("TF_PARSER: axis value of " + to_string(axis) +
                           " must be smaller than input size " + to_string(input_size));
641
642
        }

Khalique's avatar
Khalique committed
643
644
645
646
647
        std::transform(
            args.begin(),
            args.end(),
            std::back_inserter(unsqueezed_args),
            [&](instruction_ref arg) { return prog.add_instruction(op::unsqueeze{{axis}}, arg); });
Paul's avatar
Paul committed
648
649
        return to_nhwc(
            prog.add_instruction(op::concat{static_cast<size_t>(axis)}, unsqueezed_args));
Khalique's avatar
Khalique committed
650
651
    }

Khalique's avatar
Khalique committed
652
653
654
655
656
    instruction_ref
    parse_pad(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
    {
        size_t ndims = args.front()->get_shape().lens().size();

Khalique's avatar
Khalique committed
657
658
        // in tf, the paddings are arranged as a 2d shape (ndims, 2),
        // the last dim contains the left padding and right padding respectively
Khalique's avatar
Khalique committed
659
        std::vector<std::pair<int32_t, int32_t>> pad_per_dim(ndims);
Paul's avatar
Paul committed
660
        auto tf_padding = args[1]->eval().get<int32_t>().to_vector();
Khalique's avatar
Khalique committed
661
        for(size_t i = 0; i < 2 * ndims; i += 2)
Khalique's avatar
Khalique committed
662
        {
Khalique's avatar
Khalique committed
663
664
            pad_per_dim[i / 2].first  = tf_padding[i];
            pad_per_dim[i / 2].second = tf_padding[i + 1];
Khalique's avatar
Khalique committed
665
666
667
668
        }
        reorder_data(pad_per_dim);

        op::pad op;
Khalique's avatar
Khalique committed
669
670
        std::vector<int64_t> pads(ndims * 2);
        for(size_t i = 0; i < ndims; i++)
Khalique's avatar
Khalique committed
671
        {
Khalique's avatar
Khalique committed
672
673
            pads[i]         = pad_per_dim[i].first;
            pads[i + ndims] = pad_per_dim[i].second;
Khalique's avatar
Khalique committed
674
675
        }
        op.pads = pads;
Paul's avatar
Paul committed
676
        return prog.add_instruction(op, args.front());
Khalique's avatar
Khalique committed
677
678
    }

679
680
681
682
683
    instruction_ref parse_pooling(const std::string& name,
                                  attribute_map attributes,
                                  std::vector<instruction_ref> args)
    {
        op::pooling op{starts_with(name, "Max") ? "max" : "average"};
Khalique's avatar
Khalique committed
684

685
686
        if(contains(attributes, "strides"))
        {
687
            std::vector<size_t> stride;
688
            copy(attributes.at("strides").list().i(), std::back_inserter(stride));
689
            reorder_data(stride);
690
691
692
693
            if(stride.size() != 4)
            {
                MIGRAPHX_THROW("strides should have 4 values");
            }
694
695
            op.stride[0] = stride[2];
            op.stride[1] = stride[3];
696
697
698
        }
        if(contains(attributes, "ksize"))
        {
699
            std::vector<size_t> ksize;
700
            copy(attributes.at("ksize").list().i(), std::back_inserter(ksize));
701
            reorder_data(ksize);
702
703
704
            if(ksize.size() != 4)
            {
                MIGRAPHX_THROW("ksize should have 4 values");
Khalique's avatar
Khalique committed
705
            }
706
707
            op.lengths[0] = ksize[2];
            op.lengths[1] = ksize[3];
708
        }
Khalique's avatar
Khalique committed
709
710

        auto l0 = args[0];
Khalique's avatar
Khalique committed
711
712
713
714
715
        if(contains(attributes, "padding"))
        {
            const std::string& pad_mode = attributes.at("padding").s();
            if(pad_mode.find("SAME") != std::string::npos)
            {
Khalique's avatar
Khalique committed
716
                op.padding_mode = op::padding_mode_t::same;
Khalique's avatar
Khalique committed
717
                auto input_dims = l0->get_shape().lens();
Khalique's avatar
Khalique committed
718
719
                size_t input_h  = input_dims[2];
                size_t input_w  = input_dims[3];
Khalique's avatar
Khalique committed
720
721
722
723
724
725
726
                std::vector<int64_t> pads(input_dims.size());
                calculate_padding(0, pads, input_h, op.stride[0], 1, op.lengths[0]);
                calculate_padding(1, pads, input_w, op.stride[1], 1, op.lengths[1]);

