test_modeling_common.py 98.7 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2019 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

16
import copy
17
import gc
18
import inspect
19
import json
20
import os
21
import os.path
Aymeric Augustin's avatar
Aymeric Augustin committed
22
import random
23
import tempfile
thomwolf's avatar
thomwolf committed
24
import unittest
25
import warnings
NielsRogge's avatar
NielsRogge committed
26
from typing import Dict, List, Tuple
thomwolf's avatar
thomwolf committed
27

28
29
30
import numpy as np

import transformers
31
from huggingface_hub import Repository, delete_repo, login
Sylvain Gugger's avatar
Sylvain Gugger committed
32
from requests.exceptions import HTTPError
33
34
35
36
37
38
39
40
from transformers import (
    AutoConfig,
    AutoModel,
    AutoModelForSequenceClassification,
    PretrainedConfig,
    is_torch_available,
    logging,
)
41
from transformers.file_utils import WEIGHTS_NAME, is_flax_available, is_torch_fx_available
42
from transformers.models.auto import get_values
Sylvain Gugger's avatar
Sylvain Gugger committed
43
44
45
46
from transformers.testing_utils import (
    PASS,
    USER,
    CaptureLogger,
47
    TestCasePlus,
48
49
    is_pt_flax_cross_test,
    is_pt_tf_cross_test,
Sylvain Gugger's avatar
Sylvain Gugger committed
50
51
52
53
54
55
    is_staging_test,
    require_torch,
    require_torch_multi_gpu,
    slow,
    torch_device,
)
56

Aymeric Augustin's avatar
Aymeric Augustin committed
57

58
if is_torch_available():
59
    import torch
60
    from torch import nn
thomwolf's avatar
thomwolf committed
61

62
    from transformers import (
63
        BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
64
        MODEL_FOR_CAUSAL_LM_MAPPING,
65
        MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING,
66
        MODEL_FOR_MASKED_LM_MAPPING,
67
        MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
68
        MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING,
69
        MODEL_FOR_QUESTION_ANSWERING_MAPPING,
70
71
72
        MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
        MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
        MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
73
        MODEL_MAPPING,
74
75
76
77
        AdaptiveEmbedding,
        BertConfig,
        BertModel,
        PreTrainedModel,
78
        T5Config,
79
        T5ForConditionalGeneration,
80
    )
thomwolf's avatar
thomwolf committed
81

82
83
84
85
86
87
88
if is_flax_available():
    import jax.numpy as jnp
    from transformers.modeling_flax_pytorch_utils import (
        convert_pytorch_state_dict_to_flax,
        load_flax_weights_in_pytorch_model,
    )

89
if is_torch_fx_available():
90
    from transformers.utils.fx import symbolic_trace
91

92

93
94
95
def _config_zero_init(config):
    configs_no_init = copy.deepcopy(config)
    for key in configs_no_init.__dict__.keys():
96
        if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key:
Lysandre Debut's avatar
Lysandre Debut committed
97
            setattr(configs_no_init, key, 1e-10)
98
99
    return configs_no_init

thomwolf's avatar
thomwolf committed
100

101
102
103
TINY_T5 = "patrickvonplaten/t5-tiny-random"


104
105
106
107
108
@require_torch
class ModelTesterMixin:

    model_tester = None
    all_model_classes = ()
109
    all_generative_model_classes = ()
110
    fx_ready_model_classes = ()
111
    fx_dynamic_ready_model_classes = ()
Patrick von Platen's avatar
Patrick von Platen committed
112
113
114
    test_torchscript = True
    test_pruning = True
    test_resize_embeddings = True
115
    test_resize_position_embeddings = False
Patrick von Platen's avatar
Patrick von Platen committed
116
    test_head_masking = True
117
    test_mismatched_shapes = True
118
    test_missing_keys = True
119
    test_model_parallel = False
120
121
    is_encoder_decoder = False

122
123
    def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
        inputs_dict = copy.deepcopy(inputs_dict)
124
        if model_class in get_values(MODEL_FOR_MULTIPLE_CHOICE_MAPPING):
125
            inputs_dict = {
126
                k: v.unsqueeze(1).expand(-1, self.model_tester.num_choices, -1).contiguous()
127
                if isinstance(v, torch.Tensor) and v.ndim > 1
Sylvain Gugger's avatar
Sylvain Gugger committed
128
                else v
129
130
                for k, v in inputs_dict.items()
            }
131
132

        if return_labels:
133
            if model_class in get_values(MODEL_FOR_MULTIPLE_CHOICE_MAPPING):
134
                inputs_dict["labels"] = torch.ones(self.model_tester.batch_size, dtype=torch.long, device=torch_device)
135
            elif model_class in get_values(MODEL_FOR_QUESTION_ANSWERING_MAPPING):
136
137
138
139
140
141
                inputs_dict["start_positions"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
                inputs_dict["end_positions"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
142
            elif model_class in [
143
144
145
                *get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING),
                *get_values(MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING),
                *get_values(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING),
146
            ]:
147
148
149
150
                inputs_dict["labels"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
            elif model_class in [
151
152
153
154
                *get_values(MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING),
                *get_values(MODEL_FOR_CAUSAL_LM_MAPPING),
                *get_values(MODEL_FOR_MASKED_LM_MAPPING),
                *get_values(MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING),
155
156
157
158
            ]:
                inputs_dict["labels"] = torch.zeros(
                    (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device
                )
159
160
        return inputs_dict

Patrick von Platen's avatar
Patrick von Platen committed
161
    def test_save_load(self):
162
163
164
165
166
167
168
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
169
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
Weizhen's avatar
Weizhen committed
170

171
            out_2 = outputs[0].cpu().numpy()
172
            out_2[np.isnan(out_2)] = 0
173

174
            with tempfile.TemporaryDirectory() as tmpdirname:
175
176
                model.save_pretrained(tmpdirname)
                model = model_class.from_pretrained(tmpdirname)
177
                model.to(torch_device)
178
                with torch.no_grad():
179
                    after_outputs = model(**self._prepare_for_class(inputs_dict, model_class))
thomwolf's avatar
thomwolf committed
180

181
182
183
                # Make sure we don't have nans
                out_1 = after_outputs[0].cpu().numpy()
                out_1[np.isnan(out_1)] = 0
thomwolf's avatar
thomwolf committed
184
185
                max_diff = np.amax(np.abs(out_1 - out_2))
                self.assertLessEqual(max_diff, 1e-5)
186

187
    def test_save_load_keys_to_ignore_on_save(self):
188
189
190
191
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
192
193
            _keys_to_ignore_on_save = getattr(model, "_keys_to_ignore_on_save", None)
            if _keys_to_ignore_on_save is None:
194
195
196
                continue

            # check the keys are in the original state_dict
197
            for k in _keys_to_ignore_on_save:
198
                self.assertIn(k, model.state_dict().keys(), "\n".join(model.state_dict().keys()))
199
200
201
202
203
204

            # check that certain keys didn't get saved with the model
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                output_model_file = os.path.join(tmpdirname, WEIGHTS_NAME)
                state_dict_saved = torch.load(output_model_file)
205
                for k in _keys_to_ignore_on_save:
206
                    self.assertNotIn(k, state_dict_saved.keys(), "\n".join(state_dict_saved.keys()))
207

Sylvain Gugger's avatar
Sylvain Gugger committed
208
209
210
                # Test we can load the state dict in the model, necessary for the checkpointing API in Trainer.
                load_result = model.load_state_dict(state_dict_saved, strict=False)
                self.assertTrue(
211
212
                    len(load_result.missing_keys) == 0
                    or set(load_result.missing_keys) == set(model._keys_to_ignore_on_save)
Sylvain Gugger's avatar
Sylvain Gugger committed
213
214
215
                )
                self.assertTrue(len(load_result.unexpected_keys) == 0)

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
    def test_gradient_checkpointing_backward_compatibility(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if not model_class.supports_gradient_checkpointing:
                continue

            config.gradient_checkpointing = True
            model = model_class(config)
            # Model does not have gradient checkpointing activated yet, it will be done at the first forward.
            self.assertFalse(model.is_gradient_checkpointing)

            model.to(torch_device)
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            _ = model(**inputs)

            # Model has gradient checkpointing activated after the first forward.
            self.assertTrue(model.is_gradient_checkpointing)

235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
    def test_gradient_checkpointing_enable_disable(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if not model_class.supports_gradient_checkpointing:
                continue

            # at init model should have gradient checkpointing disabled
            model = model_class(config)
            self.assertFalse(model.is_gradient_checkpointing)

            # check enable works
            model.gradient_checkpointing_enable()
            self.assertTrue(model.is_gradient_checkpointing)

            # check disable works
            model.gradient_checkpointing_disable()
            self.assertFalse(model.is_gradient_checkpointing)

254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
    def _mock_init_weights(self, module):
        if hasattr(module, "weight") and module.weight is not None:
            module.weight.data.fill_(3)
        if hasattr(module, "bias") and module.bias is not None:
            module.bias.data.fill_(3)

    def test_save_load_fast_init_from_base(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        base_class = MODEL_MAPPING[config.__class__]

        if isinstance(base_class, tuple):
            base_class = base_class[0]

        for model_class in self.all_model_classes:
            if model_class == base_class:
                continue

            # make a copy of model class to not break future tests
            # from https://stackoverflow.com/questions/9541025/how-to-copy-a-python-class
            class CopyClass(model_class):
                pass

            model_class_copy = CopyClass

            # make sure that all keys are expected for test
            model_class_copy._keys_to_ignore_on_load_missing = []

            # make init deterministic, but make sure that
            # non-initialized weights throw errors nevertheless
            model_class_copy._init_weights = self._mock_init_weights

            model = base_class(config)
            state_dict = model.state_dict()

            # this will often delete a single weight of a multi-weight module
            # to test an edge case
            random_key_to_del = random.choice(list(state_dict.keys()))
            del state_dict[random_key_to_del]

            # check that certain keys didn't get saved with the model
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                torch.save(state_dict, os.path.join(tmpdirname, "pytorch_model.bin"))

                model_fast_init = model_class_copy.from_pretrained(tmpdirname)
                model_slow_init = model_class_copy.from_pretrained(tmpdirname, _fast_init=False)

                for key in model_fast_init.state_dict().keys():
                    max_diff = (model_slow_init.state_dict()[key] - model_fast_init.state_dict()[key]).sum().item()
                    self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")

    def test_save_load_fast_init_to_base(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        base_class = MODEL_MAPPING[config.__class__]

        if isinstance(base_class, tuple):
            base_class = base_class[0]

        for model_class in self.all_model_classes:

            if model_class == base_class:
                continue

            # make a copy of model class to not break future tests
            # from https://stackoverflow.com/questions/9541025/how-to-copy-a-python-class
            class CopyClass(base_class):
                pass

            base_class_copy = CopyClass

            # make sure that all keys are expected for test
            base_class_copy._keys_to_ignore_on_load_missing = []

            # make init deterministic, but make sure that
            # non-initialized weights throw errors nevertheless
            base_class_copy._init_weights = self._mock_init_weights

            model = model_class(config)
            state_dict = model.state_dict()

