test_modeling_common.py 121 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2019 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
15

Sylvain Gugger's avatar
Sylvain Gugger committed
16
import collections
17
import copy
18
import gc
19
import inspect
20
import os
21
import os.path
22
import pickle
Aymeric Augustin's avatar
Aymeric Augustin committed
23
import random
Sylvain Gugger's avatar
Sylvain Gugger committed
24
import re
25
import tempfile
26
import warnings
27
from collections import defaultdict
NielsRogge's avatar
NielsRogge committed
28
from typing import Dict, List, Tuple
thomwolf's avatar
thomwolf committed
29

30
import numpy as np
31
from pytest import mark
32
33

import transformers
34
35
36
37
38
39
40
from transformers import (
    AutoModel,
    AutoModelForSequenceClassification,
    PretrainedConfig,
    is_torch_available,
    logging,
)
41
from transformers.models.auto import get_values
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
from transformers.models.auto.modeling_auto import (
    MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES,
    MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES,
    MODEL_FOR_BACKBONE_MAPPING_NAMES,
    MODEL_FOR_CAUSAL_IMAGE_MODELING_MAPPING_NAMES,
    MODEL_FOR_CAUSAL_LM_MAPPING_NAMES,
    MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES,
    MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES,
    MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING_NAMES,
    MODEL_FOR_MASKED_LM_MAPPING_NAMES,
    MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES,
    MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES,
    MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES,
    MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES,
    MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
    MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES,
    MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES,
    MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES,
    MODEL_MAPPING_NAMES,
)
Sylvain Gugger's avatar
Sylvain Gugger committed
62
63
from transformers.testing_utils import (
    CaptureLogger,
64
65
    is_pt_flax_cross_test,
    is_pt_tf_cross_test,
66
    require_accelerate,
67
    require_safetensors,
Sylvain Gugger's avatar
Sylvain Gugger committed
68
    require_torch,
69
    require_torch_gpu,
Sylvain Gugger's avatar
Sylvain Gugger committed
70
71
72
73
    require_torch_multi_gpu,
    slow,
    torch_device,
)
74
from transformers.utils import (
75
76
    CONFIG_NAME,
    GENERATION_CONFIG_NAME,
77
    WEIGHTS_NAME,
78
    is_accelerate_available,
79
80
81
82
83
    is_flax_available,
    is_tf_available,
    is_torch_fx_available,
)
from transformers.utils.generic import ModelOutput
84

Aymeric Augustin's avatar
Aymeric Augustin committed
85

86
87
88
89
if is_accelerate_available():
    from accelerate.utils import compute_module_sizes


90
if is_torch_available():
91
    import torch
92
    from torch import nn
thomwolf's avatar
thomwolf committed
93

94
    from transformers import MODEL_MAPPING, AdaptiveEmbedding
Sylvain Gugger's avatar
Sylvain Gugger committed
95
    from transformers.pytorch_utils import id_tensor_storage
thomwolf's avatar
thomwolf committed
96

Sylvain Gugger's avatar
Sylvain Gugger committed
97

98
99
100
if is_tf_available():
    import tensorflow as tf

101
102
if is_flax_available():
    import jax.numpy as jnp
103

104
105
106
107
108
    from transformers.modeling_flax_pytorch_utils import (
        convert_pytorch_state_dict_to_flax,
        load_flax_weights_in_pytorch_model,
    )

109
if is_torch_fx_available():
110
    from transformers.utils.fx import symbolic_trace
111

112

113
114
115
def _config_zero_init(config):
    configs_no_init = copy.deepcopy(config)
    for key in configs_no_init.__dict__.keys():
116
        if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key:
Lysandre Debut's avatar
Lysandre Debut committed
117
            setattr(configs_no_init, key, 1e-10)
118
119
120
        if isinstance(getattr(configs_no_init, key, None), PretrainedConfig):
            no_init_subconfig = _config_zero_init(getattr(configs_no_init, key))
            setattr(configs_no_init, key, no_init_subconfig)
121
122
    return configs_no_init

thomwolf's avatar
thomwolf committed
123

124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
def _mock_init_weights(self, module):
    for name, param in module.named_parameters(recurse=False):
        # Use the first letter of the name to get a value and go from a <> -13 to z <> 12
        value = ord(name[0].lower()) - 110
        param.data.fill_(value)


def _mock_all_init_weights(self):
    # Prune heads if needed
    if self.config.pruned_heads:
        self.prune_heads(self.config.pruned_heads)

    import transformers.modeling_utils

    if transformers.modeling_utils._init_weights:
        for module in self.modules():
            module._is_hf_initialized = False
        # Initialize weights
        self.apply(self._initialize_weights)

        # Tie weights should be skipped when not initializing all weights
        # since from_pretrained(...) calls tie weights anyways
        self.tie_weights()


149
150
151
152
@require_torch
class ModelTesterMixin:
    model_tester = None
    all_model_classes = ()
153
    all_generative_model_classes = ()
154
    fx_compatible = False
Patrick von Platen's avatar
Patrick von Platen committed
155
156
157
    test_torchscript = True
    test_pruning = True
    test_resize_embeddings = True
158
    test_resize_position_embeddings = False
Patrick von Platen's avatar
Patrick von Platen committed
159
    test_head_masking = True
160
    test_mismatched_shapes = True
161
    test_missing_keys = True
162
    test_model_parallel = False
163
    is_encoder_decoder = False
164
    has_attentions = True
165
    model_split_percents = [0.5, 0.7, 0.9]
166

167
168
    def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
        inputs_dict = copy.deepcopy(inputs_dict)
169
        if model_class.__name__ in get_values(MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES):
170
            inputs_dict = {
171
                k: v.unsqueeze(1).expand(-1, self.model_tester.num_choices, -1).contiguous()
172
                if isinstance(v, torch.Tensor) and v.ndim > 1
Sylvain Gugger's avatar
Sylvain Gugger committed
173
                else v
174
175
                for k, v in inputs_dict.items()
            }
176
        elif model_class.__name__ in get_values(MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES):
177
            inputs_dict.pop("attention_mask")
178
179

        if return_labels:
180
            if model_class.__name__ in get_values(MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES):
181
                inputs_dict["labels"] = torch.ones(self.model_tester.batch_size, dtype=torch.long, device=torch_device)
182
183
184
            elif model_class.__name__ in [
                *get_values(MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES),
                *get_values(MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES),
185
            ]:
186
187
188
189
190
191
                inputs_dict["start_positions"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
                inputs_dict["end_positions"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
192
193
194
195
196
197
            elif model_class.__name__ in [
                *get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES),
                *get_values(MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES),
                *get_values(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES),
                *get_values(MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES),
                *get_values(MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES),
198
            ]:
199
200
201
                inputs_dict["labels"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
202
203
204
205
206
207
            elif model_class.__name__ in [
                *get_values(MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES),
                *get_values(MODEL_FOR_CAUSAL_LM_MAPPING_NAMES),
                *get_values(MODEL_FOR_CAUSAL_IMAGE_MODELING_MAPPING_NAMES),
                *get_values(MODEL_FOR_MASKED_LM_MAPPING_NAMES),
                *get_values(MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES),
208
209
210
211
            ]:
                inputs_dict["labels"] = torch.zeros(
                    (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device
                )
212
            elif model_class.__name__ in get_values(MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING_NAMES):
NielsRogge's avatar
NielsRogge committed
213
214
215
216
                num_patches = self.model_tester.image_size // self.model_tester.patch_size
                inputs_dict["bool_masked_pos"] = torch.zeros(
                    (self.model_tester.batch_size, num_patches**2), dtype=torch.long, device=torch_device
                )
217
            elif model_class.__name__ in get_values(MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES):
NielsRogge's avatar
NielsRogge committed
218
219
220
221
                batch_size, num_channels, height, width = inputs_dict["pixel_values"].shape
                inputs_dict["labels"] = torch.zeros(
                    [self.model_tester.batch_size, height, width], device=torch_device
                ).long()
222

223
224
        return inputs_dict

Patrick von Platen's avatar
Patrick von Platen committed
225
    def test_save_load(self):
226
227
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

228
229
230
231
232
233
234
235
236
237
        def check_save_load(out1, out2):
            # make sure we don't have nans
            out_2 = out2.cpu().numpy()
            out_2[np.isnan(out_2)] = 0

            out_1 = out1.cpu().numpy()
            out_1[np.isnan(out_1)] = 0
            max_diff = np.amax(np.abs(out_1 - out_2))
            self.assertLessEqual(max_diff, 1e-5)

238
239
240
241
242
        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
243
                first = model(**self._prepare_for_class(inputs_dict, model_class))[0]
244

245
            with tempfile.TemporaryDirectory() as tmpdirname:
246
                model.save_pretrained(tmpdirname)
247
248
249
250
251
252
253

                # the config file (and the generation config file, if it can generate) should be saved
                self.assertTrue(os.path.exists(os.path.join(tmpdirname, CONFIG_NAME)))
                self.assertEqual(
                    model.can_generate(), os.path.exists(os.path.join(tmpdirname, GENERATION_CONFIG_NAME))
                )

254
                model = model_class.from_pretrained(tmpdirname)
255
                model.to(torch_device)
256
                with torch.no_grad():
257
                    second = model(**self._prepare_for_class(inputs_dict, model_class))[0]
thomwolf's avatar
thomwolf committed
258

259
260
261
262
263
            if isinstance(first, tuple) and isinstance(second, tuple):
                for tensor1, tensor2 in zip(first, second):
                    check_save_load(tensor1, tensor2)
            else:
                check_save_load(first, second)
264

265
266
267
268
269
270
271
272
273
274
275
276
    def test_from_pretrained_no_checkpoint(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()
        for model_class in self.all_model_classes:
            model = model_class(config)
            state_dict = model.state_dict()

            new_model = model_class.from_pretrained(
                pretrained_model_name_or_path=None, config=config, state_dict=state_dict
            )
            for p1, p2 in zip(model.parameters(), new_model.parameters()):
                self.assertTrue(torch.equal(p1, p2))

277
    def test_save_load_keys_to_ignore_on_save(self):
278
279
280
281
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
282
283
            _keys_to_ignore_on_save = getattr(model, "_keys_to_ignore_on_save", None)
            if _keys_to_ignore_on_save is None:
284
285
286
                continue

            # check the keys are in the original state_dict
287
            for k in _keys_to_ignore_on_save:
288
                self.assertIn(k, model.state_dict().keys(), "\n".join(model.state_dict().keys()))
289
290
291
292
293
294

            # check that certain keys didn't get saved with the model
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                output_model_file = os.path.join(tmpdirname, WEIGHTS_NAME)
                state_dict_saved = torch.load(output_model_file)
295
                for k in _keys_to_ignore_on_save:
296
                    self.assertNotIn(k, state_dict_saved.keys(), "\n".join(state_dict_saved.keys()))
297

Sylvain Gugger's avatar
Sylvain Gugger committed
298
299
300
                # Test we can load the state dict in the model, necessary for the checkpointing API in Trainer.
                load_result = model.load_state_dict(state_dict_saved, strict=False)
                self.assertTrue(
301
302
                    len(load_result.missing_keys) == 0
                    or set(load_result.missing_keys) == set(model._keys_to_ignore_on_save)
Sylvain Gugger's avatar
Sylvain Gugger committed
303
304
305
                )
                self.assertTrue(len(load_result.unexpected_keys) == 0)

306
307
308
309
310
311
312
313
314
315
316
    def test_gradient_checkpointing_backward_compatibility(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if not model_class.supports_gradient_checkpointing:
                continue

            config.gradient_checkpointing = True
            model = model_class(config)
            self.assertTrue(model.is_gradient_checkpointing)

317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
    def test_gradient_checkpointing_enable_disable(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if not model_class.supports_gradient_checkpointing:
                continue

            # at init model should have gradient checkpointing disabled
            model = model_class(config)
            self.assertFalse(model.is_gradient_checkpointing)

            # check enable works
            model.gradient_checkpointing_enable()
            self.assertTrue(model.is_gradient_checkpointing)

            # check disable works
            model.gradient_checkpointing_disable()
            self.assertFalse(model.is_gradient_checkpointing)

336
337
    def test_save_load_fast_init_from_base(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
338
339
        if config.__class__ not in MODEL_MAPPING:
            return
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
        base_class = MODEL_MAPPING[config.__class__]

        if isinstance(base_class, tuple):
            base_class = base_class[0]

        for model_class in self.all_model_classes:
            if model_class == base_class:
                continue

            # make a copy of model class to not break future tests
            # from https://stackoverflow.com/questions/9541025/how-to-copy-a-python-class
            class CopyClass(model_class):
                pass

            model_class_copy = CopyClass

            # make sure that all keys are expected for test
            model_class_copy._keys_to_ignore_on_load_missing = []

            # make init deterministic, but make sure that
            # non-initialized weights throw errors nevertheless
361
362
            model_class_copy._init_weights = _mock_init_weights
            model_class_copy.init_weights = _mock_all_init_weights
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378

            model = base_class(config)
            state_dict = model.state_dict()