                if(pads[0] != pads[2] || pads[1] != pads[3])
                {
                    std::vector<int64_t> padding = {0, 0, pads[0], pads[1], 0, 0, pads[2], pads[3]};
Khalique's avatar
Khalique committed
727
728
                    l0                           = prog.add_instruction(
                        migraphx::op::pad{padding, std::numeric_limits<float>::lowest()}, l0);
Khalique's avatar
Khalique committed
729
730
731
                }
                else
                {
Khalique's avatar
Khalique committed
732
733
                    op.padding[0] = pads[0];
                    op.padding[1] = pads[1];
Khalique's avatar
Khalique committed
734
                }
Khalique's avatar
Khalique committed
735
736
737
738
739
740
            }
            else if(pad_mode.find("VALID") != std::string::npos)
            {
                op.padding_mode = op::padding_mode_t::valid;
            }
        }
Khalique's avatar
Khalique committed
741
        return prog.add_instruction(op, l0);
742
    }
Khalique's avatar
Khalique committed
743

744
    instruction_ref
Khalique's avatar
Khalique committed
745
    parse_reshape(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
746
747
748
749
    {
        op::reshape op;
        if(args.size() != 2)
            MIGRAPHX_THROW("reshape needs 2 arguments (input, new_shape)");
Khalique's avatar
Khalique committed
750
        auto s = args[1]->eval();
751
        s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
752
        return prog.add_instruction(op, make_contiguous(args[0]));
753
754
    }

Khalique's avatar
Khalique committed
755
756
757
758
759
760
761
762
763
    void parse_from(std::istream& is)
    {
        tensorflow::GraphDef graph;
        if(graph.ParseFromIstream(&is))
        {
            this->parse_graph(graph);
        }
        else
        {
764
            throw std::runtime_error("Failed reading tf file");
Khalique's avatar
Khalique committed
765
766
767
        }
    }

768
    instruction_ref
Khalique's avatar
Khalique committed
769
    parse_slice(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
770
    {
Khalique's avatar
Khalique committed
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
        op::slice op;
        auto starts     = args[1]->eval().get<int32_t>().to_vector();
        auto size       = args[2]->eval().get<int32_t>().to_vector();
        auto axes       = args[0]->get_shape().lens();
        size_t num_axes = axes.size();

        op.starts = std::vector<int64_t>(starts.begin(), starts.end());
        op.ends   = std::vector<int64_t>(num_axes);
        op.axes   = std::vector<int64_t>(num_axes);
        std::iota(op.axes.begin(), op.axes.end(), 0);
        for(size_t i = 0; i < num_axes; i++)
        {
            if(size[i] == -1)
                op.ends[i] = axes[i];
            else
                op.ends[i] = starts[i] + size[i];
        }
        return prog.add_instruction(op, make_contiguous(args[0]));
    }

Khalique's avatar
Khalique committed
791
792
793
794
795
    // template to facilitate the logsoftmax later
    template <class Op>
    instruction_ref parse_softmax(const std::string&,
                                  const attribute_map& attributes,
                                  std::vector<instruction_ref> args)
796
    {
Khalique's avatar
Khalique committed
797
        int axis      = -1;
Khalique's avatar
Khalique committed
798
799
800
801
802
803
804
805
806
807
808
        auto num_dims = args[0]->get_shape().lens().size();
        if(contains(attributes, "axis"))
        {
            axis = static_cast<int>(attributes.at("axis").i());
        }
        if(axis < 0)
        {
            axis += num_dims;
        }

        return prog.add_instruction(Op{axis}, make_contiguous(args[0]));
809
810
    }

Khalique's avatar
Khalique committed
811
812
813
    instruction_ref parse_squeeze(const std::string&,
                                  const attribute_map& attributes,
                                  std::vector<instruction_ref> args)
814
815
    {
        op::squeeze op;
Khalique's avatar
Khalique committed
816
        auto input_dims = args[0]->get_shape().lens();
Khalique's avatar
Khalique committed
817
        auto axes       = attributes.at("squeeze_dims").list().i();
818
        copy(axes, std::back_inserter(op.axes));
Khalique's avatar
Khalique committed
819