            # this will often delete a single weight of a multi-weight module
            # to test an edge case
            random_key_to_del = random.choice(list(state_dict.keys()))
            del state_dict[random_key_to_del]

            # check that certain keys didn't get saved with the model
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.config.save_pretrained(tmpdirname)
                torch.save(state_dict, os.path.join(tmpdirname, "pytorch_model.bin"))

                model_fast_init = base_class_copy.from_pretrained(tmpdirname)
                model_slow_init = base_class_copy.from_pretrained(tmpdirname, _fast_init=False)

                for key in model_fast_init.state_dict().keys():
                    max_diff = (model_slow_init.state_dict()[key] - model_fast_init.state_dict()[key]).sum().item()
                    self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")

Patrick von Platen's avatar
Patrick von Platen committed
351
    def test_initialization(self):
352
353
354
355
356
357
358
359
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        configs_no_init = _config_zero_init(config)
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            for name, param in model.named_parameters():
                if param.requires_grad:
                    self.assertIn(
Lysandre Debut's avatar
Lysandre Debut committed
360
                        ((param.data.mean() * 1e9).round() / 1e9).item(),
361
                        [0.0, 1.0],
362
                        msg=f"Parameter {name} of model {model_class} seems not properly initialized",
363
                    )
thomwolf's avatar
thomwolf committed
364

Patrick von Platen's avatar
Patrick von Platen committed
365
    def test_determinism(self):
366
367
368
369
370
371
372
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
373
374
                first = model(**self._prepare_for_class(inputs_dict, model_class))[0]
                second = model(**self._prepare_for_class(inputs_dict, model_class))[0]
Weizhen's avatar
Weizhen committed
375

376
377
378
379
380
381
382
            out_1 = first.cpu().numpy()
            out_2 = second.cpu().numpy()
            out_1 = out_1[~np.isnan(out_1)]
            out_2 = out_2[~np.isnan(out_2)]
            max_diff = np.amax(np.abs(out_1 - out_2))
            self.assertLessEqual(max_diff, 1e-5)

383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
    def test_forward_signature(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.forward)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

            if model.config.is_encoder_decoder:
                expected_arg_names = [
                    "input_ids",
                    "attention_mask",
                    "decoder_input_ids",
                    "decoder_attention_mask",
                ]
399
                expected_arg_names.extend(
400
401
                    ["head_mask", "decoder_head_mask", "cross_attn_head_mask", "encoder_outputs"]
                    if "head_mask" and "decoder_head_mask" and "cross_attn_head_mask" in arg_names
402
403
404
                    else ["encoder_outputs"]
                )
                self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names)
405
406
407
408
            else:
                expected_arg_names = ["input_ids"]
                self.assertListEqual(arg_names[:1], expected_arg_names)

409
410
411
412
413
    def test_training(self):
        if not self.model_tester.is_training:
            return

        for model_class in self.all_model_classes:
414
415
416
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
            config.return_dict = True

417
            if model_class in get_values(MODEL_MAPPING):
418
                continue
419

420
421
422
423
424
425
426
427
            model = model_class(config)
            model.to(torch_device)
            model.train()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            loss = model(**inputs).loss
            loss.backward()

    def test_training_gradient_checkpointing(self):
428
        if not self.model_tester.is_training:
429
430
431
            return

        for model_class in self.all_model_classes:
432
433
434
435
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
            config.use_cache = False
            config.return_dict = True

436
            if model_class in get_values(MODEL_MAPPING) or not model_class.supports_gradient_checkpointing:
437
438
439
                continue
            model = model_class(config)
            model.to(torch_device)
440
            model.gradient_checkpointing_enable()
441
442
443
444
445
            model.train()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            loss = model(**inputs).loss
            loss.backward()

Patrick von Platen's avatar
Patrick von Platen committed
446
    def test_attention_outputs(self):
447
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
Weizhen's avatar
Weizhen committed
448
449
        config.return_dict = True

sshleifer's avatar
sshleifer committed
450
        seq_len = getattr(self.model_tester, "seq_length", None)
sshleifer's avatar
sshleifer committed
451
452
        decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len)
        encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", seq_len)
Weizhen's avatar
Weizhen committed
453
        decoder_key_length = getattr(self.model_tester, "decoder_key_length", decoder_seq_length)
454
        encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length)
Patrick von Platen's avatar
Patrick von Platen committed
455
456
457
        chunk_length = getattr(self.model_tester, "chunk_length", None)
        if chunk_length is not None and hasattr(self.model_tester, "num_hashes"):
            encoder_seq_length = encoder_seq_length * self.model_tester.num_hashes
458
459

        for model_class in self.all_model_classes:
460
            inputs_dict["output_attentions"] = True
Joseph Liu's avatar
Joseph Liu committed
461
            inputs_dict["output_hidden_states"] = False
462
            config.return_dict = True
463
464
465
466
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
467
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
468
            attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
469
470
471
472
473
474
475
476
477
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)

            # check that output_attentions also work using config
            del inputs_dict["output_attentions"]
            config.output_attentions = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
478
479
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
            attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
480
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
Patrick von Platen's avatar
Patrick von Platen committed
481
482
483
484
485
486
487
488
489
490
491

            if chunk_length is not None:
                self.assertListEqual(
                    list(attentions[0].shape[-4:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length],
                )
            else:
                self.assertListEqual(
                    list(attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
                )
492
            out_len = len(outputs)
thomwolf's avatar
thomwolf committed
493

494
            if self.is_encoder_decoder:
495
                correct_outlen = 5
496

497
498
499
500
                # loss is at first position
                if "labels" in inputs_dict:
                    correct_outlen += 1  # loss is added to beginning
                # Question Answering model returns start_logits and end_logits
501
                if model_class in get_values(MODEL_FOR_QUESTION_ANSWERING_MAPPING):
502
                    correct_outlen += 1  # start_logits and end_logits instead of only 1 output
503
504
                if "past_key_values" in outputs:
                    correct_outlen += 1  # past_key_values have been returned
Weizhen's avatar
Weizhen committed
505

Sam Shleifer's avatar
Sam Shleifer committed
506
507
                self.assertEqual(out_len, correct_outlen)

508
                # decoder attentions
509
                decoder_attentions = outputs.decoder_attentions
Sam Shleifer's avatar
Sam Shleifer committed
510
                self.assertIsInstance(decoder_attentions, (list, tuple))
511
                self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers)
thomwolf's avatar
thomwolf committed
512
                self.assertListEqual(
513
514
                    list(decoder_attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length],
515
                )
thomwolf's avatar
thomwolf committed
516

517
518
519
520
521
522
523
524
525
526
527
528
529
                # cross attentions
                cross_attentions = outputs.cross_attentions
                self.assertIsInstance(cross_attentions, (list, tuple))
                self.assertEqual(len(cross_attentions), self.model_tester.num_hidden_layers)
                self.assertListEqual(
                    list(cross_attentions[0].shape[-3:]),
                    [
                        self.model_tester.num_attention_heads,
                        decoder_seq_length,
                        encoder_key_length,
                    ],
                )

530
            # Check attention is always last and order is fine
531
            inputs_dict["output_attentions"] = True
Joseph Liu's avatar
Joseph Liu committed
532
            inputs_dict["output_hidden_states"] = True
533
534
535
536
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
537
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
538

Weizhen's avatar
Weizhen committed
539
540
541
542
543
544
545
546
            if hasattr(self.model_tester, "num_hidden_states_types"):
                added_hidden_states = self.model_tester.num_hidden_states_types
            elif self.is_encoder_decoder:
                added_hidden_states = 2
            else:
                added_hidden_states = 1
            self.assertEqual(out_len + added_hidden_states, len(outputs))

547
548
            self_attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions

549
            self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers)
Patrick von Platen's avatar
Patrick von Platen committed
550
551
552
553
554
555
556
557
558
559
            if chunk_length is not None:
                self.assertListEqual(
                    list(self_attentions[0].shape[-4:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length],
                )
            else:
                self.assertListEqual(
                    list(self_attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
                )
thomwolf's avatar
thomwolf committed
560

561
    @slow
Patrick von Platen's avatar
Patrick von Platen committed
562
    def test_torchscript(self):
563
564
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
565

566
    @slow
Patrick von Platen's avatar
Patrick von Platen committed
567
    def test_torchscript_output_attentions(self):
568
569
570
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_attentions = True
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
571

572
    @slow
Patrick von Platen's avatar
Patrick von Platen committed
573
    def test_torchscript_output_hidden_state(self):
574
575
576
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_hidden_states = True
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
577

578
    def _create_and_check_torchscript(self, config, inputs_dict):
Patrick von Platen's avatar
Patrick von Platen committed
579
        if not self.test_torchscript:
580
            return
581

582
583
584
585
586
587
        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        configs_no_init.torchscript = True
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            model.to(torch_device)
            model.eval()
588
            inputs = self._prepare_for_class(inputs_dict, model_class)
thomwolf's avatar
thomwolf committed
589

590
            try:
591
                if model.config.is_encoder_decoder:
592
                    model.config.use_cache = False  # FSTM still requires this hack -> FSTM should probably be refactored similar to BART afterward
593
594
595
596
597
598
599
600
601
602
                    input_ids = inputs["input_ids"]
                    attention_mask = inputs["attention_mask"]
                    decoder_input_ids = inputs["decoder_input_ids"]
                    decoder_attention_mask = inputs["decoder_attention_mask"]
                    traced_model = torch.jit.trace(
                        model, (input_ids, attention_mask, decoder_input_ids, decoder_attention_mask)
                    )
                else:
                    input_ids = inputs["input_ids"]
                    traced_model = torch.jit.trace(model, input_ids)
603
604
            except RuntimeError:
                self.fail("Couldn't trace module.")
thomwolf's avatar
thomwolf committed
605

606
            with tempfile.TemporaryDirectory() as tmp_dir_name:
607
                pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt")
thomwolf's avatar
thomwolf committed
608

