test_modeling_common.py 97.5 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2019 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

16
import copy
17
import gc
18
import inspect
19
import json
20
import os
21
import os.path
Aymeric Augustin's avatar
Aymeric Augustin committed
22
import random
23
import tempfile
thomwolf's avatar
thomwolf committed
24
import unittest
25
import warnings
NielsRogge's avatar
NielsRogge committed
26
from typing import Dict, List, Tuple
thomwolf's avatar
thomwolf committed
27

28
29
30
import numpy as np

import transformers
31
from huggingface_hub import Repository, delete_repo, login
Sylvain Gugger's avatar
Sylvain Gugger committed
32
from requests.exceptions import HTTPError
33
34
35
36
37
38
39
40
from transformers import (
    AutoConfig,
    AutoModel,
    AutoModelForSequenceClassification,
    PretrainedConfig,
    is_torch_available,
    logging,
)
41
from transformers.file_utils import WEIGHTS_NAME, is_flax_available, is_torch_fx_available
42
from transformers.models.auto import get_values
Sylvain Gugger's avatar
Sylvain Gugger committed
43
44
45
46
from transformers.testing_utils import (
    PASS,
    USER,
    CaptureLogger,
47
    TestCasePlus,
48
49
    is_pt_flax_cross_test,
    is_pt_tf_cross_test,
Sylvain Gugger's avatar
Sylvain Gugger committed
50
51
52
53
54
55
    is_staging_test,
    require_torch,
    require_torch_multi_gpu,
    slow,
    torch_device,
)
56

Aymeric Augustin's avatar
Aymeric Augustin committed
57

58
if is_torch_available():
59
    import torch
60
    from torch import nn
thomwolf's avatar
thomwolf committed
61

62
    from transformers import (
63
        BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
64
        MODEL_FOR_CAUSAL_LM_MAPPING,
65
        MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING,
66
        MODEL_FOR_MASKED_LM_MAPPING,
67
        MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
68
        MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING,
69
        MODEL_FOR_QUESTION_ANSWERING_MAPPING,
70
71
72
        MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
        MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
        MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
73
        MODEL_MAPPING,
74
75
76
77
        AdaptiveEmbedding,
        BertConfig,
        BertModel,
        PreTrainedModel,
78
        T5Config,
79
        T5ForConditionalGeneration,
80
    )
thomwolf's avatar
thomwolf committed
81

82
83
84
85
86
87
88
if is_flax_available():
    import jax.numpy as jnp
    from transformers.modeling_flax_pytorch_utils import (
        convert_pytorch_state_dict_to_flax,
        load_flax_weights_in_pytorch_model,
    )

89
if is_torch_fx_available():
90
    from transformers.utils.fx import symbolic_trace
91

92

93
94
95
def _config_zero_init(config):
    configs_no_init = copy.deepcopy(config)
    for key in configs_no_init.__dict__.keys():
96
        if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key:
Lysandre Debut's avatar
Lysandre Debut committed
97
            setattr(configs_no_init, key, 1e-10)
98
99
    return configs_no_init

thomwolf's avatar
thomwolf committed
100

101
102
103
TINY_T5 = "patrickvonplaten/t5-tiny-random"


104
105
106
107
108
@require_torch
class ModelTesterMixin:

    model_tester = None
    all_model_classes = ()
109
    all_generative_model_classes = ()
110
    fx_ready_model_classes = ()
111
    fx_dynamic_ready_model_classes = ()
Patrick von Platen's avatar
Patrick von Platen committed
112
113
114
    test_torchscript = True
    test_pruning = True
    test_resize_embeddings = True
115
    test_resize_position_embeddings = False
Patrick von Platen's avatar
Patrick von Platen committed
116
    test_head_masking = True
117
    test_mismatched_shapes = True
118
    test_missing_keys = True
119
    test_model_parallel = False
120
121
    is_encoder_decoder = False

122
123
    def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
        inputs_dict = copy.deepcopy(inputs_dict)
124
        if model_class in get_values(MODEL_FOR_MULTIPLE_CHOICE_MAPPING):
125
            inputs_dict = {
126
                k: v.unsqueeze(1).expand(-1, self.model_tester.num_choices, -1).contiguous()
127
                if isinstance(v, torch.Tensor) and v.ndim > 1
Sylvain Gugger's avatar
Sylvain Gugger committed
128
                else v
129
130
                for k, v in inputs_dict.items()
            }
131
132

        if return_labels:
133
            if model_class in get_values(MODEL_FOR_MULTIPLE_CHOICE_MAPPING):
134
                inputs_dict["labels"] = torch.ones(self.model_tester.batch_size, dtype=torch.long, device=torch_device)
135
            elif model_class in get_values(MODEL_FOR_QUESTION_ANSWERING_MAPPING):
136
137
138
139
140
141
                inputs_dict["start_positions"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
                inputs_dict["end_positions"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
142
            elif model_class in [
143
144
145
                *get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING),
                *get_values(MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING),
                *get_values(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING),
146
            ]:
147
148
149
150
                inputs_dict["labels"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
            elif model_class in [
151
152
153
154
                *get_values(MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING),
                *get_values(MODEL_FOR_CAUSAL_LM_MAPPING),
                *get_values(MODEL_FOR_MASKED_LM_MAPPING),
                *get_values(MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING),
155
156
157
158
            ]:
                inputs_dict["labels"] = torch.zeros(
                    (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device
                )
159
160
        return inputs_dict

Patrick von Platen's avatar
Patrick von Platen committed
161
    def test_save_load(self):
162
163
164
165
166
167
168
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
169
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
Weizhen's avatar
Weizhen committed
170

171
            out_2 = outputs[0].cpu().numpy()
172
            out_2[np.isnan(out_2)] = 0
173

174
            with tempfile.TemporaryDirectory() as tmpdirname:
175
176
                model.save_pretrained(tmpdirname)
                model = model_class.from_pretrained(tmpdirname)
177
                model.to(torch_device)
178
                with torch.no_grad():
179
                    after_outputs = model(**self._prepare_for_class(inputs_dict, model_class))
thomwolf's avatar
thomwolf committed
180

181
182
183
                # Make sure we don't have nans
                out_1 = after_outputs[0].cpu().numpy()
                out_1[np.isnan(out_1)] = 0
thomwolf's avatar
thomwolf committed
184
185
                max_diff = np.amax(np.abs(out_1 - out_2))
                self.assertLessEqual(max_diff, 1e-5)
186

187
    def test_save_load_keys_to_ignore_on_save(self):
188
189
190
191
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
192
193
            _keys_to_ignore_on_save = getattr(model, "_keys_to_ignore_on_save", None)
            if _keys_to_ignore_on_save is None:
194
195
196
                continue

            # check the keys are in the original state_dict
197
            for k in _keys_to_ignore_on_save:
198
                self.assertIn(k, model.state_dict().keys(), "\n".join(model.state_dict().keys()))
199
200
201
202
203
204

            # check that certain keys didn't get saved with the model
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                output_model_file = os.path.join(tmpdirname, WEIGHTS_NAME)
                state_dict_saved = torch.load(output_model_file)
205
                for k in _keys_to_ignore_on_save:
206
                    self.assertNotIn(k, state_dict_saved.keys(), "\n".join(state_dict_saved.keys()))
207

Sylvain Gugger's avatar
Sylvain Gugger committed
208
209
210
                # Test we can load the state dict in the model, necessary for the checkpointing API in Trainer.
                load_result = model.load_state_dict(state_dict_saved, strict=False)
                self.assertTrue(
211
212
                    len(load_result.missing_keys) == 0
                    or set(load_result.missing_keys) == set(model._keys_to_ignore_on_save)
Sylvain Gugger's avatar
Sylvain Gugger committed
213
214
215
                )
                self.assertTrue(len(load_result.unexpected_keys) == 0)

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
    def test_gradient_checkpointing_enable_disable(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if not model_class.supports_gradient_checkpointing:
                continue

            # at init model should have gradient checkpointing disabled
            model = model_class(config)
            self.assertFalse(model.is_gradient_checkpointing)

            # check enable works
            model.gradient_checkpointing_enable()
            self.assertTrue(model.is_gradient_checkpointing)

            # check disable works
            model.gradient_checkpointing_disable()
            self.assertFalse(model.is_gradient_checkpointing)

235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
    def _mock_init_weights(self, module):
        if hasattr(module, "weight") and module.weight is not None:
            module.weight.data.fill_(3)
        if hasattr(module, "bias") and module.bias is not None:
            module.bias.data.fill_(3)

    def test_save_load_fast_init_from_base(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        base_class = MODEL_MAPPING[config.__class__]

        if isinstance(base_class, tuple):
            base_class = base_class[0]

        for model_class in self.all_model_classes:
            if model_class == base_class:
                continue

            # make a copy of model class to not break future tests
            # from https://stackoverflow.com/questions/9541025/how-to-copy-a-python-class
            class CopyClass(model_class):
                pass

            model_class_copy = CopyClass

            # make sure that all keys are expected for test
            model_class_copy._keys_to_ignore_on_load_missing = []

            # make init deterministic, but make sure that
            # non-initialized weights throw errors nevertheless
            model_class_copy._init_weights = self._mock_init_weights

            model = base_class(config)
            state_dict = model.state_dict()

            # this will often delete a single weight of a multi-weight module
            # to test an edge case
            random_key_to_del = random.choice(list(state_dict.keys()))
            del state_dict[random_key_to_del]

            # check that certain keys didn't get saved with the model
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                torch.save(state_dict, os.path.join(tmpdirname, "pytorch_model.bin"))

                model_fast_init = model_class_copy.from_pretrained(tmpdirname)
                model_slow_init = model_class_copy.from_pretrained(tmpdirname, _fast_init=False)

                for key in model_fast_init.state_dict().keys():
                    max_diff = (model_slow_init.state_dict()[key] - model_fast_init.state_dict()[key]).sum().item()
                    self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")

    def test_save_load_fast_init_to_base(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        base_class = MODEL_MAPPING[config.__class__]

        if isinstance(base_class, tuple):
            base_class = base_class[0]

        for model_class in self.all_model_classes:

            if model_class == base_class:
                continue

            # make a copy of model class to not break future tests
            # from https://stackoverflow.com/questions/9541025/how-to-copy-a-python-class
            class CopyClass(base_class):
                pass

            base_class_copy = CopyClass

            # make sure that all keys are expected for test
            base_class_copy._keys_to_ignore_on_load_missing = []

            # make init deterministic, but make sure that
            # non-initialized weights throw errors nevertheless
            base_class_copy._init_weights = self._mock_init_weights

            model = model_class(config)
            state_dict = model.state_dict()