820
821
        if(op.axes.empty()) // no squeeze_dims provided, remove any dim that equals 1
        {
Khalique's avatar
Khalique committed
822
            for(size_t i = 0; i < input_dims.size(); i++)
823
            {
Khalique's avatar
Khalique committed
824
                if(input_dims.at(i) == 1)
825
826
827
828
                {
                    op.axes.push_back(i);
                }
            }
829
        }
Paul's avatar
Paul committed
830
        return prog.add_instruction(op, make_contiguous(args[0]));
831
832
    }

Khalique's avatar
Khalique committed
833
834
835
    instruction_ref parse_stridedslice(const std::string&,
                                       const attribute_map& attributes,
                                       std::vector<instruction_ref> args)
836
837
    {
        op::slice op;
Khalique's avatar
Khalique committed
838
839
840
841
        auto starts              = args[1]->eval().get<int32_t>().to_vector();
        auto ends                = args[2]->eval().get<int32_t>().to_vector();
        auto l0                  = args[0];
        size_t num_axes          = l0->get_shape().lens().size();
842
        std::vector<size_t> axes = l0->get_shape().lens();
843

Khalique's avatar
Khalique committed
844
845
846
847
        op.starts = std::vector<int64_t>(starts.begin(), starts.end());
        op.ends   = std::vector<int64_t>(ends.begin(), ends.end());
        op.axes   = std::vector<int64_t>(num_axes);
        std::iota(op.axes.begin(), op.axes.end(), 0);
Khalique's avatar
Khalique committed
848
849
        uint32_t begin_mask       = 0;
        uint32_t end_mask         = 0;
850
        uint32_t shrink_axis_mask = 0;
Khalique's avatar
Khalique committed
851
        uint32_t bitwise_compare  = 1;
Khalique's avatar
Khalique committed
852
853
        std::vector<int64_t> begin_axes;
        std::vector<int64_t> end_axes;
854
855
        std::vector<int64_t> squeeze_axes;

Khalique's avatar
Khalique committed
856
857
858
859
860
861
        if(contains(attributes, "begin_mask"))
            begin_mask = static_cast<uint32_t>(attributes.at("begin_mask").i());

        if(contains(attributes, "end_mask"))
            end_mask = static_cast<uint32_t>(attributes.at("end_mask").i());

862
        if(contains(attributes, "shrink_axis_mask"))
863
            shrink_axis_mask = static_cast<uint32_t>(attributes.at("shrink_axis_mask").i());
864

Khalique's avatar
Khalique committed
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
        for(size_t i = 0; i < num_axes; i++)
        {
            // the LSB corresponds to axis 0 when determining which axes to begin
            if(((begin_mask >> i) & bitwise_compare) == 1)
                begin_axes.push_back(1);
            else
                begin_axes.push_back(0);
        }

        for(size_t i = 0; i < num_axes; i++)
        {
            // the LSB corresponds to axis 0 when determining which axes to end
            if(((end_mask >> i) & bitwise_compare) == 1)
                end_axes.push_back(1);
            else
                end_axes.push_back(0);
        }

        for(size_t i = 0; i < num_axes; i++)
        {
            if(begin_axes.at(i) == 1)
            {
                op.starts.at(i) = 0;
            }
            if(end_axes.at(i) == 1)
            {
                op.ends.at(i) = axes.at(i);
            }
        }

895
        auto l1 = prog.add_instruction(op, l0);
Khalique's avatar
Khalique committed
896
        if(shrink_axis_mask == 0)
897
            return l1;
Khalique's avatar
Khalique committed
898