609
                try:
610
                    torch.jit.save(traced_model, pt_file_name)
611
612
                except Exception:
                    self.fail("Couldn't save module.")
thomwolf's avatar
thomwolf committed
613

614
615
616
617
                try:
                    loaded_model = torch.jit.load(pt_file_name)
                except Exception:
                    self.fail("Couldn't load module.")
LysandreJik's avatar
LysandreJik committed
618

619
620
            model.to(torch_device)
            model.eval()
thomwolf's avatar
thomwolf committed
621

622
623
            loaded_model.to(torch_device)
            loaded_model.eval()
thomwolf's avatar
thomwolf committed
624

625
626
627
            model_state_dict = model.state_dict()
            loaded_model_state_dict = loaded_model.state_dict()

628
629
630
631
632
633
634
635
636
            non_persistent_buffers = {}
            for key in loaded_model_state_dict.keys():
                if key not in model_state_dict.keys():
                    non_persistent_buffers[key] = loaded_model_state_dict[key]

            loaded_model_state_dict = {
                key: value for key, value in loaded_model_state_dict.items() if key not in non_persistent_buffers
            }

637
            self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys()))
thomwolf's avatar
thomwolf committed
638

639
640
641
642
643
644
645
646
647
648
649
            model_buffers = list(model.buffers())
            for non_persistent_buffer in non_persistent_buffers.values():
                found_buffer = False
                for i, model_buffer in enumerate(model_buffers):
                    if torch.equal(non_persistent_buffer, model_buffer):
                        found_buffer = True
                        break

                self.assertTrue(found_buffer)
                model_buffers.pop(i)

650
            models_equal = True
651
            for layer_name, p1 in model_state_dict.items():
652
653
654
655
                if layer_name in loaded_model_state_dict:
                    p2 = loaded_model_state_dict[layer_name]
                    if p1.data.ne(p2.data).sum() > 0:
                        models_equal = False
thomwolf's avatar
thomwolf committed
656

657
            self.assertTrue(models_equal)
thomwolf's avatar
thomwolf committed
658

659
660
661
662
663
664
665
666
    def test_torch_fx(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        self._create_and_check_torch_fx_tracing(config, inputs_dict)

    def test_torch_fx_output_loss(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        self._create_and_check_torch_fx_tracing(config, inputs_dict, output_loss=True)

667
668
669
670
671
    def test_torch_fx_dynamic_axes(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        self._create_and_check_torch_fx_tracing(config, inputs_dict, dynamic_axes=True)

    def _create_and_check_torch_fx_tracing(self, config, inputs_dict, output_loss=False, dynamic_axes=False):
672
673
674
675
676
677
        if not is_torch_fx_available():
            return

        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        configs_no_init.return_dict = False

678
679
        model_classes = self.fx_ready_model_classes if not dynamic_axes else self.fx_dynamic_ready_model_classes
        for model_class in model_classes:
680
681
682
683
684
685
686
687
688
689
690
691
692
693
            model = model_class(config=configs_no_init)
            model.to(torch_device)
            model.eval()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=output_loss)

            try:
                if model.config.is_encoder_decoder:
                    model.config.use_cache = False  # FSTM still requires this hack -> FSTM should probably be refactored similar to BART afterward
                    input_ids = inputs["input_ids"]
                    decoder_attention_mask = inputs["decoder_attention_mask"]
                    labels = inputs.get("labels", None)
                    input_names = ["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask"]
                    if labels is not None:
                        input_names.append("labels")
694
                    filtered_inputs = {k: v for (k, v) in inputs.items() if k in input_names}
695

696
                    model_output = model(**filtered_inputs)
697
698
699
700
701
702
703
704

                    batch_size = input_ids.shape[0]
                    encoder_sequence_length = input_ids.shape[1]
                    decoder_sequence_length = decoder_attention_mask.shape[1]

                    traced_model = symbolic_trace(
                        model,
                        input_names,
705
706
                        batch_size=batch_size if not dynamic_axes else -1,
                        sequence_length=[encoder_sequence_length, decoder_sequence_length] if not dynamic_axes else -1,
707
708
                    )

709
                    traced_output = traced_model(**filtered_inputs)
710
                else:
711
                    input_names = ["input_ids", "attention_mask", "token_type_ids"]
712
                    input_ids = inputs["input_ids"]
713

714
                    labels = inputs.get("labels", None)
715
716
                    start_positions = inputs.get("start_positions", None)
                    end_positions = inputs.get("end_positions", None)
717
718
                    if labels is not None:
                        input_names.append("labels")
719
720
721
722
                    if start_positions is not None:
                        input_names.append("start_positions")
                    if end_positions is not None:
                        input_names.append("end_positions")
723

724
725
                    filtered_inputs = {k: v for (k, v) in inputs.items() if k in input_names}
                    input_names = filtered_inputs.keys()
726

727
                    model_output = model(**filtered_inputs)
728

729
730
731
                    rank = len(input_ids.shape)
                    if rank == 2:
                        batch_size, sequence_length = input_ids.shape
732
                        num_choices = -1
733
734
735
736
737
738
                    elif rank == 3:
                        batch_size, num_choices, sequence_length = input_ids.shape
                    else:
                        raise NotImplementedError(
                            f"symbolic_trace automatic parameters inference not implemented for input of rank {rank}."
                        )
739
740
741
742

                    traced_model = symbolic_trace(
                        model,
                        input_names,
743
744
                        batch_size=batch_size if not dynamic_axes else -1,
                        sequence_length=sequence_length if not dynamic_axes else -1,
745
746
                        num_choices=num_choices,
                    )
747
                    traced_output = traced_model(**filtered_inputs)
748
749
750
751

            except RuntimeError:
                self.fail("Couldn't trace module.")

752
753
754
755
756
757
758
759
760
761
762
763
764
            def flatten_output(output):
                flatten = []
                for x in output:
                    if isinstance(x, (tuple, list)):
                        flatten += flatten_output(x)
                    elif not isinstance(x, torch.Tensor):
                        continue
                    else:
                        flatten.append(x)
                return flatten

            model_output = flatten_output(model_output)
            traced_output = flatten_output(traced_output)
765
            num_outputs = len(model_output)
766
767
768
769
770
771

            for i in range(num_outputs):
                self.assertTrue(
                    torch.allclose(model_output[i], traced_output[i]),
                    f"traced {i}th output doesn't match model {i}th output for {model_class}",
                )
772

Patrick von Platen's avatar
Patrick von Platen committed
773
774
    def test_headmasking(self):
        if not self.test_head_masking:
775
            return
776

777
778
779
        global_rng.seed(42)
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        global_rng.seed()
LysandreJik's avatar
LysandreJik committed
780

781
        inputs_dict["output_attentions"] = True
782
783
784
785
786
787
        config.output_hidden_states = True
        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            model.to(torch_device)
            model.eval()
LysandreJik's avatar
LysandreJik committed
788

789
790
791
            # Prepare head_mask
            # Set require_grad after having prepared the tensor to avoid error (leaf variable has been moved into the graph interior)
            head_mask = torch.ones(
Lysandre's avatar
Lysandre committed
792
793
794
                self.model_tester.num_hidden_layers,
                self.model_tester.num_attention_heads,
                device=torch_device,
795
796
797
798
            )
            head_mask[0, 0] = 0
            head_mask[-1, :-1] = 0
            head_mask.requires_grad_(requires_grad=True)
799
            inputs = self._prepare_for_class(inputs_dict, model_class).copy()
800
            inputs["head_mask"] = head_mask
801
802
803
804
805
            if model.config.is_encoder_decoder:
                signature = inspect.signature(model.forward)
                arg_names = [*signature.parameters.keys()]
                if "decoder_head_mask" in arg_names:  # necessary diferentiation because of T5 model
                    inputs["decoder_head_mask"] = head_mask
806
807
                if "cross_attn_head_mask" in arg_names:
                    inputs["cross_attn_head_mask"] = head_mask
808
            outputs = model(**inputs, return_dict=True)
809
810
811
812
813
814
815
816
817

            # Test that we can get a gradient back for importance score computation
            output = sum(t.sum() for t in outputs[0])
            output = output.sum()
            output.backward()
            multihead_outputs = head_mask.grad

            self.assertIsNotNone(multihead_outputs)
            self.assertEqual(len(multihead_outputs), self.model_tester.num_hidden_layers)
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838

            def check_attentions_validity(attentions):
                # Remove Nan
                for t in attentions:
                    self.assertLess(
                        torch.sum(torch.isnan(t)), t.numel() / 4
                    )  # Check we don't have more than 25% nans (arbitrary)
                attentions = [
                    t.masked_fill(torch.isnan(t), 0.0) for t in attentions
                ]  # remove them (the test is less complete)

                self.assertAlmostEqual(attentions[0][..., 0, :, :].flatten().sum().item(), 0.0)
                self.assertNotEqual(attentions[0][..., -1, :, :].flatten().sum().item(), 0.0)
                if len(attentions) > 2:  # encoder-decoder models have only 2 layers in each module
                    self.assertNotEqual(attentions[1][..., 0, :, :].flatten().sum().item(), 0.0)
                self.assertAlmostEqual(attentions[-1][..., -2, :, :].flatten().sum().item(), 0.0)
                self.assertNotEqual(attentions[-1][..., -1, :, :].flatten().sum().item(), 0.0)

            if model.config.is_encoder_decoder:
                check_attentions_validity(outputs.encoder_attentions)
                check_attentions_validity(outputs.decoder_attentions)
839
                check_attentions_validity(outputs.cross_attentions)
840
841
            else:
                check_attentions_validity(outputs.attentions)
842

Patrick von Platen's avatar
Patrick von Platen committed
843
844
    def test_head_pruning(self):
        if not self.test_pruning:
845
846
847
            return

        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
848
849
850
851
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
852

853
854
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
855

856
            inputs_dict["output_attentions"] = True
857
858
859
860
            config.output_hidden_states = False
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
861
862
863
864
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
865
866
            model.prune_heads(heads_to_prune)
            with torch.no_grad():
867
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
868

869
            attentions = outputs[-1]
870

871
872
873
            self.assertEqual(attentions[0].shape[-3], 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
LysandreJik's avatar
LysandreJik committed
874

Patrick von Platen's avatar
Patrick von Platen committed
875
876
    def test_head_pruning_save_load_from_pretrained(self):
        if not self.test_pruning:
877
            return
LysandreJik's avatar
LysandreJik committed
878

879
        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
880
881
882
883
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
884
885
886

            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
887

888
            inputs_dict["output_attentions"] = True
889
890
891
892
            config.output_hidden_states = False
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
893
894
895
896
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
897
            model.prune_heads(heads_to_prune)
898

