test_modeling_common.py 132 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2019 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
15

Sylvain Gugger's avatar
Sylvain Gugger committed
16
import collections
17
import copy
18
import gc
19
import inspect
20
import os
21
import os.path
22
import pickle
Aymeric Augustin's avatar
Aymeric Augustin committed
23
import random
Sylvain Gugger's avatar
Sylvain Gugger committed
24
import re
25
import tempfile
26
import warnings
27
from collections import defaultdict
NielsRogge's avatar
NielsRogge committed
28
from typing import Dict, List, Tuple
thomwolf's avatar
thomwolf committed
29

30
import numpy as np
31
from pytest import mark
32
33

import transformers
34
35
36
37
38
39
40
from transformers import (
    AutoModel,
    AutoModelForSequenceClassification,
    PretrainedConfig,
    is_torch_available,
    logging,
)
41
from transformers.models.auto import get_values
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
from transformers.models.auto.modeling_auto import (
    MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES,
    MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES,
    MODEL_FOR_BACKBONE_MAPPING_NAMES,
    MODEL_FOR_CAUSAL_IMAGE_MODELING_MAPPING_NAMES,
    MODEL_FOR_CAUSAL_LM_MAPPING_NAMES,
    MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES,
    MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES,
    MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING_NAMES,
    MODEL_FOR_MASKED_LM_MAPPING_NAMES,
    MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES,
    MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES,
    MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES,
    MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES,
    MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
    MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES,
    MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES,
    MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES,
    MODEL_MAPPING_NAMES,
)
Sylvain Gugger's avatar
Sylvain Gugger committed
62
63
from transformers.testing_utils import (
    CaptureLogger,
64
65
    is_pt_flax_cross_test,
    is_pt_tf_cross_test,
66
    require_accelerate,
67
    require_flash_attn,
68
    require_safetensors,
Sylvain Gugger's avatar
Sylvain Gugger committed
69
    require_torch,
70
    require_torch_gpu,
Sylvain Gugger's avatar
Sylvain Gugger committed
71
72
73
74
    require_torch_multi_gpu,
    slow,
    torch_device,
)
75
from transformers.utils import (
76
77
    CONFIG_NAME,
    GENERATION_CONFIG_NAME,
78
    WEIGHTS_NAME,
79
    is_accelerate_available,
80
81
82
83
84
    is_flax_available,
    is_tf_available,
    is_torch_fx_available,
)
from transformers.utils.generic import ModelOutput
85

Aymeric Augustin's avatar
Aymeric Augustin committed
86

87
88
89
90
if is_accelerate_available():
    from accelerate.utils import compute_module_sizes


91
if is_torch_available():
92
    import torch
93
    from torch import nn
thomwolf's avatar
thomwolf committed
94

95
    from transformers import MODEL_MAPPING, AdaptiveEmbedding
Sylvain Gugger's avatar
Sylvain Gugger committed
96
    from transformers.pytorch_utils import id_tensor_storage
thomwolf's avatar
thomwolf committed
97

Sylvain Gugger's avatar
Sylvain Gugger committed
98

99
100
101
if is_tf_available():
    import tensorflow as tf

102
103
if is_flax_available():
    import jax.numpy as jnp
104

105
106
107
108
109
    from transformers.modeling_flax_pytorch_utils import (
        convert_pytorch_state_dict_to_flax,
        load_flax_weights_in_pytorch_model,
    )

110
if is_torch_fx_available():
111
    from transformers.utils.fx import symbolic_trace
112

113

114
115
116
def _config_zero_init(config):
    configs_no_init = copy.deepcopy(config)
    for key in configs_no_init.__dict__.keys():
117
        if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key:
Lysandre Debut's avatar
Lysandre Debut committed
118
            setattr(configs_no_init, key, 1e-10)
119
120
121
        if isinstance(getattr(configs_no_init, key, None), PretrainedConfig):
            no_init_subconfig = _config_zero_init(getattr(configs_no_init, key))
            setattr(configs_no_init, key, no_init_subconfig)
122
123
    return configs_no_init

thomwolf's avatar
thomwolf committed
124

125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
def _mock_init_weights(self, module):
    for name, param in module.named_parameters(recurse=False):
        # Use the first letter of the name to get a value and go from a <> -13 to z <> 12
        value = ord(name[0].lower()) - 110
        param.data.fill_(value)


def _mock_all_init_weights(self):
    # Prune heads if needed
    if self.config.pruned_heads:
        self.prune_heads(self.config.pruned_heads)

    import transformers.modeling_utils

    if transformers.modeling_utils._init_weights:
        for module in self.modules():
            module._is_hf_initialized = False
        # Initialize weights
        self.apply(self._initialize_weights)

        # Tie weights should be skipped when not initializing all weights
        # since from_pretrained(...) calls tie weights anyways
        self.tie_weights()


150
151
152
153
@require_torch
class ModelTesterMixin:
    model_tester = None
    all_model_classes = ()
154
    all_generative_model_classes = ()
155
    fx_compatible = False
Patrick von Platen's avatar
Patrick von Platen committed
156
157
158
    test_torchscript = True
    test_pruning = True
    test_resize_embeddings = True
159
    test_resize_position_embeddings = False
Patrick von Platen's avatar
Patrick von Platen committed
160
    test_head_masking = True
161
    test_mismatched_shapes = True
162
    test_missing_keys = True
163
    test_model_parallel = False
164
    is_encoder_decoder = False
165
    has_attentions = True
166
    model_split_percents = [0.5, 0.7, 0.9]
167

168
169
    def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
        inputs_dict = copy.deepcopy(inputs_dict)
170
        if model_class.__name__ in get_values(MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES):
171
            inputs_dict = {
172
                k: v.unsqueeze(1).expand(-1, self.model_tester.num_choices, -1).contiguous()
173
                if isinstance(v, torch.Tensor) and v.ndim > 1
Sylvain Gugger's avatar
Sylvain Gugger committed
174
                else v
175
176
                for k, v in inputs_dict.items()
            }
177
        elif model_class.__name__ in get_values(MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES):
178
            inputs_dict.pop("attention_mask")
179
180

        if return_labels:
181
            if model_class.__name__ in get_values(MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES):
182
                inputs_dict["labels"] = torch.ones(self.model_tester.batch_size, dtype=torch.long, device=torch_device)
183
184
185
            elif model_class.__name__ in [
                *get_values(MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES),
                *get_values(MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES),
186
            ]:
187
188
189
190
191
192
                inputs_dict["start_positions"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
                inputs_dict["end_positions"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
193
194
195
196
197
198
            elif model_class.__name__ in [
                *get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES),
                *get_values(MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES),
                *get_values(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES),
                *get_values(MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES),
                *get_values(MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES),
199
            ]:
200
201
202
                inputs_dict["labels"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
203
204
205
206
207
208
            elif model_class.__name__ in [
                *get_values(MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES),
                *get_values(MODEL_FOR_CAUSAL_LM_MAPPING_NAMES),
                *get_values(MODEL_FOR_CAUSAL_IMAGE_MODELING_MAPPING_NAMES),
                *get_values(MODEL_FOR_MASKED_LM_MAPPING_NAMES),
                *get_values(MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES),
209
210
211
212
            ]:
                inputs_dict["labels"] = torch.zeros(
                    (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device
                )
213
            elif model_class.__name__ in get_values(MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING_NAMES):
NielsRogge's avatar
NielsRogge committed
214
215
216
217
                num_patches = self.model_tester.image_size // self.model_tester.patch_size
                inputs_dict["bool_masked_pos"] = torch.zeros(
                    (self.model_tester.batch_size, num_patches**2), dtype=torch.long, device=torch_device
                )
218
            elif model_class.__name__ in get_values(MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES):
NielsRogge's avatar
NielsRogge committed
219
220
221
222
                batch_size, num_channels, height, width = inputs_dict["pixel_values"].shape
                inputs_dict["labels"] = torch.zeros(
                    [self.model_tester.batch_size, height, width], device=torch_device
                ).long()
223

224
225
        return inputs_dict

Patrick von Platen's avatar
Patrick von Platen committed
226
    def test_save_load(self):
227
228
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

229
230
231
232
233
234
235
236
237
238
        def check_save_load(out1, out2):
            # make sure we don't have nans
            out_2 = out2.cpu().numpy()
            out_2[np.isnan(out_2)] = 0

            out_1 = out1.cpu().numpy()
            out_1[np.isnan(out_1)] = 0
            max_diff = np.amax(np.abs(out_1 - out_2))
            self.assertLessEqual(max_diff, 1e-5)

239
240
241
242
243
        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
244
                first = model(**self._prepare_for_class(inputs_dict, model_class))[0]
245

246
            with tempfile.TemporaryDirectory() as tmpdirname:
247
                model.save_pretrained(tmpdirname)
248
249
250
251
252
253
254

                # the config file (and the generation config file, if it can generate) should be saved
                self.assertTrue(os.path.exists(os.path.join(tmpdirname, CONFIG_NAME)))
                self.assertEqual(
                    model.can_generate(), os.path.exists(os.path.join(tmpdirname, GENERATION_CONFIG_NAME))
                )

255
                model = model_class.from_pretrained(tmpdirname)
256
                model.to(torch_device)
257
                with torch.no_grad():
258
                    second = model(**self._prepare_for_class(inputs_dict, model_class))[0]
thomwolf's avatar
thomwolf committed
259

260
261
262
263
264
            if isinstance(first, tuple) and isinstance(second, tuple):
                for tensor1, tensor2 in zip(first, second):
                    check_save_load(tensor1, tensor2)
            else:
                check_save_load(first, second)
265

266
267
268
269
270
271
272
273
274
275
276
277
    def test_from_pretrained_no_checkpoint(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()
        for model_class in self.all_model_classes:
            model = model_class(config)
            state_dict = model.state_dict()

            new_model = model_class.from_pretrained(
                pretrained_model_name_or_path=None, config=config, state_dict=state_dict
            )
            for p1, p2 in zip(model.parameters(), new_model.parameters()):
                self.assertTrue(torch.equal(p1, p2))

278
    def test_save_load_keys_to_ignore_on_save(self):
279
280
281
282
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
283
284
            _keys_to_ignore_on_save = getattr(model, "_keys_to_ignore_on_save", None)
            if _keys_to_ignore_on_save is None:
285
286
287
                continue

            # check the keys are in the original state_dict
288
            for k in _keys_to_ignore_on_save:
289
                self.assertIn(k, model.state_dict().keys(), "\n".join(model.state_dict().keys()))
290
291
292
293
294
295

            # check that certain keys didn't get saved with the model
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                output_model_file = os.path.join(tmpdirname, WEIGHTS_NAME)
                state_dict_saved = torch.load(output_model_file)
296
                for k in _keys_to_ignore_on_save:
297
                    self.assertNotIn(k, state_dict_saved.keys(), "\n".join(state_dict_saved.keys()))
298

Sylvain Gugger's avatar
Sylvain Gugger committed
299
300
301
                # Test we can load the state dict in the model, necessary for the checkpointing API in Trainer.
                load_result = model.load_state_dict(state_dict_saved, strict=False)
                self.assertTrue(
302
303
                    len(load_result.missing_keys) == 0
                    or set(load_result.missing_keys) == set(model._keys_to_ignore_on_save)
Sylvain Gugger's avatar
Sylvain Gugger committed
304
305
306
                )
                self.assertTrue(len(load_result.unexpected_keys) == 0)

307
308
309
310
311
312
313
314
315
316
317
    def test_gradient_checkpointing_backward_compatibility(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if not model_class.supports_gradient_checkpointing:
                continue

            config.gradient_checkpointing = True
            model = model_class(config)
            self.assertTrue(model.is_gradient_checkpointing)

318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
    def test_gradient_checkpointing_enable_disable(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if not model_class.supports_gradient_checkpointing:
                continue

            # at init model should have gradient checkpointing disabled
            model = model_class(config)
            self.assertFalse(model.is_gradient_checkpointing)

            # check enable works
            model.gradient_checkpointing_enable()
            self.assertTrue(model.is_gradient_checkpointing)

            # check disable works
            model.gradient_checkpointing_disable()
            self.assertFalse(model.is_gradient_checkpointing)

337
338
    def test_save_load_fast_init_from_base(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
339
340
        if config.__class__ not in MODEL_MAPPING:
            return
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
        base_class = MODEL_MAPPING[config.__class__]

        if isinstance(base_class, tuple):
            base_class = base_class[0]

        for model_class in self.all_model_classes:
            if model_class == base_class:
                continue

            # make a copy of model class to not break future tests
            # from https://stackoverflow.com/questions/9541025/how-to-copy-a-python-class
            class CopyClass(model_class):
                pass

            model_class_copy = CopyClass

            # make sure that all keys are expected for test
            model_class_copy._keys_to_ignore_on_load_missing = []

            # make init deterministic, but make sure that
            # non-initialized weights throw errors nevertheless
362
363
            model_class_copy._init_weights = _mock_init_weights
            model_class_copy.init_weights = _mock_all_init_weights
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379

            model = base_class(config)
            state_dict = model.state_dict()

            # this will often delete a single weight of a multi-weight module
            # to test an edge case
            random_key_to_del = random.choice(list(state_dict.keys()))
            del state_dict[random_key_to_del]

            # check that certain keys didn't get saved with the model
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                torch.save(state_dict, os.path.join(tmpdirname, "pytorch_model.bin"))

                model_fast_init = model_class_copy.from_pretrained(tmpdirname)
                model_slow_init = model_class_copy.from_pretrained(tmpdirname, _fast_init=False)
380
                # Before we test anything
381
382

                for key in model_fast_init.state_dict().keys():
383
384
385
386
387
                    if isinstance(model_slow_init.state_dict()[key], torch.BoolTensor):
                        max_diff = (model_slow_init.state_dict()[key] ^ model_fast_init.state_dict()[key]).sum().item()
                    else:
                        max_diff = (model_slow_init.state_dict()[key] - model_fast_init.state_dict()[key]).sum().item()
                    self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")
388
389
390

    def test_save_load_fast_init_to_base(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
391
392
        if config.__class__ not in MODEL_MAPPING:
            return
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
        base_class = MODEL_MAPPING[config.__class__]

        if isinstance(base_class, tuple):
            base_class = base_class[0]

        for model_class in self.all_model_classes:
            if model_class == base_class:
                continue

