samplers.py 31.4 KB
Newer Older
1
from .k_diffusion import sampling as k_diffusion_sampling
2
from .extra_samplers import uni_pc
comfyanonymous's avatar
comfyanonymous committed
3
import torch
comfyanonymous's avatar
comfyanonymous committed
4
import collections
5
from comfy import model_management
comfyanonymous's avatar
comfyanonymous committed
6
import math
7
import logging
8
import comfy.sampler_helpers
9
10
import scipy
import numpy
11

12
def get_area_and_mult(conds, x_in, timestep_in):
13
14
    dims = tuple(x_in.shape[2:])
    area = None
15
16
17
18
19
20
21
22
23
24
25
    strength = 1.0

    if 'timestep_start' in conds:
        timestep_start = conds['timestep_start']
        if timestep_in[0] > timestep_start:
            return None
    if 'timestep_end' in conds:
        timestep_end = conds['timestep_end']
        if timestep_in[0] < timestep_end:
            return None
    if 'area' in conds:
26
        area = list(conds['area'])
27
28
29
    if 'strength' in conds:
        strength = conds['strength']

30
31
32
33
34
35
    input_x = x_in
    if area is not None:
        for i in range(len(dims)):
            area[i] = min(input_x.shape[i + 2] - area[len(dims) + i], area[i])
            input_x = input_x.narrow(i + 2, area[len(dims) + i], area[i])

36
37
38
39
40
41
42
    if 'mask' in conds:
        # Scale the mask to the size of the input
        # The mask should have been resized as we began the sampling process
        mask_strength = 1.0
        if "mask_strength" in conds:
            mask_strength = conds["mask_strength"]
        mask = conds['mask']
43
44
45
46
47
48
49
50
        assert(mask.shape[1:] == x_in.shape[2:])

        mask = mask[:input_x.shape[0]]
        if area is not None:
            for i in range(len(dims)):
                mask = mask.narrow(i + 1, area[len(dims) + i], area[i])

        mask = mask * mask_strength
51
52
53
54
55
        mask = mask.unsqueeze(1).repeat(input_x.shape[0] // mask.shape[0], input_x.shape[1], 1, 1)
    else:
        mask = torch.ones_like(input_x)
    mult = mask * strength

56
    if 'mask' not in conds and area is not None:
57
        rr = 8
58
59
60
61
62
63
64
65
66
        for i in range(len(dims)):
            if area[len(dims) + i] != 0:
                for t in range(rr):
                    m = mult.narrow(i + 2, t, 1)
                    m *= ((1.0/rr) * (t + 1))
            if (area[i] + area[len(dims) + i]) < x_in.shape[i + 2]:
                for t in range(rr):
                    m = mult.narrow(i + 2, area[i] - 1 - t, 1)
                    m *= ((1.0/rr) * (t + 1))
67
68
69
70
71
72

    conditioning = {}
    model_conds = conds["model_conds"]
    for c in model_conds:
        conditioning[c] = model_conds[c].process_cond(batch_size=x_in.shape[0], device=x_in.device, area=area)

comfyanonymous's avatar
comfyanonymous committed
73
    control = conds.get('control', None)
74
75
76
77
78
79
80
81
82
83
84
85
86
87

    patches = None
    if 'gligen' in conds:
        gligen = conds['gligen']
        patches = {}
        gligen_type = gligen[0]
        gligen_model = gligen[1]
        if gligen_type == "position":
            gligen_patch = gligen_model.model.set_position(input_x.shape, gligen[2], input_x.device)
        else:
            gligen_patch = gligen_model.model.set_empty(input_x.shape, input_x.device)

        patches['middle_patch'] = [gligen_patch]

comfyanonymous's avatar
comfyanonymous committed
88
89
    cond_obj = collections.namedtuple('cond_obj', ['input_x', 'mult', 'conditioning', 'area', 'control', 'patches'])
    return cond_obj(input_x, mult, conditioning, area, control, patches)
90
91
92
93
94
95
96
97
98
99
100
101

def cond_equal_size(c1, c2):
    if c1 is c2:
        return True
    if c1.keys() != c2.keys():
        return False
    for k in c1:
        if not c1[k].can_concat(c2[k]):
            return False
    return True

def can_concat_cond(c1, c2):
comfyanonymous's avatar
comfyanonymous committed
102
    if c1.input_x.shape != c2.input_x.shape:
103
104
        return False

comfyanonymous's avatar
comfyanonymous committed
105
106
    def objects_concatable(obj1, obj2):
        if (obj1 is None) != (obj2 is None):
107
            return False
comfyanonymous's avatar
comfyanonymous committed
108
109
110
111
        if obj1 is not None:
            if obj1 is not obj2:
                return False
        return True
112

comfyanonymous's avatar
comfyanonymous committed
113
114
115
116
    if not objects_concatable(c1.control, c2.control):
        return False

    if not objects_concatable(c1.patches, c2.patches):
117
118
        return False

comfyanonymous's avatar
comfyanonymous committed
119
    return cond_equal_size(c1.conditioning, c2.conditioning)
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

def cond_cat(c_list):
    c_crossattn = []
    c_concat = []
    c_adm = []
    crossattn_max_len = 0

    temp = {}
    for x in c_list:
        for k in x:
            cur = temp.get(k, [])
            cur.append(x[k])
            temp[k] = cur

    out = {}
    for k in temp:
        conds = temp[k]
        out[k] = conds[0].concat(conds[1:])

    return out

141
142
143
def calc_cond_batch(model, conds, x_in, timestep, model_options):
    out_conds = []
    out_counts = []
144
145
    to_run = []