899
            with tempfile.TemporaryDirectory() as temp_dir_name:
900
901
                model.save_pretrained(temp_dir_name)
                model = model_class.from_pretrained(temp_dir_name)
902
                model.to(torch_device)
903

904
            with torch.no_grad():
905
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
906
907
908
909
            attentions = outputs[-1]
            self.assertEqual(attentions[0].shape[-3], 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
910

Patrick von Platen's avatar
Patrick von Platen committed
911
912
    def test_head_pruning_save_load_from_config_init(self):
        if not self.test_pruning:
913
            return
914

915
        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
916
917
918
919
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
920

921
922
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
923

924
            inputs_dict["output_attentions"] = True
925
            config.output_hidden_states = False
926

927
928
929
930
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
931
            config.pruned_heads = heads_to_prune
932

933
934
935
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
936

937
            with torch.no_grad():
938
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
939
            attentions = outputs[-1]
940

941
942
943
            self.assertEqual(attentions[0].shape[-3], 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
944

Patrick von Platen's avatar
Patrick von Platen committed
945
946
    def test_head_pruning_integration(self):
        if not self.test_pruning:
947
            return
948

949
        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
950
951
952
953
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
954

955
956
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
957

958
            inputs_dict["output_attentions"] = True
959
            config.output_hidden_states = False
960

961
962
            heads_to_prune = {0: [0], 1: [1, 2]}
            config.pruned_heads = heads_to_prune
963

964
965
966
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
967

968
            with torch.no_grad():
969
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
970
            attentions = outputs[-1]
971

972
973
974
975
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads)
thomwolf's avatar
thomwolf committed
976

977
            with tempfile.TemporaryDirectory() as temp_dir_name:
978
979
                model.save_pretrained(temp_dir_name)
                model = model_class.from_pretrained(temp_dir_name)
980
                model.to(torch_device)
thomwolf's avatar
thomwolf committed
981

982
            with torch.no_grad():
983
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
984
            attentions = outputs[-1]
LysandreJik's avatar
LysandreJik committed
985

986
987
988
989
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads)
thomwolf's avatar
thomwolf committed
990

991
992
            heads_to_prune = {0: [0], 2: [1, 2]}
            model.prune_heads(heads_to_prune)
993

994
            with torch.no_grad():
995
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
996
            attentions = outputs[-1]
997

998
999
1000
1001
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads)
1002

1003
            self.assertDictEqual(model.config.pruned_heads, {0: [0], 1: [1, 2], 2: [1, 2]})
thomwolf's avatar
thomwolf committed
1004

Patrick von Platen's avatar
Patrick von Platen committed
1005
    def test_hidden_states_output(self):
Joseph Liu's avatar
Joseph Liu committed
1006
        def check_hidden_states_output(inputs_dict, config, model_class):
1007
            model = model_class(config)
1008
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
1009
            model.eval()
Joseph Liu's avatar
Joseph Liu committed
1010

thomwolf's avatar
thomwolf committed
1011
            with torch.no_grad():
1012
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
1013
1014

            hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
Patrick von Platen's avatar
Patrick von Platen committed
1015

Sylvain Gugger's avatar
Sylvain Gugger committed
1016
1017
1018
1019
            expected_num_layers = getattr(
                self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
            )
            self.assertEqual(len(hidden_states), expected_num_layers)
1020

Patrick von Platen's avatar
Patrick von Platen committed
1021
1022
1023
1024
1025
1026
1027
            if hasattr(self.model_tester, "encoder_seq_length"):
                seq_length = self.model_tester.encoder_seq_length
                if hasattr(self.model_tester, "chunk_length") and self.model_tester.chunk_length > 1:
                    seq_length = seq_length * self.model_tester.chunk_length
            else:
                seq_length = self.model_tester.seq_length

1028
            self.assertListEqual(
Lysandre's avatar
Lysandre committed
1029
1030
                list(hidden_states[0].shape[-2:]),
                [seq_length, self.model_tester.hidden_size],
1031
            )
thomwolf's avatar
thomwolf committed
1032

1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
            if config.is_encoder_decoder:
                hidden_states = outputs.decoder_hidden_states

                self.assertIsInstance(hidden_states, (list, tuple))
                self.assertEqual(len(hidden_states), expected_num_layers)
                seq_len = getattr(self.model_tester, "seq_length", None)
                decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len)

                self.assertListEqual(
                    list(hidden_states[0].shape[-2:]),
                    [decoder_seq_length, self.model_tester.hidden_size],
                )

Joseph Liu's avatar
Joseph Liu committed
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            inputs_dict["output_hidden_states"] = True
            check_hidden_states_output(inputs_dict, config, model_class)

            # check that output_hidden_states also work using config
            del inputs_dict["output_hidden_states"]
            config.output_hidden_states = True

            check_hidden_states_output(inputs_dict, config, model_class)

1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
    def test_retain_grad_hidden_states_attentions(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_hidden_states = True
        config.output_attentions = True

        # no need to test all models as different heads yield the same functionality
        model_class = self.all_model_classes[0]
        model = model_class(config)
        model.to(torch_device)

        inputs = self._prepare_for_class(inputs_dict, model_class)

        outputs = model(**inputs)
1071

1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
        output = outputs[0]

        if config.is_encoder_decoder:
            # Seq2Seq models
            encoder_hidden_states = outputs.encoder_hidden_states[0]
            encoder_attentions = outputs.encoder_attentions[0]
            encoder_hidden_states.retain_grad()
            encoder_attentions.retain_grad()

            decoder_hidden_states = outputs.decoder_hidden_states[0]
            decoder_attentions = outputs.decoder_attentions[0]
            decoder_hidden_states.retain_grad()
            decoder_attentions.retain_grad()

            cross_attentions = outputs.cross_attentions[0]
            cross_attentions.retain_grad()

            output.flatten()[0].backward(retain_graph=True)

            self.assertIsNotNone(encoder_hidden_states.grad)
            self.assertIsNotNone(encoder_attentions.grad)
            self.assertIsNotNone(decoder_hidden_states.grad)
            self.assertIsNotNone(decoder_attentions.grad)
            self.assertIsNotNone(cross_attentions.grad)
        else:
            # Encoder-/Decoder-only models
            hidden_states = outputs.hidden_states[0]
            attentions = outputs.attentions[0]

            hidden_states.retain_grad()
            attentions.retain_grad()

            output.flatten()[0].backward(retain_graph=True)

            self.assertIsNotNone(hidden_states.grad)
            self.assertIsNotNone(attentions.grad)

Pradhy729's avatar
Pradhy729 committed
1109
    def test_feed_forward_chunking(self):
Lysandre's avatar
Lysandre committed
1110
1111
1112
1113
        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()
Pradhy729's avatar
Pradhy729 committed
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
        for model_class in self.all_model_classes:
            torch.manual_seed(0)
            config = copy.deepcopy(original_config)
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            hidden_states_no_chunk = model(**self._prepare_for_class(inputs_dict, model_class))[0]

            torch.manual_seed(0)
            config.chunk_size_feed_forward = 1
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            hidden_states_with_chunk = model(**self._prepare_for_class(inputs_dict, model_class))[0]
            self.assertTrue(torch.allclose(hidden_states_no_chunk, hidden_states_with_chunk, atol=1e-3))

1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
    def test_resize_position_vector_embeddings(self):
        if not self.test_resize_position_embeddings:
            return

        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            config = copy.deepcopy(original_config)
            model = model_class(config)
            model.to(torch_device)

            if self.model_tester.is_training is False:
                model.eval()

            max_position_embeddings = config.max_position_embeddings

            # Retrieve the embeddings and clone theme
            if model.config.is_encoder_decoder:
                encoder_model_embed, decoder_model_embed = model.get_position_embeddings()
                encoder_cloned_embeddings = encoder_model_embed.weight.clone()
                decoder_cloned_embeddings = decoder_model_embed.weight.clone()
            else:
                model_embed = model.get_position_embeddings()
                cloned_embeddings = model_embed.weight.clone()

            # Check that resizing the position embeddings with a larger max_position_embeddings increases
            # the model's postion embeddings size
            model.resize_position_embeddings(max_position_embeddings + 10)
            self.assertEqual(model.config.max_position_embeddings, max_position_embeddings + 10)

            # Check that it actually resizes the embeddings matrix
            if model.config.is_encoder_decoder:
                encoder_model_embed, decoder_model_embed = model.get_position_embeddings()
                self.assertEqual(encoder_model_embed.weight.shape[0], encoder_cloned_embeddings.shape[0] + 10)
                self.assertEqual(decoder_model_embed.weight.shape[0], decoder_cloned_embeddings.shape[0] + 10)
            else:
                model_embed = model.get_position_embeddings()
                self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10)

            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**self._prepare_for_class(inputs_dict, model_class))

            # Check that resizing the position embeddings with a smaller max_position_embeddings decreases
            # the model's max_position_embeddings
            model.resize_position_embeddings(max_position_embeddings - 5)
            self.assertEqual(model.config.max_position_embeddings, max_position_embeddings - 5)

            # Check that it actually resizes the embeddings matrix
            if model.config.is_encoder_decoder:
                encoder_model_embed, decoder_model_embed = model.get_position_embeddings()
                self.assertEqual(encoder_model_embed.weight.shape[0], encoder_cloned_embeddings.shape[0] - 5)
                self.assertEqual(decoder_model_embed.weight.shape[0], decoder_cloned_embeddings.shape[0] - 5)
            else:
                model_embed = model.get_position_embeddings()
                self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 5)

            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**self._prepare_for_class(inputs_dict, model_class))

            # Check that adding and removing tokens has not modified the first part of the embedding matrix.
            models_equal = True

            if model.config.is_encoder_decoder:
                for p1, p2 in zip(encoder_cloned_embeddings, encoder_model_embed.weight):
                    if p1.data.ne(p2.data).sum() > 0:
                        models_equal = False
                for p1, p2 in zip(decoder_cloned_embeddings, decoder_model_embed.weight):
                    if p1.data.ne(p2.data).sum() > 0:
                        models_equal = False
            else:
                for p1, p2 in zip(cloned_embeddings, model_embed.weight):
                    if p1.data.ne(p2.data).sum() > 0:
                        models_equal = False

            self.assertTrue(models_equal)

Patrick von Platen's avatar
Patrick von Platen committed
1211
    def test_resize_tokens_embeddings(self):
Lysandre's avatar
Lysandre committed
1212
1213
1214
1215
        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()
Patrick von Platen's avatar
Patrick von Platen committed
1216
        if not self.test_resize_embeddings:
1217
1218
1219
1220
1221
            return

        for model_class in self.all_model_classes:
            config = copy.deepcopy(original_config)
            model = model_class(config)
1222
            model.to(torch_device)
1223