            # this will often delete a single weight of a multi-weight module
            # to test an edge case
            random_key_to_del = random.choice(list(state_dict.keys()))
            del state_dict[random_key_to_del]

            # check that certain keys didn't get saved with the model
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.config.save_pretrained(tmpdirname)
                torch.save(state_dict, os.path.join(tmpdirname, "pytorch_model.bin"))

                model_fast_init = base_class_copy.from_pretrained(tmpdirname)
                model_slow_init = base_class_copy.from_pretrained(tmpdirname, _fast_init=False)

                for key in model_fast_init.state_dict().keys():
                    max_diff = (model_slow_init.state_dict()[key] - model_fast_init.state_dict()[key]).sum().item()
                    self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")

Patrick von Platen's avatar
Patrick von Platen committed
332
    def test_initialization(self):
333
334
335
336
337
338
339
340
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        configs_no_init = _config_zero_init(config)
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            for name, param in model.named_parameters():
                if param.requires_grad:
                    self.assertIn(
Lysandre Debut's avatar
Lysandre Debut committed
341
                        ((param.data.mean() * 1e9).round() / 1e9).item(),
342
                        [0.0, 1.0],
343
                        msg=f"Parameter {name} of model {model_class} seems not properly initialized",
344
                    )
thomwolf's avatar
thomwolf committed
345

Patrick von Platen's avatar
Patrick von Platen committed
346
    def test_determinism(self):
347
348
349
350
351
352
353
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
354
355
                first = model(**self._prepare_for_class(inputs_dict, model_class))[0]
                second = model(**self._prepare_for_class(inputs_dict, model_class))[0]
Weizhen's avatar
Weizhen committed
356

357
358
359
360
361
362
363
            out_1 = first.cpu().numpy()
            out_2 = second.cpu().numpy()
            out_1 = out_1[~np.isnan(out_1)]
            out_2 = out_2[~np.isnan(out_2)]
            max_diff = np.amax(np.abs(out_1 - out_2))
            self.assertLessEqual(max_diff, 1e-5)

364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
    def test_forward_signature(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.forward)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

            if model.config.is_encoder_decoder:
                expected_arg_names = [
                    "input_ids",
                    "attention_mask",
                    "decoder_input_ids",
                    "decoder_attention_mask",
                ]
380
                expected_arg_names.extend(
381
382
                    ["head_mask", "decoder_head_mask", "cross_attn_head_mask", "encoder_outputs"]
                    if "head_mask" and "decoder_head_mask" and "cross_attn_head_mask" in arg_names
383
384
385
                    else ["encoder_outputs"]
                )
                self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names)
386
387
388
389
            else:
                expected_arg_names = ["input_ids"]
                self.assertListEqual(arg_names[:1], expected_arg_names)

390
391
392
393
394
    def test_training(self):
        if not self.model_tester.is_training:
            return

        for model_class in self.all_model_classes:
395
396
397
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
            config.return_dict = True

398
            if model_class in get_values(MODEL_MAPPING):
399
                continue
400

401
402
403
404
405
406
407
408
            model = model_class(config)
            model.to(torch_device)
            model.train()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            loss = model(**inputs).loss
            loss.backward()

    def test_training_gradient_checkpointing(self):
409
        if not self.model_tester.is_training:
410
411
412
            return

        for model_class in self.all_model_classes:
413
414
415
416
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
            config.use_cache = False
            config.return_dict = True

417
            if model_class in get_values(MODEL_MAPPING) or not model_class.supports_gradient_checkpointing:
418
419
420
421
422
423
424
425
                continue
            model = model_class(config)
            model.to(torch_device)
            model.train()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            loss = model(**inputs).loss
            loss.backward()

Patrick von Platen's avatar
Patrick von Platen committed
426
    def test_attention_outputs(self):
427
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
Weizhen's avatar
Weizhen committed
428
429
        config.return_dict = True

sshleifer's avatar
sshleifer committed
430
        seq_len = getattr(self.model_tester, "seq_length", None)
sshleifer's avatar
sshleifer committed
431
432
        decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len)
        encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", seq_len)
Weizhen's avatar
Weizhen committed
433
        decoder_key_length = getattr(self.model_tester, "decoder_key_length", decoder_seq_length)
434
        encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length)
Patrick von Platen's avatar
Patrick von Platen committed
435
436
437
        chunk_length = getattr(self.model_tester, "chunk_length", None)
        if chunk_length is not None and hasattr(self.model_tester, "num_hashes"):
            encoder_seq_length = encoder_seq_length * self.model_tester.num_hashes
438
439

        for model_class in self.all_model_classes:
440
            inputs_dict["output_attentions"] = True
Joseph Liu's avatar
Joseph Liu committed
441
            inputs_dict["output_hidden_states"] = False
442
            config.return_dict = True
443
444
445
446
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
447
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
448
            attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
449
450
451
452
453
454
455
456
457
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)

            # check that output_attentions also work using config
            del inputs_dict["output_attentions"]
            config.output_attentions = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
458
459
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
            attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
460
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
Patrick von Platen's avatar
Patrick von Platen committed
461
462
463
464
465
466
467
468
469
470
471

            if chunk_length is not None:
                self.assertListEqual(
                    list(attentions[0].shape[-4:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length],
                )
            else:
                self.assertListEqual(
                    list(attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
                )
472
            out_len = len(outputs)
thomwolf's avatar
thomwolf committed
473

474
            if self.is_encoder_decoder:
475
                correct_outlen = 5
476

477
478
479
480
                # loss is at first position
                if "labels" in inputs_dict:
                    correct_outlen += 1  # loss is added to beginning
                # Question Answering model returns start_logits and end_logits
481
                if model_class in get_values(MODEL_FOR_QUESTION_ANSWERING_MAPPING):
482
                    correct_outlen += 1  # start_logits and end_logits instead of only 1 output
483
484
                if "past_key_values" in outputs:
                    correct_outlen += 1  # past_key_values have been returned
Weizhen's avatar
Weizhen committed
485

Sam Shleifer's avatar
Sam Shleifer committed
486
487
                self.assertEqual(out_len, correct_outlen)

488
                # decoder attentions
489
                decoder_attentions = outputs.decoder_attentions
Sam Shleifer's avatar
Sam Shleifer committed
490
                self.assertIsInstance(decoder_attentions, (list, tuple))
491
                self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers)
thomwolf's avatar
thomwolf committed
492
                self.assertListEqual(
493
494
                    list(decoder_attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length],
495
                )
thomwolf's avatar
thomwolf committed
496

497
498
499
500
501
502
503
504
505
506
507
508
509
                # cross attentions
                cross_attentions = outputs.cross_attentions
                self.assertIsInstance(cross_attentions, (list, tuple))
                self.assertEqual(len(cross_attentions), self.model_tester.num_hidden_layers)
                self.assertListEqual(
                    list(cross_attentions[0].shape[-3:]),
                    [
                        self.model_tester.num_attention_heads,
                        decoder_seq_length,
                        encoder_key_length,
                    ],
                )

510
            # Check attention is always last and order is fine
511
            inputs_dict["output_attentions"] = True
Joseph Liu's avatar
Joseph Liu committed
512
            inputs_dict["output_hidden_states"] = True
513
514
515
516
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
517
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
518

Weizhen's avatar
Weizhen committed
519
520
521
522
523
524
525
526
            if hasattr(self.model_tester, "num_hidden_states_types"):
                added_hidden_states = self.model_tester.num_hidden_states_types
            elif self.is_encoder_decoder:
                added_hidden_states = 2
            else:
                added_hidden_states = 1
            self.assertEqual(out_len + added_hidden_states, len(outputs))

527
528
            self_attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions

529
            self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers)
Patrick von Platen's avatar
Patrick von Platen committed
530
531
532
533
534
535
536
537
538
539
            if chunk_length is not None:
                self.assertListEqual(
                    list(self_attentions[0].shape[-4:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length],
                )
            else:
                self.assertListEqual(
                    list(self_attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
                )
thomwolf's avatar
thomwolf committed
540

541
    @slow
Patrick von Platen's avatar
Patrick von Platen committed
542
    def test_torchscript(self):
543
544
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
545

546
    @slow
Patrick von Platen's avatar
Patrick von Platen committed
547
    def test_torchscript_output_attentions(self):
548
549
550
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_attentions = True
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
551

552
    @slow
Patrick von Platen's avatar
Patrick von Platen committed
553
    def test_torchscript_output_hidden_state(self):
554
555
556
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_hidden_states = True
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
557

558
    def _create_and_check_torchscript(self, config, inputs_dict):
Patrick von Platen's avatar
Patrick von Platen committed
559
        if not self.test_torchscript:
560
            return
561

562
563
564
565
566
567
        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        configs_no_init.torchscript = True
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            model.to(torch_device)
            model.eval()
568
            inputs = self._prepare_for_class(inputs_dict, model_class)
thomwolf's avatar
thomwolf committed
569

570
            try:
571
                if model.config.is_encoder_decoder:
572
                    model.config.use_cache = False  # FSTM still requires this hack -> FSTM should probably be refactored similar to BART afterward
573
574
575
576
577
578
579
580
581
582
                    input_ids = inputs["input_ids"]
                    attention_mask = inputs["attention_mask"]
                    decoder_input_ids = inputs["decoder_input_ids"]
                    decoder_attention_mask = inputs["decoder_attention_mask"]
                    traced_model = torch.jit.trace(
                        model, (input_ids, attention_mask, decoder_input_ids, decoder_attention_mask)
                    )
                else:
                    input_ids = inputs["input_ids"]
                    traced_model = torch.jit.trace(model, input_ids)
583
584
            except RuntimeError:
                self.fail("Couldn't trace module.")
thomwolf's avatar
thomwolf committed
585

586
            with tempfile.TemporaryDirectory() as tmp_dir_name:
587
                pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt")
thomwolf's avatar
thomwolf committed
588

589
                try:
590
                    torch.jit.save(traced_model, pt_file_name)
591
592
                except Exception:
                    self.fail("Couldn't save module.")
thomwolf's avatar
thomwolf committed
593

594
595
596
597
                try:
                    loaded_model = torch.jit.load(pt_file_name)
                except Exception:
                    self.fail("Couldn't load module.")
LysandreJik's avatar
LysandreJik committed
598

