"docs/source/en/pr_checks.mdx" did not exist on "77321481247787c97568c3b9f64b19e22351bab8"
check_repo.py 35.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
17
18
19
import importlib
import inspect
import os
import re
20
import warnings
21
from collections import OrderedDict
22
from difflib import get_close_matches
23
from pathlib import Path
24

25
from transformers import is_flax_available, is_tf_available, is_torch_available
26
from transformers.models.auto import get_values
27
from transformers.utils import ENV_VARS_TRUE_VALUES
28

29
30
31
32
33

# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_repo.py
PATH_TO_TRANSFORMERS = "src/transformers"
PATH_TO_TESTS = "tests"
34
PATH_TO_DOC = "docs/source/en"
35

36
37
# Update this list with models that are supposed to be private.
PRIVATE_MODELS = [
Jongjyh's avatar
Jongjyh committed
38
    "AltRobertaModel",
39
    "DPRSpanPredictor",
Daniel Stancl's avatar
Daniel Stancl committed
40
    "LongT5Stack",
Li-Huai (Allan) Lin's avatar
Li-Huai (Allan) Lin committed
41
    "RealmBertModel",
42
    "T5Stack",
43
    "MT5Stack",
44
    "SwitchTransformersStack",
45
    "TFDPRSpanPredictor",
46
47
    "MaskFormerSwinModel",
    "MaskFormerSwinPreTrainedModel",
48
49
    "BridgeTowerTextModel",
    "BridgeTowerVisionModel",
50
51
]