Patrick von Platen's avatar
Patrick von Platen committed
1224
1225
1226
            if self.model_tester.is_training is False:
                model.eval()

1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
            model_vocab_size = config.vocab_size
            # Retrieve the embeddings and clone theme
            model_embed = model.resize_token_embeddings(model_vocab_size)
            cloned_embeddings = model_embed.weight.clone()

            # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
            model_embed = model.resize_token_embeddings(model_vocab_size + 10)
            self.assertEqual(model.config.vocab_size, model_vocab_size + 10)
            # Check that it actually resizes the embeddings matrix
            self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10)
1237
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
1238
            model(**self._prepare_for_class(inputs_dict, model_class))
1239
1240
1241
1242
1243
1244
1245

            # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
            model_embed = model.resize_token_embeddings(model_vocab_size - 15)
            self.assertEqual(model.config.vocab_size, model_vocab_size - 15)
            # Check that it actually resizes the embeddings matrix
            self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 15)

1246
1247
1248
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            # Input ids should be clamped to the maximum size of the vocabulary
            inputs_dict["input_ids"].clamp_(max=model_vocab_size - 15 - 1)
1249
1250
1251
1252

            # make sure that decoder_input_ids are resized as well
            if "decoder_input_ids" in inputs_dict:
                inputs_dict["decoder_input_ids"].clamp_(max=model_vocab_size - 15 - 1)
1253
            model(**self._prepare_for_class(inputs_dict, model_class))
1254

1255
1256
1257
1258
1259
1260
1261
1262
            # Check that adding and removing tokens has not modified the first part of the embedding matrix.
            models_equal = True
            for p1, p2 in zip(cloned_embeddings, model_embed.weight):
                if p1.data.ne(p2.data).sum() > 0:
                    models_equal = False

            self.assertTrue(models_equal)

1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
    def test_resize_embeddings_untied(self):
        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()
        if not self.test_resize_embeddings:
            return

        original_config.tie_word_embeddings = False

        # if model cannot untied embeddings -> leave test
        if original_config.tie_word_embeddings:
            return

        for model_class in self.all_model_classes:
            config = copy.deepcopy(original_config)
            model = model_class(config).to(torch_device)

            # if no output embeddings -> leave test
            if model.get_output_embeddings() is None:
                continue

            # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
            model_vocab_size = config.vocab_size
            model.resize_token_embeddings(model_vocab_size + 10)
            self.assertEqual(model.config.vocab_size, model_vocab_size + 10)
            output_embeds = model.get_output_embeddings()
            self.assertEqual(output_embeds.weight.shape[0], model_vocab_size + 10)
            # Check bias if present
            if output_embeds.bias is not None:
                self.assertEqual(output_embeds.bias.shape[0], model_vocab_size + 10)
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**self._prepare_for_class(inputs_dict, model_class))

            # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
            model.resize_token_embeddings(model_vocab_size - 15)
            self.assertEqual(model.config.vocab_size, model_vocab_size - 15)
            # Check that it actually resizes the embeddings matrix
            output_embeds = model.get_output_embeddings()
            self.assertEqual(output_embeds.weight.shape[0], model_vocab_size - 15)
            # Check bias if present
            if output_embeds.bias is not None:
                self.assertEqual(output_embeds.bias.shape[0], model_vocab_size - 15)
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            # Input ids should be clamped to the maximum size of the vocabulary
            inputs_dict["input_ids"].clamp_(max=model_vocab_size - 15 - 1)
            if "decoder_input_ids" in inputs_dict:
                inputs_dict["decoder_input_ids"].clamp_(max=model_vocab_size - 15 - 1)
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**self._prepare_for_class(inputs_dict, model_class))

Patrick von Platen's avatar
Patrick von Platen committed
1314
    def test_model_common_attributes(self):
1315
1316
1317
1318
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
1319
1320
            self.assertIsInstance(model.get_input_embeddings(), (nn.Embedding, AdaptiveEmbedding))
            model.set_input_embeddings(nn.Embedding(10, 10))
1321
            x = model.get_output_embeddings()
1322
            self.assertTrue(x is None or isinstance(x, nn.Linear))
1323

1324
    def test_correct_missing_keys(self):
1325
1326
        if not self.test_missing_keys:
            return
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            base_model_prefix = model.base_model_prefix

            if hasattr(model, base_model_prefix):
                with tempfile.TemporaryDirectory() as temp_dir_name:
                    model.base_model.save_pretrained(temp_dir_name)
                    model, loading_info = model_class.from_pretrained(temp_dir_name, output_loading_info=True)
1337
                    with self.subTest(msg=f"Missing keys for {model.__class__.__name__}"):
1338
1339
                        self.assertGreater(len(loading_info["missing_keys"]), 0)

1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
    def test_tie_model_weights(self):
        if not self.test_torchscript:
            return

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        def check_same_values(layer_1, layer_2):
            equal = True
            for p1, p2 in zip(layer_1.weight, layer_2.weight):
                if p1.data.ne(p2.data).sum() > 0:
                    equal = False
            return equal

        for model_class in self.all_model_classes:
            config.torchscript = True
            model_not_tied = model_class(config)
            if model_not_tied.get_output_embeddings() is None:
                continue

            config_tied = copy.deepcopy(config)
            config_tied.torchscript = False
            model_tied = model_class(config_tied)
            params_tied = list(model_tied.parameters())
            # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(check_same_values(embeddings, decoding))

            # # Check that after modification, they remain the same.
            # embeddings.weight.data.div_(2)
            # # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(embeddings.weight.shape, decoding.weight.shape)
            # self.assertTrue(check_same_values(embeddings, decoding))

            # # Check that after modification, they remain the same.
            # decoding.weight.data.div_(4)
            # # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(embeddings.weight.shape, decoding.weight.shape)
            # self.assertTrue(check_same_values(embeddings, decoding))

            # Check that after resize they remain tied.
            model_tied.resize_token_embeddings(config.vocab_size + 10)
            params_tied_2 = list(model_tied.parameters())
            self.assertEqual(len(params_tied_2), len(params_tied))

            # decoding.weight.data.mul_(20)
            # # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(model.transformer.wte.weight.shape, model.lm_head.weight.shape)
            # self.assertTrue(check_same_values(model.transformer.wte, model.lm_head))

1388
1389
1390
    def test_model_outputs_equivalence(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

Sam Shleifer's avatar
Sam Shleifer committed
1391
1392
1393
1394
        def set_nan_tensor_to_zero(t):
            t[t != t] = 0
            return t

1395
1396
1397
1398
1399
1400
1401
1402
1403
        def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}):
            with torch.no_grad():
                tuple_output = model(**tuple_inputs, return_dict=False, **additional_kwargs)
                dict_output = model(**dict_inputs, return_dict=True, **additional_kwargs).to_tuple()

                def recursive_check(tuple_object, dict_object):
                    if isinstance(tuple_object, (List, Tuple)):
                        for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object):
                            recursive_check(tuple_iterable_value, dict_iterable_value)
NielsRogge's avatar
NielsRogge committed
1404
1405
1406
1407
1408
                    elif isinstance(tuple_object, Dict):
                        for tuple_iterable_value, dict_iterable_value in zip(
                            tuple_object.values(), dict_object.values()
                        ):
                            recursive_check(tuple_iterable_value, dict_iterable_value)
1409
1410
1411
1412
                    elif tuple_object is None:
                        return
                    else:
                        self.assertTrue(
Sam Shleifer's avatar
Sam Shleifer committed
1413
1414
1415
                            torch.allclose(
                                set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5
                            ),
1416
                            msg=f"Tuple and dict output are not equal. Difference: {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`: {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}.",
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
                        )

                recursive_check(tuple_output, dict_output)

        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(
                model, tuple_inputs, dict_inputs, {"output_hidden_states": True, "output_attentions": True}
            )

1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
    @is_pt_tf_cross_test
    def test_pt_tf_model_equivalence(self):
        import numpy as np
        import tensorflow as tf

        import transformers

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            tf_model_class_name = "TF" + model_class.__name__  # Add the "TF" at the beginning

            if not hasattr(transformers, tf_model_class_name):
                # transformers does not have TF version yet
                return

            tf_model_class = getattr(transformers, tf_model_class_name)

            config.output_hidden_states = True

            tf_model = tf_model_class(config)
            pt_model = model_class(config)

            # make sure only tf inputs are forward that actually exist in function args
            tf_input_keys = set(inspect.signature(tf_model.call).parameters.keys())

            # remove all head masks
            tf_input_keys.discard("head_mask")
            tf_input_keys.discard("cross_attn_head_mask")
            tf_input_keys.discard("decoder_head_mask")

            pt_inputs = self._prepare_for_class(inputs_dict, model_class)
            pt_inputs = {k: v for k, v in pt_inputs.items() if k in tf_input_keys}

            # Check predictions on first output (logits/hidden-states) are close enought given low-level computational differences
            pt_model.eval()
            tf_inputs_dict = {}
            for key, tensor in pt_inputs.items():
                # skip key that does not exist in tf
                if type(tensor) == bool:
                    tf_inputs_dict[key] = tensor
                elif key == "input_values":
                    tf_inputs_dict[key] = tf.convert_to_tensor(tensor.numpy(), dtype=tf.float32)
Yih-Dar's avatar
Yih-Dar committed
1499
1500
                elif key == "pixel_values":
                    tf_inputs_dict[key] = tf.convert_to_tensor(tensor.numpy(), dtype=tf.float32)
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
                else:
                    tf_inputs_dict[key] = tf.convert_to_tensor(tensor.numpy(), dtype=tf.int32)

            # Check we can load pt model in tf and vice-versa with model => model functions
            tf_model = transformers.load_pytorch_model_in_tf2_model(tf_model, pt_model, tf_inputs=tf_inputs_dict)
            pt_model = transformers.load_tf2_model_in_pytorch_model(pt_model, tf_model)

            # need to rename encoder-decoder "inputs" for PyTorch
            #            if "inputs" in pt_inputs_dict and self.is_encoder_decoder:
            #                pt_inputs_dict["input_ids"] = pt_inputs_dict.pop("inputs")

            with torch.no_grad():
                pto = pt_model(**pt_inputs)
            tfo = tf_model(tf_inputs_dict, training=False)

            tf_hidden_states = tfo[0].numpy()
            pt_hidden_states = pto[0].numpy()

            tf_nans = np.copy(np.isnan(tf_hidden_states))
            pt_nans = np.copy(np.isnan(pt_hidden_states))

            pt_hidden_states[tf_nans] = 0
            tf_hidden_states[tf_nans] = 0
            pt_hidden_states[pt_nans] = 0
            tf_hidden_states[pt_nans] = 0

            max_diff = np.amax(np.abs(tf_hidden_states - pt_hidden_states))
            self.assertLessEqual(max_diff, 4e-2)