146
147
148
    for i in range(len(conds)):
        out_conds.append(torch.zeros_like(x_in))
        out_counts.append(torch.ones_like(x_in) * 1e-37)
149

150
151
152
153
154
155
156
157
        cond = conds[i]
        if cond is not None:
            for x in cond:
                p = get_area_and_mult(x, x_in, timestep)
                if p is None:
                    continue

                to_run += [(p, i)]
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187

    while len(to_run) > 0:
        first = to_run[0]
        first_shape = first[0][0].shape
        to_batch_temp = []
        for x in range(len(to_run)):
            if can_concat_cond(to_run[x][0], first[0]):
                to_batch_temp += [x]

        to_batch_temp.reverse()
        to_batch = to_batch_temp[:1]

        free_memory = model_management.get_free_memory(x_in.device)
        for i in range(1, len(to_batch_temp) + 1):
            batch_amount = to_batch_temp[:len(to_batch_temp)//i]
            input_shape = [len(batch_amount) * first_shape[0]] + list(first_shape)[1:]
            if model.memory_required(input_shape) < free_memory:
                to_batch = batch_amount
                break

        input_x = []
        mult = []
        c = []
        cond_or_uncond = []
        area = []
        control = None
        patches = None
        for x in to_batch:
            o = to_run.pop(x)
            p = o[0]
comfyanonymous's avatar
comfyanonymous committed
188
189
190
191
192
193
194
            input_x.append(p.input_x)
            mult.append(p.mult)
            c.append(p.conditioning)
            area.append(p.area)
            cond_or_uncond.append(o[1])
            control = p.control
            patches = p.patches
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213

        batch_chunks = len(cond_or_uncond)
        input_x = torch.cat(input_x)
        c = cond_cat(c)
        timestep_ = torch.cat([timestep] * batch_chunks)

        if control is not None:
            c['control'] = control.get_control(input_x, timestep_, c, len(cond_or_uncond))

        transformer_options = {}
        if 'transformer_options' in model_options:
            transformer_options = model_options['transformer_options'].copy()

        if patches is not None:
            if "patches" in transformer_options:
                cur_patches = transformer_options["patches"].copy()
                for p in patches:
                    if p in cur_patches:
                        cur_patches[p] = cur_patches[p] + patches[p]
214
                    else:
215
                        cur_patches[p] = patches[p]
216
                transformer_options["patches"] = cur_patches
217
218
            else:
                transformer_options["patches"] = patches
219

220
221
        transformer_options["cond_or_uncond"] = cond_or_uncond[:]
        transformer_options["sigmas"] = timestep
222

223
        c['transformer_options'] = transformer_options
224

225
226
227
228
        if 'model_function_wrapper' in model_options:
            output = model_options['model_function_wrapper'](model.apply_model, {"input": input_x, "timestep": timestep_, "c": c, "cond_or_uncond": cond_or_uncond}).chunk(batch_chunks)
        else:
            output = model.apply_model(input_x, timestep_, **c).chunk(batch_chunks)
comfyanonymous's avatar
comfyanonymous committed
229

230
        for o in range(batch_chunks):
231
            cond_index = cond_or_uncond[o]
232
233
234
235
236
237
238
239
240
241
242
243
244
            a = area[o]
            if a is None:
                out_conds[cond_index] += output[o] * mult[o]
                out_counts[cond_index] += mult[o]
            else:
                out_c = out_conds[cond_index]
                out_cts = out_counts[cond_index]
                dims = len(a) // 2
                for i in range(dims):
                    out_c = out_c.narrow(i + 2, a[i + dims], a[i])
                    out_cts = out_cts.narrow(i + 2, a[i + dims], a[i])
                out_c += output[o] * mult[o]
                out_cts += mult[o]
comfyanonymous's avatar
comfyanonymous committed
245

246
247
248
249
250
251
252
253
    for i in range(len(out_conds)):
        out_conds[i] /= out_counts[i]

    return out_conds

def calc_cond_uncond_batch(model, cond, uncond, x_in, timestep, model_options): #TODO: remove
    logging.warning("WARNING: The comfy.samplers.calc_cond_uncond_batch function is deprecated please use the calc_cond_batch one instead.")
    return tuple(calc_cond_batch(model, [cond, uncond], x_in, timestep, model_options))
comfyanonymous's avatar
comfyanonymous committed
254

255
def cfg_function(model, cond_pred, uncond_pred, cond_scale, x, timestep, model_options={}, cond=None, uncond=None):
256
257
258
259
260
261
    if "sampler_cfg_function" in model_options:
        args = {"cond": x - cond_pred, "uncond": x - uncond_pred, "cond_scale": cond_scale, "timestep": timestep, "input": x, "sigma": timestep,
                "cond_denoised": cond_pred, "uncond_denoised": uncond_pred, "model": model, "model_options": model_options}
        cfg_result = x - model_options["sampler_cfg_function"](args)
    else:
        cfg_result = uncond_pred + (cond_pred - uncond_pred) * cond_scale
262