            # make a copy of model class to not break future tests
            # from https://stackoverflow.com/questions/9541025/how-to-copy-a-python-class
            class CopyClass(base_class):
                pass

            base_class_copy = CopyClass

            # make sure that all keys are expected for test
            base_class_copy._keys_to_ignore_on_load_missing = []

            # make init deterministic, but make sure that
            # non-initialized weights throw errors nevertheless
414
415
            base_class_copy._init_weights = _mock_init_weights
            base_class_copy.init_weights = _mock_all_init_weights
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433

            model = model_class(config)
            state_dict = model.state_dict()

            # this will often delete a single weight of a multi-weight module
            # to test an edge case
            random_key_to_del = random.choice(list(state_dict.keys()))
            del state_dict[random_key_to_del]

            # check that certain keys didn't get saved with the model
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.config.save_pretrained(tmpdirname)
                torch.save(state_dict, os.path.join(tmpdirname, "pytorch_model.bin"))

                model_fast_init = base_class_copy.from_pretrained(tmpdirname)
                model_slow_init = base_class_copy.from_pretrained(tmpdirname, _fast_init=False)

                for key in model_fast_init.state_dict().keys():
434
435
436
437
438
439
440
441
442
                    if isinstance(model_slow_init.state_dict()[key], torch.BoolTensor):
                        max_diff = torch.max(
                            model_slow_init.state_dict()[key] ^ model_fast_init.state_dict()[key]
                        ).item()
                    else:
                        max_diff = torch.max(
                            torch.abs(model_slow_init.state_dict()[key] - model_fast_init.state_dict()[key])
                        ).item()
                    self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")
443

Patrick von Platen's avatar
Patrick von Platen committed
444
    def test_initialization(self):
445
446
447
448
449
450
451
452
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        configs_no_init = _config_zero_init(config)
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            for name, param in model.named_parameters():
                if param.requires_grad:
                    self.assertIn(
Lysandre Debut's avatar
Lysandre Debut committed
453
                        ((param.data.mean() * 1e9).round() / 1e9).item(),
454
                        [0.0, 1.0],
455
                        msg=f"Parameter {name} of model {model_class} seems not properly initialized",
456
                    )
thomwolf's avatar
thomwolf committed
457

Patrick von Platen's avatar
Patrick von Platen committed
458
    def test_determinism(self):
459
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
460
461
462
463
464
465
466
467
468

        def check_determinism(first, second):
            out_1 = first.cpu().numpy()
            out_2 = second.cpu().numpy()
            out_1 = out_1[~np.isnan(out_1)]
            out_2 = out_2[~np.isnan(out_2)]
            max_diff = np.amax(np.abs(out_1 - out_2))
            self.assertLessEqual(max_diff, 1e-5)

469
470
471
472
473
        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
474
475
                first = model(**self._prepare_for_class(inputs_dict, model_class))[0]
                second = model(**self._prepare_for_class(inputs_dict, model_class))[0]
Weizhen's avatar
Weizhen committed
476

477
478
479
480
481
            if isinstance(first, tuple) and isinstance(second, tuple):
                for tensor1, tensor2 in zip(first, second):
                    check_determinism(tensor1, tensor2)
            else:
                check_determinism(first, second)
482

483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
    def test_forward_signature(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.forward)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

            if model.config.is_encoder_decoder:
                expected_arg_names = [
                    "input_ids",
                    "attention_mask",
                    "decoder_input_ids",
                    "decoder_attention_mask",
                ]
499
                expected_arg_names.extend(
500
501
                    ["head_mask", "decoder_head_mask", "cross_attn_head_mask", "encoder_outputs"]
                    if "head_mask" and "decoder_head_mask" and "cross_attn_head_mask" in arg_names
502
503
504
                    else ["encoder_outputs"]
                )
                self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names)
505
506
507
508
            else:
                expected_arg_names = ["input_ids"]
                self.assertListEqual(arg_names[:1], expected_arg_names)

509
510
511
512
513
    def test_training(self):
        if not self.model_tester.is_training:
            return

        for model_class in self.all_model_classes:
514
515
516
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
            config.return_dict = True

517
518
519
            if model_class.__name__ in [
                *get_values(MODEL_MAPPING_NAMES),
                *get_values(MODEL_FOR_BACKBONE_MAPPING_NAMES),
520
            ]:
521
                continue
522

523
524
525
526
527
528
529
530
            model = model_class(config)
            model.to(torch_device)
            model.train()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            loss = model(**inputs).loss
            loss.backward()

    def test_training_gradient_checkpointing(self):
531
        if not self.model_tester.is_training:
532
533
534
            return

        for model_class in self.all_model_classes:
535
536
537
538
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
            config.use_cache = False
            config.return_dict = True

539
            if (
540
541
                model_class.__name__
                in [*get_values(MODEL_MAPPING_NAMES), *get_values(MODEL_FOR_BACKBONE_MAPPING_NAMES)]
542
543
                or not model_class.supports_gradient_checkpointing
            ):
544
545
546
                continue
            model = model_class(config)
            model.to(torch_device)
547
            model.gradient_checkpointing_enable()
548
549
550
551
552
            model.train()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            loss = model(**inputs).loss
            loss.backward()

Patrick von Platen's avatar
Patrick von Platen committed
553
    def test_attention_outputs(self):
554
555
556
        if not self.has_attentions:
            self.skipTest(reason="Model does not output attentions")

557
558
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.return_dict = True
559

560
561
562
563
564
565
566
567
568
569
570
571
        seq_len = getattr(self.model_tester, "seq_length", None)
        decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len)
        encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", seq_len)
        decoder_key_length = getattr(self.model_tester, "decoder_key_length", decoder_seq_length)
        encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length)
        chunk_length = getattr(self.model_tester, "chunk_length", None)
        if chunk_length is not None and hasattr(self.model_tester, "num_hashes"):
            encoder_seq_length = encoder_seq_length * self.model_tester.num_hashes

        for model_class in self.all_model_classes:
            inputs_dict["output_attentions"] = True
            inputs_dict["output_hidden_states"] = False
572
            config.return_dict = True
573
574
575
576
577
578
579
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
            attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
580

581
582
583
584
585
586
587
588
589
590
            # check that output_attentions also work using config
            del inputs_dict["output_attentions"]
            config.output_attentions = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
            attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
thomwolf's avatar
thomwolf committed
591

592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
            if chunk_length is not None:
                self.assertListEqual(
                    list(attentions[0].shape[-4:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length],
                )
            else:
                self.assertListEqual(
                    list(attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
                )
            out_len = len(outputs)

            if self.is_encoder_decoder:
                correct_outlen = 5

                # loss is at first position
                if "labels" in inputs_dict:
                    correct_outlen += 1  # loss is added to beginning
                # Question Answering model returns start_logits and end_logits
611
612
613
                if model_class.__name__ in [
                    *get_values(MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES),
                    *get_values(MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES),
614
                ]:
615
616
617
618
619
620
621
622
623
624
625
626
627
628
                    correct_outlen += 1  # start_logits and end_logits instead of only 1 output
                if "past_key_values" in outputs:
                    correct_outlen += 1  # past_key_values have been returned

                self.assertEqual(out_len, correct_outlen)

                # decoder attentions
                decoder_attentions = outputs.decoder_attentions
                self.assertIsInstance(decoder_attentions, (list, tuple))
                self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers)
                self.assertListEqual(
                    list(decoder_attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length],
                )
629

630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
                # cross attentions
                cross_attentions = outputs.cross_attentions
                self.assertIsInstance(cross_attentions, (list, tuple))
                self.assertEqual(len(cross_attentions), self.model_tester.num_hidden_layers)
                self.assertListEqual(
                    list(cross_attentions[0].shape[-3:]),
                    [
                        self.model_tester.num_attention_heads,
                        decoder_seq_length,
                        encoder_key_length,
                    ],
                )

            # Check attention is always last and order is fine
            inputs_dict["output_attentions"] = True
            inputs_dict["output_hidden_states"] = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))

            if hasattr(self.model_tester, "num_hidden_states_types"):
                added_hidden_states = self.model_tester.num_hidden_states_types
            elif self.is_encoder_decoder:
                added_hidden_states = 2
            else:
                added_hidden_states = 1
            self.assertEqual(out_len + added_hidden_states, len(outputs))

            self_attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions

            self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers)
            if chunk_length is not None:
                self.assertListEqual(
                    list(self_attentions[0].shape[-4:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length],
                )
            else:
                self.assertListEqual(
                    list(self_attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
                )
thomwolf's avatar
thomwolf committed
673

674
    @slow
675
    def test_torchscript_simple(self):
676
677
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
678

679
    @slow
Patrick von Platen's avatar
Patrick von Platen committed
680
    def test_torchscript_output_attentions(self):
681
682
683
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_attentions = True
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
684

685
    @slow
Patrick von Platen's avatar
Patrick von Platen committed
686
    def test_torchscript_output_hidden_state(self):
687
688
689
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_hidden_states = True
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
690

691
692
693
694
    # This is copied from `torch/testing/_internal/jit_utils.py::clear_class_registry`
    def clear_torch_jit_class_registry(self):
        torch._C._jit_clear_class_registry()
        torch.jit._recursive.concrete_type_store = torch.jit._recursive.ConcreteTypeStore()
695
696
697
        # torch 1.8 has no `_clear_class_state` in `torch.jit._state`
        if hasattr(torch.jit._state, "_clear_class_state"):
            torch.jit._state._clear_class_state()
698

699
    def _create_and_check_torchscript(self, config, inputs_dict):
Patrick von Platen's avatar
Patrick von Platen committed
700
        if not self.test_torchscript:
701
            return
702

703
704
705
706
707
708
        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        configs_no_init.torchscript = True
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            model.to(torch_device)
            model.eval()
709
            inputs = self._prepare_for_class(inputs_dict, model_class)
thomwolf's avatar
thomwolf committed
710

711
712
            main_input_name = model_class.main_input_name

713
            try:
714
                if model.config.is_encoder_decoder:
715
                    model.config.use_cache = False  # FSTM still requires this hack -> FSTM should probably be refactored similar to BART afterward
716
                    main_input = inputs[main_input_name]
717
718
719
                    attention_mask = inputs["attention_mask"]
                    decoder_input_ids = inputs["decoder_input_ids"]
                    decoder_attention_mask = inputs["decoder_attention_mask"]
720
                    model(main_input, attention_mask, decoder_input_ids, decoder_attention_mask)
721
                    traced_model = torch.jit.trace(
722
                        model, (main_input, attention_mask, decoder_input_ids, decoder_attention_mask)
723
                    )
724
725
726
727
                elif "bbox" in inputs and "image" in inputs:  # LayoutLMv2 requires additional inputs
                    input_ids = inputs["input_ids"]
                    bbox = inputs["bbox"]
                    image = inputs["image"].tensor
728
                    model(input_ids, bbox, image)
729
730
731
                    traced_model = torch.jit.trace(
                        model, (input_ids, bbox, image), check_trace=False
                    )  # when traced model is checked, an error is produced due to name mangling
Jinho Park's avatar
Jinho Park committed
732
733
734
735
736
737
738
                elif "bbox" in inputs:  # Bros requires additional inputs (bbox)
                    input_ids = inputs["input_ids"]
                    bbox = inputs["bbox"]
                    model(input_ids, bbox)
                    traced_model = torch.jit.trace(
                        model, (input_ids, bbox), check_trace=False
                    )  # when traced model is checked, an error is produced due to name mangling
739
                else:
740
                    main_input = inputs[main_input_name]
741
                    model(main_input)
742
                    traced_model = torch.jit.trace(model, main_input)
743
744
            except RuntimeError:
                self.fail("Couldn't trace module.")
thomwolf's avatar
thomwolf committed
745

746
            with tempfile.TemporaryDirectory() as tmp_dir_name:
747
                pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt")
thomwolf's avatar
thomwolf committed
748

749
                try:
750
                    torch.jit.save(traced_model, pt_file_name)
751
752
                except Exception:
                    self.fail("Couldn't save module.")
thomwolf's avatar
thomwolf committed
753

754
755
756
757
                try:
                    loaded_model = torch.jit.load(pt_file_name)
                except Exception:
                    self.fail("Couldn't load module.")
LysandreJik's avatar
LysandreJik committed
758

759
760
            model.to(torch_device)
            model.eval()
thomwolf's avatar
thomwolf committed
761

762
763
            loaded_model.to(torch_device)
            loaded_model.eval()
thomwolf's avatar
thomwolf committed
764

765
766
767
            model_state_dict = model.state_dict()
            loaded_model_state_dict = loaded_model.state_dict()

768
769
770
771
772
773
774
775
776
            non_persistent_buffers = {}
            for key in loaded_model_state_dict.keys():
                if key not in model_state_dict.keys():
                    non_persistent_buffers[key] = loaded_model_state_dict[key]

            loaded_model_state_dict = {
                key: value for key, value in loaded_model_state_dict.items() if key not in non_persistent_buffers
            }

777
            self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys()))
thomwolf's avatar
thomwolf committed
778

779
780
781
782
783
784
785
786
787
788
789
            model_buffers = list(model.buffers())
            for non_persistent_buffer in non_persistent_buffers.values():
                found_buffer = False
                for i, model_buffer in enumerate(model_buffers):
                    if torch.equal(non_persistent_buffer, model_buffer):
                        found_buffer = True
                        break

                self.assertTrue(found_buffer)
                model_buffers.pop(i)

790
            models_equal = True
791
            for layer_name, p1 in model_state_dict.items():
792
793
794
795
                if layer_name in loaded_model_state_dict:
                    p2 = loaded_model_state_dict[layer_name]
                    if p1.data.ne(p2.data).sum() > 0:
                        models_equal = False
thomwolf's avatar
thomwolf committed
796

797
            self.assertTrue(models_equal)
thomwolf's avatar
thomwolf committed
798

799
800
801
802
            # Avoid memory leak. Without this, each call increase RAM usage by ~20MB.
            # (Even with this call, there are still memory leak by ~0.04MB)
            self.clear_torch_jit_class_registry()

803
804
805
806
807
808
809
810
    def test_torch_fx(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        self._create_and_check_torch_fx_tracing(config, inputs_dict)

    def test_torch_fx_output_loss(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        self._create_and_check_torch_fx_tracing(config, inputs_dict, output_loss=True)

811
812
    def _create_and_check_torch_fx_tracing(self, config, inputs_dict, output_loss=False):
        if not is_torch_fx_available() or not self.fx_compatible:
813
814
815
816
817
            return

        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        configs_no_init.return_dict = False