Khalique's avatar
Khalique committed
899
        for(size_t i = 0; i < num_axes; i++)
900
        {
901
            // the LSB corresponds to axis 0 when determining which axes to squeeze
Khalique's avatar
Khalique committed
902
            if(((shrink_axis_mask >> i) & bitwise_compare) == 1)
903
904
                squeeze_axes.push_back(i);
        }
Khalique's avatar
Khalique committed
905

906
        return prog.add_instruction(op::squeeze{squeeze_axes}, l1);
907
908
    }

Khalique's avatar
Khalique committed
909
910
    instruction_ref
    parse_transpose(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
911
912
913
914
915
916
917
918
    {
        auto perm = args[1]->eval().get<int32_t>().to_vector();
        op::transpose op;
        op.dims = std::vector<int64_t>(perm.begin(), perm.end());

        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
919
920
921
922
923
    void parse_graph(const tensorflow::GraphDef& graph)
    {
        nodes = get_nodes(graph, input_nodes);
        for(auto&& input : input_nodes)
        {
Khalique's avatar
Khalique committed
924
            const std::string& name   = input.name();
Khalique's avatar
Khalique committed
925
            attribute_map input_attrs = get_attributes(input);
Khalique's avatar
Khalique committed
926
927
            shape::type_t shape_type  = parse_type(input_attrs.at("dtype").type());
            std::vector<size_t> dims  = parse_dims(input_attrs.at("shape").shape());
928
            if(is_nhwc and dims.size() >= 4)
929
            {
930
                reorder_data(dims);
931
            }
Khalique's avatar
Khalique committed
932
            shape s            = shape{shape_type, dims};
Paul's avatar
Paul committed
933
            instructions[name] = to_nhwc(prog.add_parameter(name, s));
Khalique's avatar
Khalique committed
934
935
936
        }
        for(auto&& p : nodes)
        {
937
            this->parse_node(p.first);
Khalique's avatar
Khalique committed
938
939
940
941
942
943
944
945
        }
    }

    void parse_node(const std::string& name)
    {
        if(instructions.count(name) == 0)
        {
            auto&& node = nodes.at(name);
Khalique's avatar
Khalique committed
946
947
948
            // assert ops ignored
            if(node.op() == "Assert" or contains(name, "Assert"))
                return;
Khalique's avatar
Khalique committed
949
950
951
952
            std::vector<instruction_ref> args;

            for(auto&& input : node.input())
            {
Khalique's avatar
Khalique committed
953
954
955
                // control dependencies (signified by ^ before the name) are ignored
                if(contains(input, "^"))
                    continue;
Khalique's avatar
Khalique committed
956
957
958
959
960
961
962
963
964
965
966
967
968
969
                if(nodes.count(input) > 0)
                {
                    auto&& iname = get_name(nodes.at(input));
                    assert(name != iname);
                    this->parse_node(iname);
                    args.push_back(instructions.at(iname));
                }
                else
                {
                    args.push_back(instructions.at(input));
                }
            }
            if(ops.count(node.op()) == 0)
            {
970
                instructions[name] = prog.add_instruction(op::unknown{node.op()}, args);
Khalique's avatar
Khalique committed
971
972
973
974
975
976
977
978
979
980
981
            }
            else
            {
                instructions[name] = ops[node.op()](get_attributes(node), args);
            }
        }
    }

    static attribute_map get_attributes(const tensorflow::NodeDef& node)
    {
        attribute_map result;
Khalique's avatar
Khalique committed
982
        for(auto&& attr : node.attr())
Khalique's avatar
Khalique committed
983
984
985
986
987
988
        {
            result[attr.first] = attr.second;
        }
        return result;
    }

Khalique's avatar
Khalique committed
989
    static std::string get_name(const tensorflow::NodeDef& node) { return node.name(); }
Khalique's avatar
Khalique committed
990