263
264
265
266
    for fn in model_options.get("sampler_post_cfg_function", []):
        args = {"denoised": cfg_result, "cond": cond, "uncond": uncond, "model": model, "uncond_denoised": uncond_pred, "cond_denoised": cond_pred,
                "sigma": timestep, "model_options": model_options, "input": x}
        cfg_result = fn(args)
267

268
    return cfg_result
269

270
271
272
273
274
275
276
#The main sampling function shared by all the samplers
#Returns denoised
def sampling_function(model, x, timestep, uncond, cond, cond_scale, model_options={}, seed=None):
    if math.isclose(cond_scale, 1.0) and model_options.get("disable_cfg1_optimization", False) == False:
        uncond_ = None
    else:
        uncond_ = uncond
277

278
279
    conds = [cond, uncond_]
    out = calc_cond_batch(model, conds, x, timestep, model_options)
280
281
282
283
284
285

    for fn in model_options.get("sampler_pre_cfg_function", []):
        args = {"conds":conds, "conds_out": out, "cond_scale": cond_scale, "timestep": timestep,
                "input": x, "sigma": timestep, "model": model, "model_options": model_options}
        out  = fn(args)

286
    return cfg_function(model, out[0], out[1], cond_scale, x, timestep, model_options=model_options, cond=cond, uncond=uncond_)
comfyanonymous's avatar
comfyanonymous committed
287

comfyanonymous's avatar
comfyanonymous committed
288

289
class KSamplerX0Inpaint:
290
    def __init__(self, model, sigmas):
291
        self.inner_model = model
292
        self.sigmas = sigmas
293
    def __call__(self, x, sigma, denoise_mask, model_options={}, seed=None):
294
        if denoise_mask is not None:
295
            if "denoise_mask_function" in model_options:
296
                denoise_mask = model_options["denoise_mask_function"](sigma, denoise_mask, extra_options={"model": self.inner_model, "sigmas": self.sigmas})
297
            latent_mask = 1. - denoise_mask
298
            x = x * denoise_mask + self.inner_model.inner_model.model_sampling.noise_scaling(sigma.reshape([sigma.shape[0]] + [1] * (len(self.noise.shape) - 1)), self.noise, self.latent_image) * latent_mask
299
        out = self.inner_model(x, sigma, model_options=model_options, seed=seed)
300
        if denoise_mask is not None:
comfyanonymous's avatar
comfyanonymous committed
301
            out = out * denoise_mask + self.latent_image * latent_mask
302
        return out
303

304
305
def simple_scheduler(model_sampling, steps):
    s = model_sampling
comfyanonymous's avatar
comfyanonymous committed
306
    sigs = []
comfyanonymous's avatar
comfyanonymous committed
307
    ss = len(s.sigmas) / steps
comfyanonymous's avatar
comfyanonymous committed
308
    for x in range(steps):
comfyanonymous's avatar
comfyanonymous committed
309
        sigs += [float(s.sigmas[-(1 + int(x * ss))])]
comfyanonymous's avatar
comfyanonymous committed
310
311
312
    sigs += [0.0]
    return torch.FloatTensor(sigs)

313
314
def ddim_scheduler(model_sampling, steps):
    s = model_sampling
comfyanonymous's avatar
comfyanonymous committed
315
    sigs = []
comfyanonymous's avatar
comfyanonymous committed
316
    x = 1
317
318
319
320
321
322
323
    if math.isclose(float(s.sigmas[x]), 0, abs_tol=0.00001):
        steps += 1
        sigs = []
    else:
        sigs = [0.0]

    ss = max(len(s.sigmas) // steps, 1)
comfyanonymous's avatar
comfyanonymous committed
324
325
326
327
    while x < len(s.sigmas):
        sigs += [float(s.sigmas[x])]
        x += ss
    sigs = sigs[::-1]
comfyanonymous's avatar
comfyanonymous committed
328
329
    return torch.FloatTensor(sigs)

330
331
def normal_scheduler(model_sampling, steps, sgm=False, floor=False):
    s = model_sampling
comfyanonymous's avatar
comfyanonymous committed
332
333
334
    start = s.timestep(s.sigma_max)
    end = s.timestep(s.sigma_min)

335
    append_zero = True
comfyanonymous's avatar
comfyanonymous committed
336
337
338
    if sgm:
        timesteps = torch.linspace(start, end, steps + 1)[:-1]
    else:
339
340
341
        if math.isclose(float(s.sigma(end)), 0, abs_tol=0.00001):
            steps += 1
            append_zero = False
comfyanonymous's avatar
comfyanonymous committed
342
343
        timesteps = torch.linspace(start, end, steps)

344
345
346
    sigs = []
    for x in range(len(timesteps)):
        ts = timesteps[x]
347
348
349
350
351
        sigs.append(float(s.sigma(ts)))

    if append_zero:
        sigs += [0.0]

352
353
    return torch.FloatTensor(sigs)