818
        for model_class in self.all_model_classes:
819
820
821
822
823
824
825
826
827
            model = model_class(config=configs_no_init)
            model.to(torch_device)
            model.eval()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=output_loss)

            try:
                if model.config.is_encoder_decoder:
                    model.config.use_cache = False  # FSTM still requires this hack -> FSTM should probably be refactored similar to BART afterward
                    labels = inputs.get("labels", None)
828
829
830
                    input_names = [
                        "attention_mask",
                        "decoder_attention_mask",
831
                        "decoder_input_ids",
832
                        "input_features",
833
834
                        "input_ids",
                        "input_values",
835
                    ]
836
837
                    if labels is not None:
                        input_names.append("labels")
838

839
                    filtered_inputs = {k: v for (k, v) in inputs.items() if k in input_names}
840
                    input_names = list(filtered_inputs.keys())
841

842
                    model_output = model(**filtered_inputs)
843

844
                    traced_model = symbolic_trace(model, input_names)
845
                    traced_output = traced_model(**filtered_inputs)
846
                else:
847
848
849
850
                    input_names = [
                        "attention_mask",
                        "bbox",
                        "input_features",
851
852
853
854
855
856
                        "input_ids",
                        "input_values",
                        "pixel_values",
                        "token_type_ids",
                        "visual_feats",
                        "visual_pos",
857
                    ]
858

859
                    labels = inputs.get("labels", None)
860
861
                    start_positions = inputs.get("start_positions", None)
                    end_positions = inputs.get("end_positions", None)
862
863
                    if labels is not None:
                        input_names.append("labels")
864
865
866
867
                    if start_positions is not None:
                        input_names.append("start_positions")
                    if end_positions is not None:
                        input_names.append("end_positions")
868

869
                    filtered_inputs = {k: v for (k, v) in inputs.items() if k in input_names}
870
                    input_names = list(filtered_inputs.keys())
871

872
                    if model.__class__.__name__ in set(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES.values()) and (
873
                        not hasattr(model.config, "problem_type") or model.config.problem_type is None
874
875
876
                    ):
                        model.config.problem_type = "single_label_classification"

877
                    traced_model = symbolic_trace(model, input_names)
878
                    traced_output = traced_model(**filtered_inputs)
879
                    model_output = model(**filtered_inputs)
880

881
            except Exception as e:
882
                self.fail(f"Couldn't trace module: {e}")
883

884
885
886
887
888
889
890
891
892
893
894
895
896
            def flatten_output(output):
                flatten = []
                for x in output:
                    if isinstance(x, (tuple, list)):
                        flatten += flatten_output(x)
                    elif not isinstance(x, torch.Tensor):
                        continue
                    else:
                        flatten.append(x)
                return flatten

            model_output = flatten_output(model_output)
            traced_output = flatten_output(traced_output)
897
            num_outputs = len(model_output)
898
899
900
901
902
903

            for i in range(num_outputs):
                self.assertTrue(
                    torch.allclose(model_output[i], traced_output[i]),
                    f"traced {i}th output doesn't match model {i}th output for {model_class}",
                )
904

905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
            # Test that the model can be serialized and restored properly
            with tempfile.TemporaryDirectory() as tmp_dir_name:
                pkl_file_name = os.path.join(tmp_dir_name, "model.pkl")
                try:
                    with open(pkl_file_name, "wb") as f:
                        pickle.dump(traced_model, f)
                    with open(pkl_file_name, "rb") as f:
                        loaded = pickle.load(f)
                except Exception as e:
                    self.fail(f"Couldn't serialize / deserialize the traced model: {e}")

                loaded_output = loaded(**filtered_inputs)
                loaded_output = flatten_output(loaded_output)

                for i in range(num_outputs):
                    self.assertTrue(
                        torch.allclose(model_output[i], loaded_output[i]),
                        f"serialized model {i}th output doesn't match model {i}th output for {model_class}",
                    )

925
926
927
928
            # Avoid memory leak. Without this, each call increase RAM usage by ~20MB.
            # (Even with this call, there are still memory leak by ~0.04MB)
            self.clear_torch_jit_class_registry()

Patrick von Platen's avatar
Patrick von Platen committed
929
930
    def test_headmasking(self):
        if not self.test_head_masking:
931
            return
932

933
934
935
        global_rng.seed(42)
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        global_rng.seed()
LysandreJik's avatar
LysandreJik committed
936

937
        inputs_dict["output_attentions"] = True
938
939
940
941
942
943
        config.output_hidden_states = True
        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            model.to(torch_device)
            model.eval()
LysandreJik's avatar
LysandreJik committed
944

945
946
947
            # Prepare head_mask
            # Set require_grad after having prepared the tensor to avoid error (leaf variable has been moved into the graph interior)
            head_mask = torch.ones(
Lysandre's avatar
Lysandre committed
948
949
950
                self.model_tester.num_hidden_layers,
                self.model_tester.num_attention_heads,
                device=torch_device,
951
952
953
954
            )
            head_mask[0, 0] = 0
            head_mask[-1, :-1] = 0
            head_mask.requires_grad_(requires_grad=True)
955
            inputs = self._prepare_for_class(inputs_dict, model_class).copy()
956
            inputs["head_mask"] = head_mask
957
958
959
960
961
            if model.config.is_encoder_decoder:
                signature = inspect.signature(model.forward)
                arg_names = [*signature.parameters.keys()]
                if "decoder_head_mask" in arg_names:  # necessary diferentiation because of T5 model
                    inputs["decoder_head_mask"] = head_mask
962
963
                if "cross_attn_head_mask" in arg_names:
                    inputs["cross_attn_head_mask"] = head_mask
964
            outputs = model(**inputs, return_dict=True)
965
966
967
968
969
970
971
972
973

            # Test that we can get a gradient back for importance score computation
            output = sum(t.sum() for t in outputs[0])
            output = output.sum()
            output.backward()
            multihead_outputs = head_mask.grad

            self.assertIsNotNone(multihead_outputs)
            self.assertEqual(len(multihead_outputs), self.model_tester.num_hidden_layers)
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994

            def check_attentions_validity(attentions):
                # Remove Nan
                for t in attentions:
                    self.assertLess(
                        torch.sum(torch.isnan(t)), t.numel() / 4
                    )  # Check we don't have more than 25% nans (arbitrary)
                attentions = [
                    t.masked_fill(torch.isnan(t), 0.0) for t in attentions
                ]  # remove them (the test is less complete)

                self.assertAlmostEqual(attentions[0][..., 0, :, :].flatten().sum().item(), 0.0)
                self.assertNotEqual(attentions[0][..., -1, :, :].flatten().sum().item(), 0.0)
                if len(attentions) > 2:  # encoder-decoder models have only 2 layers in each module
                    self.assertNotEqual(attentions[1][..., 0, :, :].flatten().sum().item(), 0.0)
                self.assertAlmostEqual(attentions[-1][..., -2, :, :].flatten().sum().item(), 0.0)
                self.assertNotEqual(attentions[-1][..., -1, :, :].flatten().sum().item(), 0.0)

            if model.config.is_encoder_decoder:
                check_attentions_validity(outputs.encoder_attentions)
                check_attentions_validity(outputs.decoder_attentions)
995
                check_attentions_validity(outputs.cross_attentions)
996
997
            else:
                check_attentions_validity(outputs.attentions)
998

Patrick von Platen's avatar
Patrick von Platen committed
999
1000
    def test_head_pruning(self):
        if not self.test_pruning:
1001
1002
1003
            return

        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
1004
1005
1006
1007
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
1008

1009
1010
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
1011

1012
            inputs_dict["output_attentions"] = True
1013
1014
1015
1016
            config.output_hidden_states = False
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
1017
1018
1019
1020
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
1021
1022
            model.prune_heads(heads_to_prune)
            with torch.no_grad():
1023
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
1024

1025
            attentions = outputs[-1]
1026

1027
            self.assertEqual(attentions[0].shape[-3], 1)
1028
1029
            # TODO: To have this check, we will need at least 3 layers. Do we really need it?
            # self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
1030
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
LysandreJik's avatar
LysandreJik committed
1031

Patrick von Platen's avatar
Patrick von Platen committed
1032
1033
    def test_head_pruning_save_load_from_pretrained(self):
        if not self.test_pruning:
1034
            return
LysandreJik's avatar
LysandreJik committed
1035

1036
        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
1037
1038
1039
1040
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
1041
1042
1043

            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
1044

1045
            inputs_dict["output_attentions"] = True
1046
1047
1048
1049
            config.output_hidden_states = False
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
1050
1051
1052
1053
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
1054
            model.prune_heads(heads_to_prune)
1055

1056
            with tempfile.TemporaryDirectory() as temp_dir_name:
1057
1058
                model.save_pretrained(temp_dir_name)
                model = model_class.from_pretrained(temp_dir_name)
1059
                model.to(torch_device)
1060

1061
            with torch.no_grad():
1062
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
1063
1064
            attentions = outputs[-1]
            self.assertEqual(attentions[0].shape[-3], 1)
1065
1066
            # TODO: To have this check, we will need at least 3 layers. Do we really need it?
            # self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
1067
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
1068

Patrick von Platen's avatar
Patrick von Platen committed
1069
1070
    def test_head_pruning_save_load_from_config_init(self):
        if not self.test_pruning:
1071
            return
1072

1073
        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
1074
1075
1076
1077
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
1078

1079
1080
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
1081

1082
            inputs_dict["output_attentions"] = True
1083
            config.output_hidden_states = False
1084

1085
1086
1087
1088
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
1089
            config.pruned_heads = heads_to_prune
1090

1091
1092
1093
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
1094

1095
            with torch.no_grad():
1096
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
1097
            attentions = outputs[-1]
1098

1099
            self.assertEqual(attentions[0].shape[-3], 1)
1100
1101
            # TODO: To have this check, we will need at least 3 layers. Do we really need it?
            # self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
1102
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
1103

Patrick von Platen's avatar
Patrick von Platen committed
1104
1105
    def test_head_pruning_integration(self):
        if not self.test_pruning:
1106
            return
1107

1108
        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
1109
1110
1111
1112
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
1113

1114
1115
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
1116

1117
            inputs_dict["output_attentions"] = True
1118
            config.output_hidden_states = False
1119

1120
            heads_to_prune = {1: [1, 2]}
1121
            config.pruned_heads = heads_to_prune
1122

1123
1124
1125
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
1126

1127
            with torch.no_grad():
1128
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
1129
            attentions = outputs[-1]
1130

1131
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 0)
1132
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
thomwolf's avatar
thomwolf committed
1133

1134
            with tempfile.TemporaryDirectory() as temp_dir_name:
1135
1136
                model.save_pretrained(temp_dir_name)
                model = model_class.from_pretrained(temp_dir_name)
1137
                model.to(torch_device)
thomwolf's avatar
thomwolf committed
1138

1139
            with torch.no_grad():
1140
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
1141
            attentions = outputs[-1]
LysandreJik's avatar
LysandreJik committed
1142

1143
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 0)
1144
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
thomwolf's avatar
thomwolf committed
1145

1146
            heads_to_prune = {0: [0], 1: [1, 2]}
1147
            model.prune_heads(heads_to_prune)
1148

1149
            with torch.no_grad():
1150
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
1151
            attentions = outputs[-1]
1152

1153
1154
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
1155

1156
            self.assertDictEqual(model.config.pruned_heads, {0: [0], 1: [1, 2]})
thomwolf's avatar
thomwolf committed
1157

Patrick von Platen's avatar
Patrick von Platen committed
1158
    def test_hidden_states_output(self):
Joseph Liu's avatar
Joseph Liu committed
1159
        def check_hidden_states_output(inputs_dict, config, model_class):
1160
            model = model_class(config)
1161
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
1162
            model.eval()
Joseph Liu's avatar
Joseph Liu committed
1163

thomwolf's avatar
thomwolf committed
1164
            with torch.no_grad():
1165
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
1166
1167

            hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
Patrick von Platen's avatar
Patrick von Platen committed
1168

Sylvain Gugger's avatar
Sylvain Gugger committed
1169
1170
1171
1172
            expected_num_layers = getattr(
                self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
            )
            self.assertEqual(len(hidden_states), expected_num_layers)
1173

Patrick von Platen's avatar
Patrick von Platen committed
1174
1175
1176
1177
1178
1179
1180
            if hasattr(self.model_tester, "encoder_seq_length"):
                seq_length = self.model_tester.encoder_seq_length
                if hasattr(self.model_tester, "chunk_length") and self.model_tester.chunk_length > 1:
                    seq_length = seq_length * self.model_tester.chunk_length
            else:
                seq_length = self.model_tester.seq_length

1181
            self.assertListEqual(
Lysandre's avatar
Lysandre committed
1182
1183
                list(hidden_states[0].shape[-2:]),
                [seq_length, self.model_tester.hidden_size],
1184
            )
thomwolf's avatar
thomwolf committed
1185

1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
            if config.is_encoder_decoder:
                hidden_states = outputs.decoder_hidden_states

                self.assertIsInstance(hidden_states, (list, tuple))
                self.assertEqual(len(hidden_states), expected_num_layers)
                seq_len = getattr(self.model_tester, "seq_length", None)
                decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len)

                self.assertListEqual(
                    list(hidden_states[0].shape[-2:]),
                    [decoder_seq_length, self.model_tester.hidden_size],
                )

Joseph Liu's avatar
Joseph Liu committed
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            inputs_dict["output_hidden_states"] = True
            check_hidden_states_output(inputs_dict, config, model_class)

            # check that output_hidden_states also work using config
            del inputs_dict["output_hidden_states"]
            config.output_hidden_states = True

            check_hidden_states_output(inputs_dict, config, model_class)

1211
1212
1213
    def test_retain_grad_hidden_states_attentions(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_hidden_states = True
1214
        config.output_attentions = self.has_attentions
1215
1216
1217
1218
1219
1220
1221
1222
1223

        # no need to test all models as different heads yield the same functionality
        model_class = self.all_model_classes[0]
        model = model_class(config)
        model.to(torch_device)

        inputs = self._prepare_for_class(inputs_dict, model_class)

        outputs = model(**inputs)
1224

1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
        output = outputs[0]

        if config.is_encoder_decoder:
            # Seq2Seq models
            encoder_hidden_states = outputs.encoder_hidden_states[0]
            encoder_hidden_states.retain_grad()

            decoder_hidden_states = outputs.decoder_hidden_states[0]
            decoder_hidden_states.retain_grad()