599
600
            model.to(torch_device)
            model.eval()
thomwolf's avatar
thomwolf committed
601

602
603
            loaded_model.to(torch_device)
            loaded_model.eval()
thomwolf's avatar
thomwolf committed
604

605
606
607
            model_state_dict = model.state_dict()
            loaded_model_state_dict = loaded_model.state_dict()

608
609
610
611
612
613
614
615
616
            non_persistent_buffers = {}
            for key in loaded_model_state_dict.keys():
                if key not in model_state_dict.keys():
                    non_persistent_buffers[key] = loaded_model_state_dict[key]

            loaded_model_state_dict = {
                key: value for key, value in loaded_model_state_dict.items() if key not in non_persistent_buffers
            }

617
            self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys()))
thomwolf's avatar
thomwolf committed
618

619
620
621
622
623
624
625
626
627
628
629
            model_buffers = list(model.buffers())
            for non_persistent_buffer in non_persistent_buffers.values():
                found_buffer = False
                for i, model_buffer in enumerate(model_buffers):
                    if torch.equal(non_persistent_buffer, model_buffer):
                        found_buffer = True
                        break

                self.assertTrue(found_buffer)
                model_buffers.pop(i)

630
            models_equal = True
631
            for layer_name, p1 in model_state_dict.items():
632
633
634
635
                if layer_name in loaded_model_state_dict:
                    p2 = loaded_model_state_dict[layer_name]
                    if p1.data.ne(p2.data).sum() > 0:
                        models_equal = False
thomwolf's avatar
thomwolf committed
636

637
            self.assertTrue(models_equal)
thomwolf's avatar
thomwolf committed
638

639
640
641
642
643
644
645
646
    def test_torch_fx(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        self._create_and_check_torch_fx_tracing(config, inputs_dict)

    def test_torch_fx_output_loss(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        self._create_and_check_torch_fx_tracing(config, inputs_dict, output_loss=True)

647
648
649
650
651
    def test_torch_fx_dynamic_axes(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        self._create_and_check_torch_fx_tracing(config, inputs_dict, dynamic_axes=True)

    def _create_and_check_torch_fx_tracing(self, config, inputs_dict, output_loss=False, dynamic_axes=False):
652
653
654
655
656
657
        if not is_torch_fx_available():
            return

        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        configs_no_init.return_dict = False

658
659
        model_classes = self.fx_ready_model_classes if not dynamic_axes else self.fx_dynamic_ready_model_classes
        for model_class in model_classes:
660
661
662
663
664
665
666
667
668
669
670
671
672
673
            model = model_class(config=configs_no_init)
            model.to(torch_device)
            model.eval()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=output_loss)

            try:
                if model.config.is_encoder_decoder:
                    model.config.use_cache = False  # FSTM still requires this hack -> FSTM should probably be refactored similar to BART afterward
                    input_ids = inputs["input_ids"]
                    decoder_attention_mask = inputs["decoder_attention_mask"]
                    labels = inputs.get("labels", None)
                    input_names = ["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask"]
                    if labels is not None:
                        input_names.append("labels")
674
                    filtered_inputs = {k: v for (k, v) in inputs.items() if k in input_names}
675

676
                    model_output = model(**filtered_inputs)
677
678
679
680
681
682
683
684

                    batch_size = input_ids.shape[0]
                    encoder_sequence_length = input_ids.shape[1]
                    decoder_sequence_length = decoder_attention_mask.shape[1]

                    traced_model = symbolic_trace(
                        model,
                        input_names,
685
686
                        batch_size=batch_size if not dynamic_axes else -1,
                        sequence_length=[encoder_sequence_length, decoder_sequence_length] if not dynamic_axes else -1,
687
688
                    )

689
                    traced_output = traced_model(**filtered_inputs)
690
                else:
691
                    input_names = ["input_ids", "attention_mask", "token_type_ids"]
692
                    input_ids = inputs["input_ids"]
693

694
                    labels = inputs.get("labels", None)
695
696
                    start_positions = inputs.get("start_positions", None)
                    end_positions = inputs.get("end_positions", None)
697
698
                    if labels is not None:
                        input_names.append("labels")
699
700
701
702
                    if start_positions is not None:
                        input_names.append("start_positions")
                    if end_positions is not None:
                        input_names.append("end_positions")
703

704
705
                    filtered_inputs = {k: v for (k, v) in inputs.items() if k in input_names}
                    input_names = filtered_inputs.keys()
706

707
                    model_output = model(**filtered_inputs)
708

709
710
711
                    rank = len(input_ids.shape)
                    if rank == 2:
                        batch_size, sequence_length = input_ids.shape
712
                        num_choices = -1
713
714
715
716
717
718
                    elif rank == 3:
                        batch_size, num_choices, sequence_length = input_ids.shape
                    else:
                        raise NotImplementedError(
                            f"symbolic_trace automatic parameters inference not implemented for input of rank {rank}."
                        )
719
720
721
722

                    traced_model = symbolic_trace(
                        model,
                        input_names,
723
724
                        batch_size=batch_size if not dynamic_axes else -1,
                        sequence_length=sequence_length if not dynamic_axes else -1,
725
726
                        num_choices=num_choices,
                    )
727
                    traced_output = traced_model(**filtered_inputs)
728
729
730
731

            except RuntimeError:
                self.fail("Couldn't trace module.")

732
733
734
735
736
737
738
739
740
741
742
743
744
            def flatten_output(output):
                flatten = []
                for x in output:
                    if isinstance(x, (tuple, list)):
                        flatten += flatten_output(x)
                    elif not isinstance(x, torch.Tensor):
                        continue
                    else:
                        flatten.append(x)
                return flatten

            model_output = flatten_output(model_output)
            traced_output = flatten_output(traced_output)
745
            num_outputs = len(model_output)
746
747
748
749
750
751

            for i in range(num_outputs):
                self.assertTrue(
                    torch.allclose(model_output[i], traced_output[i]),
                    f"traced {i}th output doesn't match model {i}th output for {model_class}",
                )
752

Patrick von Platen's avatar
Patrick von Platen committed
753
754
    def test_headmasking(self):
        if not self.test_head_masking:
755
            return
756

757
758
759
        global_rng.seed(42)
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        global_rng.seed()
LysandreJik's avatar
LysandreJik committed
760

761
        inputs_dict["output_attentions"] = True
762
763
764
765
766
767
        config.output_hidden_states = True
        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            model.to(torch_device)
            model.eval()
LysandreJik's avatar
LysandreJik committed
768

769
770
771
            # Prepare head_mask
            # Set require_grad after having prepared the tensor to avoid error (leaf variable has been moved into the graph interior)
            head_mask = torch.ones(
Lysandre's avatar
Lysandre committed
772
773
774
                self.model_tester.num_hidden_layers,
                self.model_tester.num_attention_heads,
                device=torch_device,
775
776
777
778
            )
            head_mask[0, 0] = 0
            head_mask[-1, :-1] = 0
            head_mask.requires_grad_(requires_grad=True)
779
            inputs = self._prepare_for_class(inputs_dict, model_class).copy()
780
            inputs["head_mask"] = head_mask
781
782
783
784
785
            if model.config.is_encoder_decoder:
                signature = inspect.signature(model.forward)
                arg_names = [*signature.parameters.keys()]
                if "decoder_head_mask" in arg_names:  # necessary diferentiation because of T5 model
                    inputs["decoder_head_mask"] = head_mask
786
787
                if "cross_attn_head_mask" in arg_names:
                    inputs["cross_attn_head_mask"] = head_mask
788
            outputs = model(**inputs, return_dict=True)
789
790
791
792
793
794
795
796
797

            # Test that we can get a gradient back for importance score computation
            output = sum(t.sum() for t in outputs[0])
            output = output.sum()
            output.backward()
            multihead_outputs = head_mask.grad

            self.assertIsNotNone(multihead_outputs)
            self.assertEqual(len(multihead_outputs), self.model_tester.num_hidden_layers)
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818

            def check_attentions_validity(attentions):
                # Remove Nan
                for t in attentions:
                    self.assertLess(
                        torch.sum(torch.isnan(t)), t.numel() / 4
                    )  # Check we don't have more than 25% nans (arbitrary)
                attentions = [
                    t.masked_fill(torch.isnan(t), 0.0) for t in attentions
                ]  # remove them (the test is less complete)

                self.assertAlmostEqual(attentions[0][..., 0, :, :].flatten().sum().item(), 0.0)
                self.assertNotEqual(attentions[0][..., -1, :, :].flatten().sum().item(), 0.0)
                if len(attentions) > 2:  # encoder-decoder models have only 2 layers in each module
                    self.assertNotEqual(attentions[1][..., 0, :, :].flatten().sum().item(), 0.0)
                self.assertAlmostEqual(attentions[-1][..., -2, :, :].flatten().sum().item(), 0.0)
                self.assertNotEqual(attentions[-1][..., -1, :, :].flatten().sum().item(), 0.0)

            if model.config.is_encoder_decoder:
                check_attentions_validity(outputs.encoder_attentions)
                check_attentions_validity(outputs.decoder_attentions)
819
                check_attentions_validity(outputs.cross_attentions)
820
821
            else:
                check_attentions_validity(outputs.attentions)
822

Patrick von Platen's avatar
Patrick von Platen committed
823
824
    def test_head_pruning(self):
        if not self.test_pruning:
825
826
827
            return

        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
828
829
830
831
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
832

833
834
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
835

836
            inputs_dict["output_attentions"] = True
837
838
839
840
            config.output_hidden_states = False
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
841
842
843
844
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
845
846
            model.prune_heads(heads_to_prune)
            with torch.no_grad():
847
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
848

849
            attentions = outputs[-1]
850

851
852
853
            self.assertEqual(attentions[0].shape[-3], 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
LysandreJik's avatar
LysandreJik committed
854

Patrick von Platen's avatar
Patrick von Platen committed
855
856
    def test_head_pruning_save_load_from_pretrained(self):
        if not self.test_pruning:
857
            return
LysandreJik's avatar
LysandreJik committed
858

859
        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
860
861
862
863
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
864
865
866

            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
867

868
            inputs_dict["output_attentions"] = True
869
870
871
872
            config.output_hidden_states = False
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
873
874
875
876
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
877
            model.prune_heads(heads_to_prune)
878

879
            with tempfile.TemporaryDirectory() as temp_dir_name:
880
881
                model.save_pretrained(temp_dir_name)
                model = model_class.from_pretrained(temp_dir_name)
882
                model.to(torch_device)
883