Khalique's avatar
Khalique committed
991
992
    static node_map get_nodes(const tensorflow::GraphDef& graph,
                              std::vector<tensorflow::NodeDef>& input_nodes)
Khalique's avatar
Khalique committed
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
    {
        node_map result;
        for(auto&& node : graph.node())
        {
            auto node_name = get_name(node);
            // assume each node in graph has an associated name
            if(node_name.empty())
                MIGRAPHX_THROW("tf node with no name found");
            result[node_name] = node;
            if(node.op() == "Placeholder")
            {
                input_nodes.push_back(node);
            }
        }
        return result;
    }

    static shape::type_t parse_type(const tensorflow::DataType t)
    {
        shape::type_t shape_type{};
        switch(t)
        {
        case tensorflow::DataType::DT_FLOAT: shape_type = shape::float_type; break;
        case tensorflow::DataType::DT_DOUBLE: shape_type = shape::double_type; break;
        case tensorflow::DataType::DT_INT32: shape_type = shape::int32_type; break;
        case tensorflow::DataType::DT_INT16: shape_type = shape::int16_type; break;
        case tensorflow::DataType::DT_INT8: shape_type = shape::int8_type; break;
Paul's avatar
Paul committed
1020
1021
1022
1023
        case tensorflow::DataType::DT_INT64: shape_type = shape::int64_type; break;
        case tensorflow::DataType::DT_UINT16: shape_type = shape::uint16_type; break;
        case tensorflow::DataType::DT_HALF: shape_type = shape::half_type; break;
        case tensorflow::DataType::DT_UINT32: shape_type = shape::uint32_type; break;
Paul's avatar
Paul committed
1024
        case tensorflow::DataType::DT_UINT64: shape_type = shape::uint64_type; break;
Paul's avatar
Paul committed
1025
1026
1027

        case tensorflow::DataType::DT_INVALID:
        case tensorflow::DataType::DT_UINT8:
Khalique's avatar
Khalique committed
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
        case tensorflow::DataType::DT_STRING:
        case tensorflow::DataType::DT_COMPLEX64:
        case tensorflow::DataType::DT_BOOL:
        case tensorflow::DataType::DT_QINT8:
        case tensorflow::DataType::DT_QUINT8:
        case tensorflow::DataType::DT_QINT32:
        case tensorflow::DataType::DT_BFLOAT16:
        case tensorflow::DataType::DT_QINT16:
        case tensorflow::DataType::DT_QUINT16:
        case tensorflow::DataType::DT_COMPLEX128:
        case tensorflow::DataType::DT_RESOURCE:
        case tensorflow::DataType::DT_VARIANT:
Khalique's avatar
Khalique committed
1040
        // tf pb should not use these types
Paul's avatar
Paul committed
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
        case tensorflow::DataType::DT_FLOAT_REF:
        case tensorflow::DataType::DT_DOUBLE_REF:
        case tensorflow::DataType::DT_INT32_REF:
        case tensorflow::DataType::DT_UINT8_REF:
        case tensorflow::DataType::DT_INT16_REF:
        case tensorflow::DataType::DT_INT8_REF:
        case tensorflow::DataType::DT_STRING_REF:
        case tensorflow::DataType::DT_COMPLEX64_REF:
        case tensorflow::DataType::DT_INT64_REF:
        case tensorflow::DataType::DT_BOOL_REF:
        case tensorflow::DataType::DT_QINT8_REF:
        case tensorflow::DataType::DT_QUINT8_REF:
        case tensorflow::DataType::DT_QINT32_REF:
        case tensorflow::DataType::DT_BFLOAT16_REF:
        case tensorflow::DataType::DT_QINT16_REF:
        case tensorflow::DataType::DT_QUINT16_REF:
        case tensorflow::DataType::DT_UINT16_REF:
        case tensorflow::DataType::DT_COMPLEX128_REF:
        case tensorflow::DataType::DT_HALF_REF:
        case tensorflow::DataType::DT_RESOURCE_REF:
        case tensorflow::DataType::DT_VARIANT_REF:
        case tensorflow::DataType::DT_UINT32_REF:
        case tensorflow::DataType::DT_UINT64_REF:
Paul's avatar
Paul committed
1064
        case tensorflow::DataType::DataType_INT_MAX_SENTINEL_DO_NOT_USE_:
Khalique's avatar
Khalique committed
1065
        case tensorflow::DataType::DataType_INT_MIN_SENTINEL_DO_NOT_USE_: break;
Khalique's avatar
Khalique committed
1066
1067
1068
1069
        }
        return shape_type;
    }

