test_modeling_common.py 26.4 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2019 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

thomwolf's avatar
thomwolf committed
16

17
import copy
Aymeric Augustin's avatar
Aymeric Augustin committed
18
import logging
19
import os.path
Aymeric Augustin's avatar
Aymeric Augustin committed
20
import random
21
import tempfile
thomwolf's avatar
thomwolf committed
22
23
import unittest

24
from transformers import is_torch_available
25

26
from .utils import require_torch, slow, torch_device
27

Aymeric Augustin's avatar
Aymeric Augustin committed
28

29
if is_torch_available():
thomwolf's avatar
thomwolf committed
30
    import torch
31
    import numpy as np
thomwolf's avatar
thomwolf committed
32

33
34
35
36
37
38
39
40
    from transformers import (
        AdaptiveEmbedding,
        PretrainedConfig,
        PreTrainedModel,
        BertModel,
        BertConfig,
        BERT_PRETRAINED_MODEL_ARCHIVE_MAP,
    )
thomwolf's avatar
thomwolf committed
41

42

43
44
45
def _config_zero_init(config):
    configs_no_init = copy.deepcopy(config)
    for key in configs_no_init.__dict__.keys():
46
        if "_range" in key or "_std" in key or "initializer_factor" in key:
47
48
49
            setattr(configs_no_init, key, 0.0)
    return configs_no_init

thomwolf's avatar
thomwolf committed
50

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
@require_torch
class ModelTesterMixin:

    model_tester = None
    all_model_classes = ()
    test_torchscript = True
    test_pruning = True
    test_resize_embeddings = True
    test_head_masking = True
    is_encoder_decoder = False

    def test_save_load(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**inputs_dict)
            out_2 = outputs[0].numpy()
            out_2[np.isnan(out_2)] = 0
73

74
            with tempfile.TemporaryDirectory() as tmpdirname:
75
76
                model.save_pretrained(tmpdirname)
                model = model_class.from_pretrained(tmpdirname)
77
                model.to(torch_device)
78
                with torch.no_grad():
79
                    after_outputs = model(**inputs_dict)
thomwolf's avatar
thomwolf committed
80

81
82
83
                # Make sure we don't have nans
                out_1 = after_outputs[0].cpu().numpy()
                out_1[np.isnan(out_1)] = 0
thomwolf's avatar
thomwolf committed
84
85
                max_diff = np.amax(np.abs(out_1 - out_2))
                self.assertLessEqual(max_diff, 1e-5)
86

87
88
89
90
91
92
93
94
95
96
97
98
99
    def test_initialization(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        configs_no_init = _config_zero_init(config)
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            for name, param in model.named_parameters():
                if param.requires_grad:
                    self.assertIn(
                        param.data.mean().item(),
                        [0.0, 1.0],
                        msg="Parameter {} of model {} seems not properly initialized".format(name, model_class),
                    )
thomwolf's avatar
thomwolf committed
100

101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
    def test_determinism(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                first = model(**inputs_dict)[0]
                second = model(**inputs_dict)[0]
            out_1 = first.cpu().numpy()
            out_2 = second.cpu().numpy()
            out_1 = out_1[~np.isnan(out_1)]
            out_2 = out_2[~np.isnan(out_2)]
            max_diff = np.amax(np.abs(out_1 - out_2))
            self.assertLessEqual(max_diff, 1e-5)

    def test_attention_outputs(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
120
        seq_len = self.model_tester.seq_length
sshleifer's avatar
sshleifer committed
121
122
        decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len)
        encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", seq_len)
123
124
        decoder_key_length = getattr(self.model_tester, "key_length", decoder_seq_length)
        encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length)
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

        for model_class in self.all_model_classes:
            config.output_attentions = True
            config.output_hidden_states = False
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**inputs_dict)
            attentions = outputs[-1]
            self.assertEqual(model.config.output_attentions, True)
            self.assertEqual(model.config.output_hidden_states, False)
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
            self.assertListEqual(
                list(attentions[0].shape[-3:]),
                [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
141
            )
142
            out_len = len(outputs)
thomwolf's avatar
thomwolf committed
143