884
            with torch.no_grad():
885
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
886
887
888
889
            attentions = outputs[-1]
            self.assertEqual(attentions[0].shape[-3], 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
890

Patrick von Platen's avatar
Patrick von Platen committed
891
892
    def test_head_pruning_save_load_from_config_init(self):
        if not self.test_pruning:
893
            return
894

895
        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
896
897
898
899
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
900

901
902
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
903

904
            inputs_dict["output_attentions"] = True
905
            config.output_hidden_states = False
906

907
908
909
910
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
911
            config.pruned_heads = heads_to_prune
912

913
914
915
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
916

917
            with torch.no_grad():
918
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
919
            attentions = outputs[-1]
920

921
922
923
            self.assertEqual(attentions[0].shape[-3], 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
924

Patrick von Platen's avatar
Patrick von Platen committed
925
926
    def test_head_pruning_integration(self):
        if not self.test_pruning:
927
            return
928

929
        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
930
931
932
933
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
934

935
936
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
937

938
            inputs_dict["output_attentions"] = True
939
            config.output_hidden_states = False
940

941
942
            heads_to_prune = {0: [0], 1: [1, 2]}
            config.pruned_heads = heads_to_prune
943

944
945
946
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
947

948
            with torch.no_grad():
949
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
950
            attentions = outputs[-1]
951

952
953
954
955
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads)
thomwolf's avatar
thomwolf committed
956

957
            with tempfile.TemporaryDirectory() as temp_dir_name:
958
959
                model.save_pretrained(temp_dir_name)
                model = model_class.from_pretrained(temp_dir_name)
960
                model.to(torch_device)
thomwolf's avatar
thomwolf committed
961

962
            with torch.no_grad():
963
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
964
            attentions = outputs[-1]
LysandreJik's avatar
LysandreJik committed
965

966
967
968
969
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads)
thomwolf's avatar
thomwolf committed
970

971
972
            heads_to_prune = {0: [0], 2: [1, 2]}
            model.prune_heads(heads_to_prune)
973

974
            with torch.no_grad():
975
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
976
            attentions = outputs[-1]
977

978
979
980
981
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads)
982

983
            self.assertDictEqual(model.config.pruned_heads, {0: [0], 1: [1, 2], 2: [1, 2]})
thomwolf's avatar
thomwolf committed
984

Patrick von Platen's avatar
Patrick von Platen committed
985
    def test_hidden_states_output(self):
Joseph Liu's avatar
Joseph Liu committed
986
        def check_hidden_states_output(inputs_dict, config, model_class):
987
            model = model_class(config)
988
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
989
            model.eval()
Joseph Liu's avatar
Joseph Liu committed
990

thomwolf's avatar
thomwolf committed
991
            with torch.no_grad():
992
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
993
994

            hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
Patrick von Platen's avatar
Patrick von Platen committed
995

Sylvain Gugger's avatar
Sylvain Gugger committed
996
997
998
999
            expected_num_layers = getattr(
                self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
            )
            self.assertEqual(len(hidden_states), expected_num_layers)
1000

Patrick von Platen's avatar
Patrick von Platen committed
1001
1002
1003
1004
1005
1006
1007
            if hasattr(self.model_tester, "encoder_seq_length"):
                seq_length = self.model_tester.encoder_seq_length
                if hasattr(self.model_tester, "chunk_length") and self.model_tester.chunk_length > 1:
                    seq_length = seq_length * self.model_tester.chunk_length
            else:
                seq_length = self.model_tester.seq_length

1008
            self.assertListEqual(
Lysandre's avatar
Lysandre committed
1009
1010
                list(hidden_states[0].shape[-2:]),
                [seq_length, self.model_tester.hidden_size],
1011
            )
thomwolf's avatar
thomwolf committed
1012

1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
            if config.is_encoder_decoder:
                hidden_states = outputs.decoder_hidden_states

                self.assertIsInstance(hidden_states, (list, tuple))
                self.assertEqual(len(hidden_states), expected_num_layers)
                seq_len = getattr(self.model_tester, "seq_length", None)
                decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len)

                self.assertListEqual(
                    list(hidden_states[0].shape[-2:]),
                    [decoder_seq_length, self.model_tester.hidden_size],
                )

Joseph Liu's avatar
Joseph Liu committed
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            inputs_dict["output_hidden_states"] = True
            check_hidden_states_output(inputs_dict, config, model_class)

            # check that output_hidden_states also work using config
            del inputs_dict["output_hidden_states"]
            config.output_hidden_states = True

            check_hidden_states_output(inputs_dict, config, model_class)

1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
    def test_retain_grad_hidden_states_attentions(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_hidden_states = True
        config.output_attentions = True

        # no need to test all models as different heads yield the same functionality
        model_class = self.all_model_classes[0]
        model = model_class(config)
        model.to(torch_device)

        inputs = self._prepare_for_class(inputs_dict, model_class)

        outputs = model(**inputs)
1051

1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
        output = outputs[0]

        if config.is_encoder_decoder:
            # Seq2Seq models
            encoder_hidden_states = outputs.encoder_hidden_states[0]
            encoder_attentions = outputs.encoder_attentions[0]
            encoder_hidden_states.retain_grad()
            encoder_attentions.retain_grad()

            decoder_hidden_states = outputs.decoder_hidden_states[0]
            decoder_attentions = outputs.decoder_attentions[0]
            decoder_hidden_states.retain_grad()
            decoder_attentions.retain_grad()

            cross_attentions = outputs.cross_attentions[0]
            cross_attentions.retain_grad()

            output.flatten()[0].backward(retain_graph=True)

            self.assertIsNotNone(encoder_hidden_states.grad)
            self.assertIsNotNone(encoder_attentions.grad)
            self.assertIsNotNone(decoder_hidden_states.grad)
            self.assertIsNotNone(decoder_attentions.grad)
            self.assertIsNotNone(cross_attentions.grad)
        else:
            # Encoder-/Decoder-only models
            hidden_states = outputs.hidden_states[0]
            attentions = outputs.attentions[0]

            hidden_states.retain_grad()
            attentions.retain_grad()

            output.flatten()[0].backward(retain_graph=True)

            self.assertIsNotNone(hidden_states.grad)
            self.assertIsNotNone(attentions.grad)

Pradhy729's avatar
Pradhy729 committed
1089
    def test_feed_forward_chunking(self):
Lysandre's avatar
Lysandre committed
1090
1091
1092
1093
        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()
Pradhy729's avatar
Pradhy729 committed
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
        for model_class in self.all_model_classes:
            torch.manual_seed(0)
            config = copy.deepcopy(original_config)
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            hidden_states_no_chunk = model(**self._prepare_for_class(inputs_dict, model_class))[0]

            torch.manual_seed(0)
            config.chunk_size_feed_forward = 1
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            hidden_states_with_chunk = model(**self._prepare_for_class(inputs_dict, model_class))[0]
            self.assertTrue(torch.allclose(hidden_states_no_chunk, hidden_states_with_chunk, atol=1e-3))

1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
    def test_resize_position_vector_embeddings(self):
        if not self.test_resize_position_embeddings:
            return

        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            config = copy.deepcopy(original_config)
            model = model_class(config)
            model.to(torch_device)

            if self.model_tester.is_training is False:
                model.eval()

            max_position_embeddings = config.max_position_embeddings

            # Retrieve the embeddings and clone theme
            if model.config.is_encoder_decoder:
                encoder_model_embed, decoder_model_embed = model.get_position_embeddings()
                encoder_cloned_embeddings = encoder_model_embed.weight.clone()
                decoder_cloned_embeddings = decoder_model_embed.weight.clone()
            else:
                model_embed = model.get_position_embeddings()
                cloned_embeddings = model_embed.weight.clone()

            # Check that resizing the position embeddings with a larger max_position_embeddings increases
            # the model's postion embeddings size
            model.resize_position_embeddings(max_position_embeddings + 10)
            self.assertEqual(model.config.max_position_embeddings, max_position_embeddings + 10)

            # Check that it actually resizes the embeddings matrix
            if model.config.is_encoder_decoder:
                encoder_model_embed, decoder_model_embed = model.get_position_embeddings()
                self.assertEqual(encoder_model_embed.weight.shape[0], encoder_cloned_embeddings.shape[0] + 10)
                self.assertEqual(decoder_model_embed.weight.shape[0], decoder_cloned_embeddings.shape[0] + 10)
            else:
                model_embed = model.get_position_embeddings()
                self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10)

            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**self._prepare_for_class(inputs_dict, model_class))

            # Check that resizing the position embeddings with a smaller max_position_embeddings decreases
            # the model's max_position_embeddings
            model.resize_position_embeddings(max_position_embeddings - 5)
            self.assertEqual(model.config.max_position_embeddings, max_position_embeddings - 5)

            # Check that it actually resizes the embeddings matrix
            if model.config.is_encoder_decoder:
                encoder_model_embed, decoder_model_embed = model.get_position_embeddings()
                self.assertEqual(encoder_model_embed.weight.shape[0], encoder_cloned_embeddings.shape[0] - 5)
                self.assertEqual(decoder_model_embed.weight.shape[0], decoder_cloned_embeddings.shape[0] - 5)
            else:
                model_embed = model.get_position_embeddings()
                self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 5)

            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**self._prepare_for_class(inputs_dict, model_class))

            # Check that adding and removing tokens has not modified the first part of the embedding matrix.
            models_equal = True

            if model.config.is_encoder_decoder:
                for p1, p2 in zip(encoder_cloned_embeddings, encoder_model_embed.weight):
                    if p1.data.ne(p2.data).sum() > 0:
                        models_equal = False
                for p1, p2 in zip(decoder_cloned_embeddings, decoder_model_embed.weight):
                    if p1.data.ne(p2.data).sum() > 0:
                        models_equal = False
            else:
                for p1, p2 in zip(cloned_embeddings, model_embed.weight):
                    if p1.data.ne(p2.data).sum() > 0:
                        models_equal = False

            self.assertTrue(models_equal)

Patrick von Platen's avatar
Patrick von Platen committed
1191
    def test_resize_tokens_embeddings(self):
Lysandre's avatar
Lysandre committed
1192
1193
1194
1195
        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()
Patrick von Platen's avatar
Patrick von Platen committed
1196
        if not self.test_resize_embeddings:
1197
1198
1199
1200
1201
            return

        for model_class in self.all_model_classes:
            config = copy.deepcopy(original_config)
            model = model_class(config)
1202
            model.to(torch_device)
1203