354
355
356
357
358
359
360
361
362
363
364
365
# Implemented based on: https://arxiv.org/abs/2407.12173
def beta_scheduler(model_sampling, steps, alpha=0.6, beta=0.6):
    total_timesteps = (len(model_sampling.sigmas) - 1)
    ts = 1 - numpy.linspace(0, 1, steps, endpoint=False)
    ts = numpy.rint(scipy.stats.beta.ppf(ts, alpha, beta) * total_timesteps)

    sigs = []
    for t in ts:
        sigs += [float(model_sampling.sigmas[int(t)])]
    sigs += [0.0]
    return torch.FloatTensor(sigs)

Jacob Segal's avatar
Jacob Segal committed
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
def get_mask_aabb(masks):
    if masks.numel() == 0:
        return torch.zeros((0, 4), device=masks.device, dtype=torch.int)

    b = masks.shape[0]

    bounding_boxes = torch.zeros((b, 4), device=masks.device, dtype=torch.int)
    is_empty = torch.zeros((b), device=masks.device, dtype=torch.bool)
    for i in range(b):
        mask = masks[i]
        if mask.numel() == 0:
            continue
        if torch.max(mask != 0) == False:
            is_empty[i] = True
            continue
        y, x = torch.where(mask)
        bounding_boxes[i, 0] = torch.min(x)
        bounding_boxes[i, 1] = torch.min(y)
        bounding_boxes[i, 2] = torch.max(x)
        bounding_boxes[i, 3] = torch.max(y)

    return bounding_boxes, is_empty

389
def resolve_areas_and_cond_masks_multidim(conditions, dims, device):
Jacob Segal's avatar
Jacob Segal committed
390
391
392
393
    # We need to decide on an area outside the sampling loop in order to properly generate opposite areas of equal sizes.
    # While we're doing this, we can also resolve the mask device and scaling for performance reasons
    for i in range(len(conditions)):
        c = conditions[i]
394
395
        if 'area' in c:
            area = c['area']
396
            if area[0] == "percentage":
397
                modified = c.copy()
398
399
400
401
402
403
404
405
                a = area[1:]
                a_len = len(a) // 2
                area = ()
                for d in range(len(dims)):
                    area += (max(1, round(a[d] * dims[d])),)
                for d in range(len(dims)):
                    area += (round(a[d + a_len] * dims[d]),)

406
                modified['area'] = area
407
                c = modified
408
409
                conditions[i] = c

410
411
        if 'mask' in c:
            mask = c['mask']
Jacob Segal's avatar
Jacob Segal committed
412
            mask = mask.to(device=device)
413
            modified = c.copy()
414
            if len(mask.shape) == len(dims):
Jacob Segal's avatar
Jacob Segal committed
415
                mask = mask.unsqueeze(0)
416
417
            if mask.shape[1:] != dims:
                mask = torch.nn.functional.interpolate(mask.unsqueeze(1), size=dims, mode='bilinear', align_corners=False).squeeze(1)
Jacob Segal's avatar
Jacob Segal committed
418

419
            if modified.get("set_area_to_bounds", False): #TODO: handle dim != 2
Jacob Segal's avatar
Jacob Segal committed
420
                bounds = torch.max(torch.abs(mask),dim=0).values.unsqueeze(0)
Jacob Segal's avatar
Jacob Segal committed
421
422
423
424
                boxes, is_empty = get_mask_aabb(bounds)
                if is_empty[0]:
                    # Use the minimum possible size for efficiency reasons. (Since the mask is all-0, this becomes a noop anyway)
                    modified['area'] = (8, 8, 0, 0)
Jacob Segal's avatar
Jacob Segal committed
425
                else:
Jacob Segal's avatar
Jacob Segal committed
426
                    box = boxes[0]
Jacob Segal's avatar
Jacob Segal committed
427
                    H, W, Y, X = (box[3] - box[1] + 1, box[2] - box[0] + 1, box[1], box[0])
428
429
                    H = max(8, H)
                    W = max(8, W)
Jacob Segal's avatar
Jacob Segal committed
430
431
                    area = (int(H), int(W), int(Y), int(X))
                    modified['area'] = area
Jacob Segal's avatar
Jacob Segal committed
432
433

            modified['mask'] = mask
434
            conditions[i] = modified
Jacob Segal's avatar
Jacob Segal committed
435

436
437
438
439
440
def resolve_areas_and_cond_masks(conditions, h, w, device):
    logging.warning("WARNING: The comfy.samplers.resolve_areas_and_cond_masks function is deprecated please use the resolve_areas_and_cond_masks_multidim one instead.")
    return resolve_areas_and_cond_masks_multidim(conditions, [h, w], device)

def create_cond_with_same_area_if_none(conds, c): #TODO: handle dim != 2
441
    if 'area' not in c:
comfyanonymous's avatar
comfyanonymous committed
442
443
        return