1235
1236
1237
1238
1239
1240
1241
1242
1243
            if self.has_attentions:
                encoder_attentions = outputs.encoder_attentions[0]
                encoder_attentions.retain_grad()

                decoder_attentions = outputs.decoder_attentions[0]
                decoder_attentions.retain_grad()

                cross_attentions = outputs.cross_attentions[0]
                cross_attentions.retain_grad()
1244
1245
1246
1247
1248

            output.flatten()[0].backward(retain_graph=True)

            self.assertIsNotNone(encoder_hidden_states.grad)
            self.assertIsNotNone(decoder_hidden_states.grad)
1249
1250
1251
1252
1253

            if self.has_attentions:
                self.assertIsNotNone(encoder_attentions.grad)
                self.assertIsNotNone(decoder_attentions.grad)
                self.assertIsNotNone(cross_attentions.grad)
1254
1255
1256
1257
        else:
            # Encoder-/Decoder-only models
            hidden_states = outputs.hidden_states[0]
            hidden_states.retain_grad()
1258
1259
1260
1261

            if self.has_attentions:
                attentions = outputs.attentions[0]
                attentions.retain_grad()
1262
1263
1264
1265

            output.flatten()[0].backward(retain_graph=True)

            self.assertIsNotNone(hidden_states.grad)
1266
1267
1268

            if self.has_attentions:
                self.assertIsNotNone(attentions.grad)
1269

Pradhy729's avatar
Pradhy729 committed
1270
    def test_feed_forward_chunking(self):
Lysandre's avatar
Lysandre committed
1271
1272
1273
1274
        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()
Pradhy729's avatar
Pradhy729 committed
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
        for model_class in self.all_model_classes:
            torch.manual_seed(0)
            config = copy.deepcopy(original_config)
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            hidden_states_no_chunk = model(**self._prepare_for_class(inputs_dict, model_class))[0]

            torch.manual_seed(0)
            config.chunk_size_feed_forward = 1
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            hidden_states_with_chunk = model(**self._prepare_for_class(inputs_dict, model_class))[0]
            self.assertTrue(torch.allclose(hidden_states_no_chunk, hidden_states_with_chunk, atol=1e-3))

1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
    def test_resize_position_vector_embeddings(self):
        if not self.test_resize_position_embeddings:
            return

        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            config = copy.deepcopy(original_config)
            model = model_class(config)
            model.to(torch_device)

            if self.model_tester.is_training is False:
                model.eval()

            max_position_embeddings = config.max_position_embeddings

            # Retrieve the embeddings and clone theme
            if model.config.is_encoder_decoder:
                encoder_model_embed, decoder_model_embed = model.get_position_embeddings()
                encoder_cloned_embeddings = encoder_model_embed.weight.clone()
                decoder_cloned_embeddings = decoder_model_embed.weight.clone()
            else:
                model_embed = model.get_position_embeddings()
                cloned_embeddings = model_embed.weight.clone()

            # Check that resizing the position embeddings with a larger max_position_embeddings increases
            # the model's postion embeddings size
            model.resize_position_embeddings(max_position_embeddings + 10)
            self.assertEqual(model.config.max_position_embeddings, max_position_embeddings + 10)

            # Check that it actually resizes the embeddings matrix
            if model.config.is_encoder_decoder:
                encoder_model_embed, decoder_model_embed = model.get_position_embeddings()
                self.assertEqual(encoder_model_embed.weight.shape[0], encoder_cloned_embeddings.shape[0] + 10)
                self.assertEqual(decoder_model_embed.weight.shape[0], decoder_cloned_embeddings.shape[0] + 10)
            else:
                model_embed = model.get_position_embeddings()
                self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10)

            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**self._prepare_for_class(inputs_dict, model_class))

            # Check that resizing the position embeddings with a smaller max_position_embeddings decreases
            # the model's max_position_embeddings
            model.resize_position_embeddings(max_position_embeddings - 5)
            self.assertEqual(model.config.max_position_embeddings, max_position_embeddings - 5)

            # Check that it actually resizes the embeddings matrix
            if model.config.is_encoder_decoder:
                encoder_model_embed, decoder_model_embed = model.get_position_embeddings()
                self.assertEqual(encoder_model_embed.weight.shape[0], encoder_cloned_embeddings.shape[0] - 5)
                self.assertEqual(decoder_model_embed.weight.shape[0], decoder_cloned_embeddings.shape[0] - 5)
            else:
                model_embed = model.get_position_embeddings()
                self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 5)

            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**self._prepare_for_class(inputs_dict, model_class))

            # Check that adding and removing tokens has not modified the first part of the embedding matrix.
            models_equal = True

            if model.config.is_encoder_decoder:
                for p1, p2 in zip(encoder_cloned_embeddings, encoder_model_embed.weight):
                    if p1.data.ne(p2.data).sum() > 0:
                        models_equal = False
                for p1, p2 in zip(decoder_cloned_embeddings, decoder_model_embed.weight):
                    if p1.data.ne(p2.data).sum() > 0:
                        models_equal = False
            else:
                for p1, p2 in zip(cloned_embeddings, model_embed.weight):
                    if p1.data.ne(p2.data).sum() > 0:
                        models_equal = False

            self.assertTrue(models_equal)

Patrick von Platen's avatar
Patrick von Platen committed
1372
    def test_resize_tokens_embeddings(self):
Lysandre's avatar
Lysandre committed
1373
1374
1375
1376
        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()
Patrick von Platen's avatar
Patrick von Platen committed
1377
        if not self.test_resize_embeddings:
1378
1379
1380
1381
1382
            return

        for model_class in self.all_model_classes:
            config = copy.deepcopy(original_config)
            model = model_class(config)
1383
            model.to(torch_device)
1384

Patrick von Platen's avatar
Patrick von Platen committed
1385
1386
1387
            if self.model_tester.is_training is False:
                model.eval()

1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
            model_vocab_size = config.vocab_size
            # Retrieve the embeddings and clone theme
            model_embed = model.resize_token_embeddings(model_vocab_size)
            cloned_embeddings = model_embed.weight.clone()

            # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
            model_embed = model.resize_token_embeddings(model_vocab_size + 10)
            self.assertEqual(model.config.vocab_size, model_vocab_size + 10)
            # Check that it actually resizes the embeddings matrix
            self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10)
1398
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
1399
            model(**self._prepare_for_class(inputs_dict, model_class))
1400
1401
1402
1403
1404
1405
1406

            # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
            model_embed = model.resize_token_embeddings(model_vocab_size - 15)
            self.assertEqual(model.config.vocab_size, model_vocab_size - 15)
            # Check that it actually resizes the embeddings matrix
            self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 15)

1407
1408
1409
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            # Input ids should be clamped to the maximum size of the vocabulary
            inputs_dict["input_ids"].clamp_(max=model_vocab_size - 15 - 1)
1410
1411
1412
1413

            # make sure that decoder_input_ids are resized as well
            if "decoder_input_ids" in inputs_dict:
                inputs_dict["decoder_input_ids"].clamp_(max=model_vocab_size - 15 - 1)
1414
            model(**self._prepare_for_class(inputs_dict, model_class))
1415

1416
1417
1418
1419
1420
1421
1422
1423
            # Check that adding and removing tokens has not modified the first part of the embedding matrix.
            models_equal = True
            for p1, p2 in zip(cloned_embeddings, model_embed.weight):
                if p1.data.ne(p2.data).sum() > 0:
                    models_equal = False

            self.assertTrue(models_equal)

1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
            config = copy.deepcopy(original_config)
            model = model_class(config)
            model.to(torch_device)

            model_vocab_size = config.vocab_size
            model.resize_token_embeddings(model_vocab_size + 10, pad_to_multiple_of=1)
            self.assertTrue(model.config.vocab_size + 10, model_vocab_size)

            model_embed = model.resize_token_embeddings(model_vocab_size, pad_to_multiple_of=64)
            self.assertTrue(model_embed.weight.shape[0] // 64, 0)

Arthur's avatar
Arthur committed
1435
1436
1437
            self.assertTrue(model_embed.weight.shape[0], model.config.vocab_size)
            self.assertTrue(model.config.vocab_size, model.vocab_size)

1438
1439
1440
            model_embed = model.resize_token_embeddings(model_vocab_size + 13, pad_to_multiple_of=64)
            self.assertTrue(model_embed.weight.shape[0] // 64, 0)

1441
1442
1443
1444
1445
            # Check that resizing a model to a multiple of pad_to_multiple leads to a model of exactly that size
            target_dimension = 128
            model_embed = model.resize_token_embeddings(target_dimension, pad_to_multiple_of=64)
            self.assertTrue(model_embed.weight.shape[0], target_dimension)

1446
1447
1448
1449
1450
1451
            with self.assertRaisesRegex(
                ValueError,
                "Asking to pad the embedding matrix to a multiple of `1.3`, which is not and integer. Please make sure to pass an integer",
            ):
                model.resize_token_embeddings(model_vocab_size, pad_to_multiple_of=1.3)

1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
    def test_resize_embeddings_untied(self):
        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()
        if not self.test_resize_embeddings:
            return

        original_config.tie_word_embeddings = False

        # if model cannot untied embeddings -> leave test
        if original_config.tie_word_embeddings:
            return

        for model_class in self.all_model_classes:
            config = copy.deepcopy(original_config)
            model = model_class(config).to(torch_device)

            # if no output embeddings -> leave test
            if model.get_output_embeddings() is None:
                continue

            # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
            model_vocab_size = config.vocab_size
            model.resize_token_embeddings(model_vocab_size + 10)
            self.assertEqual(model.config.vocab_size, model_vocab_size + 10)
            output_embeds = model.get_output_embeddings()
            self.assertEqual(output_embeds.weight.shape[0], model_vocab_size + 10)
            # Check bias if present
            if output_embeds.bias is not None:
                self.assertEqual(output_embeds.bias.shape[0], model_vocab_size + 10)
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**self._prepare_for_class(inputs_dict, model_class))

            # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
            model.resize_token_embeddings(model_vocab_size - 15)
            self.assertEqual(model.config.vocab_size, model_vocab_size - 15)
            # Check that it actually resizes the embeddings matrix
            output_embeds = model.get_output_embeddings()
            self.assertEqual(output_embeds.weight.shape[0], model_vocab_size - 15)
            # Check bias if present
            if output_embeds.bias is not None:
                self.assertEqual(output_embeds.bias.shape[0], model_vocab_size - 15)
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            # Input ids should be clamped to the maximum size of the vocabulary
            inputs_dict["input_ids"].clamp_(max=model_vocab_size - 15 - 1)
            if "decoder_input_ids" in inputs_dict:
                inputs_dict["decoder_input_ids"].clamp_(max=model_vocab_size - 15 - 1)
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**self._prepare_for_class(inputs_dict, model_class))

Patrick von Platen's avatar
Patrick von Platen committed
1503
    def test_model_common_attributes(self):
1504
1505
1506
1507
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
1508
1509
            self.assertIsInstance(model.get_input_embeddings(), (nn.Embedding, AdaptiveEmbedding))
            model.set_input_embeddings(nn.Embedding(10, 10))
1510
            x = model.get_output_embeddings()
1511
            self.assertTrue(x is None or isinstance(x, nn.Linear))
1512

1513
1514
1515
1516
1517
1518
1519
    def test_model_main_input_name(self):
        for model_class in self.all_model_classes:
            model_signature = inspect.signature(getattr(model_class, "forward"))
            # The main input is the name of the argument after `self`
            observed_main_input_name = list(model_signature.parameters.keys())[1]
            self.assertEqual(model_class.main_input_name, observed_main_input_name)

1520
    def test_correct_missing_keys(self):
1521
1522
        if not self.test_missing_keys:
            return
1523
1524
1525
1526
1527
1528
1529
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            base_model_prefix = model.base_model_prefix

            if hasattr(model, base_model_prefix):
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
                extra_params = {k: v for k, v in model.named_parameters() if not k.startswith(base_model_prefix)}
                extra_params.update({k: v for k, v in model.named_buffers() if not k.startswith(base_model_prefix)})
                # Some models define this as None
                if model._keys_to_ignore_on_load_missing:
                    for key in model._keys_to_ignore_on_load_missing:
                        extra_params.pop(key, None)

                if not extra_params:
                    # In that case, we *are* on a head model, but every
                    # single key is not actual parameters and this is
                    # tested in `test_tied_model_weights_key_ignore` test.
                    continue

1543
1544
1545
                with tempfile.TemporaryDirectory() as temp_dir_name:
                    model.base_model.save_pretrained(temp_dir_name)
                    model, loading_info = model_class.from_pretrained(temp_dir_name, output_loading_info=True)
1546
                    self.assertGreater(len(loading_info["missing_keys"]), 0, model.__class__.__name__)
1547

1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
    def test_tie_model_weights(self):
        if not self.test_torchscript:
            return

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        def check_same_values(layer_1, layer_2):
            equal = True
            for p1, p2 in zip(layer_1.weight, layer_2.weight):
                if p1.data.ne(p2.data).sum() > 0:
                    equal = False
            return equal

        for model_class in self.all_model_classes:
            config.torchscript = True
            model_not_tied = model_class(config)
            if model_not_tied.get_output_embeddings() is None:
                continue

            config_tied = copy.deepcopy(config)
            config_tied.torchscript = False
            model_tied = model_class(config_tied)
            params_tied = list(model_tied.parameters())
            # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(check_same_values(embeddings, decoding))

            # # Check that after modification, they remain the same.
            # embeddings.weight.data.div_(2)
            # # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(embeddings.weight.shape, decoding.weight.shape)
            # self.assertTrue(check_same_values(embeddings, decoding))

            # # Check that after modification, they remain the same.
            # decoding.weight.data.div_(4)
            # # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(embeddings.weight.shape, decoding.weight.shape)
            # self.assertTrue(check_same_values(embeddings, decoding))

            # Check that after resize they remain tied.
            model_tied.resize_token_embeddings(config.vocab_size + 10)
            params_tied_2 = list(model_tied.parameters())
            self.assertEqual(len(params_tied_2), len(params_tied))

            # decoding.weight.data.mul_(20)
            # # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(model.transformer.wte.weight.shape, model.lm_head.weight.shape)
            # self.assertTrue(check_same_values(model.transformer.wte, model.lm_head))

1596
1597
    @require_safetensors
    def test_can_use_safetensors(self):
Sylvain Gugger's avatar
Sylvain Gugger committed
1598
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
        for model_class in self.all_model_classes:
            model_tied = model_class(config)
            with tempfile.TemporaryDirectory() as d:
                try:
                    model_tied.save_pretrained(d, safe_serialization=True)
                except Exception as e:
                    raise Exception(f"Class {model_class.__name__} cannot be saved using safetensors: {e}")

                model_reloaded, infos = model_class.from_pretrained(d, output_loading_info=True)
                # Checking the state dicts are correct
                reloaded_state = model_reloaded.state_dict()
                for k, v in model_tied.state_dict().items():
                    self.assertIn(k, reloaded_state, f"Key {k} is missing from reloaded")
                    torch.testing.assert_close(
                        v, reloaded_state[k], msg=lambda x: f"{model_class.__name__}: Tensor {k}: {x}"
                    )
Sylvain Gugger's avatar
Sylvain Gugger committed
1615
1616
                # Checking there was no complain of missing weights
                self.assertEqual(infos["missing_keys"], [])
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632