52
53
# Update this list for models that are not tested with a comment explaining the reason it should not be.
# Being in this list is an exception and should **not** be the rule.
54
IGNORE_NON_TESTED = PRIVATE_MODELS.copy() + [
55
    # models to ignore for not tested
NielsRogge's avatar
NielsRogge committed
56
    "Blip2QFormerModel",  # Building part of bigger (tested) model.
NielsRogge's avatar
NielsRogge committed
57
58
    "DetaEncoder",  # Building part of bigger (tested) model.
    "DetaDecoder",  # Building part of bigger (tested) model.
59
    "ErnieMForInformationExtraction",
60
61
    "GraphormerEncoder",  # Building part of bigger (tested) model.
    "GraphormerDecoderHead",  # Building part of bigger (tested) model.
NielsRogge's avatar
NielsRogge committed
62
    "CLIPSegDecoder",  # Building part of bigger (tested) model.
63
64
    "TableTransformerEncoder",  # Building part of bigger (tested) model.
    "TableTransformerDecoder",  # Building part of bigger (tested) model.
65
66
    "TimeSeriesTransformerEncoder",  # Building part of bigger (tested) model.
    "TimeSeriesTransformerDecoder",  # Building part of bigger (tested) model.
67
68
    "JukeboxVQVAE",  # Building part of bigger (tested) model.
    "JukeboxPrior",  # Building part of bigger (tested) model.
NielsRogge's avatar
NielsRogge committed
69
70
    "DeformableDetrEncoder",  # Building part of bigger (tested) model.
    "DeformableDetrDecoder",  # Building part of bigger (tested) model.
Younes Belkada's avatar
Younes Belkada committed
71
    "OPTDecoder",  # Building part of bigger (tested) model.
72
73
    "WhisperDecoder",  # Building part of bigger (tested) model.
    "WhisperEncoder",  # Building part of bigger (tested) model.
74
    "DecisionTransformerGPT2Model",  # Building part of bigger (tested) model.
NielsRogge's avatar
NielsRogge committed
75
    "SegformerDecodeHead",  # Building part of bigger (tested) model.
Gunjan Chhablani's avatar
Gunjan Chhablani committed
76
77
78
    "PLBartEncoder",  # Building part of bigger (tested) model.
    "PLBartDecoder",  # Building part of bigger (tested) model.
    "PLBartDecoderWrapper",  # Building part of bigger (tested) model.
Vasudev Gupta's avatar
Vasudev Gupta committed
79
80
81
    "BigBirdPegasusEncoder",  # Building part of bigger (tested) model.
    "BigBirdPegasusDecoder",  # Building part of bigger (tested) model.
    "BigBirdPegasusDecoderWrapper",  # Building part of bigger (tested) model.
NielsRogge's avatar
NielsRogge committed
82
83
84
    "DetrEncoder",  # Building part of bigger (tested) model.
    "DetrDecoder",  # Building part of bigger (tested) model.
    "DetrDecoderWrapper",  # Building part of bigger (tested) model.
85
86
    "ConditionalDetrEncoder",  # Building part of bigger (tested) model.
    "ConditionalDetrDecoder",  # Building part of bigger (tested) model.
Suraj Patil's avatar
Suraj Patil committed
87
88
    "M2M100Encoder",  # Building part of bigger (tested) model.
    "M2M100Decoder",  # Building part of bigger (tested) model.
Chan Woo Kim's avatar
Chan Woo Kim committed
89
    "MCTCTEncoder",  # Building part of bigger (tested) model.
Suraj Patil's avatar
Suraj Patil committed
90
91
    "Speech2TextEncoder",  # Building part of bigger (tested) model.
    "Speech2TextDecoder",  # Building part of bigger (tested) model.
Patrick von Platen's avatar
Patrick von Platen committed
92
93
    "LEDEncoder",  # Building part of bigger (tested) model.
    "LEDDecoder",  # Building part of bigger (tested) model.
94
    "BartDecoderWrapper",  # Building part of bigger (tested) model.
95
    "BartEncoder",  # Building part of bigger (tested) model.
96
    "BertLMHeadModel",  # Needs to be setup as decoder.
97
    "BlenderbotSmallEncoder",  # Building part of bigger (tested) model.
98
    "BlenderbotSmallDecoderWrapper",  # Building part of bigger (tested) model.
99
    "BlenderbotEncoder",  # Building part of bigger (tested) model.
100
    "BlenderbotDecoderWrapper",  # Building part of bigger (tested) model.
101
    "MBartEncoder",  # Building part of bigger (tested) model.
102
    "MBartDecoderWrapper",  # Building part of bigger (tested) model.
103
104
105
106
    "MegatronBertLMHeadModel",  # Building part of bigger (tested) model.
    "MegatronBertEncoder",  # Building part of bigger (tested) model.
    "MegatronBertDecoder",  # Building part of bigger (tested) model.
    "MegatronBertDecoderWrapper",  # Building part of bigger (tested) model.
StevenTang1998's avatar
StevenTang1998 committed
107
108
    "MvpDecoderWrapper",  # Building part of bigger (tested) model.
    "MvpEncoder",  # Building part of bigger (tested) model.
109
    "PegasusEncoder",  # Building part of bigger (tested) model.
110
    "PegasusDecoderWrapper",  # Building part of bigger (tested) model.
Jason Phang's avatar
Jason Phang committed
111
112
113
    "PegasusXEncoder",  # Building part of bigger (tested) model.
    "PegasusXDecoder",  # Building part of bigger (tested) model.
    "PegasusXDecoderWrapper",  # Building part of bigger (tested) model.
114
    "DPREncoder",  # Building part of bigger (tested) model.
115
    "ProphetNetDecoderWrapper",  # Building part of bigger (tested) model.
Li-Huai (Allan) Lin's avatar
Li-Huai (Allan) Lin committed
116
117
118
119
    "RealmBertModel",  # Building part of bigger (tested) model.
    "RealmReader",  # Not regular model.
    "RealmScorer",  # Not regular model.
    "RealmForOpenQA",  # Not regular model.
120
    "ReformerForMaskedLM",  # Needs to be setup as decoder.
121
    "Speech2Text2DecoderWrapper",  # Building part of bigger (tested) model.
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
122
    "TFDPREncoder",  # Building part of bigger (tested) model.
123
124
    "TFElectraMainLayer",  # Building part of bigger (tested) model (should it be a TFPreTrainedModel ?)
    "TFRobertaForMultipleChoice",  # TODO: fix
125
    "TFRobertaPreLayerNormForMultipleChoice",  # TODO: fix
126
    "TrOCRDecoderWrapper",  # Building part of bigger (tested) model.
amyeroberts's avatar
amyeroberts committed
127
128
    "TFWhisperEncoder",  # Building part of bigger (tested) model.
    "TFWhisperDecoder",  # Building part of bigger (tested) model.
abhishek thakur's avatar
abhishek thakur committed
129
    "SeparableConv1D",  # Building part of bigger (tested) model.
130
    "FlaxBartForCausalLM",  # Building part of bigger (tested) model.
131
    "FlaxBertForCausalLM",  # Building part of bigger (tested) model. Tested implicitly through FlaxRobertaForCausalLM.
Younes Belkada's avatar
Younes Belkada committed
132
    "OPTDecoderWrapper",
133
    "TFSegformerDecodeHead",  # Not a regular model.
Jongjyh's avatar
Jongjyh committed
134
    "AltRobertaModel",  # Building part of bigger (tested) model.
Younes Belkada's avatar
Younes Belkada committed
135
    "BlipTextLMHeadModel",  # No need to test it as it is tested by BlipTextVision models
136
137
    "BridgeTowerTextModel",  # No need to test it as it is tested by BridgeTowerModel model.
    "BridgeTowerVisionModel",  # No need to test it as it is tested by BridgeTowerModel model.
138
139
140
141
142
143
144
145
146
147
148
149
    "SpeechT5Decoder",  # Building part of bigger (tested) model.
    "SpeechT5DecoderWithoutPrenet",  # Building part of bigger (tested) model.
    "SpeechT5DecoderWithSpeechPrenet",  # Building part of bigger (tested) model.
    "SpeechT5DecoderWithTextPrenet",  # Building part of bigger (tested) model.
    "SpeechT5Encoder",  # Building part of bigger (tested) model.
    "SpeechT5EncoderWithoutPrenet",  # Building part of bigger (tested) model.
    "SpeechT5EncoderWithSpeechPrenet",  # Building part of bigger (tested) model.
    "SpeechT5EncoderWithTextPrenet",  # Building part of bigger (tested) model.
    "SpeechT5SpeechDecoder",  # Building part of bigger (tested) model.
    "SpeechT5SpeechEncoder",  # Building part of bigger (tested) model.
    "SpeechT5TextDecoder",  # Building part of bigger (tested) model.
    "SpeechT5TextEncoder",  # Building part of bigger (tested) model.
150
151
152
153
154
]

# Update this list with test files that don't have a tester with a `all_model_classes` variable and which don't
# trigger the common tests.
TEST_FILES_WITH_NO_COMMON_TESTS = [
Yih-Dar's avatar
Yih-Dar committed
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
    "models/decision_transformer/test_modeling_decision_transformer.py",
    "models/camembert/test_modeling_camembert.py",
    "models/mt5/test_modeling_flax_mt5.py",
    "models/mbart/test_modeling_mbart.py",
    "models/mt5/test_modeling_mt5.py",
    "models/pegasus/test_modeling_pegasus.py",
    "models/camembert/test_modeling_tf_camembert.py",
    "models/mt5/test_modeling_tf_mt5.py",
    "models/xlm_roberta/test_modeling_tf_xlm_roberta.py",
    "models/xlm_roberta/test_modeling_flax_xlm_roberta.py",
    "models/xlm_prophetnet/test_modeling_xlm_prophetnet.py",
    "models/xlm_roberta/test_modeling_xlm_roberta.py",
    "models/vision_text_dual_encoder/test_modeling_vision_text_dual_encoder.py",
    "models/vision_text_dual_encoder/test_modeling_flax_vision_text_dual_encoder.py",
    "models/decision_transformer/test_modeling_decision_transformer.py",
170
171
]