444
    c_area = c['area']
comfyanonymous's avatar
comfyanonymous committed
445
446
    smallest = None
    for x in conds:
447
448
        if 'area' in x:
            a = x['area']
comfyanonymous's avatar
comfyanonymous committed
449
450
451
452
453
            if c_area[2] >= a[2] and c_area[3] >= a[3]:
                if a[0] + a[2] >= c_area[0] + c_area[2]:
                    if a[1] + a[3] >= c_area[1] + c_area[3]:
                        if smallest is None:
                            smallest = x
454
                        elif 'area' not in smallest:
comfyanonymous's avatar
comfyanonymous committed
455
456
                            smallest = x
                        else:
457
                            if smallest['area'][0] * smallest['area'][1] > a[0] * a[1]:
comfyanonymous's avatar
comfyanonymous committed
458
459
460
461
462
463
                                smallest = x
        else:
            if smallest is None:
                smallest = x
    if smallest is None:
        return
464
465
    if 'area' in smallest:
        if smallest['area'] == c_area:
comfyanonymous's avatar
comfyanonymous committed
466
            return
467
468
469
470

    out = c.copy()
    out['model_conds'] = smallest['model_conds'].copy() #TODO: which fields should be copied?
    conds += [out]
comfyanonymous's avatar
comfyanonymous committed
471

472
def calculate_start_end_timesteps(model, conds):
473
    s = model.model_sampling
474
475
476
477
478
    for t in range(len(conds)):
        x = conds[t]

        timestep_start = None
        timestep_end = None
479
        if 'start_percent' in x:
480
            timestep_start = s.percent_to_sigma(x['start_percent'])
481
        if 'end_percent' in x:
482
            timestep_end = s.percent_to_sigma(x['end_percent'])
483
484

        if (timestep_start is not None) or (timestep_end is not None):
485
            n = x.copy()
486
487
488
489
            if (timestep_start is not None):
                n['timestep_start'] = timestep_start
            if (timestep_end is not None):
                n['timestep_end'] = timestep_end
490
            conds[t] = n
491

492
def pre_run_control(model, conds):
493
    s = model.model_sampling
494
495
496
497
498
    for t in range(len(conds)):
        x = conds[t]

        timestep_start = None
        timestep_end = None
499
        percent_to_timestep_function = lambda a: s.percent_to_sigma(a)
500
        if 'control' in x:
501
            x['control'].pre_run(model, percent_to_timestep_function)
502

503
def apply_empty_x_to_equal_area(conds, uncond, name, uncond_fill_func):
comfyanonymous's avatar
comfyanonymous committed
504
505
506
507
508
509
    cond_cnets = []
    cond_other = []
    uncond_cnets = []
    uncond_other = []
    for t in range(len(conds)):
        x = conds[t]
510
511
512
        if 'area' not in x:
            if name in x and x[name] is not None:
                cond_cnets.append(x[name])
comfyanonymous's avatar
comfyanonymous committed
513
514
515
516
            else:
                cond_other.append((x, t))
    for t in range(len(uncond)):
        x = uncond[t]
517
518
519
        if 'area' not in x:
            if name in x and x[name] is not None:
                uncond_cnets.append(x[name])
comfyanonymous's avatar
comfyanonymous committed
520
521
522
523
524
525
526
527
528
            else:
                uncond_other.append((x, t))

    if len(uncond_cnets) > 0:
        return

    for x in range(len(cond_cnets)):
        temp = uncond_other[x % len(uncond_other)]
        o = temp[0]
529
530
        if name in o and o[name] is not None:
            n = o.copy()
531
            n[name] = uncond_fill_func(cond_cnets, x)
532
            uncond += [n]
comfyanonymous's avatar
comfyanonymous committed
533
        else:
534
            n = o.copy()
535
            n[name] = uncond_fill_func(cond_cnets, x)
536
            uncond[temp[1]] = n
537

538
def encode_model_conds(model_function, conds, noise, device, prompt_type, **kwargs):
539
540
    for t in range(len(conds)):
        x = conds[t]
541
        params = x.copy()
542
        params["device"] = device
543
        params["noise"] = noise
544
545
546
547
        default_width = None
        if len(noise.shape) >= 4: #TODO: 8 multiple should be set by the model
            default_width = noise.shape[3] * 8
        params["width"] = params.get("width", default_width)
548
549
        params["height"] = params.get("height", noise.shape[2] * 8)
        params["prompt_type"] = params.get("prompt_type", prompt_type)
550
551
552
553
554
        for k in kwargs:
            if k not in params:
                params[k] = kwargs[k]

        out = model_function(**params)
555
556
557
558
559
560
        x = x.copy()
        model_conds = x['model_conds'].copy()
        for k in out:
            model_conds[k] = out[k]
        x['model_conds'] = model_conds
        conds[t] = x
561
    return conds
562

comfyanonymous's avatar
comfyanonymous committed
563
564
565
566
567
class Sampler:
    def sample(self):
        pass

    def max_denoise(self, model_wrap, sigmas):
comfyanonymous's avatar
comfyanonymous committed
568
569
570
        max_sigma = float(model_wrap.inner_model.model_sampling.sigma_max)
        sigma = float(sigmas[0])
        return math.isclose(max_sigma, sigma, rel_tol=1e-05) or sigma > max_sigma
comfyanonymous's avatar
comfyanonymous committed
571

572
KSAMPLER_NAMES = ["euler", "euler_cfg_pp", "euler_ancestral", "euler_ancestral_cfg_pp", "heun", "heunpp2","dpm_2", "dpm_2_ancestral",
comfyanonymous's avatar
comfyanonymous committed
573
                  "lms", "dpm_fast", "dpm_adaptive", "dpmpp_2s_ancestral", "dpmpp_sde", "dpmpp_sde_gpu",
comfyanonymous's avatar
comfyanonymous committed
574
                  "dpmpp_2m", "dpmpp_2m_sde", "dpmpp_2m_sde_gpu", "dpmpp_3m_sde", "dpmpp_3m_sde_gpu", "ddpm", "lcm",
comfyanonymous's avatar
comfyanonymous committed
575
                  "ipndm", "ipndm_v", "deis"]
comfyanonymous's avatar
comfyanonymous committed
576