Patrick von Platen's avatar
Patrick von Platen committed
1204
1205
1206
            if self.model_tester.is_training is False:
                model.eval()

1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
            model_vocab_size = config.vocab_size
            # Retrieve the embeddings and clone theme
            model_embed = model.resize_token_embeddings(model_vocab_size)
            cloned_embeddings = model_embed.weight.clone()

            # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
            model_embed = model.resize_token_embeddings(model_vocab_size + 10)
            self.assertEqual(model.config.vocab_size, model_vocab_size + 10)
            # Check that it actually resizes the embeddings matrix
            self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10)
1217
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
1218
            model(**self._prepare_for_class(inputs_dict, model_class))
1219
1220
1221
1222
1223
1224
1225

            # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
            model_embed = model.resize_token_embeddings(model_vocab_size - 15)
            self.assertEqual(model.config.vocab_size, model_vocab_size - 15)
            # Check that it actually resizes the embeddings matrix
            self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 15)

1226
1227
1228
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            # Input ids should be clamped to the maximum size of the vocabulary
            inputs_dict["input_ids"].clamp_(max=model_vocab_size - 15 - 1)
1229
1230
1231
1232

            # make sure that decoder_input_ids are resized as well
            if "decoder_input_ids" in inputs_dict:
                inputs_dict["decoder_input_ids"].clamp_(max=model_vocab_size - 15 - 1)
1233
            model(**self._prepare_for_class(inputs_dict, model_class))
1234

1235
1236
1237
1238
1239
1240
1241
1242
            # Check that adding and removing tokens has not modified the first part of the embedding matrix.
            models_equal = True
            for p1, p2 in zip(cloned_embeddings, model_embed.weight):
                if p1.data.ne(p2.data).sum() > 0:
                    models_equal = False

            self.assertTrue(models_equal)

1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
    def test_resize_embeddings_untied(self):
        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()
        if not self.test_resize_embeddings:
            return

        original_config.tie_word_embeddings = False

        # if model cannot untied embeddings -> leave test
        if original_config.tie_word_embeddings:
            return

        for model_class in self.all_model_classes:
            config = copy.deepcopy(original_config)
            model = model_class(config).to(torch_device)

            # if no output embeddings -> leave test
            if model.get_output_embeddings() is None:
                continue

            # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
            model_vocab_size = config.vocab_size
            model.resize_token_embeddings(model_vocab_size + 10)
            self.assertEqual(model.config.vocab_size, model_vocab_size + 10)
            output_embeds = model.get_output_embeddings()
            self.assertEqual(output_embeds.weight.shape[0], model_vocab_size + 10)
            # Check bias if present
            if output_embeds.bias is not None:
                self.assertEqual(output_embeds.bias.shape[0], model_vocab_size + 10)
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**self._prepare_for_class(inputs_dict, model_class))

            # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
            model.resize_token_embeddings(model_vocab_size - 15)
            self.assertEqual(model.config.vocab_size, model_vocab_size - 15)
            # Check that it actually resizes the embeddings matrix
            output_embeds = model.get_output_embeddings()
            self.assertEqual(output_embeds.weight.shape[0], model_vocab_size - 15)
            # Check bias if present
            if output_embeds.bias is not None:
                self.assertEqual(output_embeds.bias.shape[0], model_vocab_size - 15)
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            # Input ids should be clamped to the maximum size of the vocabulary
            inputs_dict["input_ids"].clamp_(max=model_vocab_size - 15 - 1)
            if "decoder_input_ids" in inputs_dict:
                inputs_dict["decoder_input_ids"].clamp_(max=model_vocab_size - 15 - 1)
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**self._prepare_for_class(inputs_dict, model_class))

Patrick von Platen's avatar
Patrick von Platen committed
1294
    def test_model_common_attributes(self):
1295
1296
1297
1298
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
1299
1300
            self.assertIsInstance(model.get_input_embeddings(), (nn.Embedding, AdaptiveEmbedding))
            model.set_input_embeddings(nn.Embedding(10, 10))
1301
            x = model.get_output_embeddings()
1302
            self.assertTrue(x is None or isinstance(x, nn.Linear))
1303

1304
    def test_correct_missing_keys(self):
1305
1306
        if not self.test_missing_keys:
            return
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            base_model_prefix = model.base_model_prefix

            if hasattr(model, base_model_prefix):
                with tempfile.TemporaryDirectory() as temp_dir_name:
                    model.base_model.save_pretrained(temp_dir_name)
                    model, loading_info = model_class.from_pretrained(temp_dir_name, output_loading_info=True)
1317
                    with self.subTest(msg=f"Missing keys for {model.__class__.__name__}"):
1318
1319
                        self.assertGreater(len(loading_info["missing_keys"]), 0)

1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
    def test_tie_model_weights(self):
        if not self.test_torchscript:
            return

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        def check_same_values(layer_1, layer_2):
            equal = True
            for p1, p2 in zip(layer_1.weight, layer_2.weight):
                if p1.data.ne(p2.data).sum() > 0:
                    equal = False
            return equal

        for model_class in self.all_model_classes:
            config.torchscript = True
            model_not_tied = model_class(config)
            if model_not_tied.get_output_embeddings() is None:
                continue

            config_tied = copy.deepcopy(config)
            config_tied.torchscript = False
            model_tied = model_class(config_tied)
            params_tied = list(model_tied.parameters())
            # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(check_same_values(embeddings, decoding))

            # # Check that after modification, they remain the same.
            # embeddings.weight.data.div_(2)
            # # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(embeddings.weight.shape, decoding.weight.shape)
            # self.assertTrue(check_same_values(embeddings, decoding))

            # # Check that after modification, they remain the same.
            # decoding.weight.data.div_(4)
            # # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(embeddings.weight.shape, decoding.weight.shape)
            # self.assertTrue(check_same_values(embeddings, decoding))

            # Check that after resize they remain tied.
            model_tied.resize_token_embeddings(config.vocab_size + 10)
            params_tied_2 = list(model_tied.parameters())
            self.assertEqual(len(params_tied_2), len(params_tied))

            # decoding.weight.data.mul_(20)
            # # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(model.transformer.wte.weight.shape, model.lm_head.weight.shape)
            # self.assertTrue(check_same_values(model.transformer.wte, model.lm_head))

1368
1369
1370
    def test_model_outputs_equivalence(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

Sam Shleifer's avatar
Sam Shleifer committed
1371
1372
1373
1374
        def set_nan_tensor_to_zero(t):
            t[t != t] = 0
            return t

1375
1376
1377
1378
1379
1380
1381
1382
1383
        def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}):
            with torch.no_grad():
                tuple_output = model(**tuple_inputs, return_dict=False, **additional_kwargs)
                dict_output = model(**dict_inputs, return_dict=True, **additional_kwargs).to_tuple()

                def recursive_check(tuple_object, dict_object):
                    if isinstance(tuple_object, (List, Tuple)):
                        for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object):
                            recursive_check(tuple_iterable_value, dict_iterable_value)
NielsRogge's avatar
NielsRogge committed
1384
1385
1386
1387
1388
                    elif isinstance(tuple_object, Dict):
                        for tuple_iterable_value, dict_iterable_value in zip(
                            tuple_object.values(), dict_object.values()
                        ):
                            recursive_check(tuple_iterable_value, dict_iterable_value)
1389
1390
1391
1392
                    elif tuple_object is None:
                        return
                    else:
                        self.assertTrue(
Sam Shleifer's avatar
Sam Shleifer committed
1393
1394
1395
                            torch.allclose(
                                set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5
                            ),
1396
                            msg=f"Tuple and dict output are not equal. Difference: {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`: {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}.",
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
                        )

                recursive_check(tuple_output, dict_output)

        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(
                model, tuple_inputs, dict_inputs, {"output_hidden_states": True, "output_attentions": True}
            )

1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
    @is_pt_tf_cross_test
    def test_pt_tf_model_equivalence(self):
        import numpy as np
        import tensorflow as tf

        import transformers

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            tf_model_class_name = "TF" + model_class.__name__  # Add the "TF" at the beginning

            if not hasattr(transformers, tf_model_class_name):
                # transformers does not have TF version yet
                return

            tf_model_class = getattr(transformers, tf_model_class_name)

            config.output_hidden_states = True

            tf_model = tf_model_class(config)
            pt_model = model_class(config)

            # make sure only tf inputs are forward that actually exist in function args
            tf_input_keys = set(inspect.signature(tf_model.call).parameters.keys())

            # remove all head masks
            tf_input_keys.discard("head_mask")
            tf_input_keys.discard("cross_attn_head_mask")
            tf_input_keys.discard("decoder_head_mask")

            pt_inputs = self._prepare_for_class(inputs_dict, model_class)
            pt_inputs = {k: v for k, v in pt_inputs.items() if k in tf_input_keys}

            # Check predictions on first output (logits/hidden-states) are close enought given low-level computational differences
            pt_model.eval()
            tf_inputs_dict = {}
            for key, tensor in pt_inputs.items():
                # skip key that does not exist in tf
                if type(tensor) == bool:
                    tf_inputs_dict[key] = tensor
                elif key == "input_values":
                    tf_inputs_dict[key] = tf.convert_to_tensor(tensor.numpy(), dtype=tf.float32)
                else:
                    tf_inputs_dict[key] = tf.convert_to_tensor(tensor.numpy(), dtype=tf.int32)

            # Check we can load pt model in tf and vice-versa with model => model functions
            tf_model = transformers.load_pytorch_model_in_tf2_model(tf_model, pt_model, tf_inputs=tf_inputs_dict)
            pt_model = transformers.load_tf2_model_in_pytorch_model(pt_model, tf_model)

            # need to rename encoder-decoder "inputs" for PyTorch
            #            if "inputs" in pt_inputs_dict and self.is_encoder_decoder:
            #                pt_inputs_dict["input_ids"] = pt_inputs_dict.pop("inputs")

            with torch.no_grad():
                pto = pt_model(**pt_inputs)
            tfo = tf_model(tf_inputs_dict, training=False)

            tf_hidden_states = tfo[0].numpy()
            pt_hidden_states = pto[0].numpy()

            tf_nans = np.copy(np.isnan(tf_hidden_states))
            pt_nans = np.copy(np.isnan(pt_hidden_states))

            pt_hidden_states[tf_nans] = 0
            tf_hidden_states[tf_nans] = 0
            pt_hidden_states[pt_nans] = 0
            tf_hidden_states[pt_nans] = 0

            max_diff = np.amax(np.abs(tf_hidden_states - pt_hidden_states))
            self.assertLessEqual(max_diff, 4e-2)