                # Checking the tensor sharing are correct
                ptrs = defaultdict(list)
                for k, v in model_tied.state_dict().items():
                    ptrs[v.data_ptr()].append(k)

                shared_ptrs = {k: v for k, v in ptrs.items() if len(v) > 1}

                for _, shared_names in shared_ptrs.items():
                    reloaded_ptrs = {reloaded_state[k].data_ptr() for k in shared_names}
                    self.assertEqual(
                        len(reloaded_ptrs),
                        1,
                        f"The shared pointers are incorrect, found different pointers for keys {shared_names}",
                    )

Sylvain Gugger's avatar
Sylvain Gugger committed
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
    def test_load_save_without_tied_weights(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()
        config.tie_word_embeddings = False
        for model_class in self.all_model_classes:
            model = model_class(config)
            with tempfile.TemporaryDirectory() as d:
                model.save_pretrained(d)

                model_reloaded, infos = model_class.from_pretrained(d, output_loading_info=True)
                # Checking the state dicts are correct
                reloaded_state = model_reloaded.state_dict()
                for k, v in model.state_dict().items():
                    self.assertIn(k, reloaded_state, f"Key {k} is missing from reloaded")
                    torch.testing.assert_close(
                        v, reloaded_state[k], msg=lambda x: f"{model_class.__name__}: Tensor {k}: {x}"
                    )
                # Checking there was no complain of missing weights
                self.assertEqual(infos["missing_keys"], [])

Sylvain Gugger's avatar
Sylvain Gugger committed
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
    def test_tied_weights_keys(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()
        config.tie_word_embeddings = True
        for model_class in self.all_model_classes:
            model_tied = model_class(config)

            ptrs = collections.defaultdict(list)
            for name, tensor in model_tied.state_dict().items():
                ptrs[id_tensor_storage(tensor)].append(name)

            # These are all the pointers of shared tensors.
            tied_params = [names for _, names in ptrs.items() if len(names) > 1]

            tied_weight_keys = model_tied._tied_weights_keys if model_tied._tied_weights_keys is not None else []
            # Detect we get a hit for each key
            for key in tied_weight_keys:
                if not any(re.search(key, p) for group in tied_params for p in group):
                    raise ValueError(f"{key} is not a tied weight key for {model_class}.")

            # Removed tied weights found from tied params -> there should only be one left after
            for key in tied_weight_keys:
                for i in range(len(tied_params)):
                    tied_params[i] = [p for p in tied_params[i] if re.search(key, p) is None]

            tied_params = [group for group in tied_params if len(group) > 1]
Sylvain Gugger's avatar
Sylvain Gugger committed
1677
1678
1679
1680
1681
            self.assertListEqual(
                tied_params,
                [],
                f"Missing `_tied_weights_keys` for {model_class}: add all of {tied_params} except one.",
            )
Sylvain Gugger's avatar
Sylvain Gugger committed
1682

Sylvain Gugger's avatar
Sylvain Gugger committed
1683
1684
    def test_model_weights_reload_no_missing_tied_weights(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()
1685
        for model_class in self.all_model_classes:
Sylvain Gugger's avatar
Sylvain Gugger committed
1686
1687
1688
            model = model_class(config)
            with tempfile.TemporaryDirectory() as tmp_dir:
                model.save_pretrained(tmp_dir)
1689
1690
1691

                # We are nuking ALL weights on file, so every parameter should
                # yell on load. We're going to detect if we yell too much, or too little.
Sylvain Gugger's avatar
Sylvain Gugger committed
1692
                with open(os.path.join(tmp_dir, "pytorch_model.bin"), "wb") as f:
1693
                    torch.save({}, f)
Sylvain Gugger's avatar
Sylvain Gugger committed
1694
                model_reloaded, infos = model_class.from_pretrained(tmp_dir, output_loading_info=True)
1695
1696
1697
1698

                prefix = f"{model_reloaded.base_model_prefix}."
                params = dict(model_reloaded.named_parameters())
                params.update(dict(model_reloaded.named_buffers()))
1699
                param_names = {k[len(prefix) :] if k.startswith(prefix) else k for k in params.keys()}
1700
1701
1702
1703

                missing_keys = set(infos["missing_keys"])

                extra_missing = missing_keys - param_names
Sylvain Gugger's avatar
Sylvain Gugger committed
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
                # Remove tied weights from extra missing: they are normally not warned as missing if their tied
                # counterpart is present but here there are no weights at all so we do get the warning.
                ptrs = collections.defaultdict(list)
                for name, tensor in model_reloaded.state_dict().items():
                    ptrs[id_tensor_storage(tensor)].append(name)
                tied_params = [names for _, names in ptrs.items() if len(names) > 1]
                for group in tied_params:
                    group = {k[len(prefix) :] if k.startswith(prefix) else k for k in group}
                    # We remove the group from extra_missing if not all weights from group are in it
                    if len(group - extra_missing) > 0:
                        extra_missing = extra_missing - set(group)
1715
1716
1717
1718

                self.assertEqual(
                    extra_missing,
                    set(),
Sylvain Gugger's avatar
Sylvain Gugger committed
1719
1720
                    f"This model {model_class.__name__} might be missing some `keys_to_ignore`: {extra_missing}. "
                    f"For debugging, tied parameters are {tied_params}",
1721
1722
                )

Sylvain Gugger's avatar
Sylvain Gugger committed
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
                missed_missing = param_names - missing_keys
                # Remove nonpersistent buffers from missed_missing
                buffers = [n for n, _ in model_reloaded.named_buffers()]
                nonpersistent_buffers = {n for n in buffers if n not in model_reloaded.state_dict()}
                nonpersistent_buffers = {
                    k[len(prefix) :] if k.startswith(prefix) else k for k in nonpersistent_buffers
                }
                missed_missing = missed_missing - nonpersistent_buffers

                if model_reloaded._keys_to_ignore_on_load_missing is None:
                    expected_missing = set()
                else:
                    expected_missing = set(model_reloaded._keys_to_ignore_on_load_missing)
                self.assertEqual(
                    missed_missing,
                    expected_missing,
                    f"This model {model_class.__name__} ignores keys {missed_missing} but they look like real"
                    " parameters. If they are non persistent buffers make sure to instantiate them with"
                    " `persistent=False`",
                )
1743

1744
1745
1746
    def test_model_outputs_equivalence(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

Sam Shleifer's avatar
Sam Shleifer committed
1747
1748
1749
1750
        def set_nan_tensor_to_zero(t):
            t[t != t] = 0
            return t

1751
1752
1753
1754
1755
1756
1757
1758
1759
        def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}):
            with torch.no_grad():
                tuple_output = model(**tuple_inputs, return_dict=False, **additional_kwargs)
                dict_output = model(**dict_inputs, return_dict=True, **additional_kwargs).to_tuple()

                def recursive_check(tuple_object, dict_object):
                    if isinstance(tuple_object, (List, Tuple)):
                        for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object):
                            recursive_check(tuple_iterable_value, dict_iterable_value)
NielsRogge's avatar
NielsRogge committed
1760
1761
1762
1763
1764
                    elif isinstance(tuple_object, Dict):
                        for tuple_iterable_value, dict_iterable_value in zip(
                            tuple_object.values(), dict_object.values()
                        ):
                            recursive_check(tuple_iterable_value, dict_iterable_value)
1765
1766
1767
1768
                    elif tuple_object is None:
                        return
                    else:
                        self.assertTrue(
Sam Shleifer's avatar
Sam Shleifer committed
1769
1770
1771
                            torch.allclose(
                                set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5
                            ),
Sylvain Gugger's avatar
Sylvain Gugger committed
1772
1773
1774
1775
1776
1777
                            msg=(
                                "Tuple and dict output are not equal. Difference:"
                                f" {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:"
                                f" {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has"
                                f" `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}."
                            ),
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
                        )

                recursive_check(tuple_output, dict_output)

        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})

1803
1804
1805
1806
            if self.has_attentions:
                tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
                dict_inputs = self._prepare_for_class(inputs_dict, model_class)
                check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})
1807

1808
1809
1810
1811
1812
1813
1814
1815
1816
                tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})

                tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                check_equivalence(
                    model, tuple_inputs, dict_inputs, {"output_hidden_states": True, "output_attentions": True}
                )
1817

1818
1819
1820
1821
    # Don't copy this method to model specific test file!
    # TODO: remove this method once the issues are all fixed!
    def _make_attention_mask_non_null(self, inputs_dict):
        """Make sure no sequence has all zeros as attention mask"""
1822

1823
1824
1825
        for k in ["attention_mask", "encoder_attention_mask", "decoder_attention_mask"]:
            if k in inputs_dict:
                attention_mask = inputs_dict[k]
1826

1827
1828
1829
1830
1831
1832
                # Make sure no all 0s attention masks - to avoid failure at this moment.
                # Put `1` at the beginning of sequences to make it still work when combining causal attention masks.
                # TODO: remove this line once a fix regarding large negative values for attention mask is done.
                attention_mask = torch.cat(
                    [torch.ones_like(attention_mask[:, :1], dtype=attention_mask.dtype), attention_mask[:, 1:]], dim=-1
                )
1833

1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
                # Here we make the first sequence with all 0s as attention mask.
                # Currently, this will fail for `TFWav2Vec2Model`. This is caused by the different large negative
                # values, like `1e-4`, `1e-9`, `1e-30` and `-inf` for attention mask across models/frameworks.
                # TODO: enable this block once the large negative values thing is cleaned up.
                # (see https://github.com/huggingface/transformers/issues/14859)
                # attention_mask = torch.cat(
                #     [torch.zeros_like(attention_mask[:1], dtype=attention_mask.dtype), attention_mask[1:]],
                #     dim=0
                # )

                inputs_dict[k] = attention_mask

    # Don't copy this method to model specific test file!
    # TODO: remove this method once the issues are all fixed!
    def _postprocessing_to_ignore_test_cases(self, tf_outputs, pt_outputs, model_class):
        """For temporarily ignoring some failed test cases (issues to be fixed)"""

1851
1852
        tf_keys = {k for k, v in tf_outputs.items() if v is not None}
        pt_keys = {k for k, v in pt_outputs.items() if v is not None}
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879

        key_differences = tf_keys.symmetric_difference(pt_keys)

        if model_class.__name__ in [
            "FlaubertWithLMHeadModel",
            "FunnelForPreTraining",
            "ElectraForPreTraining",
            "XLMWithLMHeadModel",
            "TransfoXLLMHeadModel",
        ]:
            for k in key_differences:
                if k in ["loss", "losses"]:
                    tf_keys.discard(k)
                    pt_keys.discard(k)
        elif model_class.__name__.startswith("GPT2"):
            # `TFGPT2` has `past_key_values` as a tensor while `GPT2` has it as a tuple.
            tf_keys.discard("past_key_values")
            pt_keys.discard("past_key_values")

        # create new outputs from the remaining fields
        new_tf_outputs = type(tf_outputs)(**{k: tf_outputs[k] for k in tf_keys})
        new_pt_outputs = type(pt_outputs)(**{k: pt_outputs[k] for k in pt_keys})

        return new_tf_outputs, new_pt_outputs

    # Copied from tests.test_modeling_tf_common.TFModelTesterMixin.check_pt_tf_outputs
    def check_pt_tf_outputs(self, tf_outputs, pt_outputs, model_class, tol=1e-5, name="outputs", attributes=None):
1880
        """Check the outputs from PyTorch and TensorFlow models are close enough. Checks are done in a recursive way.
1881

1882
1883
1884
1885
1886
1887
1888
1889
        Args:
            model_class: The class of the model that is currently testing. For example, `TFBertModel`,
                TFBertForMaskedLM`, `TFBertForSequenceClassification`, etc. Mainly used for providing more informative
                error messages.
            name (`str`): The name of the output. For example, `output.hidden_states`, `output.attentions`, etc.
            attributes (`Tuple[str]`): The names of the output's element if the output is a tuple/list with each element
                being a named field in the output.
        """
1890

1891
1892
1893
        self.assertEqual(type(name), str)
        if attributes is not None:
            self.assertEqual(type(attributes), tuple, f"{name}: The argument `attributes` should be a `tuple`")
1894

1895
1896
1897
1898
1899
1900
        # Allow `ModelOutput` (e.g. `CLIPOutput` has `text_model_output` and `vision_model_output`).
        if isinstance(tf_outputs, ModelOutput):
            self.assertTrue(
                isinstance(pt_outputs, ModelOutput),
                f"{name}: `pt_outputs` should an instance of `ModelOutput` when `tf_outputs` is",
            )
1901

1902
1903
1904
            # Don't copy this block to model specific test file!
            # TODO: remove this method and this line after issues are fixed
            tf_outputs, pt_outputs = self._postprocessing_to_ignore_test_cases(tf_outputs, pt_outputs, model_class)
1905

1906
1907
            tf_keys = [k for k, v in tf_outputs.items() if v is not None]
            pt_keys = [k for k, v in pt_outputs.items() if v is not None]
1908

1909
            self.assertEqual(tf_keys, pt_keys, f"{name}: Output keys differ between TF and PyTorch")
1910

1911
            # convert to the case of `tuple`
1912
            # appending each key to the current (string) `name`
1913
1914
1915
1916
            attributes = tuple([f"{name}.{k}" for k in tf_keys])
            self.check_pt_tf_outputs(
                tf_outputs.to_tuple(), pt_outputs.to_tuple(), model_class, tol=tol, name=name, attributes=attributes
            )
1917

1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
        # Allow `list` (e.g. `TransfoXLModelOutput.mems` is a list of tensors.)
        elif type(tf_outputs) in [tuple, list]:
            self.assertEqual(type(tf_outputs), type(pt_outputs), f"{name}: Output types differ between TF and PyTorch")
            self.assertEqual(len(tf_outputs), len(pt_outputs), f"{name}: Output lengths differ between TF and PyTorch")

            if attributes is not None:
                # case 1: each output has assigned name (e.g. a tuple form of a `ModelOutput`)
                self.assertEqual(
                    len(attributes),
                    len(tf_outputs),
1928
                    f"{name}: The tuple `attributes` should have the same length as `tf_outputs`",
1929
                )
1930
            else:
1931
                # case 2: each output has no assigned name (e.g. hidden states of each layer) -> add an index to `name`
1932
                attributes = tuple([f"{name}_{idx}" for idx in range(len(tf_outputs))])
1933