577
578
579
580
581
class KSAMPLER(Sampler):
    def __init__(self, sampler_function, extra_options={}, inpaint_options={}):
        self.sampler_function = sampler_function
        self.extra_options = extra_options
        self.inpaint_options = inpaint_options
comfyanonymous's avatar
comfyanonymous committed
582

583
584
    def sample(self, model_wrap, sigmas, extra_args, callback, noise, latent_image=None, denoise_mask=None, disable_pbar=False):
        extra_args["denoise_mask"] = denoise_mask
585
        model_k = KSamplerX0Inpaint(model_wrap, sigmas)
586
587
588
589
590
591
        model_k.latent_image = latent_image
        if self.inpaint_options.get("random", False): #TODO: Should this be the default?
            generator = torch.manual_seed(extra_args.get("seed", 41) + 1)
            model_k.noise = torch.randn(noise.shape, generator=generator, device="cpu").to(noise.dtype).to(noise.device)
        else:
            model_k.noise = noise
comfyanonymous's avatar
comfyanonymous committed
592

593
        noise = model_wrap.inner_model.model_sampling.noise_scaling(sigmas[0], noise, latent_image, self.max_denoise(model_wrap, sigmas))
594
595
596
597
598
599
600

        k_callback = None
        total_steps = len(sigmas) - 1
        if callback is not None:
            k_callback = lambda x: callback(x["i"], x["denoised"], x["x"], total_steps)

        samples = self.sampler_function(model_k, noise, sigmas, extra_args=extra_args, callback=k_callback, disable=disable_pbar, **self.extra_options)
601
        samples = model_wrap.inner_model.model_sampling.inverse_noise_scaling(sigmas[-1], samples)
602
603
604
605
606
607
        return samples


def ksampler(sampler_name, extra_options={}, inpaint_options={}):
    if sampler_name == "dpm_fast":
        def dpm_fast_function(model, noise, sigmas, extra_args, callback, disable):
608
609
610
            if len(sigmas) <= 1:
                return noise

comfyanonymous's avatar
comfyanonymous committed
611
612
613
            sigma_min = sigmas[-1]
            if sigma_min == 0:
                sigma_min = sigmas[-2]
614
615
616
617
            total_steps = len(sigmas) - 1
            return k_diffusion_sampling.sample_dpm_fast(model, noise, sigma_min, sigmas[0], total_steps, extra_args=extra_args, callback=callback, disable=disable)
        sampler_function = dpm_fast_function
    elif sampler_name == "dpm_adaptive":
618
        def dpm_adaptive_function(model, noise, sigmas, extra_args, callback, disable, **extra_options):
619
620
621
            if len(sigmas) <= 1:
                return noise

622
623
624
            sigma_min = sigmas[-1]
            if sigma_min == 0:
                sigma_min = sigmas[-2]
625
            return k_diffusion_sampling.sample_dpm_adaptive(model, noise, sigma_min, sigmas[0], extra_args=extra_args, callback=callback, disable=disable, **extra_options)
626
627
628
        sampler_function = dpm_adaptive_function
    else:
        sampler_function = getattr(k_diffusion_sampling, "sample_{}".format(sampler_name))
comfyanonymous's avatar
comfyanonymous committed
629

630
    return KSAMPLER(sampler_function, extra_options, inpaint_options)
comfyanonymous's avatar
comfyanonymous committed
631
632


633
634
635
def process_conds(model, noise, conds, device, latent_image=None, denoise_mask=None, seed=None):
    for k in conds:
        conds[k] = conds[k][:]
636
        resolve_areas_and_cond_masks_multidim(conds[k], noise.shape[2:], device)
comfyanonymous's avatar
comfyanonymous committed
637

638
639
    for k in conds:
        calculate_start_end_timesteps(model, conds[k])
comfyanonymous's avatar
comfyanonymous committed
640

641
642
643
    if hasattr(model, 'extra_conds'):
        for k in conds:
            conds[k] = encode_model_conds(model.extra_conds, conds[k], noise, device, k, latent_image=latent_image, denoise_mask=denoise_mask, seed=seed)
comfyanonymous's avatar
comfyanonymous committed
644

645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
    #make sure each cond area has an opposite one with the same area
    for k in conds:
        for c in conds[k]:
            for kk in conds:
                if k != kk:
                    create_cond_with_same_area_if_none(conds[kk], c)

    for k in conds:
        pre_run_control(model, conds[k])

    if "positive" in conds:
        positive = conds["positive"]
        for k in conds:
            if k != "positive":
                apply_empty_x_to_equal_area(list(filter(lambda c: c.get('control_apply_to_uncond', False) == True, positive)), conds[k], 'control', lambda cond_cnets, x: cond_cnets[x])
                apply_empty_x_to_equal_area(positive, conds[k], 'gligen', lambda cond_cnets, x: cond_cnets[x])
comfyanonymous's avatar
comfyanonymous committed
661