172
173
# Update this list for models that are not in any of the auto MODEL_XXX_MAPPING. Being in this list is an exception and
# should **not** be the rule.
174
IGNORE_NON_AUTO_CONFIGURED = PRIVATE_MODELS.copy() + [
175
    # models to ignore for model xxx mapping
NielsRogge's avatar
NielsRogge committed
176
177
178
    "Blip2ForConditionalGeneration",
    "Blip2QFormerModel",
    "Blip2VisionModel",
179
    "ErnieMForInformationExtraction",
180
    "GitVisionModel",
181
182
    "GraphormerModel",
    "GraphormerForGraphClassification",
Younes Belkada's avatar
Younes Belkada committed
183
184
185
186
187
188
    "BlipForConditionalGeneration",
    "BlipForImageTextRetrieval",
    "BlipForQuestionAnswering",
    "BlipVisionModel",
    "BlipTextLMHeadModel",
    "BlipTextModel",
NielsRogge's avatar
NielsRogge committed
189
    "Swin2SRForImageSuperResolution",
190
191
    "BridgeTowerForImageAndTextRetrieval",
    "BridgeTowerForMaskedLM",
NielsRogge's avatar
NielsRogge committed
192
193
194
    "CLIPSegForImageSegmentation",
    "CLIPSegVisionModel",
    "CLIPSegTextModel",
Matt's avatar
Matt committed
195
    "EsmForProteinFolding",
196
    "TimeSeriesTransformerForPrediction",
197
198
    "JukeboxVQVAE",
    "JukeboxPrior",
Jason Phang's avatar
Jason Phang committed
199
200
201
202
203
204
    "PegasusXEncoder",
    "PegasusXDecoder",
    "PegasusXDecoderWrapper",
    "PegasusXEncoder",
    "PegasusXDecoder",
    "PegasusXDecoderWrapper",
NielsRogge's avatar
NielsRogge committed
205
    "DPTForDepthEstimation",
206
    "DecisionTransformerGPT2Model",
NielsRogge's avatar
NielsRogge committed
207
    "GLPNForDepthEstimation",
NielsRogge's avatar
NielsRogge committed
208
209
    "ViltForImagesAndTextClassification",
    "ViltForImageAndTextRetrieval",
210
    "ViltForTokenClassification",
NielsRogge's avatar
NielsRogge committed
211
    "ViltForMaskedLM",
Suraj Patil's avatar
Suraj Patil committed
212
213
214
    "XGLMEncoder",
    "XGLMDecoder",
    "XGLMDecoderWrapper",
NielsRogge's avatar
NielsRogge committed
215
216
    "PerceiverForMultimodalAutoencoding",
    "PerceiverForOpticalFlow",
NielsRogge's avatar
NielsRogge committed
217
    "SegformerDecodeHead",
218
    "TFSegformerDecodeHead",
Kamal Raj's avatar
Kamal Raj committed
219
    "FlaxBeitForMaskedImageModeling",
Gunjan Chhablani's avatar
Gunjan Chhablani committed
220
221
222
    "PLBartEncoder",
    "PLBartDecoder",
    "PLBartDecoderWrapper",
NielsRogge's avatar
NielsRogge committed
223
    "BeitForMaskedImageModeling",
224
225
    "ChineseCLIPTextModel",
    "ChineseCLIPVisionModel",
Suraj Patil's avatar
Suraj Patil committed
226
    "CLIPTextModel",
227
    "CLIPTextModelWithProjection",
Suraj Patil's avatar
Suraj Patil committed
228
    "CLIPVisionModel",
229
    "CLIPVisionModelWithProjection",
230
231
    "GroupViTTextModel",
    "GroupViTVisionModel",
Yih-Dar's avatar
Yih-Dar committed
232
233
    "TFCLIPTextModel",
    "TFCLIPVisionModel",
234
235
    "TFGroupViTTextModel",
    "TFGroupViTVisionModel",
Suraj Patil's avatar
Suraj Patil committed
236
237
    "FlaxCLIPTextModel",
    "FlaxCLIPVisionModel",
238
    "FlaxWav2Vec2ForCTC",
NielsRogge's avatar
NielsRogge committed
239
    "DetrForSegmentation",
240
    "ConditionalDetrForSegmentation",
241
242
    "DPRReader",
    "FlaubertForQuestionAnswering",
243
244
245
246
    "FlavaImageCodebook",
    "FlavaTextModel",
    "FlavaImageModel",
    "FlavaMultimodalModel",
247
    "GPT2DoubleHeadsModel",
248
    "GPTSw3DoubleHeadsModel",
249
    "LayoutLMForQuestionAnswering",
Ryokan RI's avatar
Ryokan RI committed
250
    "LukeForMaskedLM",
NielsRogge's avatar
NielsRogge committed
251
252
253
    "LukeForEntityClassification",
    "LukeForEntityPairClassification",
    "LukeForEntitySpanClassification",
254
    "OpenAIGPTDoubleHeadsModel",
255
256
257
    "OwlViTTextModel",
    "OwlViTVisionModel",
    "OwlViTForObjectDetection",
258
259
260
    "RagModel",
    "RagSequenceForGeneration",
    "RagTokenForGeneration",
Li-Huai (Allan) Lin's avatar
Li-Huai (Allan) Lin committed
261
262
263
264
    "RealmEmbedder",
    "RealmForOpenQA",
    "RealmScorer",
    "RealmReader",
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
265
    "TFDPRReader",
266
    "TFGPT2DoubleHeadsModel",
267
    "TFLayoutLMForQuestionAnswering",
268
    "TFOpenAIGPTDoubleHeadsModel",
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
269
270
271
    "TFRagModel",
    "TFRagSequenceForGeneration",
    "TFRagTokenForGeneration",
272
    "Wav2Vec2ForCTC",
Patrick von Platen's avatar
Patrick von Platen committed
273
    "HubertForCTC",
274
275
    "SEWForCTC",
    "SEWDForCTC",
276
277
    "XLMForQuestionAnswering",
    "XLNetForQuestionAnswering",
abhishek thakur's avatar
abhishek thakur committed
278
    "SeparableConv1D",
Gunjan Chhablani's avatar
Gunjan Chhablani committed
279
280
281
282
    "VisualBertForRegionToPhraseAlignment",
    "VisualBertForVisualReasoning",
    "VisualBertForQuestionAnswering",
    "VisualBertForMultipleChoice",
Will Rice's avatar
Will Rice committed
283
    "TFWav2Vec2ForCTC",
Will Rice's avatar
Will Rice committed
284
    "TFHubertForCTC",
NielsRogge's avatar
NielsRogge committed
285
286
    "XCLIPVisionModel",
    "XCLIPTextModel",
Jongjyh's avatar
Jongjyh committed
287
288
289
    "AltCLIPTextModel",
    "AltCLIPVisionModel",
    "AltRobertaModel",
Zineng Tang's avatar
Zineng Tang committed
290
    "TvltForAudioVisualClassification",
291
292
293
    "SpeechT5ForSpeechToSpeech",
    "SpeechT5ForTextToSpeech",
    "SpeechT5HifiGan",
294
295
]

