test_modeling_common.py 115 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2019 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

16
import copy
17
import gc
18
import inspect
19
import json
20
import os
21
import os.path
Aymeric Augustin's avatar
Aymeric Augustin committed
22
import random
23
import sys
24
import tempfile
thomwolf's avatar
thomwolf committed
25
import unittest
26
import unittest.mock as mock
27
import warnings
28
from pathlib import Path
NielsRogge's avatar
NielsRogge committed
29
from typing import Dict, List, Tuple
thomwolf's avatar
thomwolf committed
30

31
32
33
import numpy as np

import transformers
34
from huggingface_hub import Repository, delete_repo, login
Sylvain Gugger's avatar
Sylvain Gugger committed
35
from requests.exceptions import HTTPError
36
37
38
39
40
41
42
43
from transformers import (
    AutoConfig,
    AutoModel,
    AutoModelForSequenceClassification,
    PretrainedConfig,
    is_torch_available,
    logging,
)
44
from transformers.models.auto import get_values
Sylvain Gugger's avatar
Sylvain Gugger committed
45
46
47
48
from transformers.testing_utils import (
    PASS,
    USER,
    CaptureLogger,
49
    TestCasePlus,
50
51
    is_pt_flax_cross_test,
    is_pt_tf_cross_test,
Sylvain Gugger's avatar
Sylvain Gugger committed
52
53
54
55
56
57
    is_staging_test,
    require_torch,
    require_torch_multi_gpu,
    slow,
    torch_device,
)
Sylvain Gugger's avatar
Sylvain Gugger committed
58
from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME, is_flax_available, is_torch_fx_available
59

Aymeric Augustin's avatar
Aymeric Augustin committed
60

61
62
sys.path.append(str(Path(__file__).parent.parent / "utils"))

63
from test_module.custom_configuration import CustomConfig, NoSuperInitConfig  # noqa E402
64
65


66
if is_torch_available():
67
    import torch
68
    from torch import nn
thomwolf's avatar
thomwolf committed
69

70
    from test_module.custom_modeling import CustomModel, NoSuperInitModel
71
    from transformers import (
72
        BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
73
        MODEL_FOR_AUDIO_XVECTOR_MAPPING,
NielsRogge's avatar
NielsRogge committed
74
        MODEL_FOR_CAUSAL_IMAGE_MODELING_MAPPING,
75
        MODEL_FOR_CAUSAL_LM_MAPPING,
76
        MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING,
NielsRogge's avatar
NielsRogge committed
77
        MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING,
78
        MODEL_FOR_MASKED_LM_MAPPING,
79
        MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
80
        MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING,
81
        MODEL_FOR_QUESTION_ANSWERING_MAPPING,
82
83
84
        MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
        MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
        MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
85
        MODEL_MAPPING,
86
87
88
89
        AdaptiveEmbedding,
        BertConfig,
        BertModel,
        PreTrainedModel,
90
        T5Config,
91
        T5ForConditionalGeneration,
92
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
93
    from transformers.modeling_utils import shard_checkpoint
thomwolf's avatar
thomwolf committed
94

95
96
97
98
99
100
101
if is_flax_available():
    import jax.numpy as jnp
    from transformers.modeling_flax_pytorch_utils import (
        convert_pytorch_state_dict_to_flax,
        load_flax_weights_in_pytorch_model,
    )

102
if is_torch_fx_available():
103
    from transformers.utils.fx import symbolic_trace
104

105

106
107
108
def _config_zero_init(config):
    configs_no_init = copy.deepcopy(config)
    for key in configs_no_init.__dict__.keys():
109
        if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key:
Lysandre Debut's avatar
Lysandre Debut committed
110
            setattr(configs_no_init, key, 1e-10)
111
112
    return configs_no_init

thomwolf's avatar
thomwolf committed
113

114
115
116
TINY_T5 = "patrickvonplaten/t5-tiny-random"


117
118
119
120
121
@require_torch
class ModelTesterMixin:

    model_tester = None
    all_model_classes = ()
122
    all_generative_model_classes = ()
123
    fx_compatible = False
Patrick von Platen's avatar
Patrick von Platen committed
124
125
126
    test_torchscript = True
    test_pruning = True
    test_resize_embeddings = True
127
    test_resize_position_embeddings = False
Patrick von Platen's avatar
Patrick von Platen committed
128
    test_head_masking = True
129
    test_mismatched_shapes = True
130
    test_missing_keys = True
131
    test_model_parallel = False
132
    is_encoder_decoder = False
133
    has_attentions = True
134

135
136
    def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
        inputs_dict = copy.deepcopy(inputs_dict)
137
        if model_class in get_values(MODEL_FOR_MULTIPLE_CHOICE_MAPPING):
138
            inputs_dict = {
139
                k: v.unsqueeze(1).expand(-1, self.model_tester.num_choices, -1).contiguous()
140
                if isinstance(v, torch.Tensor) and v.ndim > 1
Sylvain Gugger's avatar
Sylvain Gugger committed
141
                else v
142
143
                for k, v in inputs_dict.items()
            }
144
145
        elif model_class in get_values(MODEL_FOR_AUDIO_XVECTOR_MAPPING):
            inputs_dict.pop("attention_mask")
146
147

        if return_labels:
148
            if model_class in get_values(MODEL_FOR_MULTIPLE_CHOICE_MAPPING):
149
                inputs_dict["labels"] = torch.ones(self.model_tester.batch_size, dtype=torch.long, device=torch_device)
150
            elif model_class in get_values(MODEL_FOR_QUESTION_ANSWERING_MAPPING):
151
152
153
154
155
156
                inputs_dict["start_positions"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
                inputs_dict["end_positions"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
157
            elif model_class in [
158
159
160
                *get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING),
                *get_values(MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING),
                *get_values(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING),
161
            ]:
162
163
164
165
                inputs_dict["labels"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
            elif model_class in [
166
167
                *get_values(MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING),
                *get_values(MODEL_FOR_CAUSAL_LM_MAPPING),
NielsRogge's avatar
NielsRogge committed
168
                *get_values(MODEL_FOR_CAUSAL_IMAGE_MODELING_MAPPING),
169
170
                *get_values(MODEL_FOR_MASKED_LM_MAPPING),
                *get_values(MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING),
171
172
173
174
            ]:
                inputs_dict["labels"] = torch.zeros(
                    (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device
                )
NielsRogge's avatar
NielsRogge committed
175
176
177
178
179
            elif model_class in get_values(MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING):
                num_patches = self.model_tester.image_size // self.model_tester.patch_size
                inputs_dict["bool_masked_pos"] = torch.zeros(
                    (self.model_tester.batch_size, num_patches**2), dtype=torch.long, device=torch_device
                )
180

181
182
        return inputs_dict

Patrick von Platen's avatar
Patrick von Platen committed
183
    def test_save_load(self):
184
185
186
187
188
189
190
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
191
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
Weizhen's avatar
Weizhen committed
192

193
            out_2 = outputs[0].cpu().numpy()
194
            out_2[np.isnan(out_2)] = 0
195

196
            with tempfile.TemporaryDirectory() as tmpdirname:
197
198
                model.save_pretrained(tmpdirname)
                model = model_class.from_pretrained(tmpdirname)
199
                model.to(torch_device)
200
                with torch.no_grad():
201
                    after_outputs = model(**self._prepare_for_class(inputs_dict, model_class))
thomwolf's avatar
thomwolf committed
202

203
204
205
                # Make sure we don't have nans
                out_1 = after_outputs[0].cpu().numpy()
                out_1[np.isnan(out_1)] = 0
thomwolf's avatar
thomwolf committed
206
207
                max_diff = np.amax(np.abs(out_1 - out_2))
                self.assertLessEqual(max_diff, 1e-5)
208

209
    def test_save_load_keys_to_ignore_on_save(self):
210
211
212
213
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
214
215
            _keys_to_ignore_on_save = getattr(model, "_keys_to_ignore_on_save", None)
            if _keys_to_ignore_on_save is None:
216
217
218
                continue

            # check the keys are in the original state_dict
219
            for k in _keys_to_ignore_on_save:
220
                self.assertIn(k, model.state_dict().keys(), "\n".join(model.state_dict().keys()))
221
222
223
224
225
226

            # check that certain keys didn't get saved with the model
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                output_model_file = os.path.join(tmpdirname, WEIGHTS_NAME)
                state_dict_saved = torch.load(output_model_file)
227
                for k in _keys_to_ignore_on_save:
228
                    self.assertNotIn(k, state_dict_saved.keys(), "\n".join(state_dict_saved.keys()))
229

Sylvain Gugger's avatar
Sylvain Gugger committed
230
231
232
                # Test we can load the state dict in the model, necessary for the checkpointing API in Trainer.
                load_result = model.load_state_dict(state_dict_saved, strict=False)
                self.assertTrue(
233
234
                    len(load_result.missing_keys) == 0
                    or set(load_result.missing_keys) == set(model._keys_to_ignore_on_save)
Sylvain Gugger's avatar
Sylvain Gugger committed
235
236
237
                )
                self.assertTrue(len(load_result.unexpected_keys) == 0)

238
239
240
241
242
243
244
245
246
247
248
    def test_gradient_checkpointing_backward_compatibility(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if not model_class.supports_gradient_checkpointing:
                continue

            config.gradient_checkpointing = True
            model = model_class(config)
            self.assertTrue(model.is_gradient_checkpointing)

249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
    def test_gradient_checkpointing_enable_disable(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if not model_class.supports_gradient_checkpointing:
                continue

            # at init model should have gradient checkpointing disabled
            model = model_class(config)
            self.assertFalse(model.is_gradient_checkpointing)

            # check enable works
            model.gradient_checkpointing_enable()
            self.assertTrue(model.is_gradient_checkpointing)

            # check disable works
            model.gradient_checkpointing_disable()
            self.assertFalse(model.is_gradient_checkpointing)

268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
    def _mock_init_weights(self, module):
        if hasattr(module, "weight") and module.weight is not None:
            module.weight.data.fill_(3)
        if hasattr(module, "bias") and module.bias is not None:
            module.bias.data.fill_(3)

    def test_save_load_fast_init_from_base(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        base_class = MODEL_MAPPING[config.__class__]

        if isinstance(base_class, tuple):
            base_class = base_class[0]

        for model_class in self.all_model_classes:
            if model_class == base_class:
                continue

            # make a copy of model class to not break future tests
            # from https://stackoverflow.com/questions/9541025/how-to-copy-a-python-class
            class CopyClass(model_class):
                pass

            model_class_copy = CopyClass

            # make sure that all keys are expected for test
            model_class_copy._keys_to_ignore_on_load_missing = []

            # make init deterministic, but make sure that
            # non-initialized weights throw errors nevertheless
            model_class_copy._init_weights = self._mock_init_weights

            model = base_class(config)
            state_dict = model.state_dict()

            # this will often delete a single weight of a multi-weight module
            # to test an edge case
            random_key_to_del = random.choice(list(state_dict.keys()))
            del state_dict[random_key_to_del]

            # check that certain keys didn't get saved with the model
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                torch.save(state_dict, os.path.join(tmpdirname, "pytorch_model.bin"))

                model_fast_init = model_class_copy.from_pretrained(tmpdirname)
                model_slow_init = model_class_copy.from_pretrained(tmpdirname, _fast_init=False)

                for key in model_fast_init.state_dict().keys():
                    max_diff = (model_slow_init.state_dict()[key] - model_fast_init.state_dict()[key]).sum().item()
                    self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")

    def test_save_load_fast_init_to_base(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        base_class = MODEL_MAPPING[config.__class__]

        if isinstance(base_class, tuple):
            base_class = base_class[0]

        for model_class in self.all_model_classes:

            if model_class == base_class:
                continue

            # make a copy of model class to not break future tests
            # from https://stackoverflow.com/questions/9541025/how-to-copy-a-python-class
            class CopyClass(base_class):
                pass

            base_class_copy = CopyClass

            # make sure that all keys are expected for test
            base_class_copy._keys_to_ignore_on_load_missing = []

            # make init deterministic, but make sure that
            # non-initialized weights throw errors nevertheless
            base_class_copy._init_weights = self._mock_init_weights

            model = model_class(config)
            state_dict = model.state_dict()

            # this will often delete a single weight of a multi-weight module
            # to test an edge case
            random_key_to_del = random.choice(list(state_dict.keys()))
            del state_dict[random_key_to_del]