144
145
146
            if self.is_encoder_decoder:
                self.assertEqual(out_len % 2, 0)
                decoder_attentions = outputs[(out_len // 2) - 1]
thomwolf's avatar
thomwolf committed
147
148
                self.assertEqual(model.config.output_attentions, True)
                self.assertEqual(model.config.output_hidden_states, False)
149
                self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers)
thomwolf's avatar
thomwolf committed
150
                self.assertListEqual(
151
152
                    list(decoder_attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length],
153
                )
thomwolf's avatar
thomwolf committed
154

155
            # Check attention is always last and order is fine
thomwolf's avatar
thomwolf committed
156
157
            config.output_attentions = True
            config.output_hidden_states = True
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**inputs_dict)
            self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1), len(outputs))
            self.assertEqual(model.config.output_attentions, True)
            self.assertEqual(model.config.output_hidden_states, True)

            self_attentions = outputs[-1]
            self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers)
            self.assertListEqual(
                list(self_attentions[0].shape[-3:]),
                [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
            )
thomwolf's avatar
thomwolf committed
173

174
175
    def test_torchscript(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
thomwolf's avatar
thomwolf committed
176

177
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
178

179
180
    def test_torchscript_output_attentions(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
thomwolf's avatar
thomwolf committed
181

182
183
        config.output_attentions = True
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
184

185
186
    def test_torchscript_output_hidden_state(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
187

188
189
        config.output_hidden_states = True
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
190

191
192
193
    def _create_and_check_torchscript(self, config, inputs_dict):
        if not self.test_torchscript:
            return
194

195
196
197
198
199
200
201
        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        configs_no_init.torchscript = True
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            model.to(torch_device)
            model.eval()
            inputs = inputs_dict["input_ids"]  # Let's keep only input_ids
thomwolf's avatar
thomwolf committed
202

203
204
205
206
            try:
                traced_gpt2 = torch.jit.trace(model, inputs)
            except RuntimeError:
                self.fail("Couldn't trace module.")
thomwolf's avatar
thomwolf committed
207

208
            with tempfile.TemporaryDirectory() as tmp_dir_name:
209
                pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt")
thomwolf's avatar
thomwolf committed
210

211
212
213
214
                try:
                    torch.jit.save(traced_gpt2, pt_file_name)
                except Exception:
                    self.fail("Couldn't save module.")
thomwolf's avatar
thomwolf committed
215

216
217
218
219
                try:
                    loaded_model = torch.jit.load(pt_file_name)
                except Exception:
                    self.fail("Couldn't load module.")
LysandreJik's avatar
LysandreJik committed
220

221
222
            model.to(torch_device)
            model.eval()
thomwolf's avatar
thomwolf committed
223

224
225
            loaded_model.to(torch_device)
            loaded_model.eval()
thomwolf's avatar
thomwolf committed
226

227
228
229
230
            model_state_dict = model.state_dict()
            loaded_model_state_dict = loaded_model.state_dict()

            self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys()))
thomwolf's avatar
thomwolf committed
231

232
            models_equal = True
233
234
            for layer_name, p1 in model_state_dict.items():
                p2 = loaded_model_state_dict[layer_name]
235
236
                if p1.data.ne(p2.data).sum() > 0:
                    models_equal = False
thomwolf's avatar
thomwolf committed
237

238
            self.assertTrue(models_equal)
thomwolf's avatar
thomwolf committed
239

240
241
242
    def test_headmasking(self):
        if not self.test_head_masking:
            return
243

244
245
246
        global_rng.seed(42)
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        global_rng.seed()
LysandreJik's avatar
LysandreJik committed
247

248
249
250
251
252
253
254
        config.output_attentions = True
        config.output_hidden_states = True
        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            model.to(torch_device)
            model.eval()
LysandreJik's avatar
LysandreJik committed
255

256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
            # Prepare head_mask
            # Set require_grad after having prepared the tensor to avoid error (leaf variable has been moved into the graph interior)
            head_mask = torch.ones(
                self.model_tester.num_hidden_layers, self.model_tester.num_attention_heads, device=torch_device
            )
            head_mask[0, 0] = 0
            head_mask[-1, :-1] = 0
            head_mask.requires_grad_(requires_grad=True)
            inputs = inputs_dict.copy()
            inputs["head_mask"] = head_mask

            outputs = model(**inputs)

            # Test that we can get a gradient back for importance score computation
            output = sum(t.sum() for t in outputs[0])
            output = output.sum()
            output.backward()
            multihead_outputs = head_mask.grad

            attentions = outputs[-1]