            # Check we can load pt model in tf and vice-versa with checkpoint => model functions
            with tempfile.TemporaryDirectory() as tmpdirname:
                pt_checkpoint_path = os.path.join(tmpdirname, "pt_model.bin")
                torch.save(pt_model.state_dict(), pt_checkpoint_path)
                tf_model = transformers.load_pytorch_checkpoint_in_tf2_model(tf_model, pt_checkpoint_path)

                tf_checkpoint_path = os.path.join(tmpdirname, "tf_model.h5")
                tf_model.save_weights(tf_checkpoint_path)
                pt_model = transformers.load_tf2_checkpoint_in_pytorch_model(pt_model, tf_checkpoint_path)

            # Check predictions on first output (logits/hidden-states) are close enought given low-level computational differences
            pt_model.eval()
            tf_inputs_dict = {}
            for key, tensor in pt_inputs.items():
                # skip key that does not exist in tf
                if type(tensor) == bool:
                    tensor = np.array(tensor, dtype=bool)
                    tf_inputs_dict[key] = tf.convert_to_tensor(tensor, dtype=tf.int32)
                elif key == "input_values":
                    tf_inputs_dict[key] = tf.convert_to_tensor(tensor.numpy(), dtype=tf.float32)
Yih-Dar's avatar
Yih-Dar committed
1550
1551
                elif key == "pixel_values":
                    tf_inputs_dict[key] = tf.convert_to_tensor(tensor.numpy(), dtype=tf.float32)
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
                else:
                    tf_inputs_dict[key] = tf.convert_to_tensor(tensor.numpy(), dtype=tf.int32)

            # need to rename encoder-decoder "inputs" for PyTorch
            #            if "inputs" in pt_inputs_dict and self.is_encoder_decoder:
            #                pt_inputs_dict["input_ids"] = pt_inputs_dict.pop("inputs")

            with torch.no_grad():
                pto = pt_model(**pt_inputs)

            tfo = tf_model(tf_inputs_dict)
            tfo = tfo[0].numpy()
            pto = pto[0].numpy()
            tf_nans = np.copy(np.isnan(tfo))
            pt_nans = np.copy(np.isnan(pto))

            pto[tf_nans] = 0
            tfo[tf_nans] = 0
            pto[pt_nans] = 0
            tfo[pt_nans] = 0

            max_diff = np.amax(np.abs(tfo - pto))
            self.assertLessEqual(max_diff, 4e-2)

    def assert_almost_equals(self, a: np.ndarray, b: np.ndarray, tol: float):
        diff = np.abs((a - b)).max()
        self.assertLessEqual(diff, tol, f"Difference between torch and flax is {diff} (>= {tol}).")

    @is_pt_flax_cross_test
    def test_equivalence_pt_to_flax(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            with self.subTest(model_class.__name__):

                # load PyTorch class
                pt_model = model_class(config).eval()
                # Flax models don't use the `use_cache` option and cache is not returned as a default.
                # So we disable `use_cache` here for PyTorch model.
                pt_model.config.use_cache = False

                fx_model_class_name = "Flax" + model_class.__name__

                if not hasattr(transformers, fx_model_class_name):
                    return

                fx_model_class = getattr(transformers, fx_model_class_name)

                # load Flax class
                fx_model = fx_model_class(config, dtype=jnp.float32)
                # make sure only flax inputs are forward that actually exist in function args
                fx_input_keys = inspect.signature(fx_model.__call__).parameters.keys()

                # prepare inputs
                pt_inputs = self._prepare_for_class(inputs_dict, model_class)

                # remove function args that don't exist in Flax
                pt_inputs = {k: v for k, v in pt_inputs.items() if k in fx_input_keys}

                fx_state = convert_pytorch_state_dict_to_flax(pt_model.state_dict(), fx_model)
                fx_model.params = fx_state

                with torch.no_grad():
                    pt_outputs = pt_model(**pt_inputs).to_tuple()

                # convert inputs to Flax
                fx_inputs = {k: np.array(v) for k, v in pt_inputs.items() if torch.is_tensor(v)}
                fx_outputs = fx_model(**fx_inputs).to_tuple()
                self.assertEqual(len(fx_outputs), len(pt_outputs), "Output lengths differ between Flax and PyTorch")
                for fx_output, pt_output in zip(fx_outputs, pt_outputs):
                    self.assert_almost_equals(fx_output, pt_output.numpy(), 4e-2)

                with tempfile.TemporaryDirectory() as tmpdirname:
                    pt_model.save_pretrained(tmpdirname)
                    fx_model_loaded = fx_model_class.from_pretrained(tmpdirname, from_pt=True)

                fx_outputs_loaded = fx_model_loaded(**fx_inputs).to_tuple()
                self.assertEqual(
                    len(fx_outputs_loaded), len(pt_outputs), "Output lengths differ between Flax and PyTorch"
                )
                for fx_output_loaded, pt_output in zip(fx_outputs_loaded, pt_outputs):
                    self.assert_almost_equals(fx_output_loaded, pt_output.numpy(), 4e-2)

    @is_pt_flax_cross_test
    def test_equivalence_flax_to_pt(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            with self.subTest(model_class.__name__):
                # load corresponding PyTorch class
                pt_model = model_class(config).eval()

                # So we disable `use_cache` here for PyTorch model.
                pt_model.config.use_cache = False

                fx_model_class_name = "Flax" + model_class.__name__

                if not hasattr(transformers, fx_model_class_name):
                    # no flax model exists for this class
                    return

                fx_model_class = getattr(transformers, fx_model_class_name)

                # load Flax class
                fx_model = fx_model_class(config, dtype=jnp.float32)
                # make sure only flax inputs are forward that actually exist in function args
                fx_input_keys = inspect.signature(fx_model.__call__).parameters.keys()

                pt_model = load_flax_weights_in_pytorch_model(pt_model, fx_model.params)

                # make sure weights are tied in PyTorch
                pt_model.tie_weights()

                # prepare inputs
                pt_inputs = self._prepare_for_class(inputs_dict, model_class)

                # remove function args that don't exist in Flax
                pt_inputs = {k: v for k, v in pt_inputs.items() if k in fx_input_keys}

                with torch.no_grad():
                    pt_outputs = pt_model(**pt_inputs).to_tuple()

                fx_inputs = {k: np.array(v) for k, v in pt_inputs.items() if torch.is_tensor(v)}

                fx_outputs = fx_model(**fx_inputs).to_tuple()
                self.assertEqual(len(fx_outputs), len(pt_outputs), "Output lengths differ between Flax and PyTorch")

                for fx_output, pt_output in zip(fx_outputs, pt_outputs):
                    self.assert_almost_equals(fx_output, pt_output.numpy(), 4e-2)

                with tempfile.TemporaryDirectory() as tmpdirname:
                    fx_model.save_pretrained(tmpdirname)
                    pt_model_loaded = model_class.from_pretrained(tmpdirname, from_flax=True)

                with torch.no_grad():
                    pt_outputs_loaded = pt_model_loaded(**pt_inputs).to_tuple()

                self.assertEqual(
                    len(fx_outputs), len(pt_outputs_loaded), "Output lengths differ between Flax and PyTorch"
                )
                for fx_output, pt_output in zip(fx_outputs, pt_outputs_loaded):
                    self.assert_almost_equals(fx_output, pt_output.numpy(), 4e-2)

Patrick von Platen's avatar
Patrick von Platen committed
1695
    def test_inputs_embeds(self):
1696
1697
1698
1699
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
1700
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
1701
            model.eval()
1702

1703
            inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))
Weizhen's avatar
Weizhen committed
1704

1705
1706
1707
1708
1709
1710
1711
1712
1713
            if not self.is_encoder_decoder:
                input_ids = inputs["input_ids"]
                del inputs["input_ids"]
            else:
                encoder_input_ids = inputs["input_ids"]
                decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids)
                del inputs["input_ids"]
                inputs.pop("decoder_input_ids", None)

1714
1715
            wte = model.get_input_embeddings()
            if not self.is_encoder_decoder:
1716
                inputs["inputs_embeds"] = wte(input_ids)
1717
            else:
1718
1719
                inputs["inputs_embeds"] = wte(encoder_input_ids)
                inputs["decoder_inputs_embeds"] = wte(decoder_input_ids)
1720

thomwolf's avatar
thomwolf committed
1721
            with torch.no_grad():
Weizhen's avatar
Weizhen committed
1722
                model(**inputs)[0]
1723

1724
1725
    @require_torch_multi_gpu
    def test_multi_gpu_data_parallel_forward(self):
1726
1727
1728
1729
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        # some params shouldn't be scattered by nn.DataParallel
        # so just remove them if they are present.
1730
        blacklist_non_batched_params = ["head_mask", "decoder_head_mask", "cross_attn_head_mask"]
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
        for k in blacklist_non_batched_params:
            inputs_dict.pop(k, None)

        # move input tensors to cuda:O
        for k, v in inputs_dict.items():
            if torch.is_tensor(v):
                inputs_dict[k] = v.to(0)

        for model_class in self.all_model_classes:
            model = model_class(config=config)
            model.to(0)
            model.eval()

            # Wrap model in nn.DataParallel
1745
            model = nn.DataParallel(model)
1746
            with torch.no_grad():
1747
                _ = model(**self._prepare_for_class(inputs_dict, model_class))
1748

1749
1750
1751
    @require_torch_multi_gpu
    def test_model_parallelization(self):
        if not self.test_model_parallel:
1752
            return
1753

1754
        # a candidate for testing_utils
1755
        def get_current_gpu_memory_use():
Patrick von Platen's avatar
Patrick von Platen committed
1756
            """returns a list of cuda memory allocations per GPU in MBs"""
1757
1758
1759
1760
1761

            per_device_memory = []
            for id in range(torch.cuda.device_count()):
                with torch.cuda.device(id):
                    per_device_memory.append(torch.cuda.memory_allocated() >> 20)
1762
1763
1764
1765
1766
1767
1768
1769
1770

            return per_device_memory

        # Needs a large model to see the difference.
        config = self.model_tester.get_large_model_config()

        for model_class in self.all_parallelizable_model_classes:
            torch.cuda.empty_cache()