            # this will often delete a single weight of a multi-weight module
            # to test an edge case
            random_key_to_del = random.choice(list(state_dict.keys()))
            del state_dict[random_key_to_del]

            # check that certain keys didn't get saved with the model
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                torch.save(state_dict, os.path.join(tmpdirname, "pytorch_model.bin"))

                model_fast_init = model_class_copy.from_pretrained(tmpdirname)
                model_slow_init = model_class_copy.from_pretrained(tmpdirname, _fast_init=False)
379
                # Before we test anything
380
381

                for key in model_fast_init.state_dict().keys():
382
383
384
385
386
                    if isinstance(model_slow_init.state_dict()[key], torch.BoolTensor):
                        max_diff = (model_slow_init.state_dict()[key] ^ model_fast_init.state_dict()[key]).sum().item()
                    else:
                        max_diff = (model_slow_init.state_dict()[key] - model_fast_init.state_dict()[key]).sum().item()
                    self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")
387
388
389

    def test_save_load_fast_init_to_base(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
390
391
        if config.__class__ not in MODEL_MAPPING:
            return
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
        base_class = MODEL_MAPPING[config.__class__]

        if isinstance(base_class, tuple):
            base_class = base_class[0]

        for model_class in self.all_model_classes:
            if model_class == base_class:
                continue

            # make a copy of model class to not break future tests
            # from https://stackoverflow.com/questions/9541025/how-to-copy-a-python-class
            class CopyClass(base_class):
                pass

            base_class_copy = CopyClass

            # make sure that all keys are expected for test
            base_class_copy._keys_to_ignore_on_load_missing = []

            # make init deterministic, but make sure that
            # non-initialized weights throw errors nevertheless
413
414
            base_class_copy._init_weights = _mock_init_weights
            base_class_copy.init_weights = _mock_all_init_weights
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432

            model = model_class(config)
            state_dict = model.state_dict()

            # this will often delete a single weight of a multi-weight module
            # to test an edge case
            random_key_to_del = random.choice(list(state_dict.keys()))
            del state_dict[random_key_to_del]

            # check that certain keys didn't get saved with the model
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.config.save_pretrained(tmpdirname)
                torch.save(state_dict, os.path.join(tmpdirname, "pytorch_model.bin"))

                model_fast_init = base_class_copy.from_pretrained(tmpdirname)
                model_slow_init = base_class_copy.from_pretrained(tmpdirname, _fast_init=False)

                for key in model_fast_init.state_dict().keys():
433
434
435
436
437
438
439
440
441
                    if isinstance(model_slow_init.state_dict()[key], torch.BoolTensor):
                        max_diff = torch.max(
                            model_slow_init.state_dict()[key] ^ model_fast_init.state_dict()[key]
                        ).item()
                    else:
                        max_diff = torch.max(
                            torch.abs(model_slow_init.state_dict()[key] - model_fast_init.state_dict()[key])
                        ).item()
                    self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")
442

Patrick von Platen's avatar
Patrick von Platen committed
443
    def test_initialization(self):
444
445
446
447
448
449
450
451
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        configs_no_init = _config_zero_init(config)
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            for name, param in model.named_parameters():
                if param.requires_grad:
                    self.assertIn(
Lysandre Debut's avatar
Lysandre Debut committed
452
                        ((param.data.mean() * 1e9).round() / 1e9).item(),
453
                        [0.0, 1.0],
454
                        msg=f"Parameter {name} of model {model_class} seems not properly initialized",
455
                    )
thomwolf's avatar
thomwolf committed
456

Patrick von Platen's avatar
Patrick von Platen committed
457
    def test_determinism(self):
458
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
459
460
461
462
463
464
465
466
467

        def check_determinism(first, second):
            out_1 = first.cpu().numpy()
            out_2 = second.cpu().numpy()
            out_1 = out_1[~np.isnan(out_1)]
            out_2 = out_2[~np.isnan(out_2)]
            max_diff = np.amax(np.abs(out_1 - out_2))
            self.assertLessEqual(max_diff, 1e-5)

468
469
470
471
472
        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
473
474
                first = model(**self._prepare_for_class(inputs_dict, model_class))[0]
                second = model(**self._prepare_for_class(inputs_dict, model_class))[0]
Weizhen's avatar
Weizhen committed
475

476
477
478
479
480
            if isinstance(first, tuple) and isinstance(second, tuple):
                for tensor1, tensor2 in zip(first, second):
                    check_determinism(tensor1, tensor2)
            else:
                check_determinism(first, second)
481

482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
    def test_forward_signature(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.forward)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

            if model.config.is_encoder_decoder:
                expected_arg_names = [
                    "input_ids",
                    "attention_mask",
                    "decoder_input_ids",
                    "decoder_attention_mask",
                ]
498
                expected_arg_names.extend(
499
500
                    ["head_mask", "decoder_head_mask", "cross_attn_head_mask", "encoder_outputs"]
                    if "head_mask" and "decoder_head_mask" and "cross_attn_head_mask" in arg_names
501
502
503
                    else ["encoder_outputs"]
                )
                self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names)
504
505
506
507
            else:
                expected_arg_names = ["input_ids"]
                self.assertListEqual(arg_names[:1], expected_arg_names)

508
509
510
511
512
    def test_training(self):
        if not self.model_tester.is_training:
            return

        for model_class in self.all_model_classes:
513
514
515
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
            config.return_dict = True

516
517
518
            if model_class.__name__ in [
                *get_values(MODEL_MAPPING_NAMES),
                *get_values(MODEL_FOR_BACKBONE_MAPPING_NAMES),
519
            ]:
520
                continue
521

522
523
524
525
526
527
528
529
            model = model_class(config)
            model.to(torch_device)
            model.train()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            loss = model(**inputs).loss
            loss.backward()

    def test_training_gradient_checkpointing(self):
530
        if not self.model_tester.is_training:
531
532
533
            return

        for model_class in self.all_model_classes:
534
535
536
537
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
            config.use_cache = False
            config.return_dict = True

538
            if (
539
540
                model_class.__name__
                in [*get_values(MODEL_MAPPING_NAMES), *get_values(MODEL_FOR_BACKBONE_MAPPING_NAMES)]
541
542
                or not model_class.supports_gradient_checkpointing
            ):
543
544
545
                continue
            model = model_class(config)
            model.to(torch_device)
546
            model.gradient_checkpointing_enable()
547
548
549
550
551
            model.train()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            loss = model(**inputs).loss
            loss.backward()

Patrick von Platen's avatar
Patrick von Platen committed
552
    def test_attention_outputs(self):
553
554
555
        if not self.has_attentions:
            self.skipTest(reason="Model does not output attentions")

556
557
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.return_dict = True
558

559
560
561
562
563
564
565
566
567
568
569
570
        seq_len = getattr(self.model_tester, "seq_length", None)
        decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len)
        encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", seq_len)
        decoder_key_length = getattr(self.model_tester, "decoder_key_length", decoder_seq_length)
        encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length)
        chunk_length = getattr(self.model_tester, "chunk_length", None)
        if chunk_length is not None and hasattr(self.model_tester, "num_hashes"):
            encoder_seq_length = encoder_seq_length * self.model_tester.num_hashes

        for model_class in self.all_model_classes:
            inputs_dict["output_attentions"] = True
            inputs_dict["output_hidden_states"] = False
571
            config.return_dict = True
572
573
574
575
576
577
578
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
            attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
579

580
581
582
583
584
585
586
587
588
589
            # check that output_attentions also work using config
            del inputs_dict["output_attentions"]
            config.output_attentions = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
            attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
thomwolf's avatar
thomwolf committed
590

591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
            if chunk_length is not None:
                self.assertListEqual(
                    list(attentions[0].shape[-4:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length],
                )
            else:
                self.assertListEqual(
                    list(attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
                )
            out_len = len(outputs)

            if self.is_encoder_decoder:
                correct_outlen = 5

                # loss is at first position
                if "labels" in inputs_dict:
                    correct_outlen += 1  # loss is added to beginning
                # Question Answering model returns start_logits and end_logits
610
611
612
                if model_class.__name__ in [
                    *get_values(MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES),
                    *get_values(MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES),
613
                ]:
614
615
616
617
618
619
620
621
622
623
624
625
626
627
                    correct_outlen += 1  # start_logits and end_logits instead of only 1 output
                if "past_key_values" in outputs:
                    correct_outlen += 1  # past_key_values have been returned

                self.assertEqual(out_len, correct_outlen)

                # decoder attentions
                decoder_attentions = outputs.decoder_attentions
                self.assertIsInstance(decoder_attentions, (list, tuple))
                self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers)
                self.assertListEqual(
                    list(decoder_attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length],
                )
628

629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
                # cross attentions
                cross_attentions = outputs.cross_attentions
                self.assertIsInstance(cross_attentions, (list, tuple))
                self.assertEqual(len(cross_attentions), self.model_tester.num_hidden_layers)
                self.assertListEqual(
                    list(cross_attentions[0].shape[-3:]),
                    [
                        self.model_tester.num_attention_heads,
                        decoder_seq_length,
                        encoder_key_length,
                    ],
                )

            # Check attention is always last and order is fine
            inputs_dict["output_attentions"] = True
            inputs_dict["output_hidden_states"] = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))

            if hasattr(self.model_tester, "num_hidden_states_types"):
                added_hidden_states = self.model_tester.num_hidden_states_types
            elif self.is_encoder_decoder:
                added_hidden_states = 2
            else:
                added_hidden_states = 1
            self.assertEqual(out_len + added_hidden_states, len(outputs))

            self_attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions

            self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers)
            if chunk_length is not None:
                self.assertListEqual(
                    list(self_attentions[0].shape[-4:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length],
                )
            else:
                self.assertListEqual(
                    list(self_attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
                )
thomwolf's avatar
thomwolf committed
672

673
    @slow
674
    def test_torchscript_simple(self):
675
676
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
677

678
    @slow
Patrick von Platen's avatar
Patrick von Platen committed
679
    def test_torchscript_output_attentions(self):
680
681
682
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_attentions = True
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
683

684
    @slow
Patrick von Platen's avatar
Patrick von Platen committed
685
    def test_torchscript_output_hidden_state(self):
686
687
688
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_hidden_states = True
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
689

690
691
692
693
    # This is copied from `torch/testing/_internal/jit_utils.py::clear_class_registry`
    def clear_torch_jit_class_registry(self):
        torch._C._jit_clear_class_registry()
        torch.jit._recursive.concrete_type_store = torch.jit._recursive.ConcreteTypeStore()
694
695
696
        # torch 1.8 has no `_clear_class_state` in `torch.jit._state`
        if hasattr(torch.jit._state, "_clear_class_state"):
            torch.jit._state._clear_class_state()
697

698
    def _create_and_check_torchscript(self, config, inputs_dict):
Patrick von Platen's avatar
Patrick von Platen committed
699
        if not self.test_torchscript:
700
            return
701

702
703
704
705
706
707
        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        configs_no_init.torchscript = True
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            model.to(torch_device)
            model.eval()
708
            inputs = self._prepare_for_class(inputs_dict, model_class)
thomwolf's avatar
thomwolf committed
709

710
711
            main_input_name = model_class.main_input_name

712
            try:
713
                if model.config.is_encoder_decoder:
714
                    model.config.use_cache = False  # FSTM still requires this hack -> FSTM should probably be refactored similar to BART afterward
715
                    main_input = inputs[main_input_name]
716
717
718
                    attention_mask = inputs["attention_mask"]
                    decoder_input_ids = inputs["decoder_input_ids"]
                    decoder_attention_mask = inputs["decoder_attention_mask"]
719
                    model(main_input, attention_mask, decoder_input_ids, decoder_attention_mask)
720
                    traced_model = torch.jit.trace(
721
                        model, (main_input, attention_mask, decoder_input_ids, decoder_attention_mask)
722
                    )
723
724
725
726
                elif "bbox" in inputs and "image" in inputs:  # LayoutLMv2 requires additional inputs
                    input_ids = inputs["input_ids"]
                    bbox = inputs["bbox"]
                    image = inputs["image"].tensor
727
                    model(input_ids, bbox, image)
728
729
730
                    traced_model = torch.jit.trace(
                        model, (input_ids, bbox, image), check_trace=False
                    )  # when traced model is checked, an error is produced due to name mangling
731
                else:
732
                    main_input = inputs[main_input_name]
733
                    model(main_input)
734
                    traced_model = torch.jit.trace(model, main_input)
735
736
            except RuntimeError:
                self.fail("Couldn't trace module.")
thomwolf's avatar
thomwolf committed
737

738
            with tempfile.TemporaryDirectory() as tmp_dir_name:
739
                pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt")
thomwolf's avatar
thomwolf committed
740

741
                try:
742
                    torch.jit.save(traced_model, pt_file_name)
743
744
                except Exception:
                    self.fail("Couldn't save module.")
thomwolf's avatar
thomwolf committed
745

746
747
748
749
                try:
                    loaded_model = torch.jit.load(pt_file_name)
                except Exception:
                    self.fail("Couldn't load module.")
LysandreJik's avatar
LysandreJik committed
750

751
752
            model.to(torch_device)
            model.eval()
thomwolf's avatar
thomwolf committed
753