            # Check we can load pt model in tf and vice-versa with checkpoint => model functions
            with tempfile.TemporaryDirectory() as tmpdirname:
                pt_checkpoint_path = os.path.join(tmpdirname, "pt_model.bin")
                torch.save(pt_model.state_dict(), pt_checkpoint_path)
                tf_model = transformers.load_pytorch_checkpoint_in_tf2_model(tf_model, pt_checkpoint_path)

                tf_checkpoint_path = os.path.join(tmpdirname, "tf_model.h5")
                tf_model.save_weights(tf_checkpoint_path)
                pt_model = transformers.load_tf2_checkpoint_in_pytorch_model(pt_model, tf_checkpoint_path)

            # Check predictions on first output (logits/hidden-states) are close enought given low-level computational differences
            pt_model.eval()
            tf_inputs_dict = {}
            for key, tensor in pt_inputs.items():
                # skip key that does not exist in tf
                if type(tensor) == bool:
                    tensor = np.array(tensor, dtype=bool)
                    tf_inputs_dict[key] = tf.convert_to_tensor(tensor, dtype=tf.int32)
                elif key == "input_values":
                    tf_inputs_dict[key] = tf.convert_to_tensor(tensor.numpy(), dtype=tf.float32)
                else:
                    tf_inputs_dict[key] = tf.convert_to_tensor(tensor.numpy(), dtype=tf.int32)

            # need to rename encoder-decoder "inputs" for PyTorch
            #            if "inputs" in pt_inputs_dict and self.is_encoder_decoder:
            #                pt_inputs_dict["input_ids"] = pt_inputs_dict.pop("inputs")

            with torch.no_grad():
                pto = pt_model(**pt_inputs)

            tfo = tf_model(tf_inputs_dict)
            tfo = tfo[0].numpy()
            pto = pto[0].numpy()
            tf_nans = np.copy(np.isnan(tfo))
            pt_nans = np.copy(np.isnan(pto))

            pto[tf_nans] = 0
            tfo[tf_nans] = 0
            pto[pt_nans] = 0
            tfo[pt_nans] = 0

            max_diff = np.amax(np.abs(tfo - pto))
            self.assertLessEqual(max_diff, 4e-2)

    def assert_almost_equals(self, a: np.ndarray, b: np.ndarray, tol: float):
        diff = np.abs((a - b)).max()
        self.assertLessEqual(diff, tol, f"Difference between torch and flax is {diff} (>= {tol}).")

    @is_pt_flax_cross_test
    def test_equivalence_pt_to_flax(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            with self.subTest(model_class.__name__):

                # load PyTorch class
                pt_model = model_class(config).eval()
                # Flax models don't use the `use_cache` option and cache is not returned as a default.
                # So we disable `use_cache` here for PyTorch model.
                pt_model.config.use_cache = False

                fx_model_class_name = "Flax" + model_class.__name__

                if not hasattr(transformers, fx_model_class_name):
                    return

                fx_model_class = getattr(transformers, fx_model_class_name)

                # load Flax class
                fx_model = fx_model_class(config, dtype=jnp.float32)
                # make sure only flax inputs are forward that actually exist in function args
                fx_input_keys = inspect.signature(fx_model.__call__).parameters.keys()

                # prepare inputs
                pt_inputs = self._prepare_for_class(inputs_dict, model_class)

                # remove function args that don't exist in Flax
                pt_inputs = {k: v for k, v in pt_inputs.items() if k in fx_input_keys}

                fx_state = convert_pytorch_state_dict_to_flax(pt_model.state_dict(), fx_model)
                fx_model.params = fx_state

                with torch.no_grad():
                    pt_outputs = pt_model(**pt_inputs).to_tuple()

                # convert inputs to Flax
                fx_inputs = {k: np.array(v) for k, v in pt_inputs.items() if torch.is_tensor(v)}
                fx_outputs = fx_model(**fx_inputs).to_tuple()
                self.assertEqual(len(fx_outputs), len(pt_outputs), "Output lengths differ between Flax and PyTorch")
                for fx_output, pt_output in zip(fx_outputs, pt_outputs):
                    self.assert_almost_equals(fx_output, pt_output.numpy(), 4e-2)

                with tempfile.TemporaryDirectory() as tmpdirname:
                    pt_model.save_pretrained(tmpdirname)
                    fx_model_loaded = fx_model_class.from_pretrained(tmpdirname, from_pt=True)

                fx_outputs_loaded = fx_model_loaded(**fx_inputs).to_tuple()
                self.assertEqual(
                    len(fx_outputs_loaded), len(pt_outputs), "Output lengths differ between Flax and PyTorch"
                )
                for fx_output_loaded, pt_output in zip(fx_outputs_loaded, pt_outputs):
                    self.assert_almost_equals(fx_output_loaded, pt_output.numpy(), 4e-2)

    @is_pt_flax_cross_test
    def test_equivalence_flax_to_pt(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            with self.subTest(model_class.__name__):
                # load corresponding PyTorch class
                pt_model = model_class(config).eval()

                # So we disable `use_cache` here for PyTorch model.
                pt_model.config.use_cache = False

                fx_model_class_name = "Flax" + model_class.__name__

                if not hasattr(transformers, fx_model_class_name):
                    # no flax model exists for this class
                    return

                fx_model_class = getattr(transformers, fx_model_class_name)

                # load Flax class
                fx_model = fx_model_class(config, dtype=jnp.float32)
                # make sure only flax inputs are forward that actually exist in function args
                fx_input_keys = inspect.signature(fx_model.__call__).parameters.keys()

                pt_model = load_flax_weights_in_pytorch_model(pt_model, fx_model.params)

                # make sure weights are tied in PyTorch
                pt_model.tie_weights()

                # prepare inputs
                pt_inputs = self._prepare_for_class(inputs_dict, model_class)

                # remove function args that don't exist in Flax
                pt_inputs = {k: v for k, v in pt_inputs.items() if k in fx_input_keys}

                with torch.no_grad():
                    pt_outputs = pt_model(**pt_inputs).to_tuple()

                fx_inputs = {k: np.array(v) for k, v in pt_inputs.items() if torch.is_tensor(v)}

                fx_outputs = fx_model(**fx_inputs).to_tuple()
                self.assertEqual(len(fx_outputs), len(pt_outputs), "Output lengths differ between Flax and PyTorch")

                for fx_output, pt_output in zip(fx_outputs, pt_outputs):
                    self.assert_almost_equals(fx_output, pt_output.numpy(), 4e-2)

                with tempfile.TemporaryDirectory() as tmpdirname:
                    fx_model.save_pretrained(tmpdirname)
                    pt_model_loaded = model_class.from_pretrained(tmpdirname, from_flax=True)

                with torch.no_grad():
                    pt_outputs_loaded = pt_model_loaded(**pt_inputs).to_tuple()

                self.assertEqual(
                    len(fx_outputs), len(pt_outputs_loaded), "Output lengths differ between Flax and PyTorch"
                )
                for fx_output, pt_output in zip(fx_outputs, pt_outputs_loaded):
                    self.assert_almost_equals(fx_output, pt_output.numpy(), 4e-2)

Patrick von Platen's avatar
Patrick von Platen committed
1671
    def test_inputs_embeds(self):
1672
1673
1674
1675
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
1676
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
1677
            model.eval()
1678

1679
            inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))
Weizhen's avatar
Weizhen committed
1680

1681
1682
1683
1684
1685
1686
1687
1688
1689
            if not self.is_encoder_decoder:
                input_ids = inputs["input_ids"]
                del inputs["input_ids"]
            else:
                encoder_input_ids = inputs["input_ids"]
                decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids)
                del inputs["input_ids"]
                inputs.pop("decoder_input_ids", None)

1690
1691
            wte = model.get_input_embeddings()
            if not self.is_encoder_decoder:
1692
                inputs["inputs_embeds"] = wte(input_ids)
1693
            else:
1694
1695
                inputs["inputs_embeds"] = wte(encoder_input_ids)
                inputs["decoder_inputs_embeds"] = wte(decoder_input_ids)
1696

thomwolf's avatar
thomwolf committed
1697
            with torch.no_grad():
Weizhen's avatar
Weizhen committed
1698
                model(**inputs)[0]
1699

1700
1701
    @require_torch_multi_gpu
    def test_multi_gpu_data_parallel_forward(self):
1702
1703
1704
1705
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        # some params shouldn't be scattered by nn.DataParallel
        # so just remove them if they are present.
1706
        blacklist_non_batched_params = ["head_mask", "decoder_head_mask", "cross_attn_head_mask"]
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
        for k in blacklist_non_batched_params:
            inputs_dict.pop(k, None)

        # move input tensors to cuda:O
        for k, v in inputs_dict.items():
            if torch.is_tensor(v):
                inputs_dict[k] = v.to(0)

        for model_class in self.all_model_classes:
            model = model_class(config=config)
            model.to(0)
            model.eval()

            # Wrap model in nn.DataParallel
1721
            model = nn.DataParallel(model)
1722
            with torch.no_grad():
1723
                _ = model(**self._prepare_for_class(inputs_dict, model_class))
1724

1725
1726
1727
    @require_torch_multi_gpu
    def test_model_parallelization(self):
        if not self.test_model_parallel:
1728
            return
1729

1730
        # a candidate for testing_utils
1731
        def get_current_gpu_memory_use():
Patrick von Platen's avatar
Patrick von Platen committed
1732
            """returns a list of cuda memory allocations per GPU in MBs"""
1733
1734
1735
1736
1737

            per_device_memory = []
            for id in range(torch.cuda.device_count()):
                with torch.cuda.device(id):
                    per_device_memory.append(torch.cuda.memory_allocated() >> 20)
1738
1739
1740
1741
1742
1743
1744
1745
1746

            return per_device_memory

        # Needs a large model to see the difference.
        config = self.model_tester.get_large_model_config()

        for model_class in self.all_parallelizable_model_classes:
            torch.cuda.empty_cache()

1747
1748
1749
            # 1. single gpu memory load + unload + memory measurements
            # Retrieve initial memory usage (can easily be ~0.6-1.5GB if cuda-kernels have been preloaded by previous tests)
            memory_at_start = get_current_gpu_memory_use()
1750