1771
1772
1773
            # 1. single gpu memory load + unload + memory measurements
            # Retrieve initial memory usage (can easily be ~0.6-1.5GB if cuda-kernels have been preloaded by previous tests)
            memory_at_start = get_current_gpu_memory_use()
1774

1775
1776
            # Put model on device 0 and take a memory snapshot
            model = model_class(config)
1777
1778
1779
            model.to("cuda:0")
            memory_after_model_load = get_current_gpu_memory_use()

1780
1781
1782
            # The memory use on device 0 should be higher than it was initially.
            self.assertGreater(memory_after_model_load[0], memory_at_start[0])

1783
            del model
1784
            gc.collect()
1785
1786
            torch.cuda.empty_cache()

1787
1788
1789
            # 2. MP test
            # it's essential to re-calibrate the usage before the next stage
            memory_at_start = get_current_gpu_memory_use()
1790
1791

            # Spread model layers over multiple devices
1792
            model = model_class(config)
1793
1794
1795
1796
1797
            model.parallelize()
            memory_after_parallelization = get_current_gpu_memory_use()

            # Assert that the memory use on all devices is higher than it was when loaded only on CPU
            for n in range(torch.cuda.device_count()):
1798
                self.assertGreater(memory_after_parallelization[n], memory_at_start[n])
1799

1800
            # Assert that the memory use of device 0 is lower than it was when the entire model was loaded on it
1801
1802
            self.assertLess(memory_after_parallelization[0], memory_after_model_load[0])

1803
1804
            # Assert that the memory use of device 1 is higher than it was when the entire model was loaded
            # on device 0 and device 1 wasn't used at all
1805
1806
1807
            self.assertGreater(memory_after_parallelization[1], memory_after_model_load[1])

            del model
1808
            gc.collect()
1809
1810
1811
1812
1813
            torch.cuda.empty_cache()

    @require_torch_multi_gpu
    def test_model_parallel_equal_results(self):
        if not self.test_model_parallel:
1814
            return
1815
1816
1817
1818
1819
1820

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_parallelizable_model_classes:
            inputs_dict = self._prepare_for_class(inputs_dict, model_class)

1821
            def cast_to_device(dictionary, device):
1822
1823
1824
                output = {}
                for k, v in dictionary.items():
                    if isinstance(v, torch.Tensor):
1825
                        output[k] = v.to(device)
1826
1827
1828
1829
1830
                    else:
                        output[k] = v

                return output

1831
1832
1833
1834
1835
1836
            model = model_class(config)
            output = model(**cast_to_device(inputs_dict, "cpu"))

            model.parallelize()

            parallel_output = model(**cast_to_device(inputs_dict, "cuda:0"))
1837
1838
1839
1840
1841
1842
1843
1844

            for value, parallel_value in zip(output, parallel_output):
                if isinstance(value, torch.Tensor):
                    self.assertTrue(torch.allclose(value, parallel_value.to("cpu"), atol=1e-7))
                elif isinstance(value, (Tuple, List)):
                    for value_, parallel_value_ in zip(value, parallel_value):
                        self.assertTrue(torch.allclose(value_, parallel_value_.to("cpu"), atol=1e-7))

1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
    @require_torch_multi_gpu
    def test_model_parallel_beam_search(self):
        if not self.test_model_parallel:
            return

        all_generative_and_parallelizable_model_classes = tuple(
            set(self.all_generative_model_classes).intersection(self.all_parallelizable_model_classes)
        )

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in all_generative_and_parallelizable_model_classes:
            inputs_dict = self._prepare_for_class(inputs_dict, model_class)
            model = model_class(config)

            def cast_to_device(dictionary, device):
                output = {}
                for k, v in dictionary.items():
                    if isinstance(v, torch.Tensor):
                        output[k] = v.to(device)
                    else:
                        output[k] = v

                return output

            model.parallelize()
            model.generate(**cast_to_device(inputs_dict, "cuda:0"), num_beams=2)

1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
    def test_problem_types(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        problem_types = [
            {"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float},
            {"title": "single_label_classification", "num_labels": 1, "dtype": torch.long},
            {"title": "regression", "num_labels": 1, "dtype": torch.float},
        ]

        for model_class in self.all_model_classes:
            if model_class not in get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING):
                continue

            for problem_type in problem_types:
                with self.subTest(msg=f"Testing {model_class} with {problem_type['title']}"):

                    config.problem_type = problem_type["title"]
                    config.num_labels = problem_type["num_labels"]

                    model = model_class(config)
                    model.to(torch_device)
                    model.train()

                    inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)

                    if problem_type["num_labels"] > 1:
                        inputs["labels"] = inputs["labels"].unsqueeze(1).repeat(1, problem_type["num_labels"])

                    inputs["labels"] = inputs["labels"].to(problem_type["dtype"])

1903
1904
1905
1906
1907
1908
                    # This tests that we do not trigger the warning form PyTorch "Using a target size that is different
                    # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure
                    # they have the same size." which is a symptom something in wrong for the regression problem.
                    # See https://github.com/huggingface/transformers/issues/11780
                    with warnings.catch_warnings(record=True) as warning_list:
                        loss = model(**inputs).loss
1909
1910
1911
1912
1913
                    for w in warning_list:
                        if "Using a target size that is different to the input size" in str(w.message):
                            raise ValueError(
                                f"Something is going wrong in the regression problem: intercepted {w.message}"
                            )
1914

1915
1916
                    loss.backward()

1917
    def test_load_with_mismatched_shapes(self):
1918
1919
        if not self.test_mismatched_shapes:
            return
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if model_class not in get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING):
                continue

            with self.subTest(msg=f"Testing {model_class}"):
                with tempfile.TemporaryDirectory() as tmp_dir:
                    model = model_class(config)
                    model.save_pretrained(tmp_dir)

                    # Fails when we don't set ignore_mismatched_sizes=True
1932
                    with self.assertRaises(RuntimeError):
1933
                        new_model = AutoModelForSequenceClassification.from_pretrained(tmp_dir, num_labels=42)
1934
1935
                    with self.assertRaises(RuntimeError):
                        new_model_without_prefix = AutoModel.from_pretrained(tmp_dir, vocab_size=10)
1936
1937

                    logger = logging.get_logger("transformers.modeling_utils")
1938

1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
                    with CaptureLogger(logger) as cl:
                        new_model = AutoModelForSequenceClassification.from_pretrained(
                            tmp_dir, num_labels=42, ignore_mismatched_sizes=True
                        )
                    self.assertIn("the shapes did not match", cl.out)
                    new_model.to(torch_device)
                    inputs = self._prepare_for_class(inputs_dict, model_class)
                    logits = new_model(**inputs).logits
                    self.assertEqual(logits.shape[1], 42)

1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
                    with CaptureLogger(logger) as cl:
                        new_model_without_prefix = AutoModel.from_pretrained(
                            tmp_dir, vocab_size=10, ignore_mismatched_sizes=True
                        )
                    self.assertIn("the shapes did not match", cl.out)
                    input_ids = ids_tensor((2, 8), 10)
                    new_model_without_prefix.to(torch_device)
                    if self.is_encoder_decoder:
                        new_model_without_prefix(input_ids, decoder_input_ids=input_ids)
                    else:
                        new_model_without_prefix(input_ids)

1961

1962
global_rng = random.Random()
thomwolf's avatar
thomwolf committed
1963
1964


thomwolf's avatar
thomwolf committed
1965
def ids_tensor(shape, vocab_size, rng=None, name=None):
1966
    #  Creates a random int32 tensor of the shape within the vocab size
thomwolf's avatar
thomwolf committed
1967
    if rng is None:
1968
        rng = global_rng
thomwolf's avatar
thomwolf committed
1969

thomwolf's avatar
thomwolf committed
1970
1971
1972
    total_dims = 1
    for dim in shape:
        total_dims *= dim
thomwolf's avatar
thomwolf committed
1973

thomwolf's avatar
thomwolf committed
1974
1975
1976
    values = []
    for _ in range(total_dims):
        values.append(rng.randint(0, vocab_size - 1))
thomwolf's avatar
thomwolf committed
1977

1978
    return torch.tensor(data=values, dtype=torch.long, device=torch_device).view(shape).contiguous()
thomwolf's avatar
thomwolf committed
1979
1980


1981
1982
1983
1984
1985
1986
1987
def random_attention_mask(shape, rng=None, name=None):
    attn_mask = ids_tensor(shape, vocab_size=2, rng=None, name=None)
    # make sure that at least one token is attended to for each batch
    attn_mask[:, -1] = 1
    return attn_mask


1988
def floats_tensor(shape, scale=1.0, rng=None, name=None):
Patrick von Platen's avatar
Patrick von Platen committed
1989
    """Creates a random float32 tensor"""
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
    if rng is None:
        rng = global_rng

    total_dims = 1
    for dim in shape:
        total_dims *= dim

    values = []
    for _ in range(total_dims):
        values.append(rng.random() * scale)

2001
    return torch.tensor(data=values, dtype=torch.float, device=torch_device).view(shape).contiguous()
2002
2003


2004
@require_torch
2005
class ModelUtilsTest(TestCasePlus):
2006
    @slow
Patrick von Platen's avatar
Patrick von Platen committed
2007
    def test_model_from_pretrained(self):
2008
        for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
thomwolf's avatar
thomwolf committed
2009
2010
2011
2012
2013
2014
2015
2016
            config = BertConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, PretrainedConfig)

            model = BertModel.from_pretrained(model_name)
            model, loading_info = BertModel.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, PreTrainedModel)
Lysandre Debut's avatar
Lysandre Debut committed
2017
2018
2019
2020
2021

            self.assertEqual(len(loading_info["missing_keys"]), 0)
            self.assertEqual(len(loading_info["unexpected_keys"]), 8)
            self.assertEqual(len(loading_info["mismatched_keys"]), 0)
            self.assertEqual(len(loading_info["error_msgs"]), 0)
thomwolf's avatar
thomwolf committed
2022
2023

            config = BertConfig.from_pretrained(model_name, output_attentions=True, output_hidden_states=True)
Lysandre Debut's avatar
Lysandre Debut committed
2024
2025
2026
2027

            # Not sure this is the intended behavior. TODO fix Lysandre & Thom
            config.name_or_path = model_name

thomwolf's avatar
thomwolf committed
2028
2029
2030
            model = BertModel.from_pretrained(model_name, output_attentions=True, output_hidden_states=True)
            self.assertEqual(model.config.output_hidden_states, True)
            self.assertEqual(model.config, config)
2031
2032
2033
2034
2035

    def test_model_from_pretrained_with_different_pretrained_model_name(self):
        model = T5ForConditionalGeneration.from_pretrained(TINY_T5)
        self.assertIsNotNone(model)