            # Remove Nan
            for t in attentions:
                self.assertLess(
                    torch.sum(torch.isnan(t)), t.numel() / 4
                )  # Check we don't have more than 25% nans (arbitrary)
            attentions = [
                t.masked_fill(torch.isnan(t), 0.0) for t in attentions
            ]  # remove them (the test is less complete)

            self.assertIsNotNone(multihead_outputs)
            self.assertEqual(len(multihead_outputs), self.model_tester.num_hidden_layers)
            self.assertAlmostEqual(attentions[0][..., 0, :, :].flatten().sum().item(), 0.0)
            self.assertNotEqual(attentions[0][..., -1, :, :].flatten().sum().item(), 0.0)
            self.assertNotEqual(attentions[1][..., 0, :, :].flatten().sum().item(), 0.0)
            self.assertAlmostEqual(attentions[-1][..., -2, :, :].flatten().sum().item(), 0.0)
            self.assertNotEqual(attentions[-1][..., -1, :, :].flatten().sum().item(), 0.0)

    def test_head_pruning(self):
        if not self.test_pruning:
            return

        for model_class in self.all_model_classes:
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
300

301
302
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
303

304
305
306
307
308
309
310
311
312
            config.output_attentions = True
            config.output_hidden_states = False
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
            heads_to_prune = {0: list(range(1, self.model_tester.num_attention_heads)), -1: [0]}
            model.prune_heads(heads_to_prune)
            with torch.no_grad():
                outputs = model(**inputs_dict)
313

314
            attentions = outputs[-1]
315

316
317
318
            self.assertEqual(attentions[0].shape[-3], 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
LysandreJik's avatar
LysandreJik committed
319

320
321
322
    def test_head_pruning_save_load_from_pretrained(self):
        if not self.test_pruning:
            return
LysandreJik's avatar
LysandreJik committed
323

324
325
326
327
328
        for model_class in self.all_model_classes:
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
329

330
331
332
333
334
335
336
            config.output_attentions = True
            config.output_hidden_states = False
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
            heads_to_prune = {0: list(range(1, self.model_tester.num_attention_heads)), -1: [0]}
            model.prune_heads(heads_to_prune)
337

338
            with tempfile.TemporaryDirectory() as temp_dir_name:
339
340
                model.save_pretrained(temp_dir_name)
                model = model_class.from_pretrained(temp_dir_name)
341
                model.to(torch_device)
342

343
344
345
346
347
348
            with torch.no_grad():
                outputs = model(**inputs_dict)
            attentions = outputs[-1]
            self.assertEqual(attentions[0].shape[-3], 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
349

350
351
352
    def test_head_pruning_save_load_from_config_init(self):
        if not self.test_pruning:
            return
353

354
355
        for model_class in self.all_model_classes:
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
356

357
358
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
359

360
361
            config.output_attentions = True
            config.output_hidden_states = False
362

363
364
            heads_to_prune = {0: list(range(1, self.model_tester.num_attention_heads)), -1: [0]}
            config.pruned_heads = heads_to_prune
365

366
367
368
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
369

370
371
372
            with torch.no_grad():
                outputs = model(**inputs_dict)
            attentions = outputs[-1]
373

374
375
376
            self.assertEqual(attentions[0].shape[-3], 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
377

378
379
380
    def test_head_pruning_integration(self):
        if not self.test_pruning:
            return
381

382
383
        for model_class in self.all_model_classes:
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
384

385
386
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
387

388
389
            config.output_attentions = True
            config.output_hidden_states = False
390

391
392
            heads_to_prune = {0: [0], 1: [1, 2]}
            config.pruned_heads = heads_to_prune
393

394
395
396
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
397

398
399
400
            with torch.no_grad():
                outputs = model(**inputs_dict)
            attentions = outputs[-1]
401

402
403
404
405
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads)
thomwolf's avatar
thomwolf committed
406

407
            with tempfile.TemporaryDirectory() as temp_dir_name:
408
409
                model.save_pretrained(temp_dir_name)
                model = model_class.from_pretrained(temp_dir_name)
410
                model.to(torch_device)
thomwolf's avatar
thomwolf committed
411

412
413
414
            with torch.no_grad():
                outputs = model(**inputs_dict)
            attentions = outputs[-1]
LysandreJik's avatar
LysandreJik committed
415