662
663
    return conds

664
665
666
667
668
669
670
class CFGGuider:
    def __init__(self, model_patcher):
        self.model_patcher = model_patcher
        self.model_options = model_patcher.model_options
        self.original_conds = {}
        self.cfg = 1.0

comfyanonymous's avatar
comfyanonymous committed
671
672
    def set_conds(self, positive, negative):
        self.inner_set_conds({"positive": positive, "negative": negative})
673
674
675
676

    def set_cfg(self, cfg):
        self.cfg = cfg

comfyanonymous's avatar
comfyanonymous committed
677
678
679
680
    def inner_set_conds(self, conds):
        for k in conds:
            self.original_conds[k] = comfy.sampler_helpers.convert_cond(conds[k])

681
682
683
684
685
686
687
688
689
    def __call__(self, *args, **kwargs):
        return self.predict_noise(*args, **kwargs)

    def predict_noise(self, x, timestep, model_options={}, seed=None):
        return sampling_function(self.inner_model, x, timestep, self.conds.get("negative", None), self.conds.get("positive", None), self.cfg, model_options=model_options, seed=seed)

    def inner_sample(self, noise, latent_image, device, sampler, sigmas, denoise_mask, callback, disable_pbar, seed):
        if latent_image is not None and torch.count_nonzero(latent_image) > 0: #Don't shift the empty latent image.
            latent_image = self.inner_model.process_latent_in(latent_image)
690

691
692
693
694
695
696
697
698
        self.conds = process_conds(self.inner_model, noise, self.conds, device, latent_image, denoise_mask, seed)

        extra_args = {"model_options": self.model_options, "seed":seed}

        samples = sampler.sample(self, sigmas, extra_args, callback, noise, latent_image, denoise_mask, disable_pbar)
        return self.inner_model.process_latent_out(samples.to(torch.float32))

    def sample(self, noise, latent_image, sampler, sigmas, denoise_mask=None, callback=None, disable_pbar=False, seed=None):
comfyanonymous's avatar
comfyanonymous committed
699
700
701
        if sigmas.shape[-1] == 0:
            return latent_image

702
703
704
705
706
707
708
709
710
        self.conds = {}
        for k in self.original_conds:
            self.conds[k] = list(map(lambda a: a.copy(), self.original_conds[k]))

        self.inner_model, self.conds, self.loaded_models = comfy.sampler_helpers.prepare_sampling(self.model_patcher, noise.shape, self.conds)
        device = self.model_patcher.load_device

        if denoise_mask is not None:
            denoise_mask = comfy.sampler_helpers.prepare_mask(denoise_mask, noise.shape, device)
711

712
713
714
        noise = noise.to(device)
        latent_image = latent_image.to(device)
        sigmas = sigmas.to(device)
715

716
        output = self.inner_sample(noise, latent_image, device, sampler, sigmas, denoise_mask, callback, disable_pbar, seed)
comfyanonymous's avatar
comfyanonymous committed
717

718
719
720
721
722
        comfy.sampler_helpers.cleanup_models(self.conds, self.loaded_models)
        del self.inner_model
        del self.conds
        del self.loaded_models
        return output
comfyanonymous's avatar
comfyanonymous committed
723
724


725
def sample(model, noise, positive, negative, cfg, device, sampler, sigmas, model_options={}, latent_image=None, denoise_mask=None, callback=None, disable_pbar=False, seed=None):
726
    cfg_guider = CFGGuider(model)
comfyanonymous's avatar
comfyanonymous committed
727
    cfg_guider.set_conds(positive, negative)
728
729
    cfg_guider.set_cfg(cfg)
    return cfg_guider.sample(noise, latent_image, sampler, sigmas, denoise_mask, callback, disable_pbar, seed)
comfyanonymous's avatar
comfyanonymous committed
730
731


732
SCHEDULER_NAMES = ["normal", "karras", "exponential", "sgm_uniform", "simple", "ddim_uniform", "beta"]
comfyanonymous's avatar
comfyanonymous committed
733
734
SAMPLER_NAMES = KSAMPLER_NAMES + ["ddim", "uni_pc", "uni_pc_bh2"]

735
def calculate_sigmas(model_sampling, scheduler_name, steps):
comfyanonymous's avatar
comfyanonymous committed
736
    if scheduler_name == "karras":
737
        sigmas = k_diffusion_sampling.get_sigmas_karras(n=steps, sigma_min=float(model_sampling.sigma_min), sigma_max=float(model_sampling.sigma_max))
comfyanonymous's avatar
comfyanonymous committed
738
    elif scheduler_name == "exponential":
739
        sigmas = k_diffusion_sampling.get_sigmas_exponential(n=steps, sigma_min=float(model_sampling.sigma_min), sigma_max=float(model_sampling.sigma_max))
comfyanonymous's avatar
comfyanonymous committed
740
    elif scheduler_name == "normal":
741
        sigmas = normal_scheduler(model_sampling, steps)
comfyanonymous's avatar
comfyanonymous committed
742
    elif scheduler_name == "simple":
743
        sigmas = simple_scheduler(model_sampling, steps)
comfyanonymous's avatar
comfyanonymous committed
744
    elif scheduler_name == "ddim_uniform":
745
        sigmas = ddim_scheduler(model_sampling, steps)
comfyanonymous's avatar
comfyanonymous committed
746
    elif scheduler_name == "sgm_uniform":
747
        sigmas = normal_scheduler(model_sampling, steps, sgm=True)
748
749
    elif scheduler_name == "beta":
        sigmas = beta_scheduler(model_sampling, steps)
comfyanonymous's avatar
comfyanonymous committed
750
    else:
751
        logging.error("error invalid scheduler {}".format(scheduler_name))
comfyanonymous's avatar
comfyanonymous committed
752
753
    return sigmas