Khalique's avatar
Khalique committed
1070
    static literal parse_tensor(const tensorflow::TensorProto& t)
Khalique's avatar
Khalique committed
1071
1072
    {
        std::vector<size_t> dims = parse_dims(t.tensor_shape());
1073
        size_t shape_size = std::accumulate(dims.begin(), dims.end(), 1, std::multiplies<size_t>());
Khalique's avatar
Khalique committed
1074
1075
        if(!t.tensor_content().empty()) // has raw data
        {
Khalique's avatar
Khalique committed
1076
            const std::string& s = t.tensor_content();
Khalique's avatar
Khalique committed
1077
1078
            switch(t.dtype())
            {
Khalique's avatar
Khalique committed
1079
1080
            case tensorflow::DataType::DT_FLOAT:
                return literal{{shape::float_type, dims}, s.data()};
Paul's avatar
Paul committed
1081
            case tensorflow::DataType::DT_BOOL:
1082
            case tensorflow::DataType::DT_INT8: return literal{{shape::int8_type, dims}, s.data()};
Khalique's avatar
Khalique committed
1083
1084
            case tensorflow::DataType::DT_UINT16:
            case tensorflow::DataType::DT_INT16:
1085
                return literal{{shape::int16_type, dims}, s.data()};
Khalique's avatar
Khalique committed
1086
1087
1088
1089
            case tensorflow::DataType::DT_INT32:
                return literal{{shape::int32_type, dims}, s.data()};
            case tensorflow::DataType::DT_INT64:
                return literal{{shape::int64_type, dims}, s.data()};
Khalique's avatar
Khalique committed
1090
            case tensorflow::DataType::DT_HALF: return literal{{shape::half_type, dims}, s.data()};
Khalique's avatar
Khalique committed
1091
1092
            case tensorflow::DataType::DT_DOUBLE:
                return literal{{shape::double_type, dims}, s.data()};
Paul's avatar
Paul committed
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
            case tensorflow::DataType::DT_INVALID:
            case tensorflow::DataType::DT_UINT8:
            case tensorflow::DataType::DT_STRING:
            case tensorflow::DataType::DT_UINT32:
            case tensorflow::DataType::DT_UINT64:
            case tensorflow::DataType::DT_COMPLEX64:
            case tensorflow::DataType::DT_COMPLEX128:
            case tensorflow::DataType::DT_QINT8:
            case tensorflow::DataType::DT_QUINT8:
            case tensorflow::DataType::DT_QINT32:
            case tensorflow::DataType::DT_BFLOAT16:
            case tensorflow::DataType::DT_QINT16:
            case tensorflow::DataType::DT_QUINT16:
            case tensorflow::DataType::DT_RESOURCE:
            case tensorflow::DataType::DT_VARIANT:
            case tensorflow::DataType::DT_FLOAT_REF:
            case tensorflow::DataType::DT_DOUBLE_REF:
            case tensorflow::DataType::DT_INT32_REF:
            case tensorflow::DataType::DT_UINT8_REF:
            case tensorflow::DataType::DT_INT16_REF:
            case tensorflow::DataType::DT_INT8_REF:
            case tensorflow::DataType::DT_STRING_REF:
            case tensorflow::DataType::DT_COMPLEX64_REF:
            case tensorflow::DataType::DT_INT64_REF:
            case tensorflow::DataType::DT_BOOL_REF:
            case tensorflow::DataType::DT_QINT8_REF:
            case tensorflow::DataType::DT_QUINT8_REF:
            case tensorflow::DataType::DT_QINT32_REF:
            case tensorflow::DataType::DT_BFLOAT16_REF:
            case tensorflow::DataType::DT_QINT16_REF:
            case tensorflow::DataType::DT_QUINT16_REF:
            case tensorflow::DataType::DT_UINT16_REF:
            case tensorflow::DataType::DT_COMPLEX128_REF:
            case tensorflow::DataType::DT_HALF_REF:
            case tensorflow::DataType::DT_RESOURCE_REF:
            case tensorflow::DataType::DT_VARIANT_REF:
            case tensorflow::DataType::DT_UINT32_REF:
            case tensorflow::DataType::DT_UINT64_REF:
Khalique's avatar
Khalique committed
1131
1132
1133
            case tensorflow::DataType::DataType_INT_MAX_SENTINEL_DO_NOT_USE_:
            case tensorflow::DataType::DataType_INT_MIN_SENTINEL_DO_NOT_USE_:
                throw std::runtime_error("");
Khalique's avatar
Khalique committed
1134
1135
1136
1137
1138
1139
            }
            MIGRAPHX_THROW("Invalid tensor type");
        }
        switch(t.dtype())
        {
        case tensorflow::DataType::DT_FLOAT:
Khalique's avatar
Khalique committed
1140
1141
            return create_literal(
                shape::float_type, dims, get_data_vals(t.float_val(), shape_size));