1751
1752
            # Put model on device 0 and take a memory snapshot
            model = model_class(config)
1753
1754
1755
            model.to("cuda:0")
            memory_after_model_load = get_current_gpu_memory_use()

1756
1757
1758
            # The memory use on device 0 should be higher than it was initially.
            self.assertGreater(memory_after_model_load[0], memory_at_start[0])

1759
            del model
1760
            gc.collect()
1761
1762
            torch.cuda.empty_cache()

1763
1764
1765
            # 2. MP test
            # it's essential to re-calibrate the usage before the next stage
            memory_at_start = get_current_gpu_memory_use()
1766
1767

            # Spread model layers over multiple devices
1768
            model = model_class(config)
1769
1770
1771
1772
1773
            model.parallelize()
            memory_after_parallelization = get_current_gpu_memory_use()

            # Assert that the memory use on all devices is higher than it was when loaded only on CPU
            for n in range(torch.cuda.device_count()):
1774
                self.assertGreater(memory_after_parallelization[n], memory_at_start[n])
1775

1776
            # Assert that the memory use of device 0 is lower than it was when the entire model was loaded on it
1777
1778
            self.assertLess(memory_after_parallelization[0], memory_after_model_load[0])

1779
1780
            # Assert that the memory use of device 1 is higher than it was when the entire model was loaded
            # on device 0 and device 1 wasn't used at all
1781
1782
1783
            self.assertGreater(memory_after_parallelization[1], memory_after_model_load[1])

            del model
1784
            gc.collect()
1785
1786
1787
1788
1789
            torch.cuda.empty_cache()

    @require_torch_multi_gpu
    def test_model_parallel_equal_results(self):
        if not self.test_model_parallel:
1790
            return
1791
1792
1793
1794
1795
1796

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_parallelizable_model_classes:
            inputs_dict = self._prepare_for_class(inputs_dict, model_class)

1797
            def cast_to_device(dictionary, device):
1798
1799
1800
                output = {}
                for k, v in dictionary.items():
                    if isinstance(v, torch.Tensor):
1801
                        output[k] = v.to(device)
1802
1803
1804
1805
1806
                    else:
                        output[k] = v

                return output

1807
1808
1809
1810
1811
1812
            model = model_class(config)
            output = model(**cast_to_device(inputs_dict, "cpu"))

            model.parallelize()

            parallel_output = model(**cast_to_device(inputs_dict, "cuda:0"))
1813
1814
1815
1816
1817
1818
1819
1820

            for value, parallel_value in zip(output, parallel_output):
                if isinstance(value, torch.Tensor):
                    self.assertTrue(torch.allclose(value, parallel_value.to("cpu"), atol=1e-7))
                elif isinstance(value, (Tuple, List)):
                    for value_, parallel_value_ in zip(value, parallel_value):
                        self.assertTrue(torch.allclose(value_, parallel_value_.to("cpu"), atol=1e-7))

1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
    @require_torch_multi_gpu
    def test_model_parallel_beam_search(self):
        if not self.test_model_parallel:
            return

        all_generative_and_parallelizable_model_classes = tuple(
            set(self.all_generative_model_classes).intersection(self.all_parallelizable_model_classes)
        )

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in all_generative_and_parallelizable_model_classes:
            inputs_dict = self._prepare_for_class(inputs_dict, model_class)
            model = model_class(config)

            def cast_to_device(dictionary, device):
                output = {}
                for k, v in dictionary.items():
                    if isinstance(v, torch.Tensor):
                        output[k] = v.to(device)
                    else:
                        output[k] = v

                return output

            model.parallelize()
            model.generate(**cast_to_device(inputs_dict, "cuda:0"), num_beams=2)

1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
    def test_problem_types(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        problem_types = [
            {"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float},
            {"title": "single_label_classification", "num_labels": 1, "dtype": torch.long},
            {"title": "regression", "num_labels": 1, "dtype": torch.float},
        ]

        for model_class in self.all_model_classes:
            if model_class not in get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING):
                continue

            for problem_type in problem_types:
                with self.subTest(msg=f"Testing {model_class} with {problem_type['title']}"):

                    config.problem_type = problem_type["title"]
                    config.num_labels = problem_type["num_labels"]

                    model = model_class(config)
                    model.to(torch_device)
                    model.train()

                    inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)

                    if problem_type["num_labels"] > 1:
                        inputs["labels"] = inputs["labels"].unsqueeze(1).repeat(1, problem_type["num_labels"])

                    inputs["labels"] = inputs["labels"].to(problem_type["dtype"])

1879
1880
1881
1882
1883
1884
                    # This tests that we do not trigger the warning form PyTorch "Using a target size that is different
                    # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure
                    # they have the same size." which is a symptom something in wrong for the regression problem.
                    # See https://github.com/huggingface/transformers/issues/11780
                    with warnings.catch_warnings(record=True) as warning_list:
                        loss = model(**inputs).loss
1885
1886
1887
1888
1889
                    for w in warning_list:
                        if "Using a target size that is different to the input size" in str(w.message):
                            raise ValueError(
                                f"Something is going wrong in the regression problem: intercepted {w.message}"
                            )
1890

1891
1892
                    loss.backward()

1893
    def test_load_with_mismatched_shapes(self):
1894
1895
        if not self.test_mismatched_shapes:
            return
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if model_class not in get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING):
                continue

            with self.subTest(msg=f"Testing {model_class}"):
                with tempfile.TemporaryDirectory() as tmp_dir:
                    model = model_class(config)
                    model.save_pretrained(tmp_dir)

                    # Fails when we don't set ignore_mismatched_sizes=True
1908
                    with self.assertRaises(RuntimeError):
1909
                        new_model = AutoModelForSequenceClassification.from_pretrained(tmp_dir, num_labels=42)
1910
1911
                    with self.assertRaises(RuntimeError):
                        new_model_without_prefix = AutoModel.from_pretrained(tmp_dir, vocab_size=10)
1912
1913

                    logger = logging.get_logger("transformers.modeling_utils")
1914

1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
                    with CaptureLogger(logger) as cl:
                        new_model = AutoModelForSequenceClassification.from_pretrained(
                            tmp_dir, num_labels=42, ignore_mismatched_sizes=True
                        )
                    self.assertIn("the shapes did not match", cl.out)
                    new_model.to(torch_device)
                    inputs = self._prepare_for_class(inputs_dict, model_class)
                    logits = new_model(**inputs).logits
                    self.assertEqual(logits.shape[1], 42)

1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
                    with CaptureLogger(logger) as cl:
                        new_model_without_prefix = AutoModel.from_pretrained(
                            tmp_dir, vocab_size=10, ignore_mismatched_sizes=True
                        )
                    self.assertIn("the shapes did not match", cl.out)
                    input_ids = ids_tensor((2, 8), 10)
                    new_model_without_prefix.to(torch_device)
                    if self.is_encoder_decoder:
                        new_model_without_prefix(input_ids, decoder_input_ids=input_ids)
                    else:
                        new_model_without_prefix(input_ids)

1937

1938
global_rng = random.Random()
thomwolf's avatar
thomwolf committed
1939
1940


thomwolf's avatar
thomwolf committed
1941
def ids_tensor(shape, vocab_size, rng=None, name=None):
1942
    #  Creates a random int32 tensor of the shape within the vocab size
thomwolf's avatar
thomwolf committed
1943
    if rng is None:
1944
        rng = global_rng
thomwolf's avatar
thomwolf committed
1945

thomwolf's avatar
thomwolf committed
1946
1947
1948
    total_dims = 1
    for dim in shape:
        total_dims *= dim
thomwolf's avatar
thomwolf committed
1949

thomwolf's avatar
thomwolf committed
1950
1951
1952
    values = []
    for _ in range(total_dims):
        values.append(rng.randint(0, vocab_size - 1))
thomwolf's avatar
thomwolf committed
1953

1954
    return torch.tensor(data=values, dtype=torch.long, device=torch_device).view(shape).contiguous()
thomwolf's avatar
thomwolf committed
1955
1956


1957
1958
1959
1960
1961
1962
1963
def random_attention_mask(shape, rng=None, name=None):
    attn_mask = ids_tensor(shape, vocab_size=2, rng=None, name=None)
    # make sure that at least one token is attended to for each batch
    attn_mask[:, -1] = 1
    return attn_mask


1964
def floats_tensor(shape, scale=1.0, rng=None, name=None):
Patrick von Platen's avatar
Patrick von Platen committed
1965
    """Creates a random float32 tensor"""
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
    if rng is None:
        rng = global_rng

    total_dims = 1
    for dim in shape:
        total_dims *= dim

    values = []
    for _ in range(total_dims):
        values.append(rng.random() * scale)

1977
    return torch.tensor(data=values, dtype=torch.float, device=torch_device).view(shape).contiguous()
1978
1979


1980
@require_torch
1981
class ModelUtilsTest(TestCasePlus):
1982
    @slow
Patrick von Platen's avatar
Patrick von Platen committed
1983
    def test_model_from_pretrained(self):
1984
        for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
thomwolf's avatar
thomwolf committed
1985
1986
1987
1988
1989
1990
1991
1992
            config = BertConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, PretrainedConfig)

            model = BertModel.from_pretrained(model_name)
            model, loading_info = BertModel.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, PreTrainedModel)
Lysandre Debut's avatar
Lysandre Debut committed
1993
1994
1995
1996
1997

            self.assertEqual(len(loading_info["missing_keys"]), 0)
            self.assertEqual(len(loading_info["unexpected_keys"]), 8)
            self.assertEqual(len(loading_info["mismatched_keys"]), 0)
            self.assertEqual(len(loading_info["error_msgs"]), 0)
thomwolf's avatar
thomwolf committed
1998
1999

            config = BertConfig.from_pretrained(model_name, output_attentions=True, output_hidden_states=True)
Lysandre Debut's avatar
Lysandre Debut committed
2000
2001
2002
2003

            # Not sure this is the intended behavior. TODO fix Lysandre & Thom
            config.name_or_path = model_name

thomwolf's avatar
thomwolf committed
2004
2005
2006
            model = BertModel.from_pretrained(model_name, output_attentions=True, output_hidden_states=True)
            self.assertEqual(model.config.output_hidden_states, True)
            self.assertEqual(model.config, config)
2007
2008
2009
2010
2011

    def test_model_from_pretrained_with_different_pretrained_model_name(self):
        model = T5ForConditionalGeneration.from_pretrained(TINY_T5)
        self.assertIsNotNone(model)