2036
2037
        logger = logging.get_logger("transformers.configuration_utils")
        with CaptureLogger(logger) as cl:
2038
            BertModel.from_pretrained(TINY_T5)
2039
        self.assertTrue("You are using a model of type t5 to instantiate a model of type bert" in cl.out)
Sylvain Gugger's avatar
Sylvain Gugger committed
2040

2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
    @require_torch
    def test_model_from_config_torch_dtype(self):
        # test that the model can be instantiated with dtype of user's choice - as long as it's a
        # float dtype. To make it happen config.torch_dtype needs to be set before instantiating the
        # model from the config object.

        config = T5Config.from_pretrained(TINY_T5)
        model = AutoModel.from_config(config)
        # XXX: isn't supported
        # model = T5ForConditionalGeneration.from_config(config)
        self.assertEqual(model.dtype, torch.float32)

        model = AutoModel.from_config(config, torch_dtype=torch.float16)
        self.assertEqual(model.dtype, torch.float16)

        # torch.set_default_dtype() supports only float dtypes, so will fail with non-float type
        with self.assertRaises(ValueError):
            model = AutoModel.from_config(config, torch_dtype=torch.int64)

    @require_torch
    def test_model_from_pretrained_torch_dtype(self):
        # test that the model can be instantiated with dtype of either
2063
2064
        # 1. explicit from_pretrained's torch_dtype argument
        # 2. via autodiscovery by looking at model weights (torch_dtype="auto")
2065
        # so if a model.half() was saved, we want it to be instantiated as such.
2066
2067
        #
        # test an explicit model class, but also AutoModel separately as the latter goes through a different code path
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
        model_path = self.get_auto_remove_tmp_dir()

        # baseline - we know TINY_T5 is fp32 model
        model = T5ForConditionalGeneration.from_pretrained(TINY_T5)
        self.assertEqual(model.dtype, torch.float32)

        # test the default fp32 save_pretrained => from_pretrained cycle
        model.save_pretrained(model_path)
        model = T5ForConditionalGeneration.from_pretrained(model_path)
        self.assertEqual(model.dtype, torch.float32)
        # test with auto-detection
        model = T5ForConditionalGeneration.from_pretrained(model_path, torch_dtype="auto")
        self.assertEqual(model.dtype, torch.float32)

        # test forced loading in fp16 (even though the weights are in fp32)
        model = T5ForConditionalGeneration.from_pretrained(model_path, torch_dtype=torch.float16)
        self.assertEqual(model.dtype, torch.float16)

        # test fp16 save_pretrained, loaded with auto-detection
        model = model.half()
        model.save_pretrained(model_path)
        model = T5ForConditionalGeneration.from_pretrained(model_path, torch_dtype="auto")
2090
        self.assertEqual(model.config.torch_dtype, torch.float16)
2091
2092
        self.assertEqual(model.dtype, torch.float16)

2093
2094
2095
2096
2097
        # tests `config.torch_dtype` saving
        with open(f"{model_path}/config.json") as f:
            config_dict = json.load(f)
        self.assertEqual(config_dict["torch_dtype"], "float16")

2098
2099
2100
2101
        # test fp16 save_pretrained, loaded with the explicit fp16
        model = T5ForConditionalGeneration.from_pretrained(model_path, torch_dtype=torch.float16)
        self.assertEqual(model.dtype, torch.float16)

2102
2103
2104
2105
2106
2107
2108
2109
        # test AutoModel separately as it goes through a different path
        # test auto-detection
        model = AutoModel.from_pretrained(TINY_T5, torch_dtype="auto")
        self.assertEqual(model.dtype, torch.float32)
        # test forcing an explicit dtype
        model = AutoModel.from_pretrained(TINY_T5, torch_dtype=torch.float16)
        self.assertEqual(model.dtype, torch.float16)

Sylvain Gugger's avatar
Sylvain Gugger committed
2110

2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
class FakeConfig(PretrainedConfig):
    def __init__(self, attribute=1, **kwargs):
        self.attribute = attribute
        super().__init__(**kwargs)


# Make sure this is synchronized with the config above.
FAKE_CONFIG_CODE = """
from transformers import PretrainedConfig

class FakeConfig(PretrainedConfig):
    def __init__(self, attribute=1, **kwargs):
        self.attribute = attribute
        super().__init__(**kwargs)
"""


2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
if is_torch_available():

    class FakeModel(PreTrainedModel):
        config_class = BertConfig
        base_model_prefix = "fake"

        def __init__(self, config):
            super().__init__(config)
            self.linear = torch.nn.Linear(config.hidden_size, config.hidden_size)

        def forward(self, x):
            return self.linear(x)

        def _init_weights(self, module):
            pass


# Make sure this is synchronized with the model above.
FAKE_MODEL_CODE = """
import torch
from transformers import BertConfig, PreTrainedModel

class FakeModel(PreTrainedModel):
    config_class = BertConfig
    base_model_prefix = "fake"

    def __init__(self, config):
        super().__init__(config)
        self.linear = torch.nn.Linear(config.hidden_size, config.hidden_size)

    def forward(self, x):
        return self.linear(x)

    def _init_weights(self, module):
        pass
"""


Sylvain Gugger's avatar
Sylvain Gugger committed
2166
2167
2168
2169
2170
@require_torch
@is_staging_test
class ModelPushToHubTester(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
2171
        cls._token = login(username=USER, password=PASS)
Sylvain Gugger's avatar
Sylvain Gugger committed
2172
2173
2174
2175

    @classmethod
    def tearDownClass(cls):
        try:
2176
            delete_repo(token=cls._token, name="test-model")
Sylvain Gugger's avatar
Sylvain Gugger committed
2177
2178
2179
2180
        except HTTPError:
            pass

        try:
2181
            delete_repo(token=cls._token, name="test-model-org", organization="valid_org")
Sylvain Gugger's avatar
Sylvain Gugger committed
2182
2183
2184
        except HTTPError:
            pass

2185
        try:
2186
            delete_repo(token=cls._token, name="test-dynamic-model")
2187
2188
2189
        except HTTPError:
            pass

2190
2191
2192
2193
2194
        try:
            delete_repo(token=cls._token, name="test-dynamic-model-config")
        except HTTPError:
            pass

Sylvain Gugger's avatar
Sylvain Gugger committed
2195
2196
2197
2198
2199
2200
    def test_push_to_hub(self):
        config = BertConfig(
            vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37
        )
        model = BertModel(config)
        with tempfile.TemporaryDirectory() as tmp_dir:
2201
            model.save_pretrained(os.path.join(tmp_dir, "test-model"), push_to_hub=True, use_auth_token=self._token)
Sylvain Gugger's avatar
Sylvain Gugger committed
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

            new_model = BertModel.from_pretrained(f"{USER}/test-model")
            for p1, p2 in zip(model.parameters(), new_model.parameters()):
                self.assertTrue(torch.equal(p1, p2))

    def test_push_to_hub_in_organization(self):
        config = BertConfig(
            vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37
        )
        model = BertModel(config)
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(
2214
                os.path.join(tmp_dir, "test-model-org"),
Sylvain Gugger's avatar
Sylvain Gugger committed
2215
2216
2217
2218
2219
2220
2221
2222
                push_to_hub=True,
                use_auth_token=self._token,
                organization="valid_org",
            )

            new_model = BertModel.from_pretrained("valid_org/test-model-org")
            for p1, p2 in zip(model.parameters(), new_model.parameters()):
                self.assertTrue(torch.equal(p1, p2))
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239

    def test_push_to_hub_dynamic_model(self):
        config = BertConfig(
            vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37
        )
        config.auto_map = {"AutoModel": "modeling.FakeModel"}
        model = FakeModel(config)

        with tempfile.TemporaryDirectory() as tmp_dir:
            repo = Repository(tmp_dir, clone_from=f"{USER}/test-dynamic-model", use_auth_token=self._token)
            model.save_pretrained(tmp_dir)
            with open(os.path.join(tmp_dir, "modeling.py"), "w") as f:
                f.write(FAKE_MODEL_CODE)

            repo.push_to_hub()

        new_model = AutoModel.from_pretrained(f"{USER}/test-dynamic-model", trust_remote_code=True)
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
        # Can't make an isinstance check because the new_model is from the FakeModel class of a dynamic module
        self.assertEqual(new_model.__class__.__name__, "FakeModel")
        for p1, p2 in zip(model.parameters(), new_model.parameters()):
            self.assertTrue(torch.equal(p1, p2))

        config = AutoConfig.from_pretrained(f"{USER}/test-dynamic-model")
        new_model = AutoModel.from_config(config, trust_remote_code=True)
        self.assertEqual(new_model.__class__.__name__, "FakeModel")

    def test_push_to_hub_dynamic_model_and_config(self):
        config = FakeConfig(
            attribute=42,
            vocab_size=99,
            hidden_size=32,
            num_hidden_layers=5,
            num_attention_heads=4,
            intermediate_size=37,
        )
        config.auto_map = {"AutoConfig": "configuration.FakeConfig", "AutoModel": "modeling.FakeModel"}
        model = FakeModel(config)

        with tempfile.TemporaryDirectory() as tmp_dir:
            repo = Repository(tmp_dir, clone_from=f"{USER}/test-dynamic-model-config", use_auth_token=self._token)
            model.save_pretrained(tmp_dir)
            with open(os.path.join(tmp_dir, "configuration.py"), "w") as f:
                f.write(FAKE_CONFIG_CODE)
            with open(os.path.join(tmp_dir, "modeling.py"), "w") as f:
                f.write(FAKE_MODEL_CODE)

            repo.push_to_hub()

        new_model = AutoModel.from_pretrained(f"{USER}/test-dynamic-model-config", trust_remote_code=True)
        # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module
        self.assertEqual(new_model.config.__class__.__name__, "FakeConfig")
        self.assertEqual(new_model.config.attribute, 42)

        # Can't make an isinstance check because the new_model is from the FakeModel class of a dynamic module
        self.assertEqual(new_model.__class__.__name__, "FakeModel")
2278
2279
        for p1, p2 in zip(model.parameters(), new_model.parameters()):
            self.assertTrue(torch.equal(p1, p2))
2280
2281
2282
2283

        config = AutoConfig.from_pretrained(f"{USER}/test-dynamic-model")
        new_model = AutoModel.from_config(config, trust_remote_code=True)
        self.assertEqual(new_model.__class__.__name__, "FakeModel")