416
417
418
419
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads)
thomwolf's avatar
thomwolf committed
420

421
422
            heads_to_prune = {0: [0], 2: [1, 2]}
            model.prune_heads(heads_to_prune)
423

424
425
426
            with torch.no_grad():
                outputs = model(**inputs_dict)
            attentions = outputs[-1]
427

428
429
430
431
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads)
432

433
            self.assertDictEqual(model.config.pruned_heads, {0: [0], 1: [1, 2], 2: [1, 2]})
thomwolf's avatar
thomwolf committed
434

435
436
    def test_hidden_states_output(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
thomwolf's avatar
thomwolf committed
437

438
439
440
441
        for model_class in self.all_model_classes:
            config.output_hidden_states = True
            config.output_attentions = False
            model = model_class(config)
442
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
443
            model.eval()
thomwolf's avatar
thomwolf committed
444
            with torch.no_grad():
445
446
447
448
449
450
451
452
453
454
455
456
457
                outputs = model(**inputs_dict)
            hidden_states = outputs[-1]
            self.assertEqual(model.config.output_attentions, False)
            self.assertEqual(model.config.output_hidden_states, True)
            self.assertEqual(len(hidden_states), self.model_tester.num_hidden_layers + 1)
            self.assertListEqual(
                list(hidden_states[0].shape[-2:]),
                [
                    self.model_tester.encoder_seq_length
                    if hasattr(self.model_tester, "encoder_seq_length")
                    else self.model_tester.seq_length,
                    self.model_tester.hidden_size,
                ],
458
            )
thomwolf's avatar
thomwolf committed
459

460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
    def test_resize_tokens_embeddings(self):
        original_config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        if not self.test_resize_embeddings:
            return

        for model_class in self.all_model_classes:
            config = copy.deepcopy(original_config)
            model = model_class(config)

            model_vocab_size = config.vocab_size
            # Retrieve the embeddings and clone theme
            model_embed = model.resize_token_embeddings(model_vocab_size)
            cloned_embeddings = model_embed.weight.clone()

            # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
            model_embed = model.resize_token_embeddings(model_vocab_size + 10)
            self.assertEqual(model.config.vocab_size, model_vocab_size + 10)
            # Check that it actually resizes the embeddings matrix
            self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10)
479
480
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**inputs_dict)
481
482
483
484
485
486
487

            # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
            model_embed = model.resize_token_embeddings(model_vocab_size - 15)
            self.assertEqual(model.config.vocab_size, model_vocab_size - 15)
            # Check that it actually resizes the embeddings matrix
            self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 15)

488
489
490
491
492
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            # Input ids should be clamped to the maximum size of the vocabulary
            inputs_dict["input_ids"].clamp_(max=model_vocab_size - 15 - 1)
            model(**inputs_dict)

493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
            # Check that adding and removing tokens has not modified the first part of the embedding matrix.
            models_equal = True
            for p1, p2 in zip(cloned_embeddings, model_embed.weight):
                if p1.data.ne(p2.data).sum() > 0:
                    models_equal = False

            self.assertTrue(models_equal)

    def test_model_common_attributes(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            self.assertIsInstance(model.get_input_embeddings(), (torch.nn.Embedding, AdaptiveEmbedding))
            model.set_input_embeddings(torch.nn.Embedding(10, 10))
            x = model.get_output_embeddings()
            self.assertTrue(x is None or isinstance(x, torch.nn.Linear))

    def test_tie_model_weights(self):
        if not self.test_torchscript:
            return

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        def check_same_values(layer_1, layer_2):
            equal = True
            for p1, p2 in zip(layer_1.weight, layer_2.weight):
                if p1.data.ne(p2.data).sum() > 0:
                    equal = False
            return equal

        for model_class in self.all_model_classes:
            config.torchscript = True
            model_not_tied = model_class(config)
            if model_not_tied.get_output_embeddings() is None:
                continue

            params_not_tied = list(model_not_tied.parameters())

            config_tied = copy.deepcopy(config)
            config_tied.torchscript = False
            model_tied = model_class(config_tied)
            params_tied = list(model_tied.parameters())

            # Check that the embedding layer and decoding layer are the same in size and in value
            self.assertGreater(len(params_not_tied), len(params_tied))
            # self.assertTrue(check_same_values(embeddings, decoding))