296
297
298
299
300
301
# Update this list for models that have multiple model types for the same
# model doc
MODEL_TYPE_TO_DOC_MAPPING = OrderedDict(
    [
        ("data2vec-text", "data2vec"),
        ("data2vec-audio", "data2vec"),
302
        ("data2vec-vision", "data2vec"),
NielsRogge's avatar
NielsRogge committed
303
        ("donut-swin", "donut"),
304
305
306
307
    ]
)


308
309
310
311
312
313
314
315
316
# This is to make sure the transformers module imported is the one in the repo.
spec = importlib.util.spec_from_file_location(
    "transformers",
    os.path.join(PATH_TO_TRANSFORMERS, "__init__.py"),
    submodule_search_locations=[PATH_TO_TRANSFORMERS],
)
transformers = spec.loader.load_module()


317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
def check_model_list():
    """Check the model list inside the transformers library."""
    # Get the models from the directory structure of `src/transformers/models/`
    models_dir = os.path.join(PATH_TO_TRANSFORMERS, "models")
    _models = []
    for model in os.listdir(models_dir):
        model_dir = os.path.join(models_dir, model)
        if os.path.isdir(model_dir) and "__init__.py" in os.listdir(model_dir):
            _models.append(model)

    # Get the models from the directory structure of `src/transformers/models/`
    models = [model for model in dir(transformers.models) if not model.startswith("__")]

    missing_models = sorted(list(set(_models).difference(models)))
    if missing_models:
        raise Exception(
            f"The following models should be included in {models_dir}/__init__.py: {','.join(missing_models)}."
        )


337
338
339
# If some modeling modules should be ignored for all checks, they should be added in the nested list
# _ignore_modules of this function.
def get_model_modules():
Patrick von Platen's avatar
Patrick von Platen committed
340
    """Get the model modules inside the transformers library."""
341
342
343
344
345
346
347
348
    _ignore_modules = [
        "modeling_auto",
        "modeling_encoder_decoder",
        "modeling_marian",
        "modeling_mmbt",
        "modeling_outputs",
        "modeling_retribert",
        "modeling_utils",
Sylvain Gugger's avatar
Sylvain Gugger committed
349
        "modeling_flax_auto",
350
        "modeling_flax_encoder_decoder",
Stas Bekman's avatar
Stas Bekman committed
351
        "modeling_flax_utils",
352
        "modeling_speech_encoder_decoder",
353
        "modeling_flax_speech_encoder_decoder",
354
        "modeling_flax_vision_encoder_decoder",
355
356
        "modeling_transfo_xl_utilities",
        "modeling_tf_auto",
357
        "modeling_tf_encoder_decoder",
358
359
360
361
        "modeling_tf_outputs",
        "modeling_tf_pytorch_utils",
        "modeling_tf_utils",
        "modeling_tf_transfo_xl_utilities",
362
        "modeling_tf_vision_encoder_decoder",
363
        "modeling_vision_encoder_decoder",
364
365
    ]
    modules = []
Sylvain Gugger's avatar
Sylvain Gugger committed
366
367
368
369
370
371
372
373
374
    for model in dir(transformers.models):
        # There are some magic dunder attributes in the dir, we ignore them
        if not model.startswith("__"):
            model_module = getattr(transformers.models, model)
            for submodule in dir(model_module):
                if submodule.startswith("modeling") and submodule not in _ignore_modules:
                    modeling_module = getattr(model_module, submodule)
                    if inspect.ismodule(modeling_module):
                        modules.append(modeling_module)
375
376
377
    return modules


378
def get_models(module, include_pretrained=False):
Patrick von Platen's avatar
Patrick von Platen committed
379
    """Get the objects in module that are models."""
380
    models = []
381
    model_classes = (transformers.PreTrainedModel, transformers.TFPreTrainedModel, transformers.FlaxPreTrainedModel)
382
    for attr_name in dir(module):
383
        if not include_pretrained and ("Pretrained" in attr_name or "PreTrained" in attr_name):
384
385
386
387
388
389
390
            continue
        attr = getattr(module, attr_name)
        if isinstance(attr, type) and issubclass(attr, model_classes) and attr.__module__ == module.__name__:
            models.append((attr_name, attr))
    return models


391
392
393
394
395
396
397
398
399
400
401
402
def is_a_private_model(model):
    """Returns True if the model should not be in the main init."""
    if model in PRIVATE_MODELS:
        return True

    # Wrapper, Encoder and Decoder are all privates
    if model.endswith("Wrapper"):
        return True
    if model.endswith("Encoder"):
        return True
    if model.endswith("Decoder"):
        return True
403
404
    if model.endswith("Prenet"):
        return True
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
    return False


def check_models_are_in_init():
    """Checks all models defined in the library are in the main init."""
    models_not_in_init = []
    dir_transformers = dir(transformers)
    for module in get_model_modules():
        models_not_in_init += [
            model[0] for model in get_models(module, include_pretrained=True) if model[0] not in dir_transformers
        ]

    # Remove private models
    models_not_in_init = [model for model in models_not_in_init if not is_a_private_model(model)]
    if len(models_not_in_init) > 0:
        raise Exception(f"The following models should be in the main init: {','.join(models_not_in_init)}.")


423
424
425
# If some test_modeling files should be ignored when checking models are all tested, they should be added in the
# nested list _ignore_files of this function.
def get_model_test_files():
Yih-Dar's avatar
Yih-Dar committed
426
427
428
429
430
431
    """Get the model test files.

    The returned files should NOT contain the `tests` (i.e. `PATH_TO_TESTS` defined in this script). They will be
    considered as paths relative to `tests`. A caller has to use `os.path.join(PATH_TO_TESTS, ...)` to access the files.
    """

432
433
434
    _ignore_files = [
        "test_modeling_common",
        "test_modeling_encoder_decoder",
435
        "test_modeling_flax_encoder_decoder",
436
        "test_modeling_flax_speech_encoder_decoder",
437
438
        "test_modeling_marian",
        "test_modeling_tf_common",
439
        "test_modeling_tf_encoder_decoder",
440
441
    ]
    test_files = []
Yih-Dar's avatar
Yih-Dar committed
442
443
444
445
446
447
448
449
450
451
452
453
454
    # Check both `PATH_TO_TESTS` and `PATH_TO_TESTS/models`
    model_test_root = os.path.join(PATH_TO_TESTS, "models")
    model_test_dirs = []
    for x in os.listdir(model_test_root):
        x = os.path.join(model_test_root, x)
        if os.path.isdir(x):
            model_test_dirs.append(x)

    for target_dir in [PATH_TO_TESTS] + model_test_dirs:
        for file_or_dir in os.listdir(target_dir):
            path = os.path.join(target_dir, file_or_dir)
            if os.path.isfile(path):
                filename = os.path.split(path)[-1]
455
                if "test_modeling" in filename and os.path.splitext(filename)[0] not in _ignore_files:
Yih-Dar's avatar
Yih-Dar committed
456
457
458
                    file = os.path.join(*path.split(os.sep)[1:])
                    test_files.append(file)

459
460
461
462
463
464
    return test_files


# This is a bit hacky but I didn't find a way to import the test_file as a module and read inside the tester class
# for the all_model_classes variable.
def find_tested_models(test_file):
Patrick von Platen's avatar
Patrick von Platen committed
465
    """Parse the content of test_file to detect what's in all_model_classes"""
Sylvain Gugger's avatar
Sylvain Gugger committed
466
    # This is a bit hacky but I didn't find a way to import the test_file as a module and read inside the class
467
    with open(os.path.join(PATH_TO_TESTS, test_file), "r", encoding="utf-8", newline="\n") as f:
468
        content = f.read()
Sylvain Gugger's avatar
Sylvain Gugger committed
469
    all_models = re.findall(r"all_model_classes\s+=\s+\(\s*\(([^\)]*)\)", content)
470
471
    # Check with one less parenthesis as well
    all_models += re.findall(r"all_model_classes\s+=\s+\(([^\)]*)\)", content)
Sylvain Gugger's avatar
Sylvain Gugger committed
472
    if len(all_models) > 0:
473
        model_tested = []
Sylvain Gugger's avatar
Sylvain Gugger committed
474
475
476
477
478
        for entry in all_models:
            for line in entry.split(","):
                name = line.strip()
                if len(name) > 0:
                    model_tested.append(name)
479
480
481
482
        return model_tested


def check_models_are_tested(module, test_file):
Patrick von Platen's avatar
Patrick von Platen committed
483
    """Check models defined in module are tested in test_file."""
484
    # XxxPreTrainedModel are not tested
485
486
487
    defined_models = get_models(module)
    tested_models = find_tested_models(test_file)
    if tested_models is None:
488
        if test_file.replace(os.path.sep, "/") in TEST_FILES_WITH_NO_COMMON_TESTS:
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
            return
        return [
            f"{test_file} should define `all_model_classes` to apply common tests to the models it tests. "
            + "If this intentional, add the test filename to `TEST_FILES_WITH_NO_COMMON_TESTS` in the file "
            + "`utils/check_repo.py`."
        ]
    failures = []
    for model_name, _ in defined_models:
        if model_name not in tested_models and model_name not in IGNORE_NON_TESTED:
            failures.append(
                f"{model_name} is defined in {module.__name__} but is not tested in "
                + f"{os.path.join(PATH_TO_TESTS, test_file)}. Add it to the all_model_classes in that file."
                + "If common tests should not applied to that model, add its name to `IGNORE_NON_TESTED`"
                + "in the file `utils/check_repo.py`."
            )
    return failures


def check_all_models_are_tested():
Patrick von Platen's avatar
Patrick von Platen committed
508
    """Check all models are properly tested."""
509
510
511
512
    modules = get_model_modules()
    test_files = get_model_test_files()
    failures = []
    for module in modules:
513
514
        test_file = [file for file in test_files if f"test_{module.__name__.split('.')[-1]}.py" in file]
        if len(test_file) == 0:
515
            failures.append(f"{module.__name__} does not have its corresponding test file {test_file}.")
516
517
518
519
        elif len(test_file) > 1:
            failures.append(f"{module.__name__} has several test files: {test_file}.")
        else:
            test_file = test_file[0]
520
521
522
            new_failures = check_models_are_tested(module, test_file)
            if new_failures is not None:
                failures += new_failures
523
524
525
526
    if len(failures) > 0:
        raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))


527
def get_all_auto_configured_models():
Patrick von Platen's avatar
Patrick von Platen committed
528
    """Return the list of all models in at least one auto class."""
529
    result = set()  # To avoid duplicates we concatenate all model classes in a set.
530
531
    if is_torch_available():
        for attr_name in dir(transformers.models.auto.modeling_auto):
532
            if attr_name.startswith("MODEL_") and attr_name.endswith("MAPPING_NAMES"):
533
534
535
                result = result | set(get_values(getattr(transformers.models.auto.modeling_auto, attr_name)))
    if is_tf_available():
        for attr_name in dir(transformers.models.auto.modeling_tf_auto):
536
            if attr_name.startswith("TF_MODEL_") and attr_name.endswith("MAPPING_NAMES"):
537
538
539
                result = result | set(get_values(getattr(transformers.models.auto.modeling_tf_auto, attr_name)))
    if is_flax_available():
        for attr_name in dir(transformers.models.auto.modeling_flax_auto):
540
            if attr_name.startswith("FLAX_MODEL_") and attr_name.endswith("MAPPING_NAMES"):
541
                result = result | set(get_values(getattr(transformers.models.auto.modeling_flax_auto, attr_name)))
542
    return [cls for cls in result]
543
544


545
546
547
548
549
550
551
552
553
554
555
def ignore_unautoclassed(model_name):
    """Rules to determine if `name` should be in an auto class."""
    # Special white list
    if model_name in IGNORE_NON_AUTO_CONFIGURED:
        return True
    # Encoder and Decoder should be ignored
    if "Encoder" in model_name or "Decoder" in model_name:
        return True
    return False


556
def check_models_are_auto_configured(module, all_auto_models):
Patrick von Platen's avatar
Patrick von Platen committed
557
    """Check models defined in module are each in an auto class."""
558
559
560
    defined_models = get_models(module)
    failures = []
    for model_name, _ in defined_models:
561
        if model_name not in all_auto_models and not ignore_unautoclassed(model_name):
562
563
564
565
566
567
568
569
570
            failures.append(
                f"{model_name} is defined in {module.__name__} but is not present in any of the auto mapping. "
                "If that is intended behavior, add its name to `IGNORE_NON_AUTO_CONFIGURED` in the file "
                "`utils/check_repo.py`."
            )
    return failures


def check_all_models_are_auto_configured():
Patrick von Platen's avatar
Patrick von Platen committed
571
    """Check all models are each in an auto class."""
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
    missing_backends = []
    if not is_torch_available():
        missing_backends.append("PyTorch")
    if not is_tf_available():
        missing_backends.append("TensorFlow")
    if not is_flax_available():
        missing_backends.append("Flax")
    if len(missing_backends) > 0:
        missing = ", ".join(missing_backends)
        if os.getenv("TRANSFORMERS_IS_CI", "").upper() in ENV_VARS_TRUE_VALUES:
            raise Exception(
                "Full quality checks require all backends to be installed (with `pip install -e .[dev]` in the "
                f"Transformers repo, the following are missing: {missing}."
            )
        else:
            warnings.warn(
                "Full quality checks require all backends to be installed (with `pip install -e .[dev]` in the "
                f"Transformers repo, the following are missing: {missing}. While it's probably fine as long as you "
                "didn't make any change in one of those backends modeling files, you should probably execute the "
                "command above to be on the safe side."
            )
593
594
595
596
597
598
599
600
601
602
603
    modules = get_model_modules()
    all_auto_models = get_all_auto_configured_models()
    failures = []
    for module in modules:
        new_failures = check_models_are_auto_configured(module, all_auto_models)
        if new_failures is not None:
            failures += new_failures
    if len(failures) > 0:
        raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))


Sylvain Gugger's avatar
Sylvain Gugger committed
604
605
606
607
_re_decorator = re.compile(r"^\s*@(\S+)\s+$")


def check_decorator_order(filename):
Patrick von Platen's avatar
Patrick von Platen committed
608
    """Check that in the test file `filename` the slow decorator is always last."""
609
    with open(filename, "r", encoding="utf-8", newline="\n") as f:
Sylvain Gugger's avatar
Sylvain Gugger committed
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
        lines = f.readlines()
    decorator_before = None
    errors = []
    for i, line in enumerate(lines):
        search = _re_decorator.search(line)
        if search is not None:
            decorator_name = search.groups()[0]
            if decorator_before is not None and decorator_name.startswith("parameterized"):
                errors.append(i)
            decorator_before = decorator_name
        elif decorator_before is not None:
            decorator_before = None
    return errors


def check_all_decorator_order():
Patrick von Platen's avatar
Patrick von Platen committed
626
    """Check that in all test files, the slow decorator is always last."""
Sylvain Gugger's avatar
Sylvain Gugger committed
627
628
629
630
631
632
633
634
635
    errors = []
    for fname in os.listdir(PATH_TO_TESTS):
        if fname.endswith(".py"):
            filename = os.path.join(PATH_TO_TESTS, fname)
            new_errors = check_decorator_order(filename)
            errors += [f"- {filename}, line {i}" for i in new_errors]
    if len(errors) > 0:
        msg = "\n".join(errors)
        raise ValueError(
Sylvain Gugger's avatar
Sylvain Gugger committed
636
637
            "The parameterized decorator (and its variants) should always be first, but this is not the case in the"
            f" following files:\n{msg}"
Sylvain Gugger's avatar
Sylvain Gugger committed
638
639
640
        )


641
def find_all_documented_objects():
Patrick von Platen's avatar
Patrick von Platen committed
642
    """Parse the content of all doc files to detect which classes and functions it documents"""
643
644
    documented_obj = []
    for doc_file in Path(PATH_TO_DOC).glob("**/*.rst"):
Julien Plu's avatar
Julien Plu committed
645
        with open(doc_file, "r", encoding="utf-8", newline="\n") as f:
646
647
648
            content = f.read()
        raw_doc_objs = re.findall(r"(?:autoclass|autofunction):: transformers.(\S+)\s+", content)
        documented_obj += [obj.split(".")[-1] for obj in raw_doc_objs]
Sylvain Gugger's avatar
Sylvain Gugger committed
649
650
651
652
653
    for doc_file in Path(PATH_TO_DOC).glob("**/*.mdx"):
        with open(doc_file, "r", encoding="utf-8", newline="\n") as f:
            content = f.read()
        raw_doc_objs = re.findall("\[\[autodoc\]\]\s+(\S+)\s+", content)
        documented_obj += [obj.split(".")[-1] for obj in raw_doc_objs]
654
655
656
657
658
659
    return documented_obj


# One good reason for not being documented is to be deprecated. Put in this list deprecated objects.
DEPRECATED_OBJECTS = [
    "AutoModelWithLMHead",
660
    "BartPretrainedModel",
661
662
    "DataCollator",
    "DataCollatorForSOP",
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
    "GlueDataset",
    "GlueDataTrainingArguments",
    "LineByLineTextDataset",
    "LineByLineWithRefDataset",
    "LineByLineWithSOPTextDataset",
    "PretrainedBartModel",
    "PretrainedFSMTModel",
    "SingleSentenceClassificationProcessor",
    "SquadDataTrainingArguments",
    "SquadDataset",
    "SquadExample",
    "SquadFeatures",
    "SquadV1Processor",
    "SquadV2Processor",
    "TFAutoModelWithLMHead",
678
    "TFBartPretrainedModel",
679
680
    "TextDataset",
    "TextDatasetForNextSentencePrediction",
681
    "Wav2Vec2ForMaskedLM",
682
    "Wav2Vec2Tokenizer",
683
684
685
686
687
688
689
690
691
692
    "glue_compute_metrics",
    "glue_convert_examples_to_features",
    "glue_output_modes",
    "glue_processors",
    "glue_tasks_num_labels",
    "squad_convert_examples_to_features",
    "xnli_compute_metrics",
    "xnli_output_modes",
    "xnli_processors",
    "xnli_tasks_num_labels",
693
694
    "TFTrainer",
    "TFTrainingArguments",
695
696
697
698
699
700
701
]

# Exceptionally, some objects should not be documented after all rules passed.
# ONLY PUT SOMETHING IN THIS LIST AS A LAST RESORT!
UNDOCUMENTED_OBJECTS = [
    "AddedToken",  # This is a tokenizers class.
    "BasicTokenizer",  # Internal, should never have been in the main init.
702
    "CharacterTokenizer",  # Internal, should never have been in the main init.
703
    "DPRPretrainedReader",  # Like an Encoder.
Sylvain Gugger's avatar
Sylvain Gugger committed
704
    "DummyObject",  # Just picked by mistake sometimes.
705
    "MecabTokenizer",  # Internal, should never have been in the main init.
706
707
708
709
710
711
712
713
714
715
716
    "ModelCard",  # Internal type.
    "SqueezeBertModule",  # Internal building block (should have been called SqueezeBertLayer)
    "TFDPRPretrainedReader",  # Like an Encoder.
    "TransfoXLCorpus",  # Internal type.
    "WordpieceTokenizer",  # Internal, should never have been in the main init.
    "absl",  # External module
    "add_end_docstrings",  # Internal, should never have been in the main init.
    "add_start_docstrings",  # Internal, should never have been in the main init.
    "convert_tf_weight_name_to_pt_weight_name",  # Internal used to convert model weights
    "logger",  # Internal logger
    "logging",  # External module
717
    "requires_backends",  # Internal function
Jongjyh's avatar
Jongjyh committed
718
    "AltRobertaModel",  # Internal module
719
720
721
722
723
724
725
726
727
]

# This list should be empty. Objects in it should get their own doc page.
SHOULD_HAVE_THEIR_OWN_PAGE = [
    # Benchmarks
    "PyTorchBenchmark",
    "PyTorchBenchmarkArguments",
    "TensorFlowBenchmark",
    "TensorFlowBenchmarkArguments",
728
    "AutoBackbone",
NielsRogge's avatar
NielsRogge committed
729
730
    "BitBackbone",
    "ConvNextBackbone",
731
    "DinatBackbone",
NielsRogge's avatar
NielsRogge committed
732
    "MaskFormerSwinBackbone",
733
734
    "MaskFormerSwinConfig",
    "MaskFormerSwinModel",
NielsRogge's avatar
NielsRogge committed
735
736
    "NatBackbone",
    "ResNetBackbone",
NielsRogge's avatar
NielsRogge committed
737
    "SwinBackbone",
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
]


def ignore_undocumented(name):
    """Rules to determine if `name` should be undocumented."""
    # NOT DOCUMENTED ON PURPOSE.
    # Constants uppercase are not documented.
    if name.isupper():
        return True
    # PreTrainedModels / Encoders / Decoders / Layers / Embeddings / Attention are not documented.
    if (
        name.endswith("PreTrainedModel")
        or name.endswith("Decoder")
        or name.endswith("Encoder")
        or name.endswith("Layer")
        or name.endswith("Embeddings")
        or name.endswith("Attention")
    ):
        return True
    # Submodules are not documented.
    if os.path.isdir(os.path.join(PATH_TO_TRANSFORMERS, name)) or os.path.isfile(
        os.path.join(PATH_TO_TRANSFORMERS, f"{name}.py")
    ):
        return True
    # All load functions are not documented.
    if name.startswith("load_tf") or name.startswith("load_pytorch"):
        return True
    # is_xxx_available functions are not documented.
    if name.startswith("is_") and name.endswith("_available"):
        return True
    # Deprecated objects are not documented.
    if name in DEPRECATED_OBJECTS or name in UNDOCUMENTED_OBJECTS:
        return True
    # MMBT model does not really work.
    if name.startswith("MMBT"):
        return True
    if name in SHOULD_HAVE_THEIR_OWN_PAGE:
        return True
    return False


def check_all_objects_are_documented():
Patrick von Platen's avatar
Patrick von Platen committed
780
    """Check all models are properly documented."""
781
    documented_objs = find_all_documented_objects()
782
783
784
    modules = transformers._modules
    objects = [c for c in dir(transformers) if c not in modules and not c.startswith("_")]
    undocumented_objs = [c for c in objects if c not in documented_objs and not ignore_undocumented(c)]
785
786
787
788
789
    if len(undocumented_objs) > 0:
        raise Exception(
            "The following objects are in the public init so should be documented:\n - "
            + "\n - ".join(undocumented_objs)
        )
790
    check_docstrings_are_in_md()
791
792
793
794
795
796
797
798
799
    check_model_type_doc_match()


def check_model_type_doc_match():
    """Check all doc pages have a corresponding model type."""
    model_doc_folder = Path(PATH_TO_DOC) / "model_doc"
    model_docs = [m.stem for m in model_doc_folder.glob("*.mdx")]

    model_types = list(transformers.models.auto.configuration_auto.MODEL_NAMES_MAPPING.keys())
800
    model_types = [MODEL_TYPE_TO_DOC_MAPPING[m] if m in MODEL_TYPE_TO_DOC_MAPPING else m for m in model_types]
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818

    errors = []
    for m in model_docs:
        if m not in model_types and m != "auto":
            close_matches = get_close_matches(m, model_types)
            error_message = f"{m} is not a proper model identifier."
            if len(close_matches) > 0:
                close_matches = "/".join(close_matches)
                error_message += f" Did you mean {close_matches}?"
            errors.append(error_message)

    if len(errors) > 0:
        raise ValueError(
            "Some model doc pages do not match any existing model type:\n"
            + "\n".join(errors)
            + "\nYou can add any missing model type to the `MODEL_NAMES_MAPPING` constant in "
            "models/auto/configuration_auto.py."
        )
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845


# Re pattern to catch :obj:`xx`, :class:`xx`, :func:`xx` or :meth:`xx`.
_re_rst_special_words = re.compile(r":(?:obj|func|class|meth):`([^`]+)`")
# Re pattern to catch things between double backquotes.
_re_double_backquotes = re.compile(r"(^|[^`])``([^`]+)``([^`]|$)")
# Re pattern to catch example introduction.
_re_rst_example = re.compile(r"^\s*Example.*::\s*$", flags=re.MULTILINE)


def is_rst_docstring(docstring):
    """
    Returns `True` if `docstring` is written in rst.
    """
    if _re_rst_special_words.search(docstring) is not None:
        return True
    if _re_double_backquotes.search(docstring) is not None:
        return True
    if _re_rst_example.search(docstring) is not None:
        return True
    return False


def check_docstrings_are_in_md():
    """Check all docstrings are in md"""
    files_with_rst = []
    for file in Path(PATH_TO_TRANSFORMERS).glob("**/*.py"):
846
        with open(file, encoding="utf-8") as f:
847
848
849
850
851
852
853
854
855
856
857
858
859
            code = f.read()
        docstrings = code.split('"""')

        for idx, docstring in enumerate(docstrings):
            if idx % 2 == 0 or not is_rst_docstring(docstring):
                continue
            files_with_rst.append(file)
            break

    if len(files_with_rst) > 0:
        raise ValueError(
            "The following files have docstrings written in rst:\n"
            + "\n".join([f"- {f}" for f in files_with_rst])
Kamal Raj's avatar
Kamal Raj committed
860
            + "\nTo fix this run `doc-builder convert path_to_py_file` after installing `doc-builder`\n"
861
862
            "(`pip install git+https://github.com/huggingface/doc-builder`)"
        )
863
864


865
def check_repo_quality():
Patrick von Platen's avatar
Patrick von Platen committed
866
    """Check all models are properly tested and documented."""
867
868
    print("Checking all models are included.")
    check_model_list()
869
870
    print("Checking all models are public.")
    check_models_are_in_init()
871
    print("Checking all models are properly tested.")
Sylvain Gugger's avatar
Sylvain Gugger committed
872
    check_all_decorator_order()
873
    check_all_models_are_tested()
874
    print("Checking all objects are properly documented.")
875
    check_all_objects_are_documented()
876
877
    print("Checking all models are in at least one auto class.")
    check_all_models_are_auto_configured()
878
879
880
881


if __name__ == "__main__":
    check_repo_quality()