2012
2013
        logger = logging.get_logger("transformers.configuration_utils")
        with CaptureLogger(logger) as cl:
2014
            BertModel.from_pretrained(TINY_T5)
2015
        self.assertTrue("You are using a model of type t5 to instantiate a model of type bert" in cl.out)
Sylvain Gugger's avatar
Sylvain Gugger committed
2016

2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
    @require_torch
    def test_model_from_config_torch_dtype(self):
        # test that the model can be instantiated with dtype of user's choice - as long as it's a
        # float dtype. To make it happen config.torch_dtype needs to be set before instantiating the
        # model from the config object.

        config = T5Config.from_pretrained(TINY_T5)
        model = AutoModel.from_config(config)
        # XXX: isn't supported
        # model = T5ForConditionalGeneration.from_config(config)
        self.assertEqual(model.dtype, torch.float32)

        model = AutoModel.from_config(config, torch_dtype=torch.float16)
        self.assertEqual(model.dtype, torch.float16)

        # torch.set_default_dtype() supports only float dtypes, so will fail with non-float type
        with self.assertRaises(ValueError):
            model = AutoModel.from_config(config, torch_dtype=torch.int64)

    @require_torch
    def test_model_from_pretrained_torch_dtype(self):
        # test that the model can be instantiated with dtype of either
2039
2040
        # 1. explicit from_pretrained's torch_dtype argument
        # 2. via autodiscovery by looking at model weights (torch_dtype="auto")
2041
        # so if a model.half() was saved, we want it to be instantiated as such.
2042
2043
        #
        # test an explicit model class, but also AutoModel separately as the latter goes through a different code path
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
        model_path = self.get_auto_remove_tmp_dir()

        # baseline - we know TINY_T5 is fp32 model
        model = T5ForConditionalGeneration.from_pretrained(TINY_T5)
        self.assertEqual(model.dtype, torch.float32)

        # test the default fp32 save_pretrained => from_pretrained cycle
        model.save_pretrained(model_path)
        model = T5ForConditionalGeneration.from_pretrained(model_path)
        self.assertEqual(model.dtype, torch.float32)
        # test with auto-detection
        model = T5ForConditionalGeneration.from_pretrained(model_path, torch_dtype="auto")
        self.assertEqual(model.dtype, torch.float32)

        # test forced loading in fp16 (even though the weights are in fp32)
        model = T5ForConditionalGeneration.from_pretrained(model_path, torch_dtype=torch.float16)
        self.assertEqual(model.dtype, torch.float16)

        # test fp16 save_pretrained, loaded with auto-detection
        model = model.half()
        model.save_pretrained(model_path)
        model = T5ForConditionalGeneration.from_pretrained(model_path, torch_dtype="auto")
2066
        self.assertEqual(model.config.torch_dtype, torch.float16)
2067
2068
        self.assertEqual(model.dtype, torch.float16)

2069
2070
2071
2072
2073
        # tests `config.torch_dtype` saving
        with open(f"{model_path}/config.json") as f:
            config_dict = json.load(f)
        self.assertEqual(config_dict["torch_dtype"], "float16")

2074
2075
2076
2077
        # test fp16 save_pretrained, loaded with the explicit fp16
        model = T5ForConditionalGeneration.from_pretrained(model_path, torch_dtype=torch.float16)
        self.assertEqual(model.dtype, torch.float16)

2078
2079
2080
2081
2082
2083
2084
2085
        # test AutoModel separately as it goes through a different path
        # test auto-detection
        model = AutoModel.from_pretrained(TINY_T5, torch_dtype="auto")
        self.assertEqual(model.dtype, torch.float32)
        # test forcing an explicit dtype
        model = AutoModel.from_pretrained(TINY_T5, torch_dtype=torch.float16)
        self.assertEqual(model.dtype, torch.float16)

Sylvain Gugger's avatar
Sylvain Gugger committed
2086

2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
class FakeConfig(PretrainedConfig):
    def __init__(self, attribute=1, **kwargs):
        self.attribute = attribute
        super().__init__(**kwargs)


# Make sure this is synchronized with the config above.
FAKE_CONFIG_CODE = """
from transformers import PretrainedConfig

class FakeConfig(PretrainedConfig):
    def __init__(self, attribute=1, **kwargs):
        self.attribute = attribute
        super().__init__(**kwargs)
"""


2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
if is_torch_available():

    class FakeModel(PreTrainedModel):
        config_class = BertConfig
        base_model_prefix = "fake"

        def __init__(self, config):
            super().__init__(config)
            self.linear = torch.nn.Linear(config.hidden_size, config.hidden_size)

        def forward(self, x):
            return self.linear(x)

        def _init_weights(self, module):
            pass


# Make sure this is synchronized with the model above.
FAKE_MODEL_CODE = """
import torch
from transformers import BertConfig, PreTrainedModel

class FakeModel(PreTrainedModel):
    config_class = BertConfig
    base_model_prefix = "fake"

    def __init__(self, config):
        super().__init__(config)
        self.linear = torch.nn.Linear(config.hidden_size, config.hidden_size)

    def forward(self, x):
        return self.linear(x)

    def _init_weights(self, module):
        pass
"""


Sylvain Gugger's avatar
Sylvain Gugger committed
2142
2143
2144
2145
2146
@require_torch
@is_staging_test
class ModelPushToHubTester(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
2147
        cls._token = login(username=USER, password=PASS)
Sylvain Gugger's avatar
Sylvain Gugger committed
2148
2149
2150
2151

    @classmethod
    def tearDownClass(cls):
        try:
2152
            delete_repo(token=cls._token, name="test-model")
Sylvain Gugger's avatar
Sylvain Gugger committed
2153
2154
2155
2156
        except HTTPError:
            pass

        try:
2157
            delete_repo(token=cls._token, name="test-model-org", organization="valid_org")
Sylvain Gugger's avatar
Sylvain Gugger committed
2158
2159
2160
        except HTTPError:
            pass

2161
        try:
2162
            delete_repo(token=cls._token, name="test-dynamic-model")
2163
2164
2165
        except HTTPError:
            pass

2166
2167
2168
2169
2170
        try:
            delete_repo(token=cls._token, name="test-dynamic-model-config")
        except HTTPError:
            pass

Sylvain Gugger's avatar
Sylvain Gugger committed
2171
2172
2173
2174
2175
2176
    def test_push_to_hub(self):
        config = BertConfig(
            vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37
        )
        model = BertModel(config)
        with tempfile.TemporaryDirectory() as tmp_dir:
2177
            model.save_pretrained(os.path.join(tmp_dir, "test-model"), push_to_hub=True, use_auth_token=self._token)
Sylvain Gugger's avatar
Sylvain Gugger committed
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189

            new_model = BertModel.from_pretrained(f"{USER}/test-model")
            for p1, p2 in zip(model.parameters(), new_model.parameters()):
                self.assertTrue(torch.equal(p1, p2))

    def test_push_to_hub_in_organization(self):
        config = BertConfig(
            vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37
        )
        model = BertModel(config)
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(
2190
                os.path.join(tmp_dir, "test-model-org"),
Sylvain Gugger's avatar
Sylvain Gugger committed
2191
2192
2193
2194
2195
2196
2197
2198
                push_to_hub=True,
                use_auth_token=self._token,
                organization="valid_org",
            )

            new_model = BertModel.from_pretrained("valid_org/test-model-org")
            for p1, p2 in zip(model.parameters(), new_model.parameters()):
                self.assertTrue(torch.equal(p1, p2))
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215

    def test_push_to_hub_dynamic_model(self):
        config = BertConfig(
            vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37
        )
        config.auto_map = {"AutoModel": "modeling.FakeModel"}
        model = FakeModel(config)

        with tempfile.TemporaryDirectory() as tmp_dir:
            repo = Repository(tmp_dir, clone_from=f"{USER}/test-dynamic-model", use_auth_token=self._token)
            model.save_pretrained(tmp_dir)
            with open(os.path.join(tmp_dir, "modeling.py"), "w") as f:
                f.write(FAKE_MODEL_CODE)

            repo.push_to_hub()

        new_model = AutoModel.from_pretrained(f"{USER}/test-dynamic-model", trust_remote_code=True)
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
        # Can't make an isinstance check because the new_model is from the FakeModel class of a dynamic module
        self.assertEqual(new_model.__class__.__name__, "FakeModel")
        for p1, p2 in zip(model.parameters(), new_model.parameters()):
            self.assertTrue(torch.equal(p1, p2))

        config = AutoConfig.from_pretrained(f"{USER}/test-dynamic-model")
        new_model = AutoModel.from_config(config, trust_remote_code=True)
        self.assertEqual(new_model.__class__.__name__, "FakeModel")

    def test_push_to_hub_dynamic_model_and_config(self):
        config = FakeConfig(
            attribute=42,
            vocab_size=99,
            hidden_size=32,
            num_hidden_layers=5,
            num_attention_heads=4,
            intermediate_size=37,
        )
        config.auto_map = {"AutoConfig": "configuration.FakeConfig", "AutoModel": "modeling.FakeModel"}
        model = FakeModel(config)

        with tempfile.TemporaryDirectory() as tmp_dir:
            repo = Repository(tmp_dir, clone_from=f"{USER}/test-dynamic-model-config", use_auth_token=self._token)
            model.save_pretrained(tmp_dir)
            with open(os.path.join(tmp_dir, "configuration.py"), "w") as f:
                f.write(FAKE_CONFIG_CODE)
            with open(os.path.join(tmp_dir, "modeling.py"), "w") as f:
                f.write(FAKE_MODEL_CODE)

            repo.push_to_hub()

        new_model = AutoModel.from_pretrained(f"{USER}/test-dynamic-model-config", trust_remote_code=True)
        # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module
        self.assertEqual(new_model.config.__class__.__name__, "FakeConfig")
        self.assertEqual(new_model.config.attribute, 42)

        # Can't make an isinstance check because the new_model is from the FakeModel class of a dynamic module
        self.assertEqual(new_model.__class__.__name__, "FakeModel")
2254
2255
        for p1, p2 in zip(model.parameters(), new_model.parameters()):
            self.assertTrue(torch.equal(p1, p2))
2256
2257
2258
2259

        config = AutoConfig.from_pretrained(f"{USER}/test-dynamic-model")
        new_model = AutoModel.from_config(config, trust_remote_code=True)
        self.assertEqual(new_model.__class__.__name__, "FakeModel")