754
def sampler_object(name):
755
    if name == "uni_pc":
comfyanonymous's avatar
comfyanonymous committed
756
        sampler = KSAMPLER(uni_pc.sample_unipc)
757
    elif name == "uni_pc_bh2":
comfyanonymous's avatar
comfyanonymous committed
758
        sampler = KSAMPLER(uni_pc.sample_unipc_bh2)
759
    elif name == "ddim":
760
        sampler = ksampler("euler", inpaint_options={"random": True})
761
762
763
764
    else:
        sampler = ksampler(name)
    return sampler

comfyanonymous's avatar
comfyanonymous committed
765
class KSampler:
comfyanonymous's avatar
comfyanonymous committed
766
767
    SCHEDULERS = SCHEDULER_NAMES
    SAMPLERS = SAMPLER_NAMES
768
    DISCARD_PENULTIMATE_SIGMA_SAMPLERS = set(('dpm_2', 'dpm_2_ancestral', 'uni_pc', 'uni_pc_bh2'))
comfyanonymous's avatar
comfyanonymous committed
769

770
    def __init__(self, model, steps, device, sampler=None, scheduler=None, denoise=None, model_options={}):
comfyanonymous's avatar
comfyanonymous committed
771
772
773
774
775
776
777
778
779
        self.model = model
        self.device = device
        if scheduler not in self.SCHEDULERS:
            scheduler = self.SCHEDULERS[0]
        if sampler not in self.SAMPLERS:
            sampler = self.SAMPLERS[0]
        self.scheduler = scheduler
        self.sampler = sampler
        self.set_steps(steps, denoise)
780
        self.denoise = denoise
781
        self.model_options = model_options
comfyanonymous's avatar
comfyanonymous committed
782

comfyanonymous's avatar
comfyanonymous committed
783
784
785
786
    def calculate_sigmas(self, steps):
        sigmas = None

        discard_penultimate_sigma = False
787
        if self.sampler in self.DISCARD_PENULTIMATE_SIGMA_SAMPLERS:
comfyanonymous's avatar
comfyanonymous committed
788
789
790
            steps += 1
            discard_penultimate_sigma = True

791
        sigmas = calculate_sigmas(self.model.get_model_object("model_sampling"), self.scheduler, steps)
comfyanonymous's avatar
comfyanonymous committed
792
793
794
795
796

        if discard_penultimate_sigma:
            sigmas = torch.cat([sigmas[:-2], sigmas[-1:]])
        return sigmas

comfyanonymous's avatar
comfyanonymous committed
797
798
    def set_steps(self, steps, denoise=None):
        self.steps = steps
799
        if denoise is None or denoise > 0.9999:
comfyanonymous's avatar
comfyanonymous committed
800
            self.sigmas = self.calculate_sigmas(steps).to(self.device)
comfyanonymous's avatar
comfyanonymous committed
801
        else:
comfyanonymous's avatar
comfyanonymous committed
802
803
804
805
806
807
            if denoise <= 0.0:
                self.sigmas = torch.FloatTensor([])
            else:
                new_steps = int(steps/denoise)
                sigmas = self.calculate_sigmas(new_steps).to(self.device)
                self.sigmas = sigmas[-(steps + 1):]
comfyanonymous's avatar
comfyanonymous committed
808

809
    def sample(self, noise, positive, negative, cfg, latent_image=None, start_step=None, last_step=None, force_full_denoise=False, denoise_mask=None, sigmas=None, callback=None, disable_pbar=False, seed=None):
810
811
        if sigmas is None:
            sigmas = self.sigmas
comfyanonymous's avatar
comfyanonymous committed
812

comfyanonymous's avatar
comfyanonymous committed
813
        if last_step is not None and last_step < (len(sigmas) - 1):
comfyanonymous's avatar
comfyanonymous committed
814
            sigmas = sigmas[:last_step + 1]
comfyanonymous's avatar
comfyanonymous committed
815
816
817
            if force_full_denoise:
                sigmas[-1] = 0

comfyanonymous's avatar
comfyanonymous committed
818
        if start_step is not None:
comfyanonymous's avatar
comfyanonymous committed
819
820
821
822
823
824
825
            if start_step < (len(sigmas) - 1):
                sigmas = sigmas[start_step:]
            else:
                if latent_image is not None:
                    return latent_image
                else:
                    return torch.zeros_like(noise)
comfyanonymous's avatar
comfyanonymous committed
826

827
        sampler = sampler_object(self.sampler)
828

829
        return sample(self.model, noise, positive, negative, cfg, self.device, sampler, sigmas, self.model_options, latent_image=latent_image, denoise_mask=denoise_mask, callback=callback, disable_pbar=disable_pbar, seed=seed)