1934
1935
            for tf_output, pt_output, attr in zip(tf_outputs, pt_outputs, attributes):
                self.check_pt_tf_outputs(tf_output, pt_output, model_class, tol=tol, name=attr)
1936

1937
1938
1939
1940
        elif isinstance(tf_outputs, tf.Tensor):
            self.assertTrue(
                isinstance(pt_outputs, torch.Tensor), f"{name}: `pt_outputs` should a tensor when `tf_outputs` is"
            )
1941

1942
1943
            tf_outputs = tf_outputs.numpy()
            pt_outputs = pt_outputs.detach().to("cpu").numpy()
1944

1945
1946
1947
            self.assertEqual(
                tf_outputs.shape, pt_outputs.shape, f"{name}: Output shapes differ between TF and PyTorch"
            )
1948

1949
1950
1951
1952
            # deal with NumPy's scalars to make replacing nan values by 0 work.
            if np.isscalar(tf_outputs):
                tf_outputs = np.array([tf_outputs])
                pt_outputs = np.array([pt_outputs])
1953

1954
1955
            tf_nans = np.isnan(tf_outputs)
            pt_nans = np.isnan(pt_outputs)
1956

1957
1958
1959
1960
            pt_outputs[tf_nans] = 0
            tf_outputs[tf_nans] = 0
            pt_outputs[pt_nans] = 0
            tf_outputs[pt_nans] = 0
1961

1962
            max_diff = np.amax(np.abs(tf_outputs - pt_outputs))
1963
            self.assertLessEqual(max_diff, tol, f"{name}: Difference between PyTorch and TF is {max_diff} (>= {tol}).")
1964
1965
        else:
            raise ValueError(
1966
                "`tf_outputs` should be an instance of `ModelOutput`, a `tuple`, or an instance of `tf.Tensor`. Got"
Sylvain Gugger's avatar
Sylvain Gugger committed
1967
                f" {type(tf_outputs)} instead."
1968
1969
            )

1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
    def prepare_tf_inputs_from_pt_inputs(self, pt_inputs_dict):
        tf_inputs_dict = {}
        for key, tensor in pt_inputs_dict.items():
            # skip key that does not exist in tf
            if type(tensor) == bool:
                tf_inputs_dict[key] = tensor
            elif key == "input_values":
                tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.float32)
            elif key == "pixel_values":
                tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.float32)
            elif key == "input_features":
                tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.float32)
            # other general float inputs
            elif tensor.is_floating_point():
                tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.float32)
            else:
                tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.int32)
1987

1988
        return tf_inputs_dict
1989

1990
1991
    def check_pt_tf_models(self, tf_model, pt_model, pt_inputs_dict):
        tf_inputs_dict = self.prepare_tf_inputs_from_pt_inputs(pt_inputs_dict)
1992

1993
1994
1995
1996
        # send pytorch inputs to the correct device
        pt_inputs_dict = {
            k: v.to(device=torch_device) if isinstance(v, torch.Tensor) else v for k, v in pt_inputs_dict.items()
        }
1997

1998
1999
        # send pytorch model to the correct device
        pt_model.to(torch_device)
2000

2001
2002
        # Check predictions on first output (logits/hidden-states) are close enough given low-level computational differences
        pt_model.eval()
2003

2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
        with torch.no_grad():
            pt_outputs = pt_model(**pt_inputs_dict)
        tf_outputs = tf_model(tf_inputs_dict)

        # tf models returned loss is usually a tensor rather than a scalar.
        # (see `hf_compute_loss`: it uses `tf.keras.losses.Reduction.NONE`)
        # Change it here to a scalar to match PyTorch models' loss
        tf_loss = getattr(tf_outputs, "loss", None)
        if tf_loss is not None:
            tf_outputs.loss = tf.math.reduce_mean(tf_loss)

        self.check_pt_tf_outputs(tf_outputs, pt_outputs, type(pt_model))

    @is_pt_tf_cross_test
Matt's avatar
Matt committed
2018
    def test_pt_tf_model_equivalence(self, allow_missing_keys=False):
2019
        import transformers
2020
2021

        for model_class in self.all_model_classes:
2022
2023
2024
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

            tf_model_class_name = "TF" + model_class.__name__  # Add the "TF" at the beginning
2025
            if not hasattr(transformers, tf_model_class_name):
2026
                # transformers does not have this model in TF version yet
2027
2028
                return

2029
2030
2031
            # Output all for aggressive testing
            config.output_hidden_states = True
            config.output_attentions = self.has_attentions
2032

2033
2034
2035
2036
            # Make sure no sequence has all zeros as attention mask, otherwise some tests fail due to the inconsistency
            # of the usage `1e-4`, `1e-9`, `1e-30`, `-inf`.
            # TODO: Use a uniform value for all models, make sure all tests pass without this processing, and remove it.
            self._make_attention_mask_non_null(inputs_dict)
2037
2038

            tf_model_class = getattr(transformers, tf_model_class_name)
2039
2040

            pt_model = model_class(config)
2041
2042
2043
2044
2045
2046
2047
2048
2049
            tf_model = tf_model_class(config)

            pt_inputs_dict = self._prepare_for_class(inputs_dict, model_class)
            pt_inputs_dict_with_labels = self._prepare_for_class(
                inputs_dict,
                model_class,
                # Not all models accept "labels" in the forward pass (yet :) )
                return_labels=True if "labels" in inspect.signature(model_class.forward).parameters.keys() else False,
            )
2050
2051
2052
2053
2054
2055
2056
2057
2058

            # make sure only tf inputs are forward that actually exist in function args
            tf_input_keys = set(inspect.signature(tf_model.call).parameters.keys())

            # remove all head masks
            tf_input_keys.discard("head_mask")
            tf_input_keys.discard("cross_attn_head_mask")
            tf_input_keys.discard("decoder_head_mask")

2059
            pt_inputs_dict = {k: v for k, v in pt_inputs_dict.items() if k in tf_input_keys}
2060
2061
2062
2063
            pt_inputs_dict_with_labels = {k: v for k, v in pt_inputs_dict_with_labels.items() if k in tf_input_keys}

            # For some models (e.g. base models), there is no label returned.
            # Set the input dict to `None` to avoid check outputs twice for the same input dicts.
2064
            if not set(pt_inputs_dict_with_labels.keys()).symmetric_difference(pt_inputs_dict.keys()):
2065
                pt_inputs_dict_with_labels = None
2066
2067

            # Check we can load pt model in tf and vice-versa with model => model functions
2068
2069
            # Here requires `tf_inputs_dict` to build `tf_model`
            tf_inputs_dict = self.prepare_tf_inputs_from_pt_inputs(pt_inputs_dict)
Matt's avatar
Matt committed
2070
2071
2072
2073
2074
2075
            tf_model = transformers.load_pytorch_model_in_tf2_model(
                tf_model, pt_model, tf_inputs=tf_inputs_dict, allow_missing_keys=allow_missing_keys
            )
            pt_model = transformers.load_tf2_model_in_pytorch_model(
                pt_model, tf_model, allow_missing_keys=allow_missing_keys
            )
2076

2077
2078
2079
2080
2081
            # Original test: check without `labels`
            self.check_pt_tf_models(tf_model, pt_model, pt_inputs_dict)
            # check with `labels`
            if pt_inputs_dict_with_labels:
                self.check_pt_tf_models(tf_model, pt_model, pt_inputs_dict_with_labels)
2082
2083
2084
2085
2086

            # Check we can load pt model in tf and vice-versa with checkpoint => model functions
            with tempfile.TemporaryDirectory() as tmpdirname:
                pt_checkpoint_path = os.path.join(tmpdirname, "pt_model.bin")
                torch.save(pt_model.state_dict(), pt_checkpoint_path)
Matt's avatar
Matt committed
2087
2088
2089
                tf_model = transformers.load_pytorch_checkpoint_in_tf2_model(
                    tf_model, pt_checkpoint_path, allow_missing_keys=allow_missing_keys
                )
2090
2091
2092

                tf_checkpoint_path = os.path.join(tmpdirname, "tf_model.h5")
                tf_model.save_weights(tf_checkpoint_path)
Matt's avatar
Matt committed
2093
2094
2095
                pt_model = transformers.load_tf2_checkpoint_in_pytorch_model(
                    pt_model, tf_checkpoint_path, allow_missing_keys=allow_missing_keys
                )
2096

2097
2098
2099
2100
2101
            # Original test: check without `labels`
            self.check_pt_tf_models(tf_model, pt_model, pt_inputs_dict)
            # check with `labels`
            if pt_inputs_dict_with_labels:
                self.check_pt_tf_models(tf_model, pt_model, pt_inputs_dict_with_labels)
2102
2103
2104
2105
2106

    def assert_almost_equals(self, a: np.ndarray, b: np.ndarray, tol: float):
        diff = np.abs((a - b)).max()
        self.assertLessEqual(diff, tol, f"Difference between torch and flax is {diff} (>= {tol}).")

2107
    def check_pt_flax_outputs(self, fx_outputs, pt_outputs, model_class, tol=1e-5, name="outputs", attributes=None):
2108
2109
2110
2111
2112
2113
2114
2115
2116
        """
        Args:
            model_class: The class of the model that is currently testing. For example, ..., etc.
            Currently unused, but it could make debugging easier and faster.

            names: A string, or a list of strings. These specify what fx_outputs/pt_outputs represent in the model outputs.
                Currently unused, but in the future, we could use this information to make the error message clearer
                by giving the name(s) of the output tensor(s) with large difference(s) between PT and Flax.
        """
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156

        self.assertEqual(type(name), str)
        if attributes is not None:
            self.assertEqual(type(attributes), tuple, f"{name}: The argument `attributes` should be a `tuple`")

        # Allow `ModelOutput` (e.g. `CLIPOutput` has `text_model_output` and `vision_model_output`).
        if isinstance(fx_outputs, ModelOutput):
            self.assertTrue(
                isinstance(pt_outputs, ModelOutput),
                f"{name}: `pt_outputs` should an instance of `ModelOutput` when `fx_outputs` is",
            )

            fx_keys = tuple([k for k, v in fx_outputs.items() if v is not None])
            pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None])

            self.assertEqual(fx_keys, pt_keys, f"{name}: Output keys differ between Flax and PyTorch")

            # convert to the case of `tuple`
            # appending each key to the current (string) `name`
            attributes = tuple([f"{name}.{k}" for k in fx_keys])
            self.check_pt_flax_outputs(
                fx_outputs.to_tuple(), pt_outputs.to_tuple(), model_class, tol=tol, name=name, attributes=attributes
            )

        # Allow `list` (e.g. `TransfoXLModelOutput.mems` is a list of tensors.)
        elif type(fx_outputs) in [tuple, list]:
            self.assertEqual(
                type(fx_outputs), type(pt_outputs), f"{name}: Output types differ between Flax and PyTorch"
            )
            self.assertEqual(
                len(fx_outputs), len(pt_outputs), f"{name}: Output lengths differ between Flax and PyTorch"
            )

            if attributes is not None:
                # case 1: each output has assigned name (e.g. a tuple form of a `ModelOutput`)
                self.assertEqual(
                    len(attributes),
                    len(fx_outputs),
                    f"{name}: The tuple `attributes` should have the same length as `fx_outputs`",
                )
2157
            else:
2158
2159
2160
2161
2162
2163
                # case 2: each output has no assigned name (e.g. hidden states of each layer) -> add an index to `name`
                attributes = tuple([f"{name}_{idx}" for idx in range(len(fx_outputs))])

            for fx_output, pt_output, attr in zip(fx_outputs, pt_outputs, attributes):
                self.check_pt_flax_outputs(fx_output, pt_output, model_class, tol=tol, name=attr)

2164
        elif isinstance(fx_outputs, jnp.ndarray):
2165
2166
2167
            self.assertTrue(
                isinstance(pt_outputs, torch.Tensor), f"{name}: `pt_outputs` should a tensor when `fx_outputs` is"
            )
2168
2169
2170
2171
2172

            # Using `np.asarray` gives `ValueError: assignment destination is read-only` at the line `fx_outputs[fx_nans] = 0`.
            fx_outputs = np.array(fx_outputs)
            pt_outputs = pt_outputs.detach().to("cpu").numpy()

2173
2174
2175
2176
2177
2178
2179
2180
2181
            self.assertEqual(
                fx_outputs.shape, pt_outputs.shape, f"{name}: Output shapes differ between Flax and PyTorch"
            )

            # deal with NumPy's scalars to make replacing nan values by 0 work.
            if np.isscalar(fx_outputs):
                fx_outputs = np.array([fx_outputs])
                pt_outputs = np.array([pt_outputs])

2182
2183
2184
2185
2186
2187
2188
2189
            fx_nans = np.isnan(fx_outputs)
            pt_nans = np.isnan(pt_outputs)

            pt_outputs[fx_nans] = 0
            fx_outputs[fx_nans] = 0
            pt_outputs[pt_nans] = 0
            fx_outputs[pt_nans] = 0

2190
2191
2192
2193
            max_diff = np.amax(np.abs(fx_outputs - pt_outputs))
            self.assertLessEqual(
                max_diff, tol, f"{name}: Difference between PyTorch and Flax is {max_diff} (>= {tol})."
            )
2194
2195
        else:
            raise ValueError(
2196
2197
                "`fx_outputs` should be an instance of `ModelOutput`, a `tuple`, or an instance of `jnp.ndarray`. Got"
                f" {type(fx_outputs)} instead."
2198
2199
            )

2200
2201
2202
2203
2204
2205
2206
2207
2208
    @is_pt_flax_cross_test
    def test_equivalence_pt_to_flax(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            with self.subTest(model_class.__name__):
                fx_model_class_name = "Flax" + model_class.__name__

                if not hasattr(transformers, fx_model_class_name):
2209
                    # no flax model exists for this class
2210
2211
                    return

2212
2213
2214
2215
                # Output all for aggressive testing
                config.output_hidden_states = True
                config.output_attentions = self.has_attentions

2216
2217
                fx_model_class = getattr(transformers, fx_model_class_name)

2218
2219
2220
2221
2222
2223
                # load PyTorch class
                pt_model = model_class(config).eval()
                # Flax models don't use the `use_cache` option and cache is not returned as a default.
                # So we disable `use_cache` here for PyTorch model.
                pt_model.config.use_cache = False