754
755
            loaded_model.to(torch_device)
            loaded_model.eval()
thomwolf's avatar
thomwolf committed
756

757
758
759
            model_state_dict = model.state_dict()
            loaded_model_state_dict = loaded_model.state_dict()

760
761
762
763
764
765
766
767
768
            non_persistent_buffers = {}
            for key in loaded_model_state_dict.keys():
                if key not in model_state_dict.keys():
                    non_persistent_buffers[key] = loaded_model_state_dict[key]

            loaded_model_state_dict = {
                key: value for key, value in loaded_model_state_dict.items() if key not in non_persistent_buffers
            }

769
            self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys()))
thomwolf's avatar
thomwolf committed
770

771
772
773
774
775
776
777
778
779
780
781
            model_buffers = list(model.buffers())
            for non_persistent_buffer in non_persistent_buffers.values():
                found_buffer = False
                for i, model_buffer in enumerate(model_buffers):
                    if torch.equal(non_persistent_buffer, model_buffer):
                        found_buffer = True
                        break

                self.assertTrue(found_buffer)
                model_buffers.pop(i)

782
            models_equal = True
783
            for layer_name, p1 in model_state_dict.items():
784
785
786
787
                if layer_name in loaded_model_state_dict:
                    p2 = loaded_model_state_dict[layer_name]
                    if p1.data.ne(p2.data).sum() > 0:
                        models_equal = False
thomwolf's avatar
thomwolf committed
788

789
            self.assertTrue(models_equal)
thomwolf's avatar
thomwolf committed
790

791
792
793
794
            # Avoid memory leak. Without this, each call increase RAM usage by ~20MB.
            # (Even with this call, there are still memory leak by ~0.04MB)
            self.clear_torch_jit_class_registry()

795
796
797
798
799
800
801
802
    def test_torch_fx(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        self._create_and_check_torch_fx_tracing(config, inputs_dict)

    def test_torch_fx_output_loss(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        self._create_and_check_torch_fx_tracing(config, inputs_dict, output_loss=True)

803
804
    def _create_and_check_torch_fx_tracing(self, config, inputs_dict, output_loss=False):
        if not is_torch_fx_available() or not self.fx_compatible:
805
806
807
808
809
            return

        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        configs_no_init.return_dict = False

810
        for model_class in self.all_model_classes:
811
812
813
814
815
816
817
818
819
            model = model_class(config=configs_no_init)
            model.to(torch_device)
            model.eval()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=output_loss)

            try:
                if model.config.is_encoder_decoder:
                    model.config.use_cache = False  # FSTM still requires this hack -> FSTM should probably be refactored similar to BART afterward
                    labels = inputs.get("labels", None)
820
821
822
                    input_names = [
                        "attention_mask",
                        "decoder_attention_mask",
823
                        "decoder_input_ids",
824
                        "input_features",
825
826
                        "input_ids",
                        "input_values",
827
                    ]
828
829
                    if labels is not None:
                        input_names.append("labels")
830

831
                    filtered_inputs = {k: v for (k, v) in inputs.items() if k in input_names}
832
                    input_names = list(filtered_inputs.keys())
833

834
                    model_output = model(**filtered_inputs)
835

836
                    traced_model = symbolic_trace(model, input_names)
837
                    traced_output = traced_model(**filtered_inputs)
838
                else:
839
840
841
842
                    input_names = [
                        "attention_mask",
                        "bbox",
                        "input_features",
843
844
845
846
847
848
                        "input_ids",
                        "input_values",
                        "pixel_values",
                        "token_type_ids",
                        "visual_feats",
                        "visual_pos",
849
                    ]
850

851
                    labels = inputs.get("labels", None)
852
853
                    start_positions = inputs.get("start_positions", None)
                    end_positions = inputs.get("end_positions", None)
854
855
                    if labels is not None:
                        input_names.append("labels")
856
857
858
859
                    if start_positions is not None:
                        input_names.append("start_positions")
                    if end_positions is not None:
                        input_names.append("end_positions")
860

861
                    filtered_inputs = {k: v for (k, v) in inputs.items() if k in input_names}
862
                    input_names = list(filtered_inputs.keys())
863

864
                    if model.__class__.__name__ in set(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES.values()) and (
865
                        not hasattr(model.config, "problem_type") or model.config.problem_type is None
866
867
868
                    ):
                        model.config.problem_type = "single_label_classification"

869
                    traced_model = symbolic_trace(model, input_names)
870
                    traced_output = traced_model(**filtered_inputs)
871
                    model_output = model(**filtered_inputs)
872

873
            except Exception as e:
874
                self.fail(f"Couldn't trace module: {e}")
875

876
877
878
879
880
881
882
883
884
885
886
887
888
            def flatten_output(output):
                flatten = []
                for x in output:
                    if isinstance(x, (tuple, list)):
                        flatten += flatten_output(x)
                    elif not isinstance(x, torch.Tensor):
                        continue
                    else:
                        flatten.append(x)
                return flatten

            model_output = flatten_output(model_output)
            traced_output = flatten_output(traced_output)
889
            num_outputs = len(model_output)
890
891
892
893
894
895

            for i in range(num_outputs):
                self.assertTrue(
                    torch.allclose(model_output[i], traced_output[i]),
                    f"traced {i}th output doesn't match model {i}th output for {model_class}",
                )
896

897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
            # Test that the model can be serialized and restored properly
            with tempfile.TemporaryDirectory() as tmp_dir_name:
                pkl_file_name = os.path.join(tmp_dir_name, "model.pkl")
                try:
                    with open(pkl_file_name, "wb") as f:
                        pickle.dump(traced_model, f)
                    with open(pkl_file_name, "rb") as f:
                        loaded = pickle.load(f)
                except Exception as e:
                    self.fail(f"Couldn't serialize / deserialize the traced model: {e}")

                loaded_output = loaded(**filtered_inputs)
                loaded_output = flatten_output(loaded_output)

                for i in range(num_outputs):
                    self.assertTrue(
                        torch.allclose(model_output[i], loaded_output[i]),
                        f"serialized model {i}th output doesn't match model {i}th output for {model_class}",
                    )

917
918
919
920
            # Avoid memory leak. Without this, each call increase RAM usage by ~20MB.
            # (Even with this call, there are still memory leak by ~0.04MB)
            self.clear_torch_jit_class_registry()

Patrick von Platen's avatar
Patrick von Platen committed
921
922
    def test_headmasking(self):
        if not self.test_head_masking:
923
            return
924

925
926
927
        global_rng.seed(42)
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        global_rng.seed()
LysandreJik's avatar
LysandreJik committed
928

929
        inputs_dict["output_attentions"] = True
930
931
932
933
934
935
        config.output_hidden_states = True
        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            model.to(torch_device)
            model.eval()
LysandreJik's avatar
LysandreJik committed
936

937
938
939
            # Prepare head_mask
            # Set require_grad after having prepared the tensor to avoid error (leaf variable has been moved into the graph interior)
            head_mask = torch.ones(
Lysandre's avatar
Lysandre committed
940
941
942
                self.model_tester.num_hidden_layers,
                self.model_tester.num_attention_heads,
                device=torch_device,
943
944
945
946
            )
            head_mask[0, 0] = 0
            head_mask[-1, :-1] = 0
            head_mask.requires_grad_(requires_grad=True)
947
            inputs = self._prepare_for_class(inputs_dict, model_class).copy()
948
            inputs["head_mask"] = head_mask
949
950
951
952
953
            if model.config.is_encoder_decoder:
                signature = inspect.signature(model.forward)
                arg_names = [*signature.parameters.keys()]
                if "decoder_head_mask" in arg_names:  # necessary diferentiation because of T5 model
                    inputs["decoder_head_mask"] = head_mask
954
955
                if "cross_attn_head_mask" in arg_names:
                    inputs["cross_attn_head_mask"] = head_mask
956
            outputs = model(**inputs, return_dict=True)
957
958
959
960
961
962
963
964
965

            # Test that we can get a gradient back for importance score computation
            output = sum(t.sum() for t in outputs[0])
            output = output.sum()
            output.backward()
            multihead_outputs = head_mask.grad

            self.assertIsNotNone(multihead_outputs)
            self.assertEqual(len(multihead_outputs), self.model_tester.num_hidden_layers)
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986

            def check_attentions_validity(attentions):
                # Remove Nan
                for t in attentions:
                    self.assertLess(
                        torch.sum(torch.isnan(t)), t.numel() / 4
                    )  # Check we don't have more than 25% nans (arbitrary)
                attentions = [
                    t.masked_fill(torch.isnan(t), 0.0) for t in attentions
                ]  # remove them (the test is less complete)

                self.assertAlmostEqual(attentions[0][..., 0, :, :].flatten().sum().item(), 0.0)
                self.assertNotEqual(attentions[0][..., -1, :, :].flatten().sum().item(), 0.0)
                if len(attentions) > 2:  # encoder-decoder models have only 2 layers in each module
                    self.assertNotEqual(attentions[1][..., 0, :, :].flatten().sum().item(), 0.0)
                self.assertAlmostEqual(attentions[-1][..., -2, :, :].flatten().sum().item(), 0.0)
                self.assertNotEqual(attentions[-1][..., -1, :, :].flatten().sum().item(), 0.0)

            if model.config.is_encoder_decoder:
                check_attentions_validity(outputs.encoder_attentions)
                check_attentions_validity(outputs.decoder_attentions)
987
                check_attentions_validity(outputs.cross_attentions)
988
989
            else:
                check_attentions_validity(outputs.attentions)
990

Patrick von Platen's avatar
Patrick von Platen committed
991
992
    def test_head_pruning(self):
        if not self.test_pruning:
993
994
995
            return

        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
996
997
998
999
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
1000

1001
1002
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
1003

1004
            inputs_dict["output_attentions"] = True
1005
1006
1007
1008
            config.output_hidden_states = False
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
1009
1010
1011
1012
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
1013
1014
            model.prune_heads(heads_to_prune)
            with torch.no_grad():
1015
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
1016

1017
            attentions = outputs[-1]
1018

1019
1020
1021
            self.assertEqual(attentions[0].shape[-3], 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
LysandreJik's avatar
LysandreJik committed
1022

Patrick von Platen's avatar
Patrick von Platen committed
1023
1024
    def test_head_pruning_save_load_from_pretrained(self):
        if not self.test_pruning:
1025
            return
LysandreJik's avatar
LysandreJik committed
1026

1027
        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
1028
1029
1030
1031
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
1032
1033
1034

            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
1035

1036
            inputs_dict["output_attentions"] = True
1037
1038
1039
1040
            config.output_hidden_states = False
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
1041
1042
1043
1044
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
1045
            model.prune_heads(heads_to_prune)
1046

1047
            with tempfile.TemporaryDirectory() as temp_dir_name:
1048
1049
                model.save_pretrained(temp_dir_name)
                model = model_class.from_pretrained(temp_dir_name)
1050
                model.to(torch_device)
1051

1052
            with torch.no_grad():
1053
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
1054
1055
1056
1057
            attentions = outputs[-1]
            self.assertEqual(attentions[0].shape[-3], 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
1058

Patrick von Platen's avatar
Patrick von Platen committed
1059
1060
    def test_head_pruning_save_load_from_config_init(self):
        if not self.test_pruning:
1061
            return
1062

1063
        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
1064
1065
1066
1067
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
1068

1069
1070
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
1071

1072
            inputs_dict["output_attentions"] = True
1073
            config.output_hidden_states = False
1074

1075
1076
1077
1078
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
1079
            config.pruned_heads = heads_to_prune
1080

1081
1082
1083
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
1084

1085
            with torch.no_grad():
1086
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
1087
            attentions = outputs[-1]
1088

1089
1090
1091
            self.assertEqual(attentions[0].shape[-3], 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
1092

Patrick von Platen's avatar
Patrick von Platen committed
1093
1094
    def test_head_pruning_integration(self):
        if not self.test_pruning:
1095
            return
1096

1097
        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
1098
1099
1100
1101
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
1102

1103
1104
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
1105

1106
            inputs_dict["output_attentions"] = True
1107
            config.output_hidden_states = False
1108

1109
1110
            heads_to_prune = {0: [0], 1: [1, 2]}
            config.pruned_heads = heads_to_prune
1111

1112
1113
1114
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
1115

1116
            with torch.no_grad():
1117
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
1118
            attentions = outputs[-1]
1119

1120
1121
1122
1123
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads)
thomwolf's avatar
thomwolf committed
1124

1125
            with tempfile.TemporaryDirectory() as temp_dir_name:
1126
1127
                model.save_pretrained(temp_dir_name)
                model = model_class.from_pretrained(temp_dir_name)
1128
                model.to(torch_device)
thomwolf's avatar
thomwolf committed
1129

1130
            with torch.no_grad():
1131
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
1132
            attentions = outputs[-1]
LysandreJik's avatar
LysandreJik committed
1133

1134
1135
1136
1137
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads)
thomwolf's avatar
thomwolf committed
1138

1139
1140
            heads_to_prune = {0: [0], 2: [1, 2]}
            model.prune_heads(heads_to_prune)
1141

1142
            with torch.no_grad():
1143
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
1144
            attentions = outputs[-1]
1145