            # check that certain keys didn't get saved with the model
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.config.save_pretrained(tmpdirname)
                torch.save(state_dict, os.path.join(tmpdirname, "pytorch_model.bin"))

                model_fast_init = base_class_copy.from_pretrained(tmpdirname)
                model_slow_init = base_class_copy.from_pretrained(tmpdirname, _fast_init=False)

                for key in model_fast_init.state_dict().keys():
                    max_diff = (model_slow_init.state_dict()[key] - model_fast_init.state_dict()[key]).sum().item()
                    self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")

Patrick von Platen's avatar
Patrick von Platen committed
365
    def test_initialization(self):
366
367
368
369
370
371
372
373
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        configs_no_init = _config_zero_init(config)
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            for name, param in model.named_parameters():
                if param.requires_grad:
                    self.assertIn(
Lysandre Debut's avatar
Lysandre Debut committed
374
                        ((param.data.mean() * 1e9).round() / 1e9).item(),
375
                        [0.0, 1.0],
376
                        msg=f"Parameter {name} of model {model_class} seems not properly initialized",
377
                    )
thomwolf's avatar
thomwolf committed
378

Patrick von Platen's avatar
Patrick von Platen committed
379
    def test_determinism(self):
380
381
382
383
384
385
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
386
387
                first = model(**self._prepare_for_class(inputs_dict, model_class))[0]
                second = model(**self._prepare_for_class(inputs_dict, model_class))[0]
Weizhen's avatar
Weizhen committed
388

389
390
391
392
393
394
395
            out_1 = first.cpu().numpy()
            out_2 = second.cpu().numpy()
            out_1 = out_1[~np.isnan(out_1)]
            out_2 = out_2[~np.isnan(out_2)]
            max_diff = np.amax(np.abs(out_1 - out_2))
            self.assertLessEqual(max_diff, 1e-5)

396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
    def test_forward_signature(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.forward)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

            if model.config.is_encoder_decoder:
                expected_arg_names = [
                    "input_ids",
                    "attention_mask",
                    "decoder_input_ids",
                    "decoder_attention_mask",
                ]
412
                expected_arg_names.extend(
413
414
                    ["head_mask", "decoder_head_mask", "cross_attn_head_mask", "encoder_outputs"]
                    if "head_mask" and "decoder_head_mask" and "cross_attn_head_mask" in arg_names
415
416
417
                    else ["encoder_outputs"]
                )
                self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names)
418
419
420
421
            else:
                expected_arg_names = ["input_ids"]
                self.assertListEqual(arg_names[:1], expected_arg_names)

422
423
424
425
426
    def test_training(self):
        if not self.model_tester.is_training:
            return

        for model_class in self.all_model_classes:
427
428
429
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
            config.return_dict = True

430
            if model_class in get_values(MODEL_MAPPING):
431
                continue
432

433
434
435
436
437
438
439
440
            model = model_class(config)
            model.to(torch_device)
            model.train()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            loss = model(**inputs).loss
            loss.backward()

    def test_training_gradient_checkpointing(self):
441
        if not self.model_tester.is_training:
442
443
444
            return

        for model_class in self.all_model_classes:
445
446
447
448
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
            config.use_cache = False
            config.return_dict = True

449
            if model_class in get_values(MODEL_MAPPING) or not model_class.supports_gradient_checkpointing:
450
451
452
                continue
            model = model_class(config)
            model.to(torch_device)
453
            model.gradient_checkpointing_enable()
454
455
456
457
458
            model.train()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            loss = model(**inputs).loss
            loss.backward()

Patrick von Platen's avatar
Patrick von Platen committed
459
    def test_attention_outputs(self):
460
461
        if not self.has_attentions:
            pass
462

463
464
        else:
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
465
            config.return_dict = True
466

467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
            seq_len = getattr(self.model_tester, "seq_length", None)
            decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len)
            encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", seq_len)
            decoder_key_length = getattr(self.model_tester, "decoder_key_length", decoder_seq_length)
            encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length)
            chunk_length = getattr(self.model_tester, "chunk_length", None)
            if chunk_length is not None and hasattr(self.model_tester, "num_hashes"):
                encoder_seq_length = encoder_seq_length * self.model_tester.num_hashes

            for model_class in self.all_model_classes:
                inputs_dict["output_attentions"] = True
                inputs_dict["output_hidden_states"] = False
                config.return_dict = True
                model = model_class(config)
                model.to(torch_device)
                model.eval()
                with torch.no_grad():
                    outputs = model(**self._prepare_for_class(inputs_dict, model_class))
                attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
                self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)

                # check that output_attentions also work using config
                del inputs_dict["output_attentions"]
                config.output_attentions = True
                model = model_class(config)
                model.to(torch_device)
                model.eval()
                with torch.no_grad():
                    outputs = model(**self._prepare_for_class(inputs_dict, model_class))
                attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
                self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)

                if chunk_length is not None:
                    self.assertListEqual(
                        list(attentions[0].shape[-4:]),
                        [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length],
                    )
                else:
                    self.assertListEqual(
                        list(attentions[0].shape[-3:]),
                        [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
                    )
                out_len = len(outputs)

                if self.is_encoder_decoder:
                    correct_outlen = 5

                    # loss is at first position
                    if "labels" in inputs_dict:
                        correct_outlen += 1  # loss is added to beginning
                    # Question Answering model returns start_logits and end_logits
                    if model_class in get_values(MODEL_FOR_QUESTION_ANSWERING_MAPPING):
                        correct_outlen += 1  # start_logits and end_logits instead of only 1 output
                    if "past_key_values" in outputs:
                        correct_outlen += 1  # past_key_values have been returned

                    self.assertEqual(out_len, correct_outlen)

                    # decoder attentions
                    decoder_attentions = outputs.decoder_attentions
                    self.assertIsInstance(decoder_attentions, (list, tuple))
                    self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers)
                    self.assertListEqual(
                        list(decoder_attentions[0].shape[-3:]),
                        [self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length],
                    )
thomwolf's avatar
thomwolf committed
533

534
535
536
537
538
539
540
541
542
543
544
545
                    # cross attentions
                    cross_attentions = outputs.cross_attentions
                    self.assertIsInstance(cross_attentions, (list, tuple))
                    self.assertEqual(len(cross_attentions), self.model_tester.num_hidden_layers)
                    self.assertListEqual(
                        list(cross_attentions[0].shape[-3:]),
                        [
                            self.model_tester.num_attention_heads,
                            decoder_seq_length,
                            encoder_key_length,
                        ],
                    )
546

547
548
549
550
551
552
553
554
                # Check attention is always last and order is fine
                inputs_dict["output_attentions"] = True
                inputs_dict["output_hidden_states"] = True
                model = model_class(config)
                model.to(torch_device)
                model.eval()
                with torch.no_grad():
                    outputs = model(**self._prepare_for_class(inputs_dict, model_class))
555

556
557
558
559
560
561
562
                if hasattr(self.model_tester, "num_hidden_states_types"):
                    added_hidden_states = self.model_tester.num_hidden_states_types
                elif self.is_encoder_decoder:
                    added_hidden_states = 2
                else:
                    added_hidden_states = 1
                self.assertEqual(out_len + added_hidden_states, len(outputs))
Weizhen's avatar
Weizhen committed
563

564
                self_attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
565

566
567
568
569
570
571
572
573
574
575
576
                self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers)
                if chunk_length is not None:
                    self.assertListEqual(
                        list(self_attentions[0].shape[-4:]),
                        [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length],
                    )
                else:
                    self.assertListEqual(
                        list(self_attentions[0].shape[-3:]),
                        [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
                    )
thomwolf's avatar
thomwolf committed
577

578
    @slow
Patrick von Platen's avatar
Patrick von Platen committed
579
    def test_torchscript(self):
580
581
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
582

583
    @slow
Patrick von Platen's avatar
Patrick von Platen committed
584
    def test_torchscript_output_attentions(self):
585
586
587
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_attentions = True
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
588

589
    @slow
Patrick von Platen's avatar
Patrick von Platen committed
590
    def test_torchscript_output_hidden_state(self):
591
592
593
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_hidden_states = True
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
594

595
    def _create_and_check_torchscript(self, config, inputs_dict):
Patrick von Platen's avatar
Patrick von Platen committed
596
        if not self.test_torchscript:
597
            return
598

599
600
601
602
603
604
        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        configs_no_init.torchscript = True
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            model.to(torch_device)
            model.eval()
605
            inputs = self._prepare_for_class(inputs_dict, model_class)
thomwolf's avatar
thomwolf committed
606

607
            try:
608
                if model.config.is_encoder_decoder:
609
                    model.config.use_cache = False  # FSTM still requires this hack -> FSTM should probably be refactored similar to BART afterward
610
611
612
613
614
615
616
617
618
619
                    input_ids = inputs["input_ids"]
                    attention_mask = inputs["attention_mask"]
                    decoder_input_ids = inputs["decoder_input_ids"]
                    decoder_attention_mask = inputs["decoder_attention_mask"]
                    traced_model = torch.jit.trace(
                        model, (input_ids, attention_mask, decoder_input_ids, decoder_attention_mask)
                    )
                else:
                    input_ids = inputs["input_ids"]
                    traced_model = torch.jit.trace(model, input_ids)
620
621
            except RuntimeError:
                self.fail("Couldn't trace module.")
thomwolf's avatar
thomwolf committed
622

623
            with tempfile.TemporaryDirectory() as tmp_dir_name:
624
                pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt")
thomwolf's avatar
thomwolf committed
625

626
                try:
627
                    torch.jit.save(traced_model, pt_file_name)
628
629
                except Exception:
                    self.fail("Couldn't save module.")
thomwolf's avatar
thomwolf committed
630

631
632
633
634
                try:
                    loaded_model = torch.jit.load(pt_file_name)
                except Exception:
                    self.fail("Couldn't load module.")
LysandreJik's avatar
LysandreJik committed
635

636
637
            model.to(torch_device)
            model.eval()
thomwolf's avatar
thomwolf committed
638

639
640
            loaded_model.to(torch_device)
            loaded_model.eval()
thomwolf's avatar
thomwolf committed
641

642
643
644
            model_state_dict = model.state_dict()
            loaded_model_state_dict = loaded_model.state_dict()

645
646
647
648
649
650
651
652
653
            non_persistent_buffers = {}
            for key in loaded_model_state_dict.keys():
                if key not in model_state_dict.keys():
                    non_persistent_buffers[key] = loaded_model_state_dict[key]

            loaded_model_state_dict = {
                key: value for key, value in loaded_model_state_dict.items() if key not in non_persistent_buffers
            }

654
            self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys()))
thomwolf's avatar
thomwolf committed
655

656
657
658
659
660
661
662
663
664
665
666
            model_buffers = list(model.buffers())
            for non_persistent_buffer in non_persistent_buffers.values():
                found_buffer = False
                for i, model_buffer in enumerate(model_buffers):
                    if torch.equal(non_persistent_buffer, model_buffer):
                        found_buffer = True
                        break

                self.assertTrue(found_buffer)
                model_buffers.pop(i)

667
            models_equal = True
668
            for layer_name, p1 in model_state_dict.items():
669
670
671
672
                if layer_name in loaded_model_state_dict:
                    p2 = loaded_model_state_dict[layer_name]
                    if p1.data.ne(p2.data).sum() > 0:
                        models_equal = False
thomwolf's avatar
thomwolf committed
673

674
            self.assertTrue(models_equal)
thomwolf's avatar
thomwolf committed
675

676
677
678
679
680
681
682
683
    def test_torch_fx(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        self._create_and_check_torch_fx_tracing(config, inputs_dict)

    def test_torch_fx_output_loss(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        self._create_and_check_torch_fx_tracing(config, inputs_dict, output_loss=True)

684
685
    def _create_and_check_torch_fx_tracing(self, config, inputs_dict, output_loss=False):
        if not is_torch_fx_available() or not self.fx_compatible:
686
687
688
689
690
            return

        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        configs_no_init.return_dict = False

691
        for model_class in self.all_model_classes:
692
693
694
695
696
697
698
699
700
701
702
703
            model = model_class(config=configs_no_init)
            model.to(torch_device)
            model.eval()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=output_loss)

            try:
                if model.config.is_encoder_decoder:
                    model.config.use_cache = False  # FSTM still requires this hack -> FSTM should probably be refactored similar to BART afterward
                    labels = inputs.get("labels", None)
                    input_names = ["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask"]
                    if labels is not None:
                        input_names.append("labels")
704
                    filtered_inputs = {k: v for (k, v) in inputs.items() if k in input_names}
705

706
                    model_output = model(**filtered_inputs)
707

708
                    traced_model = symbolic_trace(model, input_names)
709
                    traced_output = traced_model(**filtered_inputs)
710
                else:
711
                    input_names = ["input_ids", "attention_mask", "token_type_ids"]
712
                    input_ids = inputs["input_ids"]
713

714
                    labels = inputs.get("labels", None)
715
716
                    start_positions = inputs.get("start_positions", None)
                    end_positions = inputs.get("end_positions", None)
717
718
                    if labels is not None:
                        input_names.append("labels")
719
720
721
722
                    if start_positions is not None:
                        input_names.append("start_positions")
                    if end_positions is not None:
                        input_names.append("end_positions")
723

724
725
                    filtered_inputs = {k: v for (k, v) in inputs.items() if k in input_names}
                    input_names = filtered_inputs.keys()
726

727
                    model_output = model(**filtered_inputs)
728

729
                    rank = len(input_ids.shape)
730
                    if rank not in [2, 3]:
731
732
733
                        raise NotImplementedError(
                            f"symbolic_trace automatic parameters inference not implemented for input of rank {rank}."
                        )
734

735
                    traced_model = symbolic_trace(model, input_names)
736
                    traced_output = traced_model(**filtered_inputs)
737
738
739
740

            except RuntimeError:
                self.fail("Couldn't trace module.")