            # # Check that after modification, they remain the same.
            # embeddings.weight.data.div_(2)
            # # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(embeddings.weight.shape, decoding.weight.shape)
            # self.assertTrue(check_same_values(embeddings, decoding))

            # # Check that after modification, they remain the same.
            # decoding.weight.data.div_(4)
            # # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(embeddings.weight.shape, decoding.weight.shape)
            # self.assertTrue(check_same_values(embeddings, decoding))

            # Check that after resize they remain tied.
            model_tied.resize_token_embeddings(config.vocab_size + 10)
            params_tied_2 = list(model_tied.parameters())
            self.assertGreater(len(params_not_tied), len(params_tied))
            self.assertEqual(len(params_tied_2), len(params_tied))

            # decoding.weight.data.mul_(20)
            # # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(model.transformer.wte.weight.shape, model.lm_head.weight.shape)
            # self.assertTrue(check_same_values(model.transformer.wte, model.lm_head))

    def test_inputs_embeds(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        if not self.is_encoder_decoder:
            input_ids = inputs_dict["input_ids"]
            del inputs_dict["input_ids"]
        else:
            encoder_input_ids = inputs_dict["encoder_input_ids"]
            decoder_input_ids = inputs_dict["decoder_input_ids"]
            del inputs_dict["encoder_input_ids"]
            del inputs_dict["decoder_input_ids"]

        for model_class in self.all_model_classes:
            model = model_class(config)
577
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
578
            model.eval()
579
580
581
582
583
584
585
586

            wte = model.get_input_embeddings()
            if not self.is_encoder_decoder:
                inputs_dict["inputs_embeds"] = wte(input_ids)
            else:
                inputs_dict["encoder_inputs_embeds"] = wte(encoder_input_ids)
                inputs_dict["decoder_inputs_embeds"] = wte(decoder_input_ids)

thomwolf's avatar
thomwolf committed
587
            with torch.no_grad():
588
                model(**inputs_dict)
589
590


591
global_rng = random.Random()
thomwolf's avatar
thomwolf committed
592
593


thomwolf's avatar
thomwolf committed
594
595
596
def ids_tensor(shape, vocab_size, rng=None, name=None):
    """Creates a random int32 tensor of the shape within the vocab size."""
    if rng is None:
597
        rng = global_rng
thomwolf's avatar
thomwolf committed
598

thomwolf's avatar
thomwolf committed
599
600
601
    total_dims = 1
    for dim in shape:
        total_dims *= dim
thomwolf's avatar
thomwolf committed
602

thomwolf's avatar
thomwolf committed
603
604
605
    values = []
    for _ in range(total_dims):
        values.append(rng.randint(0, vocab_size - 1))
thomwolf's avatar
thomwolf committed
606

607
    return torch.tensor(data=values, dtype=torch.long, device=torch_device).view(shape).contiguous()
thomwolf's avatar
thomwolf committed
608
609


610
611
612
613
614
615
616
617
618
619
620
621
622
def floats_tensor(shape, scale=1.0, rng=None, name=None):
    """Creates a random float32 tensor of the shape within the vocab size."""
    if rng is None:
        rng = global_rng

    total_dims = 1
    for dim in shape:
        total_dims *= dim

    values = []
    for _ in range(total_dims):
        values.append(rng.random() * scale)

623
    return torch.tensor(data=values, dtype=torch.float, device=torch_device).view(shape).contiguous()
624
625


626
@require_torch
thomwolf's avatar
thomwolf committed
627
class ModelUtilsTest(unittest.TestCase):
628
    @slow
thomwolf's avatar
thomwolf committed
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
    def test_model_from_pretrained(self):
        logging.basicConfig(level=logging.INFO)
        for model_name in list(BERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
            config = BertConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, PretrainedConfig)

            model = BertModel.from_pretrained(model_name)
            model, loading_info = BertModel.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, PreTrainedModel)
            for value in loading_info.values():
                self.assertEqual(len(value), 0)

            config = BertConfig.from_pretrained(model_name, output_attentions=True, output_hidden_states=True)
            model = BertModel.from_pretrained(model_name, output_attentions=True, output_hidden_states=True)
            self.assertEqual(model.config.output_attentions, True)
            self.assertEqual(model.config.output_hidden_states, True)
            self.assertEqual(model.config, config)