1146
1147
1148
1149
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads)
1150

1151
            self.assertDictEqual(model.config.pruned_heads, {0: [0], 1: [1, 2], 2: [1, 2]})
thomwolf's avatar
thomwolf committed
1152

Patrick von Platen's avatar
Patrick von Platen committed
1153
    def test_hidden_states_output(self):
Joseph Liu's avatar
Joseph Liu committed
1154
        def check_hidden_states_output(inputs_dict, config, model_class):
1155
            model = model_class(config)
1156
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
1157
            model.eval()
Joseph Liu's avatar
Joseph Liu committed
1158

thomwolf's avatar
thomwolf committed
1159
            with torch.no_grad():
1160
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
1161
1162

            hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
Patrick von Platen's avatar
Patrick von Platen committed
1163

Sylvain Gugger's avatar
Sylvain Gugger committed
1164
1165
1166
1167
            expected_num_layers = getattr(
                self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
            )
            self.assertEqual(len(hidden_states), expected_num_layers)
1168

Patrick von Platen's avatar
Patrick von Platen committed
1169
1170
1171
1172
1173
1174
1175
            if hasattr(self.model_tester, "encoder_seq_length"):
                seq_length = self.model_tester.encoder_seq_length
                if hasattr(self.model_tester, "chunk_length") and self.model_tester.chunk_length > 1:
                    seq_length = seq_length * self.model_tester.chunk_length
            else:
                seq_length = self.model_tester.seq_length

1176
            self.assertListEqual(
Lysandre's avatar
Lysandre committed
1177
1178
                list(hidden_states[0].shape[-2:]),
                [seq_length, self.model_tester.hidden_size],
1179
            )
thomwolf's avatar
thomwolf committed
1180

1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
            if config.is_encoder_decoder:
                hidden_states = outputs.decoder_hidden_states

                self.assertIsInstance(hidden_states, (list, tuple))
                self.assertEqual(len(hidden_states), expected_num_layers)
                seq_len = getattr(self.model_tester, "seq_length", None)
                decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len)

                self.assertListEqual(
                    list(hidden_states[0].shape[-2:]),
                    [decoder_seq_length, self.model_tester.hidden_size],
                )

Joseph Liu's avatar
Joseph Liu committed
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            inputs_dict["output_hidden_states"] = True
            check_hidden_states_output(inputs_dict, config, model_class)

            # check that output_hidden_states also work using config
            del inputs_dict["output_hidden_states"]
            config.output_hidden_states = True

            check_hidden_states_output(inputs_dict, config, model_class)

1206
1207
1208
    def test_retain_grad_hidden_states_attentions(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_hidden_states = True
1209
        config.output_attentions = self.has_attentions
1210
1211
1212
1213
1214
1215
1216
1217
1218

        # no need to test all models as different heads yield the same functionality
        model_class = self.all_model_classes[0]
        model = model_class(config)
        model.to(torch_device)

        inputs = self._prepare_for_class(inputs_dict, model_class)

        outputs = model(**inputs)
1219

1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
        output = outputs[0]

        if config.is_encoder_decoder:
            # Seq2Seq models
            encoder_hidden_states = outputs.encoder_hidden_states[0]
            encoder_hidden_states.retain_grad()

            decoder_hidden_states = outputs.decoder_hidden_states[0]
            decoder_hidden_states.retain_grad()

1230
1231
1232
1233
1234
1235
1236
1237
1238
            if self.has_attentions:
                encoder_attentions = outputs.encoder_attentions[0]
                encoder_attentions.retain_grad()

                decoder_attentions = outputs.decoder_attentions[0]
                decoder_attentions.retain_grad()

                cross_attentions = outputs.cross_attentions[0]
                cross_attentions.retain_grad()
1239
1240
1241
1242
1243

            output.flatten()[0].backward(retain_graph=True)

            self.assertIsNotNone(encoder_hidden_states.grad)
            self.assertIsNotNone(decoder_hidden_states.grad)
1244
1245
1246
1247
1248

            if self.has_attentions:
                self.assertIsNotNone(encoder_attentions.grad)
                self.assertIsNotNone(decoder_attentions.grad)
                self.assertIsNotNone(cross_attentions.grad)
1249
1250
1251
1252
        else:
            # Encoder-/Decoder-only models
            hidden_states = outputs.hidden_states[0]
            hidden_states.retain_grad()
1253
1254
1255
1256

            if self.has_attentions:
                attentions = outputs.attentions[0]
                attentions.retain_grad()
1257
1258
1259
1260

            output.flatten()[0].backward(retain_graph=True)

            self.assertIsNotNone(hidden_states.grad)
1261
1262
1263

            if self.has_attentions:
                self.assertIsNotNone(attentions.grad)
1264

Pradhy729's avatar
Pradhy729 committed
1265
    def test_feed_forward_chunking(self):
Lysandre's avatar
Lysandre committed
1266
1267
1268
1269
        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()
Pradhy729's avatar
Pradhy729 committed
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
        for model_class in self.all_model_classes:
            torch.manual_seed(0)
            config = copy.deepcopy(original_config)
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            hidden_states_no_chunk = model(**self._prepare_for_class(inputs_dict, model_class))[0]

            torch.manual_seed(0)
            config.chunk_size_feed_forward = 1
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            hidden_states_with_chunk = model(**self._prepare_for_class(inputs_dict, model_class))[0]
            self.assertTrue(torch.allclose(hidden_states_no_chunk, hidden_states_with_chunk, atol=1e-3))

1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
    def test_resize_position_vector_embeddings(self):
        if not self.test_resize_position_embeddings:
            return

        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            config = copy.deepcopy(original_config)
            model = model_class(config)
            model.to(torch_device)

            if self.model_tester.is_training is False:
                model.eval()

            max_position_embeddings = config.max_position_embeddings

            # Retrieve the embeddings and clone theme
            if model.config.is_encoder_decoder:
                encoder_model_embed, decoder_model_embed = model.get_position_embeddings()
                encoder_cloned_embeddings = encoder_model_embed.weight.clone()
                decoder_cloned_embeddings = decoder_model_embed.weight.clone()
            else:
                model_embed = model.get_position_embeddings()
                cloned_embeddings = model_embed.weight.clone()

            # Check that resizing the position embeddings with a larger max_position_embeddings increases
            # the model's postion embeddings size
            model.resize_position_embeddings(max_position_embeddings + 10)
            self.assertEqual(model.config.max_position_embeddings, max_position_embeddings + 10)

            # Check that it actually resizes the embeddings matrix
            if model.config.is_encoder_decoder:
                encoder_model_embed, decoder_model_embed = model.get_position_embeddings()
                self.assertEqual(encoder_model_embed.weight.shape[0], encoder_cloned_embeddings.shape[0] + 10)
                self.assertEqual(decoder_model_embed.weight.shape[0], decoder_cloned_embeddings.shape[0] + 10)
            else:
                model_embed = model.get_position_embeddings()
                self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10)

            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**self._prepare_for_class(inputs_dict, model_class))

            # Check that resizing the position embeddings with a smaller max_position_embeddings decreases
            # the model's max_position_embeddings
            model.resize_position_embeddings(max_position_embeddings - 5)
            self.assertEqual(model.config.max_position_embeddings, max_position_embeddings - 5)

            # Check that it actually resizes the embeddings matrix
            if model.config.is_encoder_decoder:
                encoder_model_embed, decoder_model_embed = model.get_position_embeddings()
                self.assertEqual(encoder_model_embed.weight.shape[0], encoder_cloned_embeddings.shape[0] - 5)
                self.assertEqual(decoder_model_embed.weight.shape[0], decoder_cloned_embeddings.shape[0] - 5)
            else:
                model_embed = model.get_position_embeddings()
                self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 5)

            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**self._prepare_for_class(inputs_dict, model_class))

            # Check that adding and removing tokens has not modified the first part of the embedding matrix.
            models_equal = True

            if model.config.is_encoder_decoder:
                for p1, p2 in zip(encoder_cloned_embeddings, encoder_model_embed.weight):
                    if p1.data.ne(p2.data).sum() > 0:
                        models_equal = False
                for p1, p2 in zip(decoder_cloned_embeddings, decoder_model_embed.weight):
                    if p1.data.ne(p2.data).sum() > 0:
                        models_equal = False
            else:
                for p1, p2 in zip(cloned_embeddings, model_embed.weight):
                    if p1.data.ne(p2.data).sum() > 0:
                        models_equal = False

            self.assertTrue(models_equal)

Patrick von Platen's avatar
Patrick von Platen committed
1367
    def test_resize_tokens_embeddings(self):
Lysandre's avatar
Lysandre committed
1368
1369
1370
1371
        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()
Patrick von Platen's avatar
Patrick von Platen committed
1372
        if not self.test_resize_embeddings:
1373
1374
1375
1376
1377
            return

        for model_class in self.all_model_classes:
            config = copy.deepcopy(original_config)
            model = model_class(config)
1378
            model.to(torch_device)
1379

Patrick von Platen's avatar
Patrick von Platen committed
1380
1381
1382
            if self.model_tester.is_training is False:
                model.eval()

1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
            model_vocab_size = config.vocab_size
            # Retrieve the embeddings and clone theme
            model_embed = model.resize_token_embeddings(model_vocab_size)
            cloned_embeddings = model_embed.weight.clone()

            # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
            model_embed = model.resize_token_embeddings(model_vocab_size + 10)
            self.assertEqual(model.config.vocab_size, model_vocab_size + 10)
            # Check that it actually resizes the embeddings matrix
            self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10)
1393
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
1394
            model(**self._prepare_for_class(inputs_dict, model_class))
1395
1396
1397
1398
1399
1400
1401

            # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
            model_embed = model.resize_token_embeddings(model_vocab_size - 15)
            self.assertEqual(model.config.vocab_size, model_vocab_size - 15)
            # Check that it actually resizes the embeddings matrix
            self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 15)

1402
1403
1404
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            # Input ids should be clamped to the maximum size of the vocabulary
            inputs_dict["input_ids"].clamp_(max=model_vocab_size - 15 - 1)
1405
1406
1407
1408

            # make sure that decoder_input_ids are resized as well
            if "decoder_input_ids" in inputs_dict:
                inputs_dict["decoder_input_ids"].clamp_(max=model_vocab_size - 15 - 1)
1409
            model(**self._prepare_for_class(inputs_dict, model_class))
1410

1411
1412
1413
1414
1415
1416
1417
1418
            # Check that adding and removing tokens has not modified the first part of the embedding matrix.
            models_equal = True
            for p1, p2 in zip(cloned_embeddings, model_embed.weight):
                if p1.data.ne(p2.data).sum() > 0:
                    models_equal = False

            self.assertTrue(models_equal)

1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
    def test_resize_embeddings_untied(self):
        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()
        if not self.test_resize_embeddings:
            return

        original_config.tie_word_embeddings = False

        # if model cannot untied embeddings -> leave test
        if original_config.tie_word_embeddings:
            return

        for model_class in self.all_model_classes:
            config = copy.deepcopy(original_config)
            model = model_class(config).to(torch_device)

            # if no output embeddings -> leave test
            if model.get_output_embeddings() is None:
                continue

            # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
            model_vocab_size = config.vocab_size
            model.resize_token_embeddings(model_vocab_size + 10)
            self.assertEqual(model.config.vocab_size, model_vocab_size + 10)
            output_embeds = model.get_output_embeddings()
            self.assertEqual(output_embeds.weight.shape[0], model_vocab_size + 10)
            # Check bias if present
            if output_embeds.bias is not None:
                self.assertEqual(output_embeds.bias.shape[0], model_vocab_size + 10)
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**self._prepare_for_class(inputs_dict, model_class))

            # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
            model.resize_token_embeddings(model_vocab_size - 15)
            self.assertEqual(model.config.vocab_size, model_vocab_size - 15)
            # Check that it actually resizes the embeddings matrix
            output_embeds = model.get_output_embeddings()
            self.assertEqual(output_embeds.weight.shape[0], model_vocab_size - 15)
            # Check bias if present
            if output_embeds.bias is not None:
                self.assertEqual(output_embeds.bias.shape[0], model_vocab_size - 15)
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            # Input ids should be clamped to the maximum size of the vocabulary
            inputs_dict["input_ids"].clamp_(max=model_vocab_size - 15 - 1)
            if "decoder_input_ids" in inputs_dict:
                inputs_dict["decoder_input_ids"].clamp_(max=model_vocab_size - 15 - 1)
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**self._prepare_for_class(inputs_dict, model_class))

Patrick von Platen's avatar
Patrick von Platen committed
1470
    def test_model_common_attributes(self):
1471
1472
1473
1474
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
1475
1476
            self.assertIsInstance(model.get_input_embeddings(), (nn.Embedding, AdaptiveEmbedding))
            model.set_input_embeddings(nn.Embedding(10, 10))
1477
            x = model.get_output_embeddings()
1478
            self.assertTrue(x is None or isinstance(x, nn.Linear))
1479

1480
1481
1482
1483
1484
1485
1486
    def test_model_main_input_name(self):
        for model_class in self.all_model_classes:
            model_signature = inspect.signature(getattr(model_class, "forward"))
            # The main input is the name of the argument after `self`
            observed_main_input_name = list(model_signature.parameters.keys())[1]
            self.assertEqual(model_class.main_input_name, observed_main_input_name)