741
742
743
744
745
746
747
748
749
750
751
752
753
            def flatten_output(output):
                flatten = []
                for x in output:
                    if isinstance(x, (tuple, list)):
                        flatten += flatten_output(x)
                    elif not isinstance(x, torch.Tensor):
                        continue
                    else:
                        flatten.append(x)
                return flatten

            model_output = flatten_output(model_output)
            traced_output = flatten_output(traced_output)
754
            num_outputs = len(model_output)
755
756
757
758
759
760

            for i in range(num_outputs):
                self.assertTrue(
                    torch.allclose(model_output[i], traced_output[i]),
                    f"traced {i}th output doesn't match model {i}th output for {model_class}",
                )
761

Patrick von Platen's avatar
Patrick von Platen committed
762
763
    def test_headmasking(self):
        if not self.test_head_masking:
764
            return
765

766
767
768
        global_rng.seed(42)
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        global_rng.seed()
LysandreJik's avatar
LysandreJik committed
769

770
        inputs_dict["output_attentions"] = True
771
772
773
774
775
776
        config.output_hidden_states = True
        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            model.to(torch_device)
            model.eval()
LysandreJik's avatar
LysandreJik committed
777

778
779
780
            # Prepare head_mask
            # Set require_grad after having prepared the tensor to avoid error (leaf variable has been moved into the graph interior)
            head_mask = torch.ones(
Lysandre's avatar
Lysandre committed
781
782
783
                self.model_tester.num_hidden_layers,
                self.model_tester.num_attention_heads,
                device=torch_device,
784
785
786
787
            )
            head_mask[0, 0] = 0
            head_mask[-1, :-1] = 0
            head_mask.requires_grad_(requires_grad=True)
788
            inputs = self._prepare_for_class(inputs_dict, model_class).copy()
789
            inputs["head_mask"] = head_mask
790
791
792
793
794
            if model.config.is_encoder_decoder:
                signature = inspect.signature(model.forward)
                arg_names = [*signature.parameters.keys()]
                if "decoder_head_mask" in arg_names:  # necessary diferentiation because of T5 model
                    inputs["decoder_head_mask"] = head_mask
795
796
                if "cross_attn_head_mask" in arg_names:
                    inputs["cross_attn_head_mask"] = head_mask
797
            outputs = model(**inputs, return_dict=True)
798
799
800
801
802
803
804
805
806

            # Test that we can get a gradient back for importance score computation
            output = sum(t.sum() for t in outputs[0])
            output = output.sum()
            output.backward()
            multihead_outputs = head_mask.grad

            self.assertIsNotNone(multihead_outputs)
            self.assertEqual(len(multihead_outputs), self.model_tester.num_hidden_layers)
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827

            def check_attentions_validity(attentions):
                # Remove Nan
                for t in attentions:
                    self.assertLess(
                        torch.sum(torch.isnan(t)), t.numel() / 4
                    )  # Check we don't have more than 25% nans (arbitrary)
                attentions = [
                    t.masked_fill(torch.isnan(t), 0.0) for t in attentions
                ]  # remove them (the test is less complete)

                self.assertAlmostEqual(attentions[0][..., 0, :, :].flatten().sum().item(), 0.0)
                self.assertNotEqual(attentions[0][..., -1, :, :].flatten().sum().item(), 0.0)
                if len(attentions) > 2:  # encoder-decoder models have only 2 layers in each module
                    self.assertNotEqual(attentions[1][..., 0, :, :].flatten().sum().item(), 0.0)
                self.assertAlmostEqual(attentions[-1][..., -2, :, :].flatten().sum().item(), 0.0)
                self.assertNotEqual(attentions[-1][..., -1, :, :].flatten().sum().item(), 0.0)

            if model.config.is_encoder_decoder:
                check_attentions_validity(outputs.encoder_attentions)
                check_attentions_validity(outputs.decoder_attentions)
828
                check_attentions_validity(outputs.cross_attentions)
829
830
            else:
                check_attentions_validity(outputs.attentions)
831

Patrick von Platen's avatar
Patrick von Platen committed
832
833
    def test_head_pruning(self):
        if not self.test_pruning:
834
835
836
            return

        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
837
838
839
840
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
841

842
843
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
844

845
            inputs_dict["output_attentions"] = True
846
847
848
849
            config.output_hidden_states = False
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
850
851
852
853
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
854
855
            model.prune_heads(heads_to_prune)
            with torch.no_grad():
856
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
857

858
            attentions = outputs[-1]
859

860
861
862
            self.assertEqual(attentions[0].shape[-3], 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
LysandreJik's avatar
LysandreJik committed
863

Patrick von Platen's avatar
Patrick von Platen committed
864
865
    def test_head_pruning_save_load_from_pretrained(self):
        if not self.test_pruning:
866
            return
LysandreJik's avatar
LysandreJik committed
867

868
        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
869
870
871
872
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
873
874
875

            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
876

877
            inputs_dict["output_attentions"] = True
878
879
880
881
            config.output_hidden_states = False
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
882
883
884
885
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
886
            model.prune_heads(heads_to_prune)
887

888
            with tempfile.TemporaryDirectory() as temp_dir_name:
889
890
                model.save_pretrained(temp_dir_name)
                model = model_class.from_pretrained(temp_dir_name)
891
                model.to(torch_device)
892

893
            with torch.no_grad():
894
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
895
896
897
898
            attentions = outputs[-1]
            self.assertEqual(attentions[0].shape[-3], 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
899

Patrick von Platen's avatar
Patrick von Platen committed
900
901
    def test_head_pruning_save_load_from_config_init(self):
        if not self.test_pruning:
902
            return
903

904
        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
905
906
907
908
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
909

910
911
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
912

913
            inputs_dict["output_attentions"] = True
914
            config.output_hidden_states = False
915

916
917
918
919
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
920
            config.pruned_heads = heads_to_prune
921

922
923
924
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
925

926
            with torch.no_grad():
927
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
928
            attentions = outputs[-1]
929

930
931
932
            self.assertEqual(attentions[0].shape[-3], 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
933

Patrick von Platen's avatar
Patrick von Platen committed
934
935
    def test_head_pruning_integration(self):
        if not self.test_pruning:
936
            return
937

938
        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
939
940
941
942
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
943

944
945
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
946

947
            inputs_dict["output_attentions"] = True
948
            config.output_hidden_states = False
949

950
951
            heads_to_prune = {0: [0], 1: [1, 2]}
            config.pruned_heads = heads_to_prune
952

953
954
955
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
956

957
            with torch.no_grad():
958
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
959
            attentions = outputs[-1]
960

961
962
963
964
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads)
thomwolf's avatar
thomwolf committed
965

966
            with tempfile.TemporaryDirectory() as temp_dir_name:
967
968
                model.save_pretrained(temp_dir_name)
                model = model_class.from_pretrained(temp_dir_name)
969
                model.to(torch_device)
thomwolf's avatar
thomwolf committed
970

971
            with torch.no_grad():
972
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
973
            attentions = outputs[-1]
LysandreJik's avatar
LysandreJik committed
974

975
976
977
978
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads)
thomwolf's avatar
thomwolf committed
979

980
981
            heads_to_prune = {0: [0], 2: [1, 2]}
            model.prune_heads(heads_to_prune)
982

983
            with torch.no_grad():
984
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
985
            attentions = outputs[-1]
986

987
988
989
990
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads)
991

992
            self.assertDictEqual(model.config.pruned_heads, {0: [0], 1: [1, 2], 2: [1, 2]})
thomwolf's avatar
thomwolf committed
993

Patrick von Platen's avatar
Patrick von Platen committed
994
    def test_hidden_states_output(self):
Joseph Liu's avatar
Joseph Liu committed
995
        def check_hidden_states_output(inputs_dict, config, model_class):
996
            model = model_class(config)
997
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
998
            model.eval()
Joseph Liu's avatar
Joseph Liu committed
999

thomwolf's avatar
thomwolf committed
1000
            with torch.no_grad():
1001
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
1002
1003

            hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
Patrick von Platen's avatar
Patrick von Platen committed
1004

Sylvain Gugger's avatar
Sylvain Gugger committed
1005
1006
1007
1008
            expected_num_layers = getattr(
                self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
            )
            self.assertEqual(len(hidden_states), expected_num_layers)
1009

Patrick von Platen's avatar
Patrick von Platen committed
1010
1011
1012
1013
1014
1015
1016
            if hasattr(self.model_tester, "encoder_seq_length"):
                seq_length = self.model_tester.encoder_seq_length
                if hasattr(self.model_tester, "chunk_length") and self.model_tester.chunk_length > 1:
                    seq_length = seq_length * self.model_tester.chunk_length
            else:
                seq_length = self.model_tester.seq_length

1017
            self.assertListEqual(
Lysandre's avatar
Lysandre committed
1018
1019
                list(hidden_states[0].shape[-2:]),
                [seq_length, self.model_tester.hidden_size],
1020
            )
thomwolf's avatar
thomwolf committed
1021

1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
            if config.is_encoder_decoder:
                hidden_states = outputs.decoder_hidden_states

                self.assertIsInstance(hidden_states, (list, tuple))
                self.assertEqual(len(hidden_states), expected_num_layers)
                seq_len = getattr(self.model_tester, "seq_length", None)
                decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len)

                self.assertListEqual(
                    list(hidden_states[0].shape[-2:]),
                    [decoder_seq_length, self.model_tester.hidden_size],
                )

Joseph Liu's avatar
Joseph Liu committed
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            inputs_dict["output_hidden_states"] = True
            check_hidden_states_output(inputs_dict, config, model_class)

            # check that output_hidden_states also work using config
            del inputs_dict["output_hidden_states"]
            config.output_hidden_states = True

            check_hidden_states_output(inputs_dict, config, model_class)

1047
1048
1049
    def test_retain_grad_hidden_states_attentions(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_hidden_states = True
1050
        config.output_attentions = self.has_attentions
1051
1052
1053
1054
1055
1056
1057
1058
1059

        # no need to test all models as different heads yield the same functionality
        model_class = self.all_model_classes[0]
        model = model_class(config)
        model.to(torch_device)

        inputs = self._prepare_for_class(inputs_dict, model_class)

        outputs = model(**inputs)
1060

1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
        output = outputs[0]

        if config.is_encoder_decoder:
            # Seq2Seq models
            encoder_hidden_states = outputs.encoder_hidden_states[0]
            encoder_hidden_states.retain_grad()

            decoder_hidden_states = outputs.decoder_hidden_states[0]
            decoder_hidden_states.retain_grad()

1071
1072
1073
1074
1075
1076
1077
1078
1079
            if self.has_attentions:
                encoder_attentions = outputs.encoder_attentions[0]
                encoder_attentions.retain_grad()

                decoder_attentions = outputs.decoder_attentions[0]
                decoder_attentions.retain_grad()

                cross_attentions = outputs.cross_attentions[0]
                cross_attentions.retain_grad()
1080
1081
1082
1083
1084

            output.flatten()[0].backward(retain_graph=True)

            self.assertIsNotNone(encoder_hidden_states.grad)
            self.assertIsNotNone(decoder_hidden_states.grad)
1085
1086
1087
1088
1089

            if self.has_attentions:
                self.assertIsNotNone(encoder_attentions.grad)
                self.assertIsNotNone(decoder_attentions.grad)
                self.assertIsNotNone(cross_attentions.grad)
1090
1091
1092
1093
        else:
            # Encoder-/Decoder-only models
            hidden_states = outputs.hidden_states[0]
            hidden_states.retain_grad()
1094
1095
1096
1097

            if self.has_attentions:
                attentions = outputs.attentions[0]
                attentions.retain_grad()
1098
1099
1100
1101

            output.flatten()[0].backward(retain_graph=True)

            self.assertIsNotNone(hidden_states.grad)
1102
1103
1104

            if self.has_attentions:
                self.assertIsNotNone(attentions.grad)
1105

Pradhy729's avatar
Pradhy729 committed
1106
    def test_feed_forward_chunking(self):
Lysandre's avatar
Lysandre committed
1107
1108
1109
1110
        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()
Pradhy729's avatar
Pradhy729 committed
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
        for model_class in self.all_model_classes:
            torch.manual_seed(0)
            config = copy.deepcopy(original_config)
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            hidden_states_no_chunk = model(**self._prepare_for_class(inputs_dict, model_class))[0]

            torch.manual_seed(0)
            config.chunk_size_feed_forward = 1
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            hidden_states_with_chunk = model(**self._prepare_for_class(inputs_dict, model_class))[0]
            self.assertTrue(torch.allclose(hidden_states_no_chunk, hidden_states_with_chunk, atol=1e-3))

1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
    def test_resize_position_vector_embeddings(self):
        if not self.test_resize_position_embeddings:
            return

        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            config = copy.deepcopy(original_config)
            model = model_class(config)
            model.to(torch_device)

            if self.model_tester.is_training is False:
                model.eval()

            max_position_embeddings = config.max_position_embeddings

            # Retrieve the embeddings and clone theme
            if model.config.is_encoder_decoder:
                encoder_model_embed, decoder_model_embed = model.get_position_embeddings()
                encoder_cloned_embeddings = encoder_model_embed.weight.clone()
                decoder_cloned_embeddings = decoder_model_embed.weight.clone()
            else:
                model_embed = model.get_position_embeddings()
                cloned_embeddings = model_embed.weight.clone()

            # Check that resizing the position embeddings with a larger max_position_embeddings increases
            # the model's postion embeddings size
            model.resize_position_embeddings(max_position_embeddings + 10)
            self.assertEqual(model.config.max_position_embeddings, max_position_embeddings + 10)

            # Check that it actually resizes the embeddings matrix
            if model.config.is_encoder_decoder:
                encoder_model_embed, decoder_model_embed = model.get_position_embeddings()
                self.assertEqual(encoder_model_embed.weight.shape[0], encoder_cloned_embeddings.shape[0] + 10)
                self.assertEqual(decoder_model_embed.weight.shape[0], decoder_cloned_embeddings.shape[0] + 10)
            else:
                model_embed = model.get_position_embeddings()
                self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10)

            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**self._prepare_for_class(inputs_dict, model_class))

            # Check that resizing the position embeddings with a smaller max_position_embeddings decreases
            # the model's max_position_embeddings
            model.resize_position_embeddings(max_position_embeddings - 5)
            self.assertEqual(model.config.max_position_embeddings, max_position_embeddings - 5)

            # Check that it actually resizes the embeddings matrix
            if model.config.is_encoder_decoder:
                encoder_model_embed, decoder_model_embed = model.get_position_embeddings()
                self.assertEqual(encoder_model_embed.weight.shape[0], encoder_cloned_embeddings.shape[0] - 5)
                self.assertEqual(decoder_model_embed.weight.shape[0], decoder_cloned_embeddings.shape[0] - 5)
            else:
                model_embed = model.get_position_embeddings()
                self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 5)

            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**self._prepare_for_class(inputs_dict, model_class))

            # Check that adding and removing tokens has not modified the first part of the embedding matrix.
            models_equal = True

            if model.config.is_encoder_decoder:
                for p1, p2 in zip(encoder_cloned_embeddings, encoder_model_embed.weight):
                    if p1.data.ne(p2.data).sum() > 0:
                        models_equal = False
                for p1, p2 in zip(decoder_cloned_embeddings, decoder_model_embed.weight):
                    if p1.data.ne(p2.data).sum() > 0:
                        models_equal = False
            else:
                for p1, p2 in zip(cloned_embeddings, model_embed.weight):
                    if p1.data.ne(p2.data).sum() > 0:
                        models_equal = False

            self.assertTrue(models_equal)

Patrick von Platen's avatar
Patrick von Platen committed
1208
    def test_resize_tokens_embeddings(self):
Lysandre's avatar
Lysandre committed
1209
1210
1211
1212
        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()
Patrick von Platen's avatar
Patrick von Platen committed
1213
        if not self.test_resize_embeddings:
1214
1215
1216
1217
1218
            return

        for model_class in self.all_model_classes:
            config = copy.deepcopy(original_config)
            model = model_class(config)
1219
            model.to(torch_device)
1220

Patrick von Platen's avatar
Patrick von Platen committed
1221
1222
1223
            if self.model_tester.is_training is False:
                model.eval()

1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
            model_vocab_size = config.vocab_size
            # Retrieve the embeddings and clone theme
            model_embed = model.resize_token_embeddings(model_vocab_size)
            cloned_embeddings = model_embed.weight.clone()

            # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
            model_embed = model.resize_token_embeddings(model_vocab_size + 10)
            self.assertEqual(model.config.vocab_size, model_vocab_size + 10)
            # Check that it actually resizes the embeddings matrix
            self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10)
1234
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
1235
            model(**self._prepare_for_class(inputs_dict, model_class))
1236
1237
1238
1239
1240
1241
1242

            # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
            model_embed = model.resize_token_embeddings(model_vocab_size - 15)
            self.assertEqual(model.config.vocab_size, model_vocab_size - 15)
            # Check that it actually resizes the embeddings matrix
            self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 15)

1243
1244
1245
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            # Input ids should be clamped to the maximum size of the vocabulary
            inputs_dict["input_ids"].clamp_(max=model_vocab_size - 15 - 1)
1246
1247
1248
1249

            # make sure that decoder_input_ids are resized as well
            if "decoder_input_ids" in inputs_dict:
                inputs_dict["decoder_input_ids"].clamp_(max=model_vocab_size - 15 - 1)
1250
            model(**self._prepare_for_class(inputs_dict, model_class))
1251

1252
1253
1254
1255
1256
1257
1258
1259
            # Check that adding and removing tokens has not modified the first part of the embedding matrix.
            models_equal = True
            for p1, p2 in zip(cloned_embeddings, model_embed.weight):
                if p1.data.ne(p2.data).sum() > 0:
                    models_equal = False

            self.assertTrue(models_equal)

1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
    def test_resize_embeddings_untied(self):
        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()
        if not self.test_resize_embeddings:
            return

        original_config.tie_word_embeddings = False

        # if model cannot untied embeddings -> leave test
        if original_config.tie_word_embeddings:
            return

        for model_class in self.all_model_classes:
            config = copy.deepcopy(original_config)
            model = model_class(config).to(torch_device)

            # if no output embeddings -> leave test
            if model.get_output_embeddings() is None:
                continue

            # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
            model_vocab_size = config.vocab_size
            model.resize_token_embeddings(model_vocab_size + 10)
            self.assertEqual(model.config.vocab_size, model_vocab_size + 10)
            output_embeds = model.get_output_embeddings()
            self.assertEqual(output_embeds.weight.shape[0], model_vocab_size + 10)
            # Check bias if present
            if output_embeds.bias is not None:
                self.assertEqual(output_embeds.bias.shape[0], model_vocab_size + 10)
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**self._prepare_for_class(inputs_dict, model_class))

            # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
            model.resize_token_embeddings(model_vocab_size - 15)
            self.assertEqual(model.config.vocab_size, model_vocab_size - 15)
            # Check that it actually resizes the embeddings matrix
            output_embeds = model.get_output_embeddings()
            self.assertEqual(output_embeds.weight.shape[0], model_vocab_size - 15)
            # Check bias if present
            if output_embeds.bias is not None:
                self.assertEqual(output_embeds.bias.shape[0], model_vocab_size - 15)
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            # Input ids should be clamped to the maximum size of the vocabulary
            inputs_dict["input_ids"].clamp_(max=model_vocab_size - 15 - 1)
            if "decoder_input_ids" in inputs_dict:
                inputs_dict["decoder_input_ids"].clamp_(max=model_vocab_size - 15 - 1)
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**self._prepare_for_class(inputs_dict, model_class))

Patrick von Platen's avatar
Patrick von Platen committed
1311
    def test_model_common_attributes(self):
1312
1313
1314
1315
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
1316
1317
            self.assertIsInstance(model.get_input_embeddings(), (nn.Embedding, AdaptiveEmbedding))
            model.set_input_embeddings(nn.Embedding(10, 10))
1318
            x = model.get_output_embeddings()
1319
            self.assertTrue(x is None or isinstance(x, nn.Linear))
1320

1321
1322
1323
1324
1325
1326
1327
    def test_model_main_input_name(self):
        for model_class in self.all_model_classes:
            model_signature = inspect.signature(getattr(model_class, "forward"))
            # The main input is the name of the argument after `self`
            observed_main_input_name = list(model_signature.parameters.keys())[1]
            self.assertEqual(model_class.main_input_name, observed_main_input_name)

1328
    def test_correct_missing_keys(self):
1329
1330
        if not self.test_missing_keys:
            return
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            base_model_prefix = model.base_model_prefix

            if hasattr(model, base_model_prefix):
                with tempfile.TemporaryDirectory() as temp_dir_name:
                    model.base_model.save_pretrained(temp_dir_name)
                    model, loading_info = model_class.from_pretrained(temp_dir_name, output_loading_info=True)
1341
                    with self.subTest(msg=f"Missing keys for {model.__class__.__name__}"):
1342
1343
                        self.assertGreater(len(loading_info["missing_keys"]), 0)

1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
    def test_tie_model_weights(self):
        if not self.test_torchscript:
            return

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        def check_same_values(layer_1, layer_2):
            equal = True
            for p1, p2 in zip(layer_1.weight, layer_2.weight):
                if p1.data.ne(p2.data).sum() > 0:
                    equal = False
            return equal

        for model_class in self.all_model_classes:
            config.torchscript = True
            model_not_tied = model_class(config)
            if model_not_tied.get_output_embeddings() is None:
                continue

            config_tied = copy.deepcopy(config)
            config_tied.torchscript = False
            model_tied = model_class(config_tied)
            params_tied = list(model_tied.parameters())
            # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(check_same_values(embeddings, decoding))

            # # Check that after modification, they remain the same.
            # embeddings.weight.data.div_(2)
            # # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(embeddings.weight.shape, decoding.weight.shape)
            # self.assertTrue(check_same_values(embeddings, decoding))

            # # Check that after modification, they remain the same.
            # decoding.weight.data.div_(4)
            # # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(embeddings.weight.shape, decoding.weight.shape)
            # self.assertTrue(check_same_values(embeddings, decoding))

            # Check that after resize they remain tied.
            model_tied.resize_token_embeddings(config.vocab_size + 10)
            params_tied_2 = list(model_tied.parameters())
            self.assertEqual(len(params_tied_2), len(params_tied))

            # decoding.weight.data.mul_(20)
            # # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(model.transformer.wte.weight.shape, model.lm_head.weight.shape)
            # self.assertTrue(check_same_values(model.transformer.wte, model.lm_head))

1392
1393
1394
    def test_model_outputs_equivalence(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

Sam Shleifer's avatar
Sam Shleifer committed
1395
1396
1397
1398
        def set_nan_tensor_to_zero(t):
            t[t != t] = 0
            return t

1399
1400
1401
1402
1403
1404
1405
1406
1407
        def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}):
            with torch.no_grad():
                tuple_output = model(**tuple_inputs, return_dict=False, **additional_kwargs)
                dict_output = model(**dict_inputs, return_dict=True, **additional_kwargs).to_tuple()

                def recursive_check(tuple_object, dict_object):
                    if isinstance(tuple_object, (List, Tuple)):
                        for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object):
                            recursive_check(tuple_iterable_value, dict_iterable_value)
NielsRogge's avatar
NielsRogge committed
1408
1409
1410
1411
1412
                    elif isinstance(tuple_object, Dict):
                        for tuple_iterable_value, dict_iterable_value in zip(
                            tuple_object.values(), dict_object.values()
                        ):
                            recursive_check(tuple_iterable_value, dict_iterable_value)
1413
1414
1415
1416
                    elif tuple_object is None:
                        return
                    else:
                        self.assertTrue(
Sam Shleifer's avatar
Sam Shleifer committed
1417
1418
1419
                            torch.allclose(
                                set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5
                            ),
1420
                            msg=f"Tuple and dict output are not equal. Difference: {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`: {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}.",
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
                        )

                recursive_check(tuple_output, dict_output)

        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})

1446
1447
1448
1449
            if self.has_attentions:
                tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
                dict_inputs = self._prepare_for_class(inputs_dict, model_class)
                check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})
1450

1451
1452
1453
1454
1455
1456
1457
1458
1459
                tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})

                tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                check_equivalence(
                    model, tuple_inputs, dict_inputs, {"output_hidden_states": True, "output_attentions": True}
                )
1460

1461
1462
1463
1464
1465
1466
1467
    @is_pt_tf_cross_test
    def test_pt_tf_model_equivalence(self):
        import numpy as np
        import tensorflow as tf

        import transformers

1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
        def prepare_tf_inputs_from_pt_inputs(pt_inputs_dict):

            tf_inputs_dict = {}
            for key, tensor in pt_inputs_dict.items():
                # skip key that does not exist in tf
                if type(tensor) == bool:
                    tf_inputs_dict[key] = tensor
                elif key == "input_values":
                    tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.float32)
                elif key == "pixel_values":
                    tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.float32)
                elif key == "input_features":
                    tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.float32)
                # To deal with the edge cases from `TFTapasForQuestionAnswering`.
                # PyTorch can deal with type casting automatically, but TensorFlow is more strict!
                # TODO: find a clean/better way to deal with these extra keys that are not common.
                elif key in ["float_answer", "numeric_values", "numeric_values_scale"]:
                    tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.float32)
                else:
                    tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.int32)

            return tf_inputs_dict

        def check_outputs(tf_outputs, pt_outputs, model_class, names):
            """
            Args:
                model_class: The class of the model that is currently testing. For example, `TFBertModel`,
                    TFBertForMaskedLM`, `TFBertForSequenceClassification`, etc. Currently unused, but it could make
                    debugging easier and faster.

                names: A string, or a tuple of strings. These specify what tf_outputs/pt_outputs represent in the model outputs.
                    Currently unused, but in the future, we could use this information to make the error message clearer
                    by giving the name(s) of the output tensor(s) with large difference(s) between PT and TF.
            """

            # Some issue (`about past_key_values`) to solve (e.g. `TFPegasusForConditionalGeneration`) in a separate PR.
            if names == "past_key_values":
                return

            # Allow `list` because `(TF)TransfoXLModelOutput.mems` is a list of tensors.
            if type(tf_outputs) in [tuple, list]:
                self.assertEqual(type(tf_outputs), type(pt_outputs))
                self.assertEqual(len(tf_outputs), len(pt_outputs))
                if type(names) == tuple:
                    for tf_output, pt_output, name in zip(tf_outputs, pt_outputs, names):
                        check_outputs(tf_output, pt_output, model_class, names=name)
                elif type(names) == str:
                    for idx, (tf_output, pt_output) in enumerate(zip(tf_outputs, pt_outputs)):
                        check_outputs(tf_output, pt_output, model_class, names=f"{names}_{idx}")
                else:
                    raise ValueError(f"`names` should be a `tuple` or a string. Got {type(names)} instead.")
            elif isinstance(tf_outputs, tf.Tensor):
                self.assertTrue(isinstance(pt_outputs, torch.Tensor))

                tf_outputs = tf_outputs.numpy()
                pt_outputs = pt_outputs.detach().to("cpu").numpy()

                tf_nans = np.isnan(tf_outputs)
                pt_nans = np.isnan(pt_outputs)

                pt_outputs[tf_nans] = 0
                tf_outputs[tf_nans] = 0
                pt_outputs[pt_nans] = 0
                tf_outputs[pt_nans] = 0

                max_diff = np.amax(np.abs(tf_outputs - pt_outputs))
                self.assertLessEqual(max_diff, 1e-5)
            else:
                raise ValueError(
                    f"`tf_outputs` should be a `tuple` or an instance of `tf.Tensor`. Got {type(tf_outputs)} instead."
                )

        def check_pt_tf_models(tf_model, pt_model, pt_inputs_dict, pt_inputs_dict_maybe_with_labels):

            # send pytorch model to the correct device
            pt_model.to(torch_device)

            # Check predictions on first output (logits/hidden-states) are close enough given low-level computational differences
            pt_model.eval()

            tf_inputs_dict = prepare_tf_inputs_from_pt_inputs(pt_inputs_dict)
            tf_inputs_dict_maybe_with_labels = prepare_tf_inputs_from_pt_inputs(pt_inputs_dict_maybe_with_labels)

            # send pytorch inputs to the correct device
            pt_inputs_dict = {
                k: v.to(device=torch_device) if isinstance(v, torch.Tensor) else v for k, v in pt_inputs_dict.items()
            }
            pt_inputs_dict_maybe_with_labels = {
                k: v.to(device=torch_device) if isinstance(v, torch.Tensor) else v
                for k, v in pt_inputs_dict_maybe_with_labels.items()
            }

            # Original test: check without `labels`
            with torch.no_grad():
                pt_outputs = pt_model(**pt_inputs_dict)
            tf_outputs = tf_model(tf_inputs_dict)

            tf_keys = tuple([k for k, v in tf_outputs.items() if v is not None])
            pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None])

            self.assertEqual(tf_keys, pt_keys)
            check_outputs(tf_outputs.to_tuple(), pt_outputs.to_tuple(), model_class, names=tf_keys)

            # check the case where `labels` is passed
            has_labels = any(
                x in tf_inputs_dict_maybe_with_labels for x in ["labels", "next_sentence_label", "start_positions"]
            )
            if has_labels:

                with torch.no_grad():
                    pt_outputs = pt_model(**pt_inputs_dict_maybe_with_labels)
                tf_outputs = tf_model(tf_inputs_dict_maybe_with_labels)

                # Some models' output class don't have `loss` attribute despite `labels` is used.
                # TODO: identify which models
                tf_loss = getattr(tf_outputs, "loss", None)
                pt_loss = getattr(pt_outputs, "loss", None)

                # Some PT models return loss while the corresponding TF models don't (i.e. `None` for `loss`).
                #   - FlaubertWithLMHeadModel
                #   - FunnelForPreTraining
                #   - ElectraForPreTraining
                #   - XLMWithLMHeadModel
                # TODO: Fix PT/TF diff -> remove this condition to fail the test if a diff occurs
                if not ((tf_loss is None and pt_loss is None) or (tf_loss is not None and pt_loss is not None)):
                    if model_class.__name__ not in [
                        "FlaubertWithLMHeadModel",
                        "FunnelForPreTraining",
                        "ElectraForPreTraining",
                        "XLMWithLMHeadModel",
                        "TransfoXLLMHeadModel",
                    ]:
                        self.assertEqual(tf_loss is None, pt_loss is None)

                tf_keys = tuple([k for k, v in tf_outputs.items() if v is not None])
                pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None])

                # TODO: remove these 2 conditions once the above TODOs (above loss) are implemented
                # (Also, `TFTransfoXLLMHeadModel` has no `loss` while `TransfoXLLMHeadModel` return `losses`)
                if tf_keys != pt_keys:
                    if model_class.__name__ not in [
                        "FlaubertWithLMHeadModel",
                        "FunnelForPreTraining",
                        "ElectraForPreTraining",
                        "XLMWithLMHeadModel",
                        "TransfoXLLMHeadModel",
                    ]:
                        self.assertEqual(tf_keys, pt_keys)

                # Since we deliberately make some tests pass above (regarding the `loss`), let's still try to test
                # some remaining attributes in the outputs.
                # TODO: remove this block of `index` computing once the above TODOs (above loss) are implemented
                # compute the 1st `index` where `tf_keys` and `pt_keys` is different
                index = 0
                for _ in range(min(len(tf_keys), len(pt_keys))):
                    if tf_keys[index] == pt_keys[index]:
                        index += 1
                    else:
                        break
                if tf_keys[:index] != pt_keys[:index]:
                    self.assertEqual(tf_keys, pt_keys)

                # Some models require extra condition to return loss. For example, `(TF)BertForPreTraining` requires
                # both`labels` and `next_sentence_label`.
                if tf_loss is not None and pt_loss is not None:

                    # check anything else than `loss`
                    keys = tuple([k for k in tf_keys])
                    check_outputs(tf_outputs[1:index], pt_outputs[1:index], model_class, names=keys[1:index])

                    # check `loss`

                    # tf models returned loss is usually a tensor rather than a scalar.
                    # (see `hf_compute_loss`: it uses `tf.keras.losses.Reduction.NONE`)
                    # Change it here to a scalar to match PyTorch models' loss
                    tf_loss = tf.math.reduce_mean(tf_loss).numpy()
                    pt_loss = pt_loss.detach().to("cpu").numpy()

                    tf_nans = np.isnan(tf_loss)
                    pt_nans = np.isnan(pt_loss)
                    # the 2 losses need to be both nan or both not nan
                    self.assertEqual(tf_nans, pt_nans)

                    if not tf_nans:
                        max_diff = np.amax(np.abs(tf_loss - pt_loss))
                        self.assertLessEqual(max_diff, 1e-5)

1655
1656
1657
1658
1659
1660
1661
1662
1663
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            tf_model_class_name = "TF" + model_class.__name__  # Add the "TF" at the beginning

            if not hasattr(transformers, tf_model_class_name):
                # transformers does not have TF version yet
                return

1664
1665
1666
            # Output all for aggressive testing
            config.output_hidden_states = True
            config.output_attentions = self.has_attentions
1667

1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
            for k in ["attention_mask", "encoder_attention_mask", "decoder_attention_mask"]:
                if k in inputs_dict:
                    attention_mask = inputs_dict[k]
                    # make sure no all 0s attention masks - to avoid failure at this moment.
                    # TODO: remove this line once the TODO below is implemented.
                    attention_mask = torch.ones_like(attention_mask, dtype=torch.int32)
                    # Here we make the first sequence with all 0s as attention mask.
                    # Currently, this will fail for `TFWav2Vec2Model`. This is caused by the different large negative
                    # values, like `1e-4`, `1e-9`, `1e-30` and `-inf` for attention mask across models/frameworks.
                    # TODO: enable this block once the large negative values thing is cleaned up.
                    # (see https://github.com/huggingface/transformers/issues/14859)
                    # attention_mask = torch.cat(
                    #     [
                    #         torch.zeros_like(attention_mask[:1], dtype=torch.int32),
                    #         attention_mask[1:].type(dtype=torch.int32)
                    #     ],
                    #     dim=0
                    # )
                    inputs_dict[k] = attention_mask

            tf_model_class = getattr(transformers, tf_model_class_name)
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700

            tf_model = tf_model_class(config)
            pt_model = model_class(config)

            # make sure only tf inputs are forward that actually exist in function args
            tf_input_keys = set(inspect.signature(tf_model.call).parameters.keys())

            # remove all head masks
            tf_input_keys.discard("head_mask")
            tf_input_keys.discard("cross_attn_head_mask")
            tf_input_keys.discard("decoder_head_mask")

1701
1702
            pt_inputs_dict = self._prepare_for_class(inputs_dict, model_class)
            pt_inputs_dict_maybe_with_labels = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
1703

1704
1705
1706
1707
            pt_inputs_dict = {k: v for k, v in pt_inputs_dict.items() if k in tf_input_keys}
            pt_inputs_dict_maybe_with_labels = {
                k: v for k, v in pt_inputs_dict_maybe_with_labels.items() if k in tf_input_keys
            }
1708
1709

            # Check we can load pt model in tf and vice-versa with model => model functions
1710
            tf_inputs_dict = prepare_tf_inputs_from_pt_inputs(pt_inputs_dict)
1711
            tf_model = transformers.load_pytorch_model_in_tf2_model(tf_model, pt_model, tf_inputs=tf_inputs_dict)
1712
            pt_model = transformers.load_tf2_model_in_pytorch_model(pt_model, tf_model)
1713

1714
            check_pt_tf_models(tf_model, pt_model, pt_inputs_dict, pt_inputs_dict_maybe_with_labels)
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724

            # Check we can load pt model in tf and vice-versa with checkpoint => model functions
            with tempfile.TemporaryDirectory() as tmpdirname:
                pt_checkpoint_path = os.path.join(tmpdirname, "pt_model.bin")
                torch.save(pt_model.state_dict(), pt_checkpoint_path)
                tf_model = transformers.load_pytorch_checkpoint_in_tf2_model(tf_model, pt_checkpoint_path)

                tf_checkpoint_path = os.path.join(tmpdirname, "tf_model.h5")
                tf_model.save_weights(tf_checkpoint_path)
                pt_model = transformers.load_tf2_checkpoint_in_pytorch_model(pt_model, tf_checkpoint_path)
1725
                pt_model = pt_model.to(torch_device)
1726

1727
            check_pt_tf_models(tf_model, pt_model, pt_inputs_dict, pt_inputs_dict_maybe_with_labels)
1728
1729
1730
1731
1732

    def assert_almost_equals(self, a: np.ndarray, b: np.ndarray, tol: float):
        diff = np.abs((a - b)).max()
        self.assertLessEqual(diff, tol, f"Difference between torch and flax is {diff} (>= {tol}).")

1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
    def check_outputs(self, fx_outputs, pt_outputs, model_class, names):
        """
        Args:
            model_class: The class of the model that is currently testing. For example, ..., etc.
            Currently unused, but it could make debugging easier and faster.

            names: A string, or a list of strings. These specify what fx_outputs/pt_outputs represent in the model outputs.
                Currently unused, but in the future, we could use this information to make the error message clearer
                by giving the name(s) of the output tensor(s) with large difference(s) between PT and Flax.
        """
        if type(fx_outputs) in [tuple, list]:
            self.assertEqual(type(fx_outputs), type(pt_outputs))
            self.assertEqual(len(fx_outputs), len(pt_outputs))
            if type(names) == tuple:
                for fo, po, name in zip(fx_outputs, pt_outputs, names):
                    self.check_outputs(fo, po, model_class, names=name)
            elif type(names) == str:
                for idx, (fo, po) in enumerate(zip(fx_outputs, pt_outputs)):
                    self.check_outputs(fo, po, model_class, names=f"{names}_{idx}")
            else:
                raise ValueError(f"`names` should be a `tuple` or a string. Got {type(names)} instead.")
        elif isinstance(fx_outputs, jnp.ndarray):
            self.assertTrue(isinstance(pt_outputs, torch.Tensor))

            # Using `np.asarray` gives `ValueError: assignment destination is read-only` at the line `fx_outputs[fx_nans] = 0`.
            fx_outputs = np.array(fx_outputs)
            pt_outputs = pt_outputs.detach().to("cpu").numpy()

            fx_nans = np.isnan(fx_outputs)
            pt_nans = np.isnan(pt_outputs)

            pt_outputs[fx_nans] = 0
            fx_outputs[fx_nans] = 0
            pt_outputs[pt_nans] = 0
            fx_outputs[pt_nans] = 0

            self.assert_almost_equals(fx_outputs, pt_outputs, 1e-5)
        else:
            raise ValueError(
                f"`fx_outputs` should be a `tuple` or an instance of `jnp.ndarray`. Got {type(fx_outputs)} instead."
            )

1775
1776
1777
1778
1779
1780
1781
1782
1783
    @is_pt_flax_cross_test
    def test_equivalence_pt_to_flax(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            with self.subTest(model_class.__name__):
                fx_model_class_name = "Flax" + model_class.__name__

                if not hasattr(transformers, fx_model_class_name):
1784
                    # no flax model exists for this class
1785
1786
                    return

1787
1788
1789
1790
                # Output all for aggressive testing
                config.output_hidden_states = True
                config.output_attentions = self.has_attentions

1791
1792
                fx_model_class = getattr(transformers, fx_model_class_name)

1793
1794
1795
1796
1797
1798
                # load PyTorch class
                pt_model = model_class(config).eval()
                # Flax models don't use the `use_cache` option and cache is not returned as a default.
                # So we disable `use_cache` here for PyTorch model.
                pt_model.config.use_cache = False

1799
1800
                # load Flax class
                fx_model = fx_model_class(config, dtype=jnp.float32)
1801

1802
1803
1804
1805
1806
1807
1808
1809
1810
                # make sure only flax inputs are forward that actually exist in function args
                fx_input_keys = inspect.signature(fx_model.__call__).parameters.keys()

                # prepare inputs
                pt_inputs = self._prepare_for_class(inputs_dict, model_class)

                # remove function args that don't exist in Flax
                pt_inputs = {k: v for k, v in pt_inputs.items() if k in fx_input_keys}

1811
1812
1813
1814
1815
1816
1817
1818
                # send pytorch inputs to the correct device
                pt_inputs = {
                    k: v.to(device=torch_device) if isinstance(v, torch.Tensor) else v for k, v in pt_inputs.items()
                }

                # convert inputs to Flax
                fx_inputs = {k: np.array(v) for k, v in pt_inputs.items() if torch.is_tensor(v)}

1819
1820
1821
                fx_state = convert_pytorch_state_dict_to_flax(pt_model.state_dict(), fx_model)
                fx_model.params = fx_state

1822
1823
1824
                # send pytorch model to the correct device
                pt_model.to(torch_device)

1825
                with torch.no_grad():
1826
1827
                    pt_outputs = pt_model(**pt_inputs)
                fx_outputs = fx_model(**fx_inputs)
1828

1829
1830
1831
1832
1833
                fx_keys = tuple([k for k, v in fx_outputs.items() if v is not None])
                pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None])

                self.assertEqual(fx_keys, pt_keys)
                self.check_outputs(fx_outputs.to_tuple(), pt_outputs.to_tuple(), model_class, names=fx_keys)
1834
1835
1836
1837
1838

                with tempfile.TemporaryDirectory() as tmpdirname:
                    pt_model.save_pretrained(tmpdirname)
                    fx_model_loaded = fx_model_class.from_pretrained(tmpdirname, from_pt=True)

1839
1840
1841
1842
1843
1844
1845
                fx_outputs_loaded = fx_model_loaded(**fx_inputs)

                fx_keys = tuple([k for k, v in fx_outputs_loaded.items() if v is not None])
                pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None])

                self.assertEqual(fx_keys, pt_keys)
                self.check_outputs(fx_outputs_loaded.to_tuple(), pt_outputs.to_tuple(), model_class, names=fx_keys)
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858

    @is_pt_flax_cross_test
    def test_equivalence_flax_to_pt(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            with self.subTest(model_class.__name__):
                fx_model_class_name = "Flax" + model_class.__name__

                if not hasattr(transformers, fx_model_class_name):
                    # no flax model exists for this class
                    return

1859
1860
1861
1862
                # Output all for aggressive testing
                config.output_hidden_states = True
                config.output_attentions = self.has_attentions

1863
1864
                fx_model_class = getattr(transformers, fx_model_class_name)

1865
1866
1867
1868
1869
1870
                # load PyTorch class
                pt_model = model_class(config).eval()
                # Flax models don't use the `use_cache` option and cache is not returned as a default.
                # So we disable `use_cache` here for PyTorch model.
                pt_model.config.use_cache = False

1871
1872
                # load Flax class
                fx_model = fx_model_class(config, dtype=jnp.float32)
1873

1874
1875
1876
1877
1878
1879
1880
1881
1882
                # make sure only flax inputs are forward that actually exist in function args
                fx_input_keys = inspect.signature(fx_model.__call__).parameters.keys()

                # prepare inputs
                pt_inputs = self._prepare_for_class(inputs_dict, model_class)

                # remove function args that don't exist in Flax
                pt_inputs = {k: v for k, v in pt_inputs.items() if k in fx_input_keys}

1883
1884
1885
1886
                # send pytorch inputs to the correct device
                pt_inputs = {
                    k: v.to(device=torch_device) if isinstance(v, torch.Tensor) else v for k, v in pt_inputs.items()
                }
1887

1888
                # convert inputs to Flax
1889
1890
                fx_inputs = {k: np.array(v) for k, v in pt_inputs.items() if torch.is_tensor(v)}

1891
1892
1893
1894
1895
1896
1897
                pt_model = load_flax_weights_in_pytorch_model(pt_model, fx_model.params)

                # make sure weights are tied in PyTorch
                pt_model.tie_weights()

                # send pytorch model to the correct device
                pt_model.to(torch_device)
1898

1899
1900
1901
1902
1903
1904
1905
1906
1907
                with torch.no_grad():
                    pt_outputs = pt_model(**pt_inputs)
                fx_outputs = fx_model(**fx_inputs)

                fx_keys = tuple([k for k, v in fx_outputs.items() if v is not None])
                pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None])

                self.assertEqual(fx_keys, pt_keys)
                self.check_outputs(fx_outputs.to_tuple(), pt_outputs.to_tuple(), model_class, names=fx_keys)
1908
1909
1910
1911
1912

                with tempfile.TemporaryDirectory() as tmpdirname:
                    fx_model.save_pretrained(tmpdirname)
                    pt_model_loaded = model_class.from_pretrained(tmpdirname, from_flax=True)

1913
1914
1915
1916
                # send pytorch model to the correct device
                pt_model_loaded.to(torch_device)
                pt_model_loaded.eval()

1917
                with torch.no_grad():
1918
                    pt_outputs_loaded = pt_model_loaded(**pt_inputs)
1919

1920
1921
1922
1923
1924
                fx_keys = tuple([k for k, v in fx_outputs.items() if v is not None])
                pt_keys = tuple([k for k, v in pt_outputs_loaded.items() if v is not None])

                self.assertEqual(fx_keys, pt_keys)
                self.check_outputs(fx_outputs.to_tuple(), pt_outputs_loaded.to_tuple(), model_class, names=fx_keys)
1925

Patrick von Platen's avatar
Patrick von Platen committed
1926
    def test_inputs_embeds(self):
1927
1928
1929
1930
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
1931
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
1932
            model.eval()
1933

1934
            inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))
Weizhen's avatar
Weizhen committed
1935

1936
1937
1938
1939
1940
1941
1942
1943
1944
            if not self.is_encoder_decoder:
                input_ids = inputs["input_ids"]
                del inputs["input_ids"]
            else:
                encoder_input_ids = inputs["input_ids"]
                decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids)
                del inputs["input_ids"]
                inputs.pop("decoder_input_ids", None)

1945
1946
            wte = model.get_input_embeddings()
            if not self.is_encoder_decoder:
1947
                inputs["inputs_embeds"] = wte(input_ids)
1948
            else:
1949
1950
                inputs["inputs_embeds"] = wte(encoder_input_ids)
                inputs["decoder_inputs_embeds"] = wte(decoder_input_ids)
1951

thomwolf's avatar
thomwolf committed
1952
            with torch.no_grad():
Weizhen's avatar
Weizhen committed
1953
                model(**inputs)[0]
1954

1955
1956
    @require_torch_multi_gpu
    def test_multi_gpu_data_parallel_forward(self):
1957
1958
1959
1960
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        # some params shouldn't be scattered by nn.DataParallel
        # so just remove them if they are present.
1961
        blacklist_non_batched_params = ["head_mask", "decoder_head_mask", "cross_attn_head_mask"]
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
        for k in blacklist_non_batched_params:
            inputs_dict.pop(k, None)

        # move input tensors to cuda:O
        for k, v in inputs_dict.items():
            if torch.is_tensor(v):
                inputs_dict[k] = v.to(0)

        for model_class in self.all_model_classes:
            model = model_class(config=config)
            model.to(0)
            model.eval()

            # Wrap model in nn.DataParallel
1976
            model = nn.DataParallel(model)
1977
            with torch.no_grad():
1978
                _ = model(**self._prepare_for_class(inputs_dict, model_class))
1979

1980
1981
1982
    @require_torch_multi_gpu
    def test_model_parallelization(self):
        if not self.test_model_parallel:
1983
            return
1984

1985
        # a candidate for testing_utils
1986
        def get_current_gpu_memory_use():
Patrick von Platen's avatar
Patrick von Platen committed
1987
            """returns a list of cuda memory allocations per GPU in MBs"""
1988
1989
1990
1991
1992

            per_device_memory = []
            for id in range(torch.cuda.device_count()):
                with torch.cuda.device(id):
                    per_device_memory.append(torch.cuda.memory_allocated() >> 20)
1993
1994
1995
1996
1997
1998
1999
2000
2001

            return per_device_memory

        # Needs a large model to see the difference.
        config = self.model_tester.get_large_model_config()

        for model_class in self.all_parallelizable_model_classes:
            torch.cuda.empty_cache()

2002
2003
2004
            # 1. single gpu memory load + unload + memory measurements
            # Retrieve initial memory usage (can easily be ~0.6-1.5GB if cuda-kernels have been preloaded by previous tests)
            memory_at_start = get_current_gpu_memory_use()
2005

2006
2007
            # Put model on device 0 and take a memory snapshot
            model = model_class(config)
2008
2009
2010
            model.to("cuda:0")
            memory_after_model_load = get_current_gpu_memory_use()

2011
2012
2013
            # The memory use on device 0 should be higher than it was initially.
            self.assertGreater(memory_after_model_load[0], memory_at_start[0])

2014
            del model
2015
            gc.collect()
2016
2017
            torch.cuda.empty_cache()

2018
2019
2020
            # 2. MP test
            # it's essential to re-calibrate the usage before the next stage
            memory_at_start = get_current_gpu_memory_use()
2021
2022

            # Spread model layers over multiple devices
2023
            model = model_class(config)
2024
2025
2026
2027
2028
            model.parallelize()
            memory_after_parallelization = get_current_gpu_memory_use()

            # Assert that the memory use on all devices is higher than it was when loaded only on CPU
            for n in range(torch.cuda.device_count()):
2029
                self.assertGreater(memory_after_parallelization[n], memory_at_start[n])
2030

2031
            # Assert that the memory use of device 0 is lower than it was when the entire model was loaded on it
2032
2033
            self.assertLess(memory_after_parallelization[0], memory_after_model_load[0])

2034
2035
            # Assert that the memory use of device 1 is higher than it was when the entire model was loaded
            # on device 0 and device 1 wasn't used at all
2036
2037
2038
            self.assertGreater(memory_after_parallelization[1], memory_after_model_load[1])

            del model
2039
            gc.collect()
2040
2041
2042
2043
2044
            torch.cuda.empty_cache()

    @require_torch_multi_gpu
    def test_model_parallel_equal_results(self):
        if not self.test_model_parallel:
2045
            return
2046
2047
2048
2049
2050
2051

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_parallelizable_model_classes:
            inputs_dict = self._prepare_for_class(inputs_dict, model_class)

2052
            def cast_to_device(dictionary, device):
2053
2054
2055
                output = {}
                for k, v in dictionary.items():
                    if isinstance(v, torch.Tensor):
2056
                        output[k] = v.to(device)
2057
2058
2059
2060
2061
                    else:
                        output[k] = v

                return output

2062
2063
2064
2065
2066
2067
            model = model_class(config)
            output = model(**cast_to_device(inputs_dict, "cpu"))

            model.parallelize()

            parallel_output = model(**cast_to_device(inputs_dict, "cuda:0"))
2068
2069
2070
2071
2072
2073
2074
2075

            for value, parallel_value in zip(output, parallel_output):
                if isinstance(value, torch.Tensor):
                    self.assertTrue(torch.allclose(value, parallel_value.to("cpu"), atol=1e-7))
                elif isinstance(value, (Tuple, List)):
                    for value_, parallel_value_ in zip(value, parallel_value):
                        self.assertTrue(torch.allclose(value_, parallel_value_.to("cpu"), atol=1e-7))

2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
    @require_torch_multi_gpu
    def test_model_parallel_beam_search(self):
        if not self.test_model_parallel:
            return

        all_generative_and_parallelizable_model_classes = tuple(
            set(self.all_generative_model_classes).intersection(self.all_parallelizable_model_classes)
        )

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in all_generative_and_parallelizable_model_classes:
            inputs_dict = self._prepare_for_class(inputs_dict, model_class)
            model = model_class(config)

            def cast_to_device(dictionary, device):
                output = {}
                for k, v in dictionary.items():
                    if isinstance(v, torch.Tensor):
                        output[k] = v.to(device)
                    else:
                        output[k] = v

                return output

            model.parallelize()
            model.generate(**cast_to_device(inputs_dict, "cuda:0"), num_beams=2)

2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
    def test_problem_types(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        problem_types = [
            {"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float},
            {"title": "single_label_classification", "num_labels": 1, "dtype": torch.long},
            {"title": "regression", "num_labels": 1, "dtype": torch.float},
        ]

        for model_class in self.all_model_classes:
2114
2115
2116
2117
            if model_class not in [
                *get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING),
                *get_values(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING),
            ]:
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
                continue

            for problem_type in problem_types:
                with self.subTest(msg=f"Testing {model_class} with {problem_type['title']}"):

                    config.problem_type = problem_type["title"]
                    config.num_labels = problem_type["num_labels"]

                    model = model_class(config)
                    model.to(torch_device)
                    model.train()

                    inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)

                    if problem_type["num_labels"] > 1:
                        inputs["labels"] = inputs["labels"].unsqueeze(1).repeat(1, problem_type["num_labels"])

                    inputs["labels"] = inputs["labels"].to(problem_type["dtype"])

2137
2138
2139
2140
2141
2142
                    # This tests that we do not trigger the warning form PyTorch "Using a target size that is different
                    # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure
                    # they have the same size." which is a symptom something in wrong for the regression problem.
                    # See https://github.com/huggingface/transformers/issues/11780
                    with warnings.catch_warnings(record=True) as warning_list:
                        loss = model(**inputs).loss
2143
2144
2145
2146
2147
                    for w in warning_list:
                        if "Using a target size that is different to the input size" in str(w.message):
                            raise ValueError(
                                f"Something is going wrong in the regression problem: intercepted {w.message}"
                            )
2148

2149
2150
                    loss.backward()

2151
    def test_load_with_mismatched_shapes(self):
2152
2153
        if not self.test_mismatched_shapes:
            return
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if model_class not in get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING):
                continue

            with self.subTest(msg=f"Testing {model_class}"):
                with tempfile.TemporaryDirectory() as tmp_dir:
                    model = model_class(config)
                    model.save_pretrained(tmp_dir)

                    # Fails when we don't set ignore_mismatched_sizes=True
2166
                    with self.assertRaises(RuntimeError):
2167
                        new_model = AutoModelForSequenceClassification.from_pretrained(tmp_dir, num_labels=42)
2168
2169
                    with self.assertRaises(RuntimeError):
                        new_model_without_prefix = AutoModel.from_pretrained(tmp_dir, vocab_size=10)
2170
2171

                    logger = logging.get_logger("transformers.modeling_utils")
2172

2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
                    with CaptureLogger(logger) as cl:
                        new_model = AutoModelForSequenceClassification.from_pretrained(
                            tmp_dir, num_labels=42, ignore_mismatched_sizes=True
                        )
                    self.assertIn("the shapes did not match", cl.out)
                    new_model.to(torch_device)
                    inputs = self._prepare_for_class(inputs_dict, model_class)
                    logits = new_model(**inputs).logits
                    self.assertEqual(logits.shape[1], 42)

2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
                    with CaptureLogger(logger) as cl:
                        new_model_without_prefix = AutoModel.from_pretrained(
                            tmp_dir, vocab_size=10, ignore_mismatched_sizes=True
                        )
                    self.assertIn("the shapes did not match", cl.out)
                    input_ids = ids_tensor((2, 8), 10)
                    new_model_without_prefix.to(torch_device)
                    if self.is_encoder_decoder:
                        new_model_without_prefix(input_ids, decoder_input_ids=input_ids)
                    else:
                        new_model_without_prefix(input_ids)

2195

2196
global_rng = random.Random()
thomwolf's avatar
thomwolf committed
2197
2198


thomwolf's avatar
thomwolf committed
2199
def ids_tensor(shape, vocab_size, rng=None, name=None):
2200
    #  Creates a random int32 tensor of the shape within the vocab size
thomwolf's avatar
thomwolf committed
2201
    if rng is None:
2202
        rng = global_rng
thomwolf's avatar
thomwolf committed
2203

thomwolf's avatar
thomwolf committed
2204
2205
2206
    total_dims = 1
    for dim in shape:
        total_dims *= dim
thomwolf's avatar
thomwolf committed
2207

thomwolf's avatar
thomwolf committed
2208
2209
2210
    values = []
    for _ in range(total_dims):
        values.append(rng.randint(0, vocab_size - 1))
thomwolf's avatar
thomwolf committed
2211

2212
    return torch.tensor(data=values, dtype=torch.long, device=torch_device).view(shape).contiguous()
thomwolf's avatar
thomwolf committed
2213
2214


2215
2216
2217
2218
2219
2220
2221
def random_attention_mask(shape, rng=None, name=None):
    attn_mask = ids_tensor(shape, vocab_size=2, rng=None, name=None)
    # make sure that at least one token is attended to for each batch
    attn_mask[:, -1] = 1
    return attn_mask


2222
def floats_tensor(shape, scale=1.0, rng=None, name=None):
Patrick von Platen's avatar
Patrick von Platen committed
2223
    """Creates a random float32 tensor"""
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
    if rng is None:
        rng = global_rng

    total_dims = 1
    for dim in shape:
        total_dims *= dim

    values = []
    for _ in range(total_dims):
        values.append(rng.random() * scale)

2235
    return torch.tensor(data=values, dtype=torch.float, device=torch_device).view(shape).contiguous()
2236
2237


2238
@require_torch
2239
class ModelUtilsTest(TestCasePlus):
2240
    @slow
Patrick von Platen's avatar
Patrick von Platen committed
2241
    def test_model_from_pretrained(self):
2242
        for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
thomwolf's avatar
thomwolf committed
2243
2244
2245
2246
2247
2248
2249
2250
            config = BertConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, PretrainedConfig)

            model = BertModel.from_pretrained(model_name)
            model, loading_info = BertModel.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, PreTrainedModel)
Lysandre Debut's avatar
Lysandre Debut committed
2251
2252
2253
2254
2255

            self.assertEqual(len(loading_info["missing_keys"]), 0)
            self.assertEqual(len(loading_info["unexpected_keys"]), 8)
            self.assertEqual(len(loading_info["mismatched_keys"]), 0)
            self.assertEqual(len(loading_info["error_msgs"]), 0)
thomwolf's avatar
thomwolf committed
2256
2257

            config = BertConfig.from_pretrained(model_name, output_attentions=True, output_hidden_states=True)
Lysandre Debut's avatar
Lysandre Debut committed
2258
2259
2260
2261

            # Not sure this is the intended behavior. TODO fix Lysandre & Thom
            config.name_or_path = model_name

thomwolf's avatar
thomwolf committed
2262
2263
2264
            model = BertModel.from_pretrained(model_name, output_attentions=True, output_hidden_states=True)
            self.assertEqual(model.config.output_hidden_states, True)
            self.assertEqual(model.config, config)
2265
2266
2267
2268
2269

    def test_model_from_pretrained_with_different_pretrained_model_name(self):
        model = T5ForConditionalGeneration.from_pretrained(TINY_T5)
        self.assertIsNotNone(model)

2270
2271
        logger = logging.get_logger("transformers.configuration_utils")
        with CaptureLogger(logger) as cl:
2272
            BertModel.from_pretrained(TINY_T5)
2273
        self.assertTrue("You are using a model of type t5 to instantiate a model of type bert" in cl.out)
Sylvain Gugger's avatar
Sylvain Gugger committed
2274

2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
    @require_torch
    def test_model_from_config_torch_dtype(self):
        # test that the model can be instantiated with dtype of user's choice - as long as it's a
        # float dtype. To make it happen config.torch_dtype needs to be set before instantiating the
        # model from the config object.

        config = T5Config.from_pretrained(TINY_T5)
        model = AutoModel.from_config(config)
        # XXX: isn't supported
        # model = T5ForConditionalGeneration.from_config(config)
        self.assertEqual(model.dtype, torch.float32)

        model = AutoModel.from_config(config, torch_dtype=torch.float16)
        self.assertEqual(model.dtype, torch.float16)

        # torch.set_default_dtype() supports only float dtypes, so will fail with non-float type
        with self.assertRaises(ValueError):
            model = AutoModel.from_config(config, torch_dtype=torch.int64)

    @require_torch
    def test_model_from_pretrained_torch_dtype(self):
        # test that the model can be instantiated with dtype of either
2297
2298
        # 1. explicit from_pretrained's torch_dtype argument
        # 2. via autodiscovery by looking at model weights (torch_dtype="auto")
2299
        # so if a model.half() was saved, we want it to be instantiated as such.
2300
2301
        #
        # test an explicit model class, but also AutoModel separately as the latter goes through a different code path
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
        model_path = self.get_auto_remove_tmp_dir()

        # baseline - we know TINY_T5 is fp32 model
        model = T5ForConditionalGeneration.from_pretrained(TINY_T5)
        self.assertEqual(model.dtype, torch.float32)

        # test the default fp32 save_pretrained => from_pretrained cycle
        model.save_pretrained(model_path)
        model = T5ForConditionalGeneration.from_pretrained(model_path)
        self.assertEqual(model.dtype, torch.float32)
        # test with auto-detection
        model = T5ForConditionalGeneration.from_pretrained(model_path, torch_dtype="auto")
        self.assertEqual(model.dtype, torch.float32)

        # test forced loading in fp16 (even though the weights are in fp32)
        model = T5ForConditionalGeneration.from_pretrained(model_path, torch_dtype=torch.float16)
        self.assertEqual(model.dtype, torch.float16)

        # test fp16 save_pretrained, loaded with auto-detection
        model = model.half()
        model.save_pretrained(model_path)
        model = T5ForConditionalGeneration.from_pretrained(model_path, torch_dtype="auto")
2324
        self.assertEqual(model.config.torch_dtype, torch.float16)
2325
2326
        self.assertEqual(model.dtype, torch.float16)

2327
2328
2329
2330
2331
        # tests `config.torch_dtype` saving
        with open(f"{model_path}/config.json") as f:
            config_dict = json.load(f)
        self.assertEqual(config_dict["torch_dtype"], "float16")

2332
2333
2334
2335
        # test fp16 save_pretrained, loaded with the explicit fp16
        model = T5ForConditionalGeneration.from_pretrained(model_path, torch_dtype=torch.float16)
        self.assertEqual(model.dtype, torch.float16)

2336
2337
2338
2339
2340
2341
2342
2343
        # test AutoModel separately as it goes through a different path
        # test auto-detection
        model = AutoModel.from_pretrained(TINY_T5, torch_dtype="auto")
        self.assertEqual(model.dtype, torch.float32)
        # test forcing an explicit dtype
        model = AutoModel.from_pretrained(TINY_T5, torch_dtype=torch.float16)
        self.assertEqual(model.dtype, torch.float16)

2344
2345
2346
2347
2348
2349
2350
    def test_no_super_init_config_and_model(self):
        config = NoSuperInitConfig(attribute=32)
        model = NoSuperInitModel(config)

        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(tmp_dir)

2351
2352
2353
2354
            new_model = NoSuperInitModel.from_pretrained(tmp_dir)

        for p1, p2 in zip(model.parameters(), new_model.parameters()):
            self.assertTrue(torch.equal(p1, p2))
2355

Sylvain Gugger's avatar
Sylvain Gugger committed
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
    def test_shard_checkpoint(self):
        # This is the model we will use, total size 340,000 bytes.
        model = torch.nn.Sequential(
            torch.nn.Linear(100, 200, bias=False),  # size 80,000
            torch.nn.Linear(200, 200, bias=False),  # size 160,000
            torch.nn.Linear(200, 100, bias=False),  # size 80,000
            torch.nn.Linear(100, 50, bias=False),  # size 20,000
        )
        state_dict = model.state_dict()

        with self.subTest("No shard when max size is bigger than model size"):
            shards, index = shard_checkpoint(state_dict)
            self.assertIsNone(index)
            self.assertDictEqual(shards, {WEIGHTS_NAME: state_dict})

        with self.subTest("Test sharding, no weights bigger than max size"):
            shards, index = shard_checkpoint(state_dict, max_shard_size="300kB")
            # Split is first two layers then last two.
            self.assertDictEqual(
                index,
                {
                    "metadata": {"total_size": 340000},
                    "weight_map": {
                        "0.weight": "pytorch_model-00001-of-00002.bin",
                        "1.weight": "pytorch_model-00001-of-00002.bin",
                        "2.weight": "pytorch_model-00002-of-00002.bin",
                        "3.weight": "pytorch_model-00002-of-00002.bin",
                    },
                },
            )

            shard1 = {"0.weight": state_dict["0.weight"], "1.weight": state_dict["1.weight"]}
            shard2 = {"2.weight": state_dict["2.weight"], "3.weight": state_dict["3.weight"]}
            self.assertDictEqual(
                shards, {"pytorch_model-00001-of-00002.bin": shard1, "pytorch_model-00002-of-00002.bin": shard2}
            )

        with self.subTest("Test sharding with weights bigger than max size"):
            shards, index = shard_checkpoint(state_dict, max_shard_size="100kB")
            # Split is first layer, second layer then last 2.
            self.assertDictEqual(
                index,
                {
                    "metadata": {"total_size": 340000},
                    "weight_map": {
                        "0.weight": "pytorch_model-00001-of-00003.bin",
                        "1.weight": "pytorch_model-00002-of-00003.bin",
                        "2.weight": "pytorch_model-00003-of-00003.bin",
                        "3.weight": "pytorch_model-00003-of-00003.bin",
                    },
                },
            )

            shard1 = {"0.weight": state_dict["0.weight"]}
            shard2 = {"1.weight": state_dict["1.weight"]}
            shard3 = {"2.weight": state_dict["2.weight"], "3.weight": state_dict["3.weight"]}
            self.assertDictEqual(
                shards,
                {
                    "pytorch_model-00001-of-00003.bin": shard1,
                    "pytorch_model-00002-of-00003.bin": shard2,
                    "pytorch_model-00003-of-00003.bin": shard3,
                },
            )

    def test_checkpoint_sharding_local(self):
        model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert")

        with tempfile.TemporaryDirectory() as tmp_dir:
            # We use the same folder for various sizes to make sure a new save erases the old checkpoint.
            for max_size in ["50kB", "50kiB", "100kB", "100kiB", "200kB", "200kiB"]:
                model.save_pretrained(tmp_dir, max_shard_size=max_size)

                # Get each shard file and its size
                shard_to_size = {}
                for shard in os.listdir(tmp_dir):
                    if shard.endswith(".bin"):
                        shard_file = os.path.join(tmp_dir, shard)
                        shard_to_size[shard_file] = os.path.getsize(shard_file)

                index_file = os.path.join(tmp_dir, WEIGHTS_INDEX_NAME)
                # Check there is an index but no regular weight file
                self.assertTrue(os.path.isfile(index_file))
                self.assertFalse(os.path.isfile(os.path.join(tmp_dir, WEIGHTS_NAME)))

                # Check a file is bigger than max_size only when it has a single weight
                for shard_file, size in shard_to_size.items():
                    if max_size.endswith("kiB"):
                        max_size_int = int(max_size[:-3]) * 2**10
                    else:
                        max_size_int = int(max_size[:-2]) * 10**3
                    # Note: pickle adds some junk so the weight of the file can end up being slightly bigger than
                    # the size asked for (since we count parameters)
                    if size >= max_size_int + 50000:
                        state_dict = torch.load(shard_file)
                        self.assertEqual(len(state_dict), 1)

                # Check the index and the shard files found match
                with open(index_file, "r", encoding="utf-8") as f:
                    index = json.loads(f.read())

                all_shards = set(index["weight_map"].values())
                shards_found = set(f for f in os.listdir(tmp_dir) if f.endswith(".bin"))
                self.assertSetEqual(all_shards, shards_found)

                # Finally, check the model can be reloaded
                new_model = BertModel.from_pretrained(tmp_dir)
                for p1, p2 in zip(model.parameters(), new_model.parameters()):
                    self.assertTrue(torch.allclose(p1, p2))

    def test_checkpoint_sharding_from_hub(self):
        model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert-sharded")
        # the model above is the same as the model below, just a sharded version.
        ref_model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert")
        for p1, p2 in zip(model.parameters(), ref_model.parameters()):
            self.assertTrue(torch.allclose(p1, p2))

2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
    def test_cached_files_are_used_when_internet_is_down(self):
        # A mock response for an HTTP head request to emulate server down
        response_mock = mock.Mock()
        response_mock.status_code = 500
        response_mock.headers = []
        response_mock.raise_for_status.side_effect = HTTPError

        # Download this model to make sure it's in the cache.
        _ = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert")

        # Under the mock environment we get a 500 error when trying to reach the model.
        with mock.patch("transformers.utils.hub.requests.head", return_value=response_mock) as mock_head:
            _ = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert")
            # This check we did call the fake head request
            mock_head.assert_called()

Sylvain Gugger's avatar
Sylvain Gugger committed
2489
2490
2491
2492
2493
2494

@require_torch
@is_staging_test
class ModelPushToHubTester(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
2495
        cls._token = login(username=USER, password=PASS)
Sylvain Gugger's avatar
Sylvain Gugger committed
2496
2497
2498
2499

    @classmethod
    def tearDownClass(cls):
        try:
2500
            delete_repo(token=cls._token, name="test-model")
Sylvain Gugger's avatar
Sylvain Gugger committed
2501
2502
2503
2504
        except HTTPError:
            pass

        try:
2505
            delete_repo(token=cls._token, name="test-model-org", organization="valid_org")
Sylvain Gugger's avatar
Sylvain Gugger committed
2506
2507
2508
        except HTTPError:
            pass

2509
        try:
2510
            delete_repo(token=cls._token, name="test-dynamic-model")
2511
2512
2513
        except HTTPError:
            pass

2514
2515
2516
2517
2518
        try:
            delete_repo(token=cls._token, name="test-dynamic-model-config")
        except HTTPError:
            pass

Sylvain Gugger's avatar
Sylvain Gugger committed
2519
2520
2521
2522
2523
2524
    def test_push_to_hub(self):
        config = BertConfig(
            vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37
        )
        model = BertModel(config)
        with tempfile.TemporaryDirectory() as tmp_dir:
2525
            model.save_pretrained(os.path.join(tmp_dir, "test-model"), push_to_hub=True, use_auth_token=self._token)
Sylvain Gugger's avatar
Sylvain Gugger committed
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

            new_model = BertModel.from_pretrained(f"{USER}/test-model")
            for p1, p2 in zip(model.parameters(), new_model.parameters()):
                self.assertTrue(torch.equal(p1, p2))

    def test_push_to_hub_in_organization(self):
        config = BertConfig(
            vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37
        )
        model = BertModel(config)
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(
2538
                os.path.join(tmp_dir, "test-model-org"),
Sylvain Gugger's avatar
Sylvain Gugger committed
2539
2540
2541
2542
2543
2544
2545
2546
                push_to_hub=True,
                use_auth_token=self._token,
                organization="valid_org",
            )

            new_model = BertModel.from_pretrained("valid_org/test-model-org")
            for p1, p2 in zip(model.parameters(), new_model.parameters()):
                self.assertTrue(torch.equal(p1, p2))
2547
2548

    def test_push_to_hub_dynamic_model(self):
2549
2550
2551
2552
2553
        CustomConfig.register_for_auto_class()
        CustomModel.register_for_auto_class()

        config = CustomConfig(hidden_size=32)
        model = CustomModel(config)
2554
2555
2556
2557

        with tempfile.TemporaryDirectory() as tmp_dir:
            repo = Repository(tmp_dir, clone_from=f"{USER}/test-dynamic-model", use_auth_token=self._token)
            model.save_pretrained(tmp_dir)
2558
2559
2560
2561
2562
            # checks
            self.assertDictEqual(
                config.auto_map,
                {"AutoConfig": "custom_configuration.CustomConfig", "AutoModel": "custom_modeling.CustomModel"},
            )
2563
2564
2565
2566

            repo.push_to_hub()

        new_model = AutoModel.from_pretrained(f"{USER}/test-dynamic-model", trust_remote_code=True)
2567
2568
        # Can't make an isinstance check because the new_model is from the CustomModel class of a dynamic module
        self.assertEqual(new_model.__class__.__name__, "CustomModel")
2569
2570
        for p1, p2 in zip(model.parameters(), new_model.parameters()):
            self.assertTrue(torch.equal(p1, p2))
2571

2572
        config = AutoConfig.from_pretrained(f"{USER}/test-dynamic-model", trust_remote_code=True)
2573
        new_model = AutoModel.from_config(config, trust_remote_code=True)
2574
        self.assertEqual(new_model.__class__.__name__, "CustomModel")