Khalique's avatar
Khalique committed
1142
        case tensorflow::DataType::DT_INT8:
1143
            return create_literal(shape::int8_type, dims, get_data_vals(t.int_val(), shape_size));
Khalique's avatar
Khalique committed
1144
        case tensorflow::DataType::DT_UINT16:
1145
            return create_literal(shape::uint16_type, dims, get_data_vals(t.int_val(), shape_size));
Khalique's avatar
Khalique committed
1146
        case tensorflow::DataType::DT_INT16:
1147
            return create_literal(shape::int16_type, dims, get_data_vals(t.int_val(), shape_size));
Khalique's avatar
Khalique committed
1148
        case tensorflow::DataType::DT_INT32:
1149
            return create_literal(shape::int32_type, dims, get_data_vals(t.int_val(), shape_size));
Khalique's avatar
Khalique committed
1150
        case tensorflow::DataType::DT_INT64:
Khalique's avatar
Khalique committed
1151
1152
            return create_literal(
                shape::int64_type, dims, get_data_vals(t.int64_val(), shape_size));
Khalique's avatar
Khalique committed
1153
        case tensorflow::DataType::DT_BOOL:
1154
            return create_literal(shape::int32_type, dims, get_data_vals(t.bool_val(), shape_size));
Khalique's avatar
Khalique committed
1155
        case tensorflow::DataType::DT_HALF:
Khalique's avatar
Khalique committed
1156
        {
1157
1158
            std::vector<int> data_int32 = get_data_vals(t.half_val(), shape_size);
            std::vector<uint16_t> data_uint16(data_int32.begin(), data_int32.end());
Khalique's avatar
Khalique committed
1159
1160
1161
1162
1163
            std::vector<half> data_half;
            std::transform(data_uint16.begin(),
                           data_uint16.end(),
                           std::back_inserter(data_half),
                           [](uint16_t raw_val) { return *reinterpret_cast<half*>(&raw_val); });
1164
            return create_literal(shape::half_type, dims, data_half);
Khalique's avatar
Khalique committed
1165
        }
Khalique's avatar
Khalique committed
1166
        case tensorflow::DataType::DT_DOUBLE:
Khalique's avatar
Khalique committed
1167
            return literal{{shape::double_type, dims}, get_data_vals(t.double_val(), shape_size)};
Paul's avatar
Paul committed
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
        case tensorflow::DataType::DT_INVALID:
        case tensorflow::DataType::DT_UINT8:
        case tensorflow::DataType::DT_STRING:
        case tensorflow::DataType::DT_UINT32:
        case tensorflow::DataType::DT_UINT64:
        case tensorflow::DataType::DT_COMPLEX64:
        case tensorflow::DataType::DT_COMPLEX128:
        case tensorflow::DataType::DT_QINT8:
        case tensorflow::DataType::DT_QUINT8:
        case tensorflow::DataType::DT_QINT32:
        case tensorflow::DataType::DT_BFLOAT16:
        case tensorflow::DataType::DT_QINT16:
        case tensorflow::DataType::DT_QUINT16:
        case tensorflow::DataType::DT_RESOURCE:
        case tensorflow::DataType::DT_VARIANT:
        case tensorflow::DataType::DT_FLOAT_REF:
        case tensorflow::DataType::DT_DOUBLE_REF:
        case tensorflow::DataType::DT_INT32_REF:
        case tensorflow::DataType::DT_UINT8_REF:
        case tensorflow::DataType::DT_INT16_REF:
        case tensorflow::DataType::DT_INT8_REF:
        case tensorflow::DataType::DT_STRING_REF:
        case tensorflow::DataType::DT_COMPLEX64_REF:
        case tensorflow::DataType::DT_INT64_REF:
        case tensorflow::DataType::DT_BOOL_REF:
        case tensorflow::DataType::DT_QINT8_REF:
        case tensorflow::DataType::DT_QUINT8_REF:
        case tensorflow::DataType::DT_QINT32_REF:
        case tensorflow::DataType::DT_BFLOAT16_REF:
        case tensorflow::DataType::DT_QINT16_REF:
        case tensorflow::DataType::DT_QUINT16_REF:
        case tensorflow::DataType::DT_UINT16_REF:
        case tensorflow::DataType::DT_COMPLEX128_REF:
        case tensorflow::DataType::DT_HALF_REF:
        case tensorflow::DataType::DT_RESOURCE_REF:
        case tensorflow::DataType::DT_VARIANT_REF:
        case tensorflow::DataType::DT_UINT32_REF:
        case tensorflow::DataType::DT_UINT64_REF:
Khalique's avatar
Khalique committed
1206
1207
1208
        case tensorflow::DataType::DataType_INT_MAX_SENTINEL_DO_NOT_USE_:
        case tensorflow::DataType::DataType_INT_MIN_SENTINEL_DO_NOT_USE_:
            throw std::runtime_error("");
Khalique's avatar
Khalique committed
1209
1210
1211
1212
        }
        MIGRAPHX_THROW("Invalid tensor type");
    }