1487
    def test_correct_missing_keys(self):
1488
1489
        if not self.test_missing_keys:
            return
1490
1491
1492
1493
1494
1495
1496
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            base_model_prefix = model.base_model_prefix

            if hasattr(model, base_model_prefix):
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
                extra_params = {k: v for k, v in model.named_parameters() if not k.startswith(base_model_prefix)}
                extra_params.update({k: v for k, v in model.named_buffers() if not k.startswith(base_model_prefix)})
                # Some models define this as None
                if model._keys_to_ignore_on_load_missing:
                    for key in model._keys_to_ignore_on_load_missing:
                        extra_params.pop(key, None)

                if not extra_params:
                    # In that case, we *are* on a head model, but every
                    # single key is not actual parameters and this is
                    # tested in `test_tied_model_weights_key_ignore` test.
                    continue

1510
1511
1512
                with tempfile.TemporaryDirectory() as temp_dir_name:
                    model.base_model.save_pretrained(temp_dir_name)
                    model, loading_info = model_class.from_pretrained(temp_dir_name, output_loading_info=True)
1513
                    self.assertGreater(len(loading_info["missing_keys"]), 0, model.__class__.__name__)
1514

1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
    def test_tie_model_weights(self):
        if not self.test_torchscript:
            return

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        def check_same_values(layer_1, layer_2):
            equal = True
            for p1, p2 in zip(layer_1.weight, layer_2.weight):
                if p1.data.ne(p2.data).sum() > 0:
                    equal = False
            return equal

        for model_class in self.all_model_classes:
            config.torchscript = True
            model_not_tied = model_class(config)
            if model_not_tied.get_output_embeddings() is None:
                continue

            config_tied = copy.deepcopy(config)
            config_tied.torchscript = False
            model_tied = model_class(config_tied)
            params_tied = list(model_tied.parameters())
            # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(check_same_values(embeddings, decoding))

            # # Check that after modification, they remain the same.
            # embeddings.weight.data.div_(2)
            # # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(embeddings.weight.shape, decoding.weight.shape)
            # self.assertTrue(check_same_values(embeddings, decoding))

            # # Check that after modification, they remain the same.
            # decoding.weight.data.div_(4)
            # # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(embeddings.weight.shape, decoding.weight.shape)
            # self.assertTrue(check_same_values(embeddings, decoding))

            # Check that after resize they remain tied.
            model_tied.resize_token_embeddings(config.vocab_size + 10)
            params_tied_2 = list(model_tied.parameters())
            self.assertEqual(len(params_tied_2), len(params_tied))

            # decoding.weight.data.mul_(20)
            # # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(model.transformer.wte.weight.shape, model.lm_head.weight.shape)
            # self.assertTrue(check_same_values(model.transformer.wte, model.lm_head))

1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
    @require_safetensors
    def test_can_use_safetensors(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        for model_class in self.all_model_classes:
            model_tied = model_class(config)
            with tempfile.TemporaryDirectory() as d:
                try:
                    model_tied.save_pretrained(d, safe_serialization=True)
                except Exception as e:
                    raise Exception(f"Class {model_class.__name__} cannot be saved using safetensors: {e}")

                model_reloaded, infos = model_class.from_pretrained(d, output_loading_info=True)
                # Checking the state dicts are correct
                reloaded_state = model_reloaded.state_dict()
                for k, v in model_tied.state_dict().items():
                    self.assertIn(k, reloaded_state, f"Key {k} is missing from reloaded")
                    torch.testing.assert_close(
                        v, reloaded_state[k], msg=lambda x: f"{model_class.__name__}: Tensor {k}: {x}"
                    )

                # Checking the tensor sharing are correct
                ptrs = defaultdict(list)
                for k, v in model_tied.state_dict().items():
                    ptrs[v.data_ptr()].append(k)

                shared_ptrs = {k: v for k, v in ptrs.items() if len(v) > 1}

                for _, shared_names in shared_ptrs.items():
                    reloaded_ptrs = {reloaded_state[k].data_ptr() for k in shared_names}
                    self.assertEqual(
                        len(reloaded_ptrs),
                        1,
                        f"The shared pointers are incorrect, found different pointers for keys {shared_names}",
                    )

Sylvain Gugger's avatar
Sylvain Gugger committed
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
    def test_tied_weights_keys(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()
        config.tie_word_embeddings = True
        for model_class in self.all_model_classes:
            model_tied = model_class(config)

            ptrs = collections.defaultdict(list)
            for name, tensor in model_tied.state_dict().items():
                ptrs[id_tensor_storage(tensor)].append(name)

            # These are all the pointers of shared tensors.
            tied_params = [names for _, names in ptrs.items() if len(names) > 1]

            tied_weight_keys = model_tied._tied_weights_keys if model_tied._tied_weights_keys is not None else []
            # Detect we get a hit for each key
            for key in tied_weight_keys:
                if not any(re.search(key, p) for group in tied_params for p in group):
                    raise ValueError(f"{key} is not a tied weight key for {model_class}.")

            # Removed tied weights found from tied params -> there should only be one left after
            for key in tied_weight_keys:
                for i in range(len(tied_params)):
                    tied_params[i] = [p for p in tied_params[i] if re.search(key, p) is None]

            tied_params = [group for group in tied_params if len(group) > 1]
            self.assertListEqual(tied_params, [])

1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
    def test_tied_model_weights_key_ignore(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        for model_class in self.all_model_classes:
            model_tied = model_class(config)
            with tempfile.TemporaryDirectory() as d:
                model_tied.save_pretrained(d)

                # We are nuking ALL weights on file, so every parameter should
                # yell on load. We're going to detect if we yell too much, or too little.
                with open(os.path.join(d, "pytorch_model.bin"), "wb") as f:
                    torch.save({}, f)
                model_reloaded, infos = model_class.from_pretrained(d, output_loading_info=True)

                # ! Actually we could use `state_dict()` and check iteratively the tensors which are the same (for instance using `tensor.data_ptr()`). to detect the duplicates.
                # ```python
                # model = GPT2LMHeadModel.from_pretrained("gpt2")
                # "lm_head.weight" in model.state_dict().keys()  # True
                # "lm_head.weight" in model.named_parameters() # False
                # In [6]: model.lm_head.weight.data_ptr()
                # Out[6]: 139901378371648
                # In [9]: model.transformer.wte.weight.data_ptr()
                # Out[9]: 139901378371648  # Same PTR, it's the same DATA ! we would need to check for stride too to be 100% accurate.
                # ```

                prefix = f"{model_reloaded.base_model_prefix}."
                params = dict(model_reloaded.named_parameters())
                params.update(dict(model_reloaded.named_buffers()))
                # param_names = set(k[len(prefix) :] if k.startswith(prefix) else k for k in params.keys())
1653
                param_names = {k[len(prefix) :] if k.startswith(prefix) else k for k in params.keys()}
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672

                missing_keys = set(infos["missing_keys"])

                extra_missing = missing_keys - param_names
                # missed_missing = param_names - missing_keys

                self.assertEqual(
                    extra_missing,
                    set(),
                    f"This model {model_class.__name__} might be missing some `keys_to_ignore`: {extra_missing}",
                )

                # self.assertEqual(
                #     missed_missing,
                #     set(),
                #     f"This model {model_class.__name__} ignores keys {missed_missing} but they look like real"
                #     " parameters",
                # )

1673
1674
1675
    def test_model_outputs_equivalence(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

Sam Shleifer's avatar
Sam Shleifer committed
1676
1677
1678
1679
        def set_nan_tensor_to_zero(t):
            t[t != t] = 0
            return t

1680
1681
1682
1683
1684
1685
1686
1687
1688
        def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}):
            with torch.no_grad():
                tuple_output = model(**tuple_inputs, return_dict=False, **additional_kwargs)
                dict_output = model(**dict_inputs, return_dict=True, **additional_kwargs).to_tuple()

                def recursive_check(tuple_object, dict_object):
                    if isinstance(tuple_object, (List, Tuple)):
                        for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object):
                            recursive_check(tuple_iterable_value, dict_iterable_value)
NielsRogge's avatar
NielsRogge committed
1689
1690
1691
1692
1693
                    elif isinstance(tuple_object, Dict):
                        for tuple_iterable_value, dict_iterable_value in zip(
                            tuple_object.values(), dict_object.values()
                        ):
                            recursive_check(tuple_iterable_value, dict_iterable_value)
1694
1695
1696
1697
                    elif tuple_object is None:
                        return
                    else:
                        self.assertTrue(
Sam Shleifer's avatar
Sam Shleifer committed
1698
1699
1700
                            torch.allclose(
                                set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5
                            ),
Sylvain Gugger's avatar
Sylvain Gugger committed
1701
1702
1703
1704
1705
1706
                            msg=(
                                "Tuple and dict output are not equal. Difference:"
                                f" {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:"
                                f" {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has"
                                f" `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}."
                            ),
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
                        )

                recursive_check(tuple_output, dict_output)

        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})

1732
1733
1734
1735
            if self.has_attentions:
                tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
                dict_inputs = self._prepare_for_class(inputs_dict, model_class)
                check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})
1736

1737
1738
1739
1740
1741
1742
1743
1744
1745
                tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})

                tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                check_equivalence(
                    model, tuple_inputs, dict_inputs, {"output_hidden_states": True, "output_attentions": True}
                )
1746

1747
1748
1749
1750
    # Don't copy this method to model specific test file!
    # TODO: remove this method once the issues are all fixed!
    def _make_attention_mask_non_null(self, inputs_dict):
        """Make sure no sequence has all zeros as attention mask"""
1751

1752
1753
1754
        for k in ["attention_mask", "encoder_attention_mask", "decoder_attention_mask"]:
            if k in inputs_dict:
                attention_mask = inputs_dict[k]
1755

1756
1757
1758
1759
1760
1761
                # Make sure no all 0s attention masks - to avoid failure at this moment.
                # Put `1` at the beginning of sequences to make it still work when combining causal attention masks.
                # TODO: remove this line once a fix regarding large negative values for attention mask is done.
                attention_mask = torch.cat(
                    [torch.ones_like(attention_mask[:, :1], dtype=attention_mask.dtype), attention_mask[:, 1:]], dim=-1
                )
1762

1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
                # Here we make the first sequence with all 0s as attention mask.
                # Currently, this will fail for `TFWav2Vec2Model`. This is caused by the different large negative
                # values, like `1e-4`, `1e-9`, `1e-30` and `-inf` for attention mask across models/frameworks.
                # TODO: enable this block once the large negative values thing is cleaned up.
                # (see https://github.com/huggingface/transformers/issues/14859)
                # attention_mask = torch.cat(
                #     [torch.zeros_like(attention_mask[:1], dtype=attention_mask.dtype), attention_mask[1:]],
                #     dim=0
                # )

                inputs_dict[k] = attention_mask

    # Don't copy this method to model specific test file!
    # TODO: remove this method once the issues are all fixed!
    def _postprocessing_to_ignore_test_cases(self, tf_outputs, pt_outputs, model_class):
        """For temporarily ignoring some failed test cases (issues to be fixed)"""

1780
1781
        tf_keys = {k for k, v in tf_outputs.items() if v is not None}
        pt_keys = {k for k, v in pt_outputs.items() if v is not None}
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808

        key_differences = tf_keys.symmetric_difference(pt_keys)

        if model_class.__name__ in [
            "FlaubertWithLMHeadModel",
            "FunnelForPreTraining",
            "ElectraForPreTraining",
            "XLMWithLMHeadModel",
            "TransfoXLLMHeadModel",
        ]:
            for k in key_differences:
                if k in ["loss", "losses"]:
                    tf_keys.discard(k)
                    pt_keys.discard(k)
        elif model_class.__name__.startswith("GPT2"):
            # `TFGPT2` has `past_key_values` as a tensor while `GPT2` has it as a tuple.
            tf_keys.discard("past_key_values")
            pt_keys.discard("past_key_values")

        # create new outputs from the remaining fields
        new_tf_outputs = type(tf_outputs)(**{k: tf_outputs[k] for k in tf_keys})
        new_pt_outputs = type(pt_outputs)(**{k: pt_outputs[k] for k in pt_keys})

        return new_tf_outputs, new_pt_outputs

    # Copied from tests.test_modeling_tf_common.TFModelTesterMixin.check_pt_tf_outputs
    def check_pt_tf_outputs(self, tf_outputs, pt_outputs, model_class, tol=1e-5, name="outputs", attributes=None):
1809
        """Check the outputs from PyTorch and TensorFlow models are close enough. Checks are done in a recursive way.
1810

1811
1812
1813
1814
1815
1816
1817
1818
        Args:
            model_class: The class of the model that is currently testing. For example, `TFBertModel`,
                TFBertForMaskedLM`, `TFBertForSequenceClassification`, etc. Mainly used for providing more informative
                error messages.
            name (`str`): The name of the output. For example, `output.hidden_states`, `output.attentions`, etc.
            attributes (`Tuple[str]`): The names of the output's element if the output is a tuple/list with each element
                being a named field in the output.
        """
1819

1820
1821
1822
        self.assertEqual(type(name), str)
        if attributes is not None:
            self.assertEqual(type(attributes), tuple, f"{name}: The argument `attributes` should be a `tuple`")
1823

1824
1825
1826
1827
1828
1829
        # Allow `ModelOutput` (e.g. `CLIPOutput` has `text_model_output` and `vision_model_output`).
        if isinstance(tf_outputs, ModelOutput):
            self.assertTrue(
                isinstance(pt_outputs, ModelOutput),
                f"{name}: `pt_outputs` should an instance of `ModelOutput` when `tf_outputs` is",
            )
1830

1831
1832
1833
            # Don't copy this block to model specific test file!
            # TODO: remove this method and this line after issues are fixed
            tf_outputs, pt_outputs = self._postprocessing_to_ignore_test_cases(tf_outputs, pt_outputs, model_class)
1834

1835
1836
            tf_keys = [k for k, v in tf_outputs.items() if v is not None]
            pt_keys = [k for k, v in pt_outputs.items() if v is not None]
1837

1838
            self.assertEqual(tf_keys, pt_keys, f"{name}: Output keys differ between TF and PyTorch")
1839

1840
            # convert to the case of `tuple`
1841
            # appending each key to the current (string) `name`
1842
1843
1844
1845
            attributes = tuple([f"{name}.{k}" for k in tf_keys])
            self.check_pt_tf_outputs(
                tf_outputs.to_tuple(), pt_outputs.to_tuple(), model_class, tol=tol, name=name, attributes=attributes
            )
1846

1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
        # Allow `list` (e.g. `TransfoXLModelOutput.mems` is a list of tensors.)
        elif type(tf_outputs) in [tuple, list]:
            self.assertEqual(type(tf_outputs), type(pt_outputs), f"{name}: Output types differ between TF and PyTorch")
            self.assertEqual(len(tf_outputs), len(pt_outputs), f"{name}: Output lengths differ between TF and PyTorch")

            if attributes is not None:
                # case 1: each output has assigned name (e.g. a tuple form of a `ModelOutput`)
                self.assertEqual(
                    len(attributes),
                    len(tf_outputs),
1857
                    f"{name}: The tuple `attributes` should have the same length as `tf_outputs`",
1858
                )
1859
            else:
1860
                # case 2: each output has no assigned name (e.g. hidden states of each layer) -> add an index to `name`
1861
                attributes = tuple([f"{name}_{idx}" for idx in range(len(tf_outputs))])
1862

1863
1864
            for tf_output, pt_output, attr in zip(tf_outputs, pt_outputs, attributes):
                self.check_pt_tf_outputs(tf_output, pt_output, model_class, tol=tol, name=attr)
1865

1866
1867
1868
1869
        elif isinstance(tf_outputs, tf.Tensor):
            self.assertTrue(
                isinstance(pt_outputs, torch.Tensor), f"{name}: `pt_outputs` should a tensor when `tf_outputs` is"
            )
1870

1871
1872
            tf_outputs = tf_outputs.numpy()
            pt_outputs = pt_outputs.detach().to("cpu").numpy()
1873

1874
1875
1876
            self.assertEqual(
                tf_outputs.shape, pt_outputs.shape, f"{name}: Output shapes differ between TF and PyTorch"
            )
1877

1878
1879
1880
1881
            # deal with NumPy's scalars to make replacing nan values by 0 work.
            if np.isscalar(tf_outputs):
                tf_outputs = np.array([tf_outputs])
                pt_outputs = np.array([pt_outputs])
1882

1883
1884
            tf_nans = np.isnan(tf_outputs)
            pt_nans = np.isnan(pt_outputs)
1885

1886
1887
1888
1889
            pt_outputs[tf_nans] = 0
            tf_outputs[tf_nans] = 0
            pt_outputs[pt_nans] = 0
            tf_outputs[pt_nans] = 0
1890

1891
            max_diff = np.amax(np.abs(tf_outputs - pt_outputs))
1892
            self.assertLessEqual(max_diff, tol, f"{name}: Difference between PyTorch and TF is {max_diff} (>= {tol}).")
1893
1894
        else:
            raise ValueError(
1895
                "`tf_outputs` should be an instance of `ModelOutput`, a `tuple`, or an instance of `tf.Tensor`. Got"
Sylvain Gugger's avatar
Sylvain Gugger committed
1896
                f" {type(tf_outputs)} instead."
1897
1898
            )

1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
    def prepare_tf_inputs_from_pt_inputs(self, pt_inputs_dict):
        tf_inputs_dict = {}
        for key, tensor in pt_inputs_dict.items():
            # skip key that does not exist in tf
            if type(tensor) == bool:
                tf_inputs_dict[key] = tensor
            elif key == "input_values":
                tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.float32)
            elif key == "pixel_values":
                tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.float32)
            elif key == "input_features":
                tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.float32)
            # other general float inputs
            elif tensor.is_floating_point():
                tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.float32)
            else:
                tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.int32)
1916

1917
        return tf_inputs_dict
1918

1919
1920
    def check_pt_tf_models(self, tf_model, pt_model, pt_inputs_dict):
        tf_inputs_dict = self.prepare_tf_inputs_from_pt_inputs(pt_inputs_dict)
1921

1922
1923
1924
1925
        # send pytorch inputs to the correct device
        pt_inputs_dict = {
            k: v.to(device=torch_device) if isinstance(v, torch.Tensor) else v for k, v in pt_inputs_dict.items()
        }
1926

1927
1928
        # send pytorch model to the correct device
        pt_model.to(torch_device)
1929

1930
1931
        # Check predictions on first output (logits/hidden-states) are close enough given low-level computational differences
        pt_model.eval()
1932

1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
        with torch.no_grad():
            pt_outputs = pt_model(**pt_inputs_dict)
        tf_outputs = tf_model(tf_inputs_dict)

        # tf models returned loss is usually a tensor rather than a scalar.
        # (see `hf_compute_loss`: it uses `tf.keras.losses.Reduction.NONE`)
        # Change it here to a scalar to match PyTorch models' loss
        tf_loss = getattr(tf_outputs, "loss", None)
        if tf_loss is not None:
            tf_outputs.loss = tf.math.reduce_mean(tf_loss)

        self.check_pt_tf_outputs(tf_outputs, pt_outputs, type(pt_model))

    @is_pt_tf_cross_test
Matt's avatar
Matt committed
1947
    def test_pt_tf_model_equivalence(self, allow_missing_keys=False):
1948
        import transformers
1949
1950

        for model_class in self.all_model_classes:
1951
1952
1953
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

            tf_model_class_name = "TF" + model_class.__name__  # Add the "TF" at the beginning
1954
            if not hasattr(transformers, tf_model_class_name):
1955
                # transformers does not have this model in TF version yet
1956
1957
                return

1958
1959
1960
            # Output all for aggressive testing
            config.output_hidden_states = True
            config.output_attentions = self.has_attentions
1961

1962
1963
1964
1965
            # Make sure no sequence has all zeros as attention mask, otherwise some tests fail due to the inconsistency
            # of the usage `1e-4`, `1e-9`, `1e-30`, `-inf`.
            # TODO: Use a uniform value for all models, make sure all tests pass without this processing, and remove it.
            self._make_attention_mask_non_null(inputs_dict)
1966
1967

            tf_model_class = getattr(transformers, tf_model_class_name)
1968
1969

            pt_model = model_class(config)
1970
1971
1972
1973
1974
1975
1976
1977
1978
            tf_model = tf_model_class(config)

            pt_inputs_dict = self._prepare_for_class(inputs_dict, model_class)
            pt_inputs_dict_with_labels = self._prepare_for_class(
                inputs_dict,
                model_class,
                # Not all models accept "labels" in the forward pass (yet :) )
                return_labels=True if "labels" in inspect.signature(model_class.forward).parameters.keys() else False,
            )
1979
1980
1981
1982
1983
1984
1985
1986
1987

            # make sure only tf inputs are forward that actually exist in function args
            tf_input_keys = set(inspect.signature(tf_model.call).parameters.keys())

            # remove all head masks
            tf_input_keys.discard("head_mask")
            tf_input_keys.discard("cross_attn_head_mask")
            tf_input_keys.discard("decoder_head_mask")

1988
            pt_inputs_dict = {k: v for k, v in pt_inputs_dict.items() if k in tf_input_keys}
1989
1990
1991
1992
            pt_inputs_dict_with_labels = {k: v for k, v in pt_inputs_dict_with_labels.items() if k in tf_input_keys}

            # For some models (e.g. base models), there is no label returned.
            # Set the input dict to `None` to avoid check outputs twice for the same input dicts.
1993
            if not set(pt_inputs_dict_with_labels.keys()).symmetric_difference(pt_inputs_dict.keys()):
1994
                pt_inputs_dict_with_labels = None
1995
1996

            # Check we can load pt model in tf and vice-versa with model => model functions
1997
1998
            # Here requires `tf_inputs_dict` to build `tf_model`
            tf_inputs_dict = self.prepare_tf_inputs_from_pt_inputs(pt_inputs_dict)
Matt's avatar
Matt committed
1999
2000
2001
2002
2003
2004
            tf_model = transformers.load_pytorch_model_in_tf2_model(
                tf_model, pt_model, tf_inputs=tf_inputs_dict, allow_missing_keys=allow_missing_keys
            )
            pt_model = transformers.load_tf2_model_in_pytorch_model(
                pt_model, tf_model, allow_missing_keys=allow_missing_keys
            )
2005

2006
2007
2008
2009
2010
            # Original test: check without `labels`
            self.check_pt_tf_models(tf_model, pt_model, pt_inputs_dict)
            # check with `labels`
            if pt_inputs_dict_with_labels:
                self.check_pt_tf_models(tf_model, pt_model, pt_inputs_dict_with_labels)
2011
2012
2013
2014
2015

            # Check we can load pt model in tf and vice-versa with checkpoint => model functions
            with tempfile.TemporaryDirectory() as tmpdirname:
                pt_checkpoint_path = os.path.join(tmpdirname, "pt_model.bin")
                torch.save(pt_model.state_dict(), pt_checkpoint_path)
Matt's avatar
Matt committed
2016
2017
2018
                tf_model = transformers.load_pytorch_checkpoint_in_tf2_model(
                    tf_model, pt_checkpoint_path, allow_missing_keys=allow_missing_keys
                )
2019
2020
2021

                tf_checkpoint_path = os.path.join(tmpdirname, "tf_model.h5")
                tf_model.save_weights(tf_checkpoint_path)
Matt's avatar
Matt committed
2022
2023
2024
                pt_model = transformers.load_tf2_checkpoint_in_pytorch_model(
                    pt_model, tf_checkpoint_path, allow_missing_keys=allow_missing_keys
                )
2025

2026
2027
2028
2029
2030
            # Original test: check without `labels`
            self.check_pt_tf_models(tf_model, pt_model, pt_inputs_dict)
            # check with `labels`
            if pt_inputs_dict_with_labels:
                self.check_pt_tf_models(tf_model, pt_model, pt_inputs_dict_with_labels)
2031
2032
2033
2034
2035

    def assert_almost_equals(self, a: np.ndarray, b: np.ndarray, tol: float):
        diff = np.abs((a - b)).max()
        self.assertLessEqual(diff, tol, f"Difference between torch and flax is {diff} (>= {tol}).")

2036
    def check_pt_flax_outputs(self, fx_outputs, pt_outputs, model_class, tol=1e-5, name="outputs", attributes=None):
2037
2038
2039
2040
2041
2042
2043
2044
2045
        """
        Args:
            model_class: The class of the model that is currently testing. For example, ..., etc.
            Currently unused, but it could make debugging easier and faster.

            names: A string, or a list of strings. These specify what fx_outputs/pt_outputs represent in the model outputs.
                Currently unused, but in the future, we could use this information to make the error message clearer
                by giving the name(s) of the output tensor(s) with large difference(s) between PT and Flax.
        """
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085

        self.assertEqual(type(name), str)
        if attributes is not None:
            self.assertEqual(type(attributes), tuple, f"{name}: The argument `attributes` should be a `tuple`")

        # Allow `ModelOutput` (e.g. `CLIPOutput` has `text_model_output` and `vision_model_output`).
        if isinstance(fx_outputs, ModelOutput):
            self.assertTrue(
                isinstance(pt_outputs, ModelOutput),
                f"{name}: `pt_outputs` should an instance of `ModelOutput` when `fx_outputs` is",
            )

            fx_keys = tuple([k for k, v in fx_outputs.items() if v is not None])
            pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None])

            self.assertEqual(fx_keys, pt_keys, f"{name}: Output keys differ between Flax and PyTorch")

            # convert to the case of `tuple`
            # appending each key to the current (string) `name`
            attributes = tuple([f"{name}.{k}" for k in fx_keys])
            self.check_pt_flax_outputs(
                fx_outputs.to_tuple(), pt_outputs.to_tuple(), model_class, tol=tol, name=name, attributes=attributes
            )

        # Allow `list` (e.g. `TransfoXLModelOutput.mems` is a list of tensors.)
        elif type(fx_outputs) in [tuple, list]:
            self.assertEqual(
                type(fx_outputs), type(pt_outputs), f"{name}: Output types differ between Flax and PyTorch"
            )
            self.assertEqual(
                len(fx_outputs), len(pt_outputs), f"{name}: Output lengths differ between Flax and PyTorch"
            )

            if attributes is not None:
                # case 1: each output has assigned name (e.g. a tuple form of a `ModelOutput`)
                self.assertEqual(
                    len(attributes),
                    len(fx_outputs),
                    f"{name}: The tuple `attributes` should have the same length as `fx_outputs`",
                )
2086
            else:
2087
2088
2089
2090
2091
2092
                # case 2: each output has no assigned name (e.g. hidden states of each layer) -> add an index to `name`
                attributes = tuple([f"{name}_{idx}" for idx in range(len(fx_outputs))])

            for fx_output, pt_output, attr in zip(fx_outputs, pt_outputs, attributes):
                self.check_pt_flax_outputs(fx_output, pt_output, model_class, tol=tol, name=attr)

2093
        elif isinstance(fx_outputs, jnp.ndarray):
2094
2095
2096
            self.assertTrue(
                isinstance(pt_outputs, torch.Tensor), f"{name}: `pt_outputs` should a tensor when `fx_outputs` is"
            )
2097
2098
2099
2100
2101

            # Using `np.asarray` gives `ValueError: assignment destination is read-only` at the line `fx_outputs[fx_nans] = 0`.
            fx_outputs = np.array(fx_outputs)
            pt_outputs = pt_outputs.detach().to("cpu").numpy()

2102
2103
2104
2105
2106
2107
2108
2109
2110
            self.assertEqual(
                fx_outputs.shape, pt_outputs.shape, f"{name}: Output shapes differ between Flax and PyTorch"
            )

            # deal with NumPy's scalars to make replacing nan values by 0 work.
            if np.isscalar(fx_outputs):
                fx_outputs = np.array([fx_outputs])
                pt_outputs = np.array([pt_outputs])

2111
2112
2113
2114
2115
2116
2117
2118
            fx_nans = np.isnan(fx_outputs)
            pt_nans = np.isnan(pt_outputs)

            pt_outputs[fx_nans] = 0
            fx_outputs[fx_nans] = 0
            pt_outputs[pt_nans] = 0
            fx_outputs[pt_nans] = 0

2119
2120
2121
2122
            max_diff = np.amax(np.abs(fx_outputs - pt_outputs))
            self.assertLessEqual(
                max_diff, tol, f"{name}: Difference between PyTorch and Flax is {max_diff} (>= {tol})."
            )
2123
2124
        else:
            raise ValueError(
2125
2126
                "`fx_outputs` should be an instance of `ModelOutput`, a `tuple`, or an instance of `jnp.ndarray`. Got"
                f" {type(fx_outputs)} instead."
2127
2128
            )

2129
2130
2131
2132
2133
2134
2135
2136
2137
    @is_pt_flax_cross_test
    def test_equivalence_pt_to_flax(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            with self.subTest(model_class.__name__):
                fx_model_class_name = "Flax" + model_class.__name__

                if not hasattr(transformers, fx_model_class_name):
2138
                    # no flax model exists for this class
2139
2140
                    return

2141
2142
2143
2144
                # Output all for aggressive testing
                config.output_hidden_states = True
                config.output_attentions = self.has_attentions

2145
2146
                fx_model_class = getattr(transformers, fx_model_class_name)

2147
2148
2149
2150
2151
2152
                # load PyTorch class
                pt_model = model_class(config).eval()
                # Flax models don't use the `use_cache` option and cache is not returned as a default.
                # So we disable `use_cache` here for PyTorch model.
                pt_model.config.use_cache = False

2153
2154
                # load Flax class
                fx_model = fx_model_class(config, dtype=jnp.float32)
2155

2156
2157
2158
2159
2160
2161
2162
2163
2164
                # make sure only flax inputs are forward that actually exist in function args
                fx_input_keys = inspect.signature(fx_model.__call__).parameters.keys()

                # prepare inputs
                pt_inputs = self._prepare_for_class(inputs_dict, model_class)

                # remove function args that don't exist in Flax
                pt_inputs = {k: v for k, v in pt_inputs.items() if k in fx_input_keys}

2165
2166
2167
2168
2169
2170
2171
2172
                # send pytorch inputs to the correct device
                pt_inputs = {
                    k: v.to(device=torch_device) if isinstance(v, torch.Tensor) else v for k, v in pt_inputs.items()
                }

                # convert inputs to Flax
                fx_inputs = {k: np.array(v) for k, v in pt_inputs.items() if torch.is_tensor(v)}

2173
2174
2175
                fx_state = convert_pytorch_state_dict_to_flax(pt_model.state_dict(), fx_model)
                fx_model.params = fx_state

2176
2177
2178
                # send pytorch model to the correct device
                pt_model.to(torch_device)

2179
                with torch.no_grad():
2180
2181
                    pt_outputs = pt_model(**pt_inputs)
                fx_outputs = fx_model(**fx_inputs)
2182

2183
2184
2185
2186
                fx_keys = tuple([k for k, v in fx_outputs.items() if v is not None])
                pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None])

                self.assertEqual(fx_keys, pt_keys)
2187
                self.check_pt_flax_outputs(fx_outputs, pt_outputs, model_class)
2188
2189
2190
2191
2192

                with tempfile.TemporaryDirectory() as tmpdirname:
                    pt_model.save_pretrained(tmpdirname)
                    fx_model_loaded = fx_model_class.from_pretrained(tmpdirname, from_pt=True)

2193
2194
2195
2196
2197
2198
                fx_outputs_loaded = fx_model_loaded(**fx_inputs)

                fx_keys = tuple([k for k, v in fx_outputs_loaded.items() if v is not None])
                pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None])

                self.assertEqual(fx_keys, pt_keys)
2199
                self.check_pt_flax_outputs(fx_outputs_loaded, pt_outputs, model_class)
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212

    @is_pt_flax_cross_test
    def test_equivalence_flax_to_pt(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            with self.subTest(model_class.__name__):
                fx_model_class_name = "Flax" + model_class.__name__

                if not hasattr(transformers, fx_model_class_name):
                    # no flax model exists for this class
                    return

2213
2214
2215
2216
                # Output all for aggressive testing
                config.output_hidden_states = True
                config.output_attentions = self.has_attentions

2217
2218
                fx_model_class = getattr(transformers, fx_model_class_name)

2219
2220
2221
2222
2223
2224
                # load PyTorch class
                pt_model = model_class(config).eval()
                # Flax models don't use the `use_cache` option and cache is not returned as a default.
                # So we disable `use_cache` here for PyTorch model.
                pt_model.config.use_cache = False

2225
2226
                # load Flax class
                fx_model = fx_model_class(config, dtype=jnp.float32)
2227

2228
2229
2230
2231
2232
2233
2234
2235
2236
                # make sure only flax inputs are forward that actually exist in function args
                fx_input_keys = inspect.signature(fx_model.__call__).parameters.keys()

                # prepare inputs
                pt_inputs = self._prepare_for_class(inputs_dict, model_class)

                # remove function args that don't exist in Flax
                pt_inputs = {k: v for k, v in pt_inputs.items() if k in fx_input_keys}

2237
2238
2239
2240
                # send pytorch inputs to the correct device
                pt_inputs = {
                    k: v.to(device=torch_device) if isinstance(v, torch.Tensor) else v for k, v in pt_inputs.items()
                }
2241

2242
                # convert inputs to Flax
2243
2244
                fx_inputs = {k: np.array(v) for k, v in pt_inputs.items() if torch.is_tensor(v)}

2245
2246
2247
2248
2249
2250
2251
                pt_model = load_flax_weights_in_pytorch_model(pt_model, fx_model.params)

                # make sure weights are tied in PyTorch
                pt_model.tie_weights()

                # send pytorch model to the correct device
                pt_model.to(torch_device)
2252

2253
2254
2255
2256
2257
2258
2259
2260
                with torch.no_grad():
                    pt_outputs = pt_model(**pt_inputs)
                fx_outputs = fx_model(**fx_inputs)

                fx_keys = tuple([k for k, v in fx_outputs.items() if v is not None])
                pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None])

                self.assertEqual(fx_keys, pt_keys)
2261
                self.check_pt_flax_outputs(fx_outputs, pt_outputs, model_class)
2262
2263
2264
2265
2266

                with tempfile.TemporaryDirectory() as tmpdirname:
                    fx_model.save_pretrained(tmpdirname)
                    pt_model_loaded = model_class.from_pretrained(tmpdirname, from_flax=True)

2267
2268
2269
2270
                # send pytorch model to the correct device
                pt_model_loaded.to(torch_device)
                pt_model_loaded.eval()

2271
                with torch.no_grad():
2272
                    pt_outputs_loaded = pt_model_loaded(**pt_inputs)
2273

2274
2275
2276
2277
                fx_keys = tuple([k for k, v in fx_outputs.items() if v is not None])
                pt_keys = tuple([k for k, v in pt_outputs_loaded.items() if v is not None])

                self.assertEqual(fx_keys, pt_keys)
2278
                self.check_pt_flax_outputs(fx_outputs, pt_outputs_loaded, model_class)
2279

Patrick von Platen's avatar
Patrick von Platen committed
2280
    def test_inputs_embeds(self):
2281
2282
2283
2284
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
2285
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
2286
            model.eval()
2287

2288
            inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))
Weizhen's avatar
Weizhen committed
2289

2290
2291
2292
2293
2294
2295
2296
2297
2298
            if not self.is_encoder_decoder:
                input_ids = inputs["input_ids"]
                del inputs["input_ids"]
            else:
                encoder_input_ids = inputs["input_ids"]
                decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids)
                del inputs["input_ids"]
                inputs.pop("decoder_input_ids", None)

2299
2300
            wte = model.get_input_embeddings()
            if not self.is_encoder_decoder:
2301
                inputs["inputs_embeds"] = wte(input_ids)
2302
            else:
2303
2304
                inputs["inputs_embeds"] = wte(encoder_input_ids)
                inputs["decoder_inputs_embeds"] = wte(decoder_input_ids)
2305

thomwolf's avatar
thomwolf committed
2306
            with torch.no_grad():
Weizhen's avatar
Weizhen committed
2307
                model(**inputs)[0]
2308

2309
2310
    @require_torch_multi_gpu
    def test_multi_gpu_data_parallel_forward(self):
2311
2312
2313
2314
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        # some params shouldn't be scattered by nn.DataParallel
        # so just remove them if they are present.
2315
        blacklist_non_batched_params = ["head_mask", "decoder_head_mask", "cross_attn_head_mask"]
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
        for k in blacklist_non_batched_params:
            inputs_dict.pop(k, None)

        # move input tensors to cuda:O
        for k, v in inputs_dict.items():
            if torch.is_tensor(v):
                inputs_dict[k] = v.to(0)

        for model_class in self.all_model_classes:
            model = model_class(config=config)
            model.to(0)
            model.eval()

            # Wrap model in nn.DataParallel
2330
            model = nn.DataParallel(model)
2331
            with torch.no_grad():
2332
                _ = model(**self._prepare_for_class(inputs_dict, model_class))
2333

2334
2335
2336
    @require_torch_multi_gpu
    def test_model_parallelization(self):
        if not self.test_model_parallel:
2337
            return
2338

2339
        # a candidate for testing_utils
2340
        def get_current_gpu_memory_use():
Patrick von Platen's avatar
Patrick von Platen committed
2341
            """returns a list of cuda memory allocations per GPU in MBs"""
2342
2343
2344
2345
2346

            per_device_memory = []
            for id in range(torch.cuda.device_count()):
                with torch.cuda.device(id):
                    per_device_memory.append(torch.cuda.memory_allocated() >> 20)
2347
2348
2349
2350
2351
2352
2353
2354
2355

            return per_device_memory

        # Needs a large model to see the difference.
        config = self.model_tester.get_large_model_config()

        for model_class in self.all_parallelizable_model_classes:
            torch.cuda.empty_cache()

2356
2357
2358
            # 1. single gpu memory load + unload + memory measurements
            # Retrieve initial memory usage (can easily be ~0.6-1.5GB if cuda-kernels have been preloaded by previous tests)
            memory_at_start = get_current_gpu_memory_use()
2359

2360
2361
            # Put model on device 0 and take a memory snapshot
            model = model_class(config)
2362
2363
2364
            model.to("cuda:0")
            memory_after_model_load = get_current_gpu_memory_use()

2365
2366
2367
            # The memory use on device 0 should be higher than it was initially.
            self.assertGreater(memory_after_model_load[0], memory_at_start[0])

2368
            del model
2369
            gc.collect()
2370
2371
            torch.cuda.empty_cache()

2372
2373
2374
            # 2. MP test
            # it's essential to re-calibrate the usage before the next stage
            memory_at_start = get_current_gpu_memory_use()
2375
2376

            # Spread model layers over multiple devices
2377
            model = model_class(config)
2378
2379
2380
2381
            model.parallelize()
            memory_after_parallelization = get_current_gpu_memory_use()

            # Assert that the memory use on all devices is higher than it was when loaded only on CPU
2382
            for n in range(len(model.device_map.keys())):
2383
                self.assertGreater(memory_after_parallelization[n], memory_at_start[n])
2384

2385
            # Assert that the memory use of device 0 is lower than it was when the entire model was loaded on it
2386
2387
            self.assertLess(memory_after_parallelization[0], memory_after_model_load[0])

2388
2389
            # Assert that the memory use of device 1 is higher than it was when the entire model was loaded
            # on device 0 and device 1 wasn't used at all
2390
2391
2392
            self.assertGreater(memory_after_parallelization[1], memory_after_model_load[1])

            del model
2393
            gc.collect()
2394
2395
2396
2397
2398
            torch.cuda.empty_cache()

    @require_torch_multi_gpu
    def test_model_parallel_equal_results(self):
        if not self.test_model_parallel:
2399
            return
2400
2401
2402
2403
2404
2405

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_parallelizable_model_classes:
            inputs_dict = self._prepare_for_class(inputs_dict, model_class)

2406
            def cast_to_device(dictionary, device):
2407
2408
2409
                output = {}
                for k, v in dictionary.items():
                    if isinstance(v, torch.Tensor):
2410
                        output[k] = v.to(device)
2411
2412
2413
2414
2415
                    else:
                        output[k] = v

                return output

2416
2417
2418
2419
2420
2421
            model = model_class(config)
            output = model(**cast_to_device(inputs_dict, "cpu"))

            model.parallelize()

            parallel_output = model(**cast_to_device(inputs_dict, "cuda:0"))
2422
2423
2424
2425
2426
2427
2428
2429

            for value, parallel_value in zip(output, parallel_output):
                if isinstance(value, torch.Tensor):
                    self.assertTrue(torch.allclose(value, parallel_value.to("cpu"), atol=1e-7))
                elif isinstance(value, (Tuple, List)):
                    for value_, parallel_value_ in zip(value, parallel_value):
                        self.assertTrue(torch.allclose(value_, parallel_value_.to("cpu"), atol=1e-7))

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
    @require_torch_multi_gpu
    def test_model_parallel_beam_search(self):
        if not self.test_model_parallel:
            return

        all_generative_and_parallelizable_model_classes = tuple(
            set(self.all_generative_model_classes).intersection(self.all_parallelizable_model_classes)
        )

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in all_generative_and_parallelizable_model_classes:
            inputs_dict = self._prepare_for_class(inputs_dict, model_class)
            model = model_class(config)

            def cast_to_device(dictionary, device):
                output = {}
                for k, v in dictionary.items():
                    if isinstance(v, torch.Tensor):
                        output[k] = v.to(device)
                    else:
                        output[k] = v

                return output

            model.parallelize()
            model.generate(**cast_to_device(inputs_dict, "cuda:0"), num_beams=2)

2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
    def check_device_map_is_respected(self, model, device_map):
        for param_name, param in model.named_parameters():
            # Find device in device_map
            while len(param_name) > 0 and param_name not in device_map:
                param_name = ".".join(param_name.split(".")[:-1])
            if param_name not in device_map:
                raise ValueError("device map is incomplete, it does not contain any device for `param_name`.")

            param_device = device_map[param_name]
            if param_device in ["cpu", "disk"]:
                self.assertEqual(param.device, torch.device("meta"))
            else:
                self.assertEqual(param.device, torch.device(param_device))

Sylvain Gugger's avatar
Sylvain Gugger committed
2472
    @require_accelerate
2473
    @mark.accelerate_tests
Sylvain Gugger's avatar
Sylvain Gugger committed
2474
2475
2476
2477
2478
2479
2480
2481
    @require_torch_gpu
    def test_disk_offload(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if model_class._no_split_modules is None:
                continue

2482
            inputs_dict_class = self._prepare_for_class(inputs_dict, model_class)
Sylvain Gugger's avatar
Sylvain Gugger committed
2483
2484
            model = model_class(config).eval()
            model = model.to(torch_device)
2485
            torch.manual_seed(0)
2486
            base_output = model(**inputs_dict_class)
Sylvain Gugger's avatar
Sylvain Gugger committed
2487
2488

            model_size = compute_module_sizes(model)[""]
2489
            max_size = int(self.model_split_percents[0] * model_size)
Sylvain Gugger's avatar
Sylvain Gugger committed
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
            with tempfile.TemporaryDirectory() as tmp_dir:
                model.cpu().save_pretrained(tmp_dir)

                max_memory = {0: max_size, "cpu": max_size}
                with self.assertRaises(ValueError):
                    # This errors out cause it's missing an offload folder
                    new_model = model_class.from_pretrained(tmp_dir, device_map="auto", max_memory=max_memory)

                new_model = model_class.from_pretrained(
                    tmp_dir, device_map="auto", max_memory=max_memory, offload_folder=tmp_dir
                )

                self.check_device_map_is_respected(new_model, new_model.hf_device_map)
2503
                torch.manual_seed(0)
2504
                new_output = new_model(**inputs_dict_class)
Sylvain Gugger's avatar
Sylvain Gugger committed
2505

2506
                self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))
Sylvain Gugger's avatar
Sylvain Gugger committed
2507

2508
    @require_accelerate
2509
    @mark.accelerate_tests
2510
2511
2512
2513
2514
2515
2516
2517
    @require_torch_gpu
    def test_cpu_offload(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if model_class._no_split_modules is None:
                continue

2518
            inputs_dict_class = self._prepare_for_class(inputs_dict, model_class)
2519
2520
            model = model_class(config).eval()
            model = model.to(torch_device)
2521
2522

            torch.manual_seed(0)
2523
            base_output = model(**inputs_dict_class)
2524
2525
2526

            model_size = compute_module_sizes(model)[""]
            # We test several splits of sizes to make sure it works.
2527
            max_gpu_sizes = [int(p * model_size) for p in self.model_split_percents]
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
            with tempfile.TemporaryDirectory() as tmp_dir:
                model.cpu().save_pretrained(tmp_dir)

                for max_size in max_gpu_sizes:
                    max_memory = {0: max_size, "cpu": model_size * 2}
                    new_model = model_class.from_pretrained(tmp_dir, device_map="auto", max_memory=max_memory)
                    # Making sure part of the model will actually end up offloaded
                    self.assertSetEqual(set(new_model.hf_device_map.values()), {0, "cpu"})

                    self.check_device_map_is_respected(new_model, new_model.hf_device_map)
2538
2539

                    torch.manual_seed(0)
2540
                    new_output = new_model(**inputs_dict_class)
2541

2542
                    self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))
2543
2544

    @require_accelerate
2545
    @mark.accelerate_tests
2546
2547
2548
2549
2550
2551
2552
2553
    @require_torch_multi_gpu
    def test_model_parallelism(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if model_class._no_split_modules is None:
                continue

2554
            inputs_dict_class = self._prepare_for_class(inputs_dict, model_class)
2555
2556
            model = model_class(config).eval()
            model = model.to(torch_device)
2557
2558

            torch.manual_seed(0)
2559
            base_output = model(**inputs_dict_class)
2560
2561
2562

            model_size = compute_module_sizes(model)[""]
            # We test several splits of sizes to make sure it works.
2563
            max_gpu_sizes = [int(p * model_size) for p in self.model_split_percents]
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
            with tempfile.TemporaryDirectory() as tmp_dir:
                model.cpu().save_pretrained(tmp_dir)

                for max_size in max_gpu_sizes:
                    max_memory = {0: max_size, 1: model_size * 2, "cpu": model_size * 2}
                    new_model = model_class.from_pretrained(tmp_dir, device_map="auto", max_memory=max_memory)
                    # Making sure part of the model will actually end up offloaded
                    self.assertSetEqual(set(new_model.hf_device_map.values()), {0, 1})

                    self.check_device_map_is_respected(new_model, new_model.hf_device_map)
2574
2575

                    torch.manual_seed(0)
2576
                    new_output = new_model(**inputs_dict_class)
2577

2578
                    self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))
2579

2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
    def test_problem_types(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        problem_types = [
            {"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float},
            {"title": "single_label_classification", "num_labels": 1, "dtype": torch.long},
            {"title": "regression", "num_labels": 1, "dtype": torch.float},
        ]

        for model_class in self.all_model_classes:
2590
2591
2592
            if model_class.__name__ not in [
                *get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES),
                *get_values(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES),
2593
            ]:
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
                continue

            for problem_type in problem_types:
                with self.subTest(msg=f"Testing {model_class} with {problem_type['title']}"):
                    config.problem_type = problem_type["title"]
                    config.num_labels = problem_type["num_labels"]

                    model = model_class(config)
                    model.to(torch_device)
                    model.train()

                    inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)

                    if problem_type["num_labels"] > 1:
                        inputs["labels"] = inputs["labels"].unsqueeze(1).repeat(1, problem_type["num_labels"])

                    inputs["labels"] = inputs["labels"].to(problem_type["dtype"])

2612
2613
2614
2615
2616
2617
                    # This tests that we do not trigger the warning form PyTorch "Using a target size that is different
                    # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure
                    # they have the same size." which is a symptom something in wrong for the regression problem.
                    # See https://github.com/huggingface/transformers/issues/11780
                    with warnings.catch_warnings(record=True) as warning_list:
                        loss = model(**inputs).loss
2618
2619
2620
2621
2622
                    for w in warning_list:
                        if "Using a target size that is different to the input size" in str(w.message):
                            raise ValueError(
                                f"Something is going wrong in the regression problem: intercepted {w.message}"
                            )
2623

2624
2625
                    loss.backward()

2626
    def test_load_with_mismatched_shapes(self):
2627
2628
        if not self.test_mismatched_shapes:
            return
2629
2630
2631
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
2632
            if model_class.__name__ not in get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES):
2633
2634
2635
2636
2637
2638
2639
2640
                continue

            with self.subTest(msg=f"Testing {model_class}"):
                with tempfile.TemporaryDirectory() as tmp_dir:
                    model = model_class(config)
                    model.save_pretrained(tmp_dir)

                    # Fails when we don't set ignore_mismatched_sizes=True
2641
                    with self.assertRaises(RuntimeError):
2642
                        new_model = AutoModelForSequenceClassification.from_pretrained(tmp_dir, num_labels=42)
2643
2644
                    with self.assertRaises(RuntimeError):
                        new_model_without_prefix = AutoModel.from_pretrained(tmp_dir, vocab_size=10)
2645
2646

                    logger = logging.get_logger("transformers.modeling_utils")
2647

2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
                    with CaptureLogger(logger) as cl:
                        new_model = AutoModelForSequenceClassification.from_pretrained(
                            tmp_dir, num_labels=42, ignore_mismatched_sizes=True
                        )
                    self.assertIn("the shapes did not match", cl.out)
                    new_model.to(torch_device)
                    inputs = self._prepare_for_class(inputs_dict, model_class)
                    logits = new_model(**inputs).logits
                    self.assertEqual(logits.shape[1], 42)

2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
                    with CaptureLogger(logger) as cl:
                        new_model_without_prefix = AutoModel.from_pretrained(
                            tmp_dir, vocab_size=10, ignore_mismatched_sizes=True
                        )
                    self.assertIn("the shapes did not match", cl.out)
                    input_ids = ids_tensor((2, 8), 10)
                    new_model_without_prefix.to(torch_device)
                    if self.is_encoder_decoder:
                        new_model_without_prefix(input_ids, decoder_input_ids=input_ids)
                    else:
                        new_model_without_prefix(input_ids)

2670

2671
global_rng = random.Random()
thomwolf's avatar
thomwolf committed
2672
2673


thomwolf's avatar
thomwolf committed
2674
def ids_tensor(shape, vocab_size, rng=None, name=None):
2675
    #  Creates a random int32 tensor of the shape within the vocab size
thomwolf's avatar
thomwolf committed
2676
    if rng is None:
2677
        rng = global_rng
thomwolf's avatar
thomwolf committed
2678

thomwolf's avatar
thomwolf committed
2679
2680
2681
    total_dims = 1
    for dim in shape:
        total_dims *= dim
thomwolf's avatar
thomwolf committed
2682

thomwolf's avatar
thomwolf committed
2683
2684
2685
    values = []
    for _ in range(total_dims):
        values.append(rng.randint(0, vocab_size - 1))
thomwolf's avatar
thomwolf committed
2686

2687
    return torch.tensor(data=values, dtype=torch.long, device=torch_device).view(shape).contiguous()
thomwolf's avatar
thomwolf committed
2688
2689


2690
2691
2692
2693
2694
2695
2696
def random_attention_mask(shape, rng=None, name=None):
    attn_mask = ids_tensor(shape, vocab_size=2, rng=None, name=None)
    # make sure that at least one token is attended to for each batch
    attn_mask[:, -1] = 1
    return attn_mask


2697
def floats_tensor(shape, scale=1.0, rng=None, name=None):
Patrick von Platen's avatar
Patrick von Platen committed
2698
    """Creates a random float32 tensor"""
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
    if rng is None:
        rng = global_rng

    total_dims = 1
    for dim in shape:
        total_dims *= dim

    values = []
    for _ in range(total_dims):
        values.append(rng.random() * scale)

2710
    return torch.tensor(data=values, dtype=torch.float, device=torch_device).view(shape).contiguous()