2224
2225
                # load Flax class
                fx_model = fx_model_class(config, dtype=jnp.float32)
2226

2227
2228
2229
2230
2231
2232
2233
2234
2235
                # make sure only flax inputs are forward that actually exist in function args
                fx_input_keys = inspect.signature(fx_model.__call__).parameters.keys()

                # prepare inputs
                pt_inputs = self._prepare_for_class(inputs_dict, model_class)

                # remove function args that don't exist in Flax
                pt_inputs = {k: v for k, v in pt_inputs.items() if k in fx_input_keys}

2236
2237
2238
2239
2240
2241
                # send pytorch inputs to the correct device
                pt_inputs = {
                    k: v.to(device=torch_device) if isinstance(v, torch.Tensor) else v for k, v in pt_inputs.items()
                }

                # convert inputs to Flax
2242
                fx_inputs = {k: np.array(v.to("cpu")) for k, v in pt_inputs.items() if torch.is_tensor(v)}
2243

2244
2245
2246
                fx_state = convert_pytorch_state_dict_to_flax(pt_model.state_dict(), fx_model)
                fx_model.params = fx_state

2247
2248
2249
                # send pytorch model to the correct device
                pt_model.to(torch_device)

2250
                with torch.no_grad():
2251
2252
                    pt_outputs = pt_model(**pt_inputs)
                fx_outputs = fx_model(**fx_inputs)
2253

2254
2255
2256
2257
                fx_keys = tuple([k for k, v in fx_outputs.items() if v is not None])
                pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None])

                self.assertEqual(fx_keys, pt_keys)
2258
                self.check_pt_flax_outputs(fx_outputs, pt_outputs, model_class)
2259
2260
2261
2262
2263

                with tempfile.TemporaryDirectory() as tmpdirname:
                    pt_model.save_pretrained(tmpdirname)
                    fx_model_loaded = fx_model_class.from_pretrained(tmpdirname, from_pt=True)

2264
2265
2266
2267
2268
2269
                fx_outputs_loaded = fx_model_loaded(**fx_inputs)

                fx_keys = tuple([k for k, v in fx_outputs_loaded.items() if v is not None])
                pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None])

                self.assertEqual(fx_keys, pt_keys)
2270
                self.check_pt_flax_outputs(fx_outputs_loaded, pt_outputs, model_class)
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283

    @is_pt_flax_cross_test
    def test_equivalence_flax_to_pt(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            with self.subTest(model_class.__name__):
                fx_model_class_name = "Flax" + model_class.__name__

                if not hasattr(transformers, fx_model_class_name):
                    # no flax model exists for this class
                    return

2284
2285
2286
2287
                # Output all for aggressive testing
                config.output_hidden_states = True
                config.output_attentions = self.has_attentions

2288
2289
                fx_model_class = getattr(transformers, fx_model_class_name)

2290
2291
2292
2293
2294
2295
                # load PyTorch class
                pt_model = model_class(config).eval()
                # Flax models don't use the `use_cache` option and cache is not returned as a default.
                # So we disable `use_cache` here for PyTorch model.
                pt_model.config.use_cache = False

2296
2297
                # load Flax class
                fx_model = fx_model_class(config, dtype=jnp.float32)
2298

2299
2300
2301
2302
2303
2304
2305
2306
2307
                # make sure only flax inputs are forward that actually exist in function args
                fx_input_keys = inspect.signature(fx_model.__call__).parameters.keys()

                # prepare inputs
                pt_inputs = self._prepare_for_class(inputs_dict, model_class)

                # remove function args that don't exist in Flax
                pt_inputs = {k: v for k, v in pt_inputs.items() if k in fx_input_keys}

2308
2309
2310
2311
                # send pytorch inputs to the correct device
                pt_inputs = {
                    k: v.to(device=torch_device) if isinstance(v, torch.Tensor) else v for k, v in pt_inputs.items()
                }
2312

2313
                # convert inputs to Flax
2314
                fx_inputs = {k: np.array(v.to("cpu")) for k, v in pt_inputs.items() if torch.is_tensor(v)}
2315

2316
2317
2318
2319
2320
2321
2322
                pt_model = load_flax_weights_in_pytorch_model(pt_model, fx_model.params)

                # make sure weights are tied in PyTorch
                pt_model.tie_weights()

                # send pytorch model to the correct device
                pt_model.to(torch_device)
2323

2324
2325
2326
2327
2328
2329
2330
2331
                with torch.no_grad():
                    pt_outputs = pt_model(**pt_inputs)
                fx_outputs = fx_model(**fx_inputs)

                fx_keys = tuple([k for k, v in fx_outputs.items() if v is not None])
                pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None])

                self.assertEqual(fx_keys, pt_keys)
2332
                self.check_pt_flax_outputs(fx_outputs, pt_outputs, model_class)
2333
2334
2335
2336
2337

                with tempfile.TemporaryDirectory() as tmpdirname:
                    fx_model.save_pretrained(tmpdirname)
                    pt_model_loaded = model_class.from_pretrained(tmpdirname, from_flax=True)

2338
2339
2340
2341
                # send pytorch model to the correct device
                pt_model_loaded.to(torch_device)
                pt_model_loaded.eval()

2342
                with torch.no_grad():
2343
                    pt_outputs_loaded = pt_model_loaded(**pt_inputs)
2344

2345
2346
2347
2348
                fx_keys = tuple([k for k, v in fx_outputs.items() if v is not None])
                pt_keys = tuple([k for k, v in pt_outputs_loaded.items() if v is not None])

                self.assertEqual(fx_keys, pt_keys)
2349
                self.check_pt_flax_outputs(fx_outputs, pt_outputs_loaded, model_class)
2350

Patrick von Platen's avatar
Patrick von Platen committed
2351
    def test_inputs_embeds(self):
2352
2353
2354
2355
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
2356
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
2357
            model.eval()
2358

2359
            inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))
Weizhen's avatar
Weizhen committed
2360

2361
2362
2363
2364
2365
2366
2367
2368
2369
            if not self.is_encoder_decoder:
                input_ids = inputs["input_ids"]
                del inputs["input_ids"]
            else:
                encoder_input_ids = inputs["input_ids"]
                decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids)
                del inputs["input_ids"]
                inputs.pop("decoder_input_ids", None)

2370
2371
            wte = model.get_input_embeddings()
            if not self.is_encoder_decoder:
2372
                inputs["inputs_embeds"] = wte(input_ids)
2373
            else:
2374
2375
                inputs["inputs_embeds"] = wte(encoder_input_ids)
                inputs["decoder_inputs_embeds"] = wte(decoder_input_ids)
2376

thomwolf's avatar
thomwolf committed
2377
            with torch.no_grad():
Weizhen's avatar
Weizhen committed
2378
                model(**inputs)[0]
2379

2380
2381
    @require_torch_multi_gpu
    def test_multi_gpu_data_parallel_forward(self):
2382
2383
2384
2385
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        # some params shouldn't be scattered by nn.DataParallel
        # so just remove them if they are present.
2386
        blacklist_non_batched_params = ["head_mask", "decoder_head_mask", "cross_attn_head_mask"]
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
        for k in blacklist_non_batched_params:
            inputs_dict.pop(k, None)

        # move input tensors to cuda:O
        for k, v in inputs_dict.items():
            if torch.is_tensor(v):
                inputs_dict[k] = v.to(0)

        for model_class in self.all_model_classes:
            model = model_class(config=config)
            model.to(0)
            model.eval()

            # Wrap model in nn.DataParallel
2401
            model = nn.DataParallel(model)
2402
            with torch.no_grad():
2403
                _ = model(**self._prepare_for_class(inputs_dict, model_class))
2404

2405
2406
2407
    @require_torch_multi_gpu
    def test_model_parallelization(self):
        if not self.test_model_parallel:
2408
            return
2409

2410
        # a candidate for testing_utils
2411
        def get_current_gpu_memory_use():
Patrick von Platen's avatar
Patrick von Platen committed
2412
            """returns a list of cuda memory allocations per GPU in MBs"""
2413
2414
2415
2416
2417

            per_device_memory = []
            for id in range(torch.cuda.device_count()):
                with torch.cuda.device(id):
                    per_device_memory.append(torch.cuda.memory_allocated() >> 20)
2418
2419
2420
2421
2422
2423
2424
2425
2426

            return per_device_memory

        # Needs a large model to see the difference.
        config = self.model_tester.get_large_model_config()

        for model_class in self.all_parallelizable_model_classes:
            torch.cuda.empty_cache()

2427
2428
2429
            # 1. single gpu memory load + unload + memory measurements
            # Retrieve initial memory usage (can easily be ~0.6-1.5GB if cuda-kernels have been preloaded by previous tests)
            memory_at_start = get_current_gpu_memory_use()
2430

2431
2432
            # Put model on device 0 and take a memory snapshot
            model = model_class(config)
2433
2434
2435
            model.to("cuda:0")
            memory_after_model_load = get_current_gpu_memory_use()

2436
2437
2438
            # The memory use on device 0 should be higher than it was initially.
            self.assertGreater(memory_after_model_load[0], memory_at_start[0])

2439
            del model
2440
            gc.collect()
2441
2442
            torch.cuda.empty_cache()

2443
2444
2445
            # 2. MP test
            # it's essential to re-calibrate the usage before the next stage
            memory_at_start = get_current_gpu_memory_use()
2446
2447

            # Spread model layers over multiple devices
2448
            model = model_class(config)
2449
2450
2451
2452
            model.parallelize()
            memory_after_parallelization = get_current_gpu_memory_use()

            # Assert that the memory use on all devices is higher than it was when loaded only on CPU
2453
            for n in range(len(model.device_map.keys())):
2454
                self.assertGreater(memory_after_parallelization[n], memory_at_start[n])
2455

2456
            # Assert that the memory use of device 0 is lower than it was when the entire model was loaded on it
2457
2458
            self.assertLess(memory_after_parallelization[0], memory_after_model_load[0])

2459
2460
            # Assert that the memory use of device 1 is higher than it was when the entire model was loaded
            # on device 0 and device 1 wasn't used at all
2461
2462
2463
            self.assertGreater(memory_after_parallelization[1], memory_after_model_load[1])

            del model
2464
            gc.collect()
2465
2466
2467
2468
2469
            torch.cuda.empty_cache()

    @require_torch_multi_gpu
    def test_model_parallel_equal_results(self):
        if not self.test_model_parallel:
2470
            return
2471
2472
2473
2474
2475
2476

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_parallelizable_model_classes:
            inputs_dict = self._prepare_for_class(inputs_dict, model_class)

2477
            def cast_to_device(dictionary, device):
2478
2479
2480
                output = {}
                for k, v in dictionary.items():
                    if isinstance(v, torch.Tensor):
2481
                        output[k] = v.to(device)
2482
2483
2484
2485
2486
                    else:
                        output[k] = v

                return output

2487
2488
2489
2490
2491
2492
            model = model_class(config)
            output = model(**cast_to_device(inputs_dict, "cpu"))

            model.parallelize()

            parallel_output = model(**cast_to_device(inputs_dict, "cuda:0"))
2493
2494
2495
2496
2497
2498
2499
2500

            for value, parallel_value in zip(output, parallel_output):
                if isinstance(value, torch.Tensor):
                    self.assertTrue(torch.allclose(value, parallel_value.to("cpu"), atol=1e-7))
                elif isinstance(value, (Tuple, List)):
                    for value_, parallel_value_ in zip(value, parallel_value):
                        self.assertTrue(torch.allclose(value_, parallel_value_.to("cpu"), atol=1e-7))

2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
    def check_device_map_is_respected(self, model, device_map):
        for param_name, param in model.named_parameters():
            # Find device in device_map
            while len(param_name) > 0 and param_name not in device_map:
                param_name = ".".join(param_name.split(".")[:-1])
            if param_name not in device_map:
                raise ValueError("device map is incomplete, it does not contain any device for `param_name`.")

            param_device = device_map[param_name]
            if param_device in ["cpu", "disk"]:
                self.assertEqual(param.device, torch.device("meta"))
            else:
                self.assertEqual(param.device, torch.device(param_device))

Sylvain Gugger's avatar
Sylvain Gugger committed
2515
    @require_accelerate
2516
    @mark.accelerate_tests
Sylvain Gugger's avatar
Sylvain Gugger committed
2517
2518
2519
2520
2521
2522
2523
2524
    @require_torch_gpu
    def test_disk_offload(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if model_class._no_split_modules is None:
                continue

2525
            inputs_dict_class = self._prepare_for_class(inputs_dict, model_class)
Sylvain Gugger's avatar
Sylvain Gugger committed
2526
2527
            model = model_class(config).eval()
            model = model.to(torch_device)
2528
            torch.manual_seed(0)
2529
            base_output = model(**inputs_dict_class)
Sylvain Gugger's avatar
Sylvain Gugger committed
2530
2531
2532
2533
2534
2535

            model_size = compute_module_sizes(model)[""]
            with tempfile.TemporaryDirectory() as tmp_dir:
                model.cpu().save_pretrained(tmp_dir)

                with self.assertRaises(ValueError):
Yih-Dar's avatar
Yih-Dar committed
2536
2537
                    max_size = int(self.model_split_percents[0] * model_size)
                    max_memory = {0: max_size, "cpu": max_size}
Sylvain Gugger's avatar
Sylvain Gugger committed
2538
2539
2540
                    # This errors out cause it's missing an offload folder
                    new_model = model_class.from_pretrained(tmp_dir, device_map="auto", max_memory=max_memory)

Yih-Dar's avatar
Yih-Dar committed
2541
2542
                max_size = int(self.model_split_percents[1] * model_size)
                max_memory = {0: max_size, "cpu": max_size}
Sylvain Gugger's avatar
Sylvain Gugger committed
2543
2544
2545
2546
2547
                new_model = model_class.from_pretrained(
                    tmp_dir, device_map="auto", max_memory=max_memory, offload_folder=tmp_dir
                )

                self.check_device_map_is_respected(new_model, new_model.hf_device_map)
2548
                torch.manual_seed(0)
2549
                new_output = new_model(**inputs_dict_class)
Sylvain Gugger's avatar
Sylvain Gugger committed
2550

2551
                self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))
Sylvain Gugger's avatar
Sylvain Gugger committed
2552

2553
    @require_accelerate
2554
    @mark.accelerate_tests
2555
2556
2557
2558
2559
2560
2561
2562
    @require_torch_gpu
    def test_cpu_offload(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if model_class._no_split_modules is None:
                continue

2563
            inputs_dict_class = self._prepare_for_class(inputs_dict, model_class)
2564
2565
            model = model_class(config).eval()
            model = model.to(torch_device)
2566
2567

            torch.manual_seed(0)
2568
            base_output = model(**inputs_dict_class)
2569
2570
2571

            model_size = compute_module_sizes(model)[""]
            # We test several splits of sizes to make sure it works.
Yih-Dar's avatar
Yih-Dar committed
2572
            max_gpu_sizes = [int(p * model_size) for p in self.model_split_percents[1:]]
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
            with tempfile.TemporaryDirectory() as tmp_dir:
                model.cpu().save_pretrained(tmp_dir)

                for max_size in max_gpu_sizes:
                    max_memory = {0: max_size, "cpu": model_size * 2}
                    new_model = model_class.from_pretrained(tmp_dir, device_map="auto", max_memory=max_memory)
                    # Making sure part of the model will actually end up offloaded
                    self.assertSetEqual(set(new_model.hf_device_map.values()), {0, "cpu"})

                    self.check_device_map_is_respected(new_model, new_model.hf_device_map)
2583
2584

                    torch.manual_seed(0)
2585
                    new_output = new_model(**inputs_dict_class)
2586

2587
                    self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))
2588
2589

    @require_accelerate
2590
    @mark.accelerate_tests
2591
2592
2593
2594
2595
2596
2597
2598
    @require_torch_multi_gpu
    def test_model_parallelism(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if model_class._no_split_modules is None:
                continue

2599
            inputs_dict_class = self._prepare_for_class(inputs_dict, model_class)
2600
2601
            model = model_class(config).eval()
            model = model.to(torch_device)
2602
2603

            torch.manual_seed(0)
2604
            base_output = model(**inputs_dict_class)
2605
2606
2607

            model_size = compute_module_sizes(model)[""]
            # We test several splits of sizes to make sure it works.
2608
            max_gpu_sizes = [int(p * model_size) for p in self.model_split_percents[1:]]
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
            with tempfile.TemporaryDirectory() as tmp_dir:
                model.cpu().save_pretrained(tmp_dir)

                for max_size in max_gpu_sizes:
                    max_memory = {0: max_size, 1: model_size * 2, "cpu": model_size * 2}
                    new_model = model_class.from_pretrained(tmp_dir, device_map="auto", max_memory=max_memory)
                    # Making sure part of the model will actually end up offloaded
                    self.assertSetEqual(set(new_model.hf_device_map.values()), {0, 1})

                    self.check_device_map_is_respected(new_model, new_model.hf_device_map)
2619
2620

                    torch.manual_seed(0)
2621
                    new_output = new_model(**inputs_dict_class)
2622

2623
                    self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))
2624

2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
    def test_problem_types(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        problem_types = [
            {"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float},
            {"title": "single_label_classification", "num_labels": 1, "dtype": torch.long},
            {"title": "regression", "num_labels": 1, "dtype": torch.float},
        ]

        for model_class in self.all_model_classes:
2635
2636
2637
            if model_class.__name__ not in [
                *get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES),
                *get_values(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES),
2638
            ]:
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
                continue

            for problem_type in problem_types:
                with self.subTest(msg=f"Testing {model_class} with {problem_type['title']}"):
                    config.problem_type = problem_type["title"]
                    config.num_labels = problem_type["num_labels"]

                    model = model_class(config)
                    model.to(torch_device)
                    model.train()

                    inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)

                    if problem_type["num_labels"] > 1:
                        inputs["labels"] = inputs["labels"].unsqueeze(1).repeat(1, problem_type["num_labels"])

                    inputs["labels"] = inputs["labels"].to(problem_type["dtype"])

2657
2658
2659
2660
2661
2662
                    # This tests that we do not trigger the warning form PyTorch "Using a target size that is different
                    # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure
                    # they have the same size." which is a symptom something in wrong for the regression problem.
                    # See https://github.com/huggingface/transformers/issues/11780
                    with warnings.catch_warnings(record=True) as warning_list:
                        loss = model(**inputs).loss
2663
2664
2665
2666
2667
                    for w in warning_list:
                        if "Using a target size that is different to the input size" in str(w.message):
                            raise ValueError(
                                f"Something is going wrong in the regression problem: intercepted {w.message}"
                            )
2668

2669
2670
                    loss.backward()

2671
    def test_load_with_mismatched_shapes(self):
2672
2673
        if not self.test_mismatched_shapes:
            return
2674
2675
2676
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
2677
            if model_class.__name__ not in get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES):
2678
2679
2680
2681
2682
2683
2684
2685
                continue

            with self.subTest(msg=f"Testing {model_class}"):
                with tempfile.TemporaryDirectory() as tmp_dir:
                    model = model_class(config)
                    model.save_pretrained(tmp_dir)

                    # Fails when we don't set ignore_mismatched_sizes=True
2686
                    with self.assertRaises(RuntimeError):
2687
                        new_model = AutoModelForSequenceClassification.from_pretrained(tmp_dir, num_labels=42)
2688
2689
                    with self.assertRaises(RuntimeError):
                        new_model_without_prefix = AutoModel.from_pretrained(tmp_dir, vocab_size=10)
2690
2691

                    logger = logging.get_logger("transformers.modeling_utils")
2692

2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
                    with CaptureLogger(logger) as cl:
                        new_model = AutoModelForSequenceClassification.from_pretrained(
                            tmp_dir, num_labels=42, ignore_mismatched_sizes=True
                        )
                    self.assertIn("the shapes did not match", cl.out)
                    new_model.to(torch_device)
                    inputs = self._prepare_for_class(inputs_dict, model_class)
                    logits = new_model(**inputs).logits
                    self.assertEqual(logits.shape[1], 42)

2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
                    with CaptureLogger(logger) as cl:
                        new_model_without_prefix = AutoModel.from_pretrained(
                            tmp_dir, vocab_size=10, ignore_mismatched_sizes=True
                        )
                    self.assertIn("the shapes did not match", cl.out)
                    input_ids = ids_tensor((2, 8), 10)
                    new_model_without_prefix.to(torch_device)
                    if self.is_encoder_decoder:
                        new_model_without_prefix(input_ids, decoder_input_ids=input_ids)
                    else:
                        new_model_without_prefix(input_ids)

2715
2716
2717
2718
2719
2720
2721
2722
2723
    def test_model_is_small(self):
        # Just a consistency check to make sure we are not running tests on 80M parameter models.
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            num_params = model.num_parameters()
            assert (
                num_params < 1000000
2724
            ), f"{model_class} is too big for the common tests ({num_params})! It should have 1M max."
2725

2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
    @require_flash_attn
    @require_torch_gpu
    @mark.flash_attn_test
    @slow
    def test_flash_attn_2_conversion(self):
        import torch

        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if not model_class._supports_flash_attn_2:
                return

            model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                model = model_class.from_pretrained(
                    tmpdirname, torch_dtype=torch.float16, use_flash_attention_2=True
                ).to(torch_device)

                for _, module in model.named_modules():
                    if "FlashAttention" in module.__class__.__name__:
                        return

                self.assertTrue(False, "FlashAttention2 modules not found in model")

    @require_flash_attn
    @require_torch_gpu
    @mark.flash_attn_test
    @slow
    def test_flash_attn_2_inference(self):
        import torch

        for model_class in self.all_model_classes:
            if not model_class._supports_flash_attn_2:
                return

            config, _ = self.model_tester.prepare_config_and_inputs_for_common()
            model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                model_fa = model_class.from_pretrained(
                    tmpdirname, torch_dtype=torch.bfloat16, use_flash_attention_2=True
                )
                model_fa.to(torch_device)

                model = model_class.from_pretrained(
                    tmpdirname, torch_dtype=torch.bfloat16, use_flash_attention_2=False
                )
                model.to(torch_device)

                dummy_input = torch.LongTensor([[1, 2, 3, 4, 5]]).to(torch_device)
                dummy_attention_mask = torch.LongTensor([[0, 1, 1, 1, 1]]).to(torch_device)

                logits = model(dummy_input, output_hidden_states=True).hidden_states[-1]
                logits_fa = model_fa(dummy_input, output_hidden_states=True).hidden_states[-1]

                self.assertTrue(torch.allclose(logits_fa, logits, atol=4e-2, rtol=4e-2))

                output_fa = model_fa(dummy_input, attention_mask=dummy_attention_mask, output_hidden_states=True)
                logits_fa = output_fa.hidden_states[-1]

                output = model(dummy_input, attention_mask=dummy_attention_mask, output_hidden_states=True)
                logits = output.hidden_states[-1]

                self.assertTrue(torch.allclose(logits_fa[1:], logits[1:], atol=4e-2, rtol=4e-2))

    @require_flash_attn
    @require_torch_gpu
    @mark.flash_attn_test
    @slow
    def test_flash_attn_2_inference_padding_right(self):
        import torch

        for model_class in self.all_model_classes:
            if not model_class._supports_flash_attn_2:
                return

            config, _ = self.model_tester.prepare_config_and_inputs_for_common()
            model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                model_fa = model_class.from_pretrained(
                    tmpdirname, torch_dtype=torch.bfloat16, use_flash_attention_2=True
                )
                model_fa.to(torch_device)

                model = model_class.from_pretrained(
                    tmpdirname, torch_dtype=torch.bfloat16, use_flash_attention_2=False
                )
                model.to(torch_device)

                dummy_input = torch.LongTensor([[1, 2, 3, 4, 5]]).to(torch_device)
                dummy_attention_mask = torch.LongTensor([[1, 1, 1, 1, 0]]).to(torch_device)

                logits = model(dummy_input, output_hidden_states=True).hidden_states[-1]
                logits_fa = model_fa(dummy_input, output_hidden_states=True).hidden_states[-1]

                self.assertTrue(torch.allclose(logits_fa, logits, atol=4e-2, rtol=4e-2))

                output_fa = model_fa(dummy_input, attention_mask=dummy_attention_mask, output_hidden_states=True)
                logits_fa = output_fa.hidden_states[-1]

                output = model(dummy_input, attention_mask=dummy_attention_mask, output_hidden_states=True)
                logits = output.hidden_states[-1]

                self.assertTrue(torch.allclose(logits_fa[:-1], logits[:-1], atol=4e-2, rtol=4e-2))

    @require_flash_attn
    @require_torch_gpu
    @mark.flash_attn_test
    @slow
    def test_flash_attn_2_generate_left_padding(self):
        import torch

        for model_class in self.all_generative_model_classes:
            if not model_class._supports_flash_attn_2:
                return

            config, _ = self.model_tester.prepare_config_and_inputs_for_common()
            model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                model = model_class.from_pretrained(
                    tmpdirname, torch_dtype=torch.float16, use_flash_attention_2=False, low_cpu_mem_usage=True
                ).to(torch_device)

                dummy_input = torch.LongTensor([[0, 2, 3, 4], [0, 2, 3, 4]]).to(torch_device)
                dummy_attention_mask = torch.LongTensor([[1, 1, 1, 1], [0, 1, 1, 1]]).to(torch_device)

                out = model.generate(
                    dummy_input, attention_mask=dummy_attention_mask, max_new_tokens=1, do_sample=False
                )

                model = model_class.from_pretrained(
                    tmpdirname, torch_dtype=torch.float16, use_flash_attention_2=True, low_cpu_mem_usage=True
                ).to(torch_device)

                out_fa = model.generate(
                    dummy_input, attention_mask=dummy_attention_mask, max_new_tokens=1, do_sample=False
                )

                self.assertTrue(torch.equal(out, out_fa))

    @require_flash_attn
    @require_torch_gpu
    @mark.flash_attn_test
    @slow
    def test_flash_attn_2_generate_padding_right(self):
        import torch

        for model_class in self.all_generative_model_classes:
            if not model_class._supports_flash_attn_2:
                return

            config, _ = self.model_tester.prepare_config_and_inputs_for_common()
            model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                model = model_class.from_pretrained(
                    tmpdirname, torch_dtype=torch.float16, use_flash_attention_2=False, low_cpu_mem_usage=True
                ).to(torch_device)

                dummy_input = torch.LongTensor([[0, 2, 3, 4], [0, 2, 3, 4]]).to(torch_device)
                dummy_attention_mask = torch.LongTensor([[1, 1, 1, 1], [1, 1, 1, 0]]).to(torch_device)

                out = model.generate(
                    dummy_input, attention_mask=dummy_attention_mask, max_new_tokens=1, do_sample=False
                )

                model = model_class.from_pretrained(
                    tmpdirname, torch_dtype=torch.float16, use_flash_attention_2=True, low_cpu_mem_usage=True
                ).to(torch_device)

                out_fa = model.generate(
                    dummy_input, attention_mask=dummy_attention_mask, max_new_tokens=1, do_sample=False
                )

                self.assertTrue(torch.equal(out, out_fa))

2911

2912
global_rng = random.Random()
thomwolf's avatar
thomwolf committed
2913
2914


thomwolf's avatar
thomwolf committed
2915
def ids_tensor(shape, vocab_size, rng=None, name=None):
2916
    #  Creates a random int32 tensor of the shape within the vocab size
thomwolf's avatar
thomwolf committed
2917
    if rng is None:
2918
        rng = global_rng
thomwolf's avatar
thomwolf committed
2919

thomwolf's avatar
thomwolf committed
2920
2921
2922
    total_dims = 1
    for dim in shape:
        total_dims *= dim
thomwolf's avatar
thomwolf committed
2923

thomwolf's avatar
thomwolf committed
2924
2925
2926
    values = []
    for _ in range(total_dims):
        values.append(rng.randint(0, vocab_size - 1))
thomwolf's avatar
thomwolf committed
2927

2928
    return torch.tensor(data=values, dtype=torch.long, device=torch_device).view(shape).contiguous()
thomwolf's avatar
thomwolf committed
2929
2930


2931
2932
2933
2934
2935
2936
2937
def random_attention_mask(shape, rng=None, name=None):
    attn_mask = ids_tensor(shape, vocab_size=2, rng=None, name=None)
    # make sure that at least one token is attended to for each batch
    attn_mask[:, -1] = 1
    return attn_mask


2938
def floats_tensor(shape, scale=1.0, rng=None, name=None):
Patrick von Platen's avatar
Patrick von Platen committed
2939
    """Creates a random float32 tensor"""
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
    if rng is None:
        rng = global_rng

    total_dims = 1
    for dim in shape:
        total_dims *= dim

    values = []
    for _ in range(total_dims):
        values.append(rng.random() * scale)

2951
    return torch.tensor(data=values, dtype=torch.float, device=torch_device).view(shape).contiguous()