1213
    template <class T>
Khalique's avatar
Khalique committed
1214
    static std::vector<T> get_data_vals(const google::protobuf::RepeatedField<T>& data,
1215
                                        const size_t& shape_size)
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
    {
        std::vector<T> data_vals(shape_size);
        // check if shape has enough data values given existing fields
        if(data.size() == 1)
        {
            std::fill(data_vals.begin(), data_vals.end(), data[0]);
        }
        else
            copy(data.begin(), data.end(), std::back_inserter(data_vals));
        return data_vals;
    }

Khalique's avatar
Khalique committed
1228
1229
1230
1231
    static std::vector<size_t> parse_dims(const tensorflow::TensorShapeProto& s)
    {
        std::vector<size_t> dims;
        auto input_dims = s.dim();
Khalique's avatar
Khalique committed
1232
1233
1234
        std::transform(input_dims.begin(),
                       input_dims.end(),
                       std::back_inserter(dims),
Paul's avatar
Paul committed
1235
                       [](const tensorflow::TensorShapeProto_Dim& dim) { return dim.size(); });
Khalique's avatar
Khalique committed
1236
1237
        return dims;
    }
1238
1239

    template <class T>
Khalique's avatar
Khalique committed
1240
    static literal
1241
    create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, std::vector<T> data)
1242
    {
Khalique's avatar
Khalique committed
1243
        // assume if explicit value is mentioned in protobuf and dim size <= 1, treat as scalar
1244
        if(dims.empty() or (dims.size() == 1 and dims.front() == 1))
1245
            return literal{{shape_type}, data};
1246
1247
        return literal{{shape_type, dims}, data};
    }
Khalique's avatar
Khalique committed
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
};

program parse_tf(const std::string& name, bool is_nhwc)
{
    std::fstream input(name.c_str(), std::ios::in | std::ios::binary);
    tf_parser parser;
    parser.is_nhwc = is_nhwc;

#ifndef NDEBUG
    // Log the program when it can't be parsed
    try
    {
        parser.parse_from(input);
    }
    catch(...)
    {
        std::cerr << parser.prog << std::endl;
        throw;
    }
#else
    parser.parse_from(input);
#endif
Paul's avatar
Paul committed
1270
    parser.to_nchw(std::prev(parser.prog.end()));
Khalique's avatar
Khalique committed
1271
1272
1273
1274
1275
    return std::move(parser.prog);
}

} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx