samplers.py 27.9 KB
Newer Older
1
2
from .k_diffusion import sampling as k_diffusion_sampling
from .k_diffusion import external as k_diffusion_external
3
from .extra_samplers import uni_pc
comfyanonymous's avatar
comfyanonymous committed
4
5
import torch
import contextlib
6
from comfy import model_management
comfyanonymous's avatar
comfyanonymous committed
7
8
from .ldm.models.diffusion.ddim import DDIMSampler
from .ldm.modules.diffusionmodules.util import make_ddim_timesteps
comfyanonymous's avatar
comfyanonymous committed
9

comfyanonymous's avatar
comfyanonymous committed
10
11
#The main sampling function shared by all the samplers
#Returns predicted noise
12
def sampling_function(model_function, x, timestep, uncond, cond, cond_scale, cond_concat=None, model_options={}):
comfyanonymous's avatar
comfyanonymous committed
13
        def get_area_and_mult(cond, x_in, cond_concat_in, timestep_in):
14
15
16
17
18
19
            area = (x_in.shape[2], x_in.shape[3], 0, 0)
            strength = 1.0
            if 'area' in cond[1]:
                area = cond[1]['area']
            if 'strength' in cond[1]:
                strength = cond[1]['strength']
20

21
            adm_cond = None
22
23
            if 'adm_encoded' in cond[1]:
                adm_cond = cond[1]['adm_encoded']
24

25
            input_x = x_in[:,:,area[2]:area[0] + area[2],area[3]:area[1] + area[3]]
Jacob Segal's avatar
Jacob Segal committed
26
27
28
            if 'mask' in cond[1]:
                # Scale the mask to the size of the input
                # The mask should have been resized as we began the sampling process
29
30
31
                mask_strength = 1.0
                if "mask_strength" in cond[1]:
                    mask_strength = cond[1]["mask_strength"]
Jacob Segal's avatar
Jacob Segal committed
32
33
34
                mask = cond[1]['mask']
                assert(mask.shape[1] == x_in.shape[2])
                assert(mask.shape[2] == x_in.shape[3])
35
                mask = mask[:,area[2]:area[0] + area[2],area[3]:area[1] + area[3]] * mask_strength
Jacob Segal's avatar
Jacob Segal committed
36
                mask = mask.unsqueeze(1).repeat(input_x.shape[0] // mask.shape[0], input_x.shape[1], 1, 1)
Jacob Segal's avatar
Jacob Segal committed
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
            else:
                mask = torch.ones_like(input_x)
            mult = mask * strength

            if 'mask' not in cond[1]:
                rr = 8
                if area[2] != 0:
                    for t in range(rr):
                        mult[:,:,t:1+t,:] *= ((1.0/rr) * (t + 1))
                if (area[0] + area[2]) < x_in.shape[2]:
                    for t in range(rr):
                        mult[:,:,area[0] - 1 - t:area[0] - t,:] *= ((1.0/rr) * (t + 1))
                if area[3] != 0:
                    for t in range(rr):
                        mult[:,:,:,t:1+t] *= ((1.0/rr) * (t + 1))
                if (area[1] + area[3]) < x_in.shape[3]:
                    for t in range(rr):
                        mult[:,:,:,area[1] - 1 - t:area[1] - t] *= ((1.0/rr) * (t + 1))

comfyanonymous's avatar
comfyanonymous committed
56
57
58
59
60
61
62
63
            conditionning = {}
            conditionning['c_crossattn'] = cond[0]
            if cond_concat_in is not None and len(cond_concat_in) > 0:
                cropped = []
                for x in cond_concat_in:
                    cr = x[:,:,area[2]:area[0] + area[2],area[3]:area[1] + area[3]]
                    cropped.append(cr)
                conditionning['c_concat'] = torch.cat(cropped, dim=1)
comfyanonymous's avatar
comfyanonymous committed
64

65
66
67
            if adm_cond is not None:
                conditionning['c_adm'] = adm_cond

comfyanonymous's avatar
comfyanonymous committed
68
69
70
            control = None
            if 'control' in cond[1]:
                control = cond[1]['control']
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

            patches = None
            if 'gligen' in cond[1]:
                gligen = cond[1]['gligen']
                patches = {}
                gligen_type = gligen[0]
                gligen_model = gligen[1]
                if gligen_type == "position":
                    gligen_patch = gligen_model.set_position(input_x.shape, gligen[2], input_x.device)
                else:
                    gligen_patch = gligen_model.set_empty(input_x.shape, input_x.device)

                patches['middle_patch'] = [gligen_patch]

            return (input_x, mult, conditionning, area, control, patches)
comfyanonymous's avatar
comfyanonymous committed
86
87

        def cond_equal_size(c1, c2):
comfyanonymous's avatar
comfyanonymous committed
88
89
            if c1 is c2:
                return True
comfyanonymous's avatar
comfyanonymous committed
90
91
92
93
94
95
96
97
            if c1.keys() != c2.keys():
                return False
            if 'c_crossattn' in c1:
                if c1['c_crossattn'].shape != c2['c_crossattn'].shape:
                    return False
            if 'c_concat' in c1:
                if c1['c_concat'].shape != c2['c_concat'].shape:
                    return False
98
99
100
            if 'c_adm' in c1:
                if c1['c_adm'].shape != c2['c_adm'].shape:
                    return False
comfyanonymous's avatar
comfyanonymous committed
101
102
            return True

comfyanonymous's avatar
comfyanonymous committed
103
104
105
        def can_concat_cond(c1, c2):
            if c1[0].shape != c2[0].shape:
                return False
106
107

            #control
comfyanonymous's avatar
comfyanonymous committed
108
109
110
111
112
113
            if (c1[4] is None) != (c2[4] is None):
                return False
            if c1[4] is not None:
                if c1[4] is not c2[4]:
                    return False

114
115
116
117
118
119
120
            #patches
            if (c1[5] is None) != (c2[5] is None):
                return False
            if (c1[5] is not None):
                if c1[5] is not c2[5]:
                    return False

comfyanonymous's avatar
comfyanonymous committed
121
122
            return cond_equal_size(c1[2], c2[2])

comfyanonymous's avatar
comfyanonymous committed
123
124
125
        def cond_cat(c_list):
            c_crossattn = []
            c_concat = []
126
            c_adm = []
comfyanonymous's avatar
comfyanonymous committed
127
128
129
130
131
            for x in c_list:
                if 'c_crossattn' in x:
                    c_crossattn.append(x['c_crossattn'])
                if 'c_concat' in x:
                    c_concat.append(x['c_concat'])
132
133
                if 'c_adm' in x:
                    c_adm.append(x['c_adm'])
comfyanonymous's avatar
comfyanonymous committed
134
135
136
137
138
            out = {}
            if len(c_crossattn) > 0:
                out['c_crossattn'] = [torch.cat(c_crossattn)]
            if len(c_concat) > 0:
                out['c_concat'] = [torch.cat(c_concat)]
139
140
            if len(c_adm) > 0:
                out['c_adm'] = torch.cat(c_adm)
comfyanonymous's avatar
comfyanonymous committed
141
142
            return out

143
        def calc_cond_uncond_batch(model_function, cond, uncond, x_in, timestep, max_total_area, cond_concat_in, model_options):
comfyanonymous's avatar
comfyanonymous committed
144
145
            out_cond = torch.zeros_like(x_in)
            out_count = torch.ones_like(x_in)/100000.0
146
147
148
149
150
151

            out_uncond = torch.zeros_like(x_in)
            out_uncond_count = torch.ones_like(x_in)/100000.0

            COND = 0
            UNCOND = 1
comfyanonymous's avatar
comfyanonymous committed
152

153
            to_run = []
comfyanonymous's avatar
comfyanonymous committed
154
            for x in cond:
comfyanonymous's avatar
comfyanonymous committed
155
                p = get_area_and_mult(x, x_in, cond_concat_in, timestep)
156
                if p is None:
comfyanonymous's avatar
comfyanonymous committed
157
                    continue
158
159
160

                to_run += [(p, COND)]
            for x in uncond:
comfyanonymous's avatar
comfyanonymous committed
161
                p = get_area_and_mult(x, x_in, cond_concat_in, timestep)
162
163
164
165
166
167
168
169
                if p is None:
                    continue

                to_run += [(p, UNCOND)]

            while len(to_run) > 0:
                first = to_run[0]
                first_shape = first[0][0].shape
170
                to_batch_temp = []
171
                for x in range(len(to_run)):
comfyanonymous's avatar
comfyanonymous committed
172
173
                    if can_concat_cond(to_run[x][0], first[0]):
                        to_batch_temp += [x]
174
175
176
177
178
179
180
181
182

                to_batch_temp.reverse()
                to_batch = to_batch_temp[:1]

                for i in range(1, len(to_batch_temp) + 1):
                    batch_amount = to_batch_temp[:len(to_batch_temp)//i]
                    if (len(batch_amount) * first_shape[0] * first_shape[2] * first_shape[3] < max_total_area):
                        to_batch = batch_amount
                        break
183
184
185
186
187
188

                input_x = []
                mult = []
                c = []
                cond_or_uncond = []
                area = []
comfyanonymous's avatar
comfyanonymous committed
189
                control = None
190
                patches = None
191
192
193
194
195
196
197
198
                for x in to_batch:
                    o = to_run.pop(x)
                    p = o[0]
                    input_x += [p[0]]
                    mult += [p[1]]
                    c += [p[2]]
                    area += [p[3]]
                    cond_or_uncond += [o[1]]
comfyanonymous's avatar
comfyanonymous committed
199
                    control = p[4]
200
                    patches = p[5]
201
202
203

                batch_chunks = len(cond_or_uncond)
                input_x = torch.cat(input_x)
comfyanonymous's avatar
comfyanonymous committed
204
                c = cond_cat(c)
comfyanonymous's avatar
comfyanonymous committed
205
                timestep_ = torch.cat([timestep] * batch_chunks)
206

comfyanonymous's avatar
comfyanonymous committed
207
                if control is not None:
208
                    c['control'] = control.get_control(input_x, timestep_, c['c_crossattn'], len(cond_or_uncond))
comfyanonymous's avatar
comfyanonymous committed
209

210
                transformer_options = {}
211
                if 'transformer_options' in model_options:
212
213
214
                    transformer_options = model_options['transformer_options'].copy()

                if patches is not None:
215
216
217
218
219
220
221
222
223
                    if "patches" in transformer_options:
                        cur_patches = transformer_options["patches"].copy()
                        for p in patches:
                            if p in cur_patches:
                                cur_patches[p] = cur_patches[p] + patches[p]
                            else:
                                cur_patches[p] = patches[p]
                    else:
                        transformer_options["patches"] = patches
224
225

                c['transformer_options'] = transformer_options
226

comfyanonymous's avatar
comfyanonymous committed
227
                output = model_function(input_x, timestep_, cond=c).chunk(batch_chunks)
comfyanonymous's avatar
comfyanonymous committed
228
                del input_x
229

230
231
                model_management.throw_exception_if_processing_interrupted()

232
233
234
235
236
237
238
                for o in range(batch_chunks):
                    if cond_or_uncond[o] == COND:
                        out_cond[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += output[o] * mult[o]
                        out_count[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += mult[o]
                    else:
                        out_uncond[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += output[o] * mult[o]
                        out_uncond_count[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += mult[o]
comfyanonymous's avatar
comfyanonymous committed
239
240
241
242
                del mult

            out_cond /= out_count
            del out_count
243
244
245
246
            out_uncond /= out_uncond_count
            del out_uncond_count

            return out_cond, out_uncond
comfyanonymous's avatar
comfyanonymous committed
247
248


249
        max_total_area = model_management.maximum_batch_area()
250
        cond, uncond = calc_cond_uncond_batch(model_function, cond, uncond, x, timestep, max_total_area, cond_concat, model_options)
251
252
253
254
        if "sampler_cfg_function" in model_options:
            return model_options["sampler_cfg_function"](cond, uncond, cond_scale)
        else:
            return uncond + (cond - uncond) * cond_scale
comfyanonymous's avatar
comfyanonymous committed
255

comfyanonymous's avatar
comfyanonymous committed
256
257
258
259
260
261
262
263
264
265
266
267
268
269

class CompVisVDenoiser(k_diffusion_external.DiscreteVDDPMDenoiser):
    def __init__(self, model, quantize=False, device='cpu'):
        super().__init__(model, model.alphas_cumprod, quantize=quantize)

    def get_v(self, x, t, cond, **kwargs):
        return self.inner_model.apply_model(x, t, cond, **kwargs)


class CFGNoisePredictor(torch.nn.Module):
    def __init__(self, model):
        super().__init__()
        self.inner_model = model
        self.alphas_cumprod = model.alphas_cumprod
270
271
    def apply_model(self, x, timestep, cond, uncond, cond_scale, cond_concat=None, model_options={}):
        out = sampling_function(self.inner_model.apply_model, x, timestep, uncond, cond, cond_scale, cond_concat, model_options=model_options)
comfyanonymous's avatar
comfyanonymous committed
272
273
274
275
        return out


class KSamplerX0Inpaint(torch.nn.Module):
276
277
278
    def __init__(self, model):
        super().__init__()
        self.inner_model = model
279
    def forward(self, x, sigma, uncond, cond, cond_scale, denoise_mask, cond_concat=None, model_options={}):
280
281
        if denoise_mask is not None:
            latent_mask = 1. - denoise_mask
282
            x = x * denoise_mask + (self.latent_image + self.noise * sigma.reshape([sigma.shape[0]] + [1] * (len(self.noise.shape) - 1))) * latent_mask
283
        out = self.inner_model(x, sigma, cond=cond, uncond=uncond, cond_scale=cond_scale, cond_concat=cond_concat, model_options=model_options)
284
285
286
287
288
289
        if denoise_mask is not None:
            out *= denoise_mask

        if denoise_mask is not None:
            out += self.latent_image * latent_mask
        return out
290

comfyanonymous's avatar
comfyanonymous committed
291
292
293
294
295
296
297
298
def simple_scheduler(model, steps):
    sigs = []
    ss = len(model.sigmas) / steps
    for x in range(steps):
        sigs += [float(model.sigmas[-(1 + int(x * ss))])]
    sigs += [0.0]
    return torch.FloatTensor(sigs)

comfyanonymous's avatar
comfyanonymous committed
299
300
301
302
def ddim_scheduler(model, steps):
    sigs = []
    ddim_timesteps = make_ddim_timesteps(ddim_discr_method="uniform", num_ddim_timesteps=steps, num_ddpm_timesteps=model.inner_model.inner_model.num_timesteps, verbose=False)
    for x in range(len(ddim_timesteps) - 1, -1, -1):
303
304
305
306
        ts = ddim_timesteps[x]
        if ts > 999:
            ts = 999
        sigs.append(model.t_to_sigma(torch.tensor(ts)))
comfyanonymous's avatar
comfyanonymous committed
307
308
309
    sigs += [0.0]
    return torch.FloatTensor(sigs)

comfyanonymous's avatar
comfyanonymous committed
310
311
312
313
314
315
316
317
318
def blank_inpaint_image_like(latent_image):
    blank_image = torch.ones_like(latent_image)
    # these are the values for "zero" in pixel space translated to latent space
    blank_image[:,0] *= 0.8223
    blank_image[:,1] *= -0.6876
    blank_image[:,2] *= 0.6364
    blank_image[:,3] *= 0.1380
    return blank_image

Jacob Segal's avatar
Jacob Segal committed
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
def get_mask_aabb(masks):
    if masks.numel() == 0:
        return torch.zeros((0, 4), device=masks.device, dtype=torch.int)

    b = masks.shape[0]

    bounding_boxes = torch.zeros((b, 4), device=masks.device, dtype=torch.int)
    is_empty = torch.zeros((b), device=masks.device, dtype=torch.bool)
    for i in range(b):
        mask = masks[i]
        if mask.numel() == 0:
            continue
        if torch.max(mask != 0) == False:
            is_empty[i] = True
            continue
        y, x = torch.where(mask)
        bounding_boxes[i, 0] = torch.min(x)
        bounding_boxes[i, 1] = torch.min(y)
        bounding_boxes[i, 2] = torch.max(x)
        bounding_boxes[i, 3] = torch.max(y)

    return bounding_boxes, is_empty

Jacob Segal's avatar
Jacob Segal committed
342
343
344
345
346
347
348
349
350
351
352
353
354
355
def resolve_cond_masks(conditions, h, w, device):
    # We need to decide on an area outside the sampling loop in order to properly generate opposite areas of equal sizes.
    # While we're doing this, we can also resolve the mask device and scaling for performance reasons
    for i in range(len(conditions)):
        c = conditions[i]
        if 'mask' in c[1]:
            mask = c[1]['mask']
            mask = mask.to(device=device)
            modified = c[1].copy()
            if len(mask.shape) == 2:
                mask = mask.unsqueeze(0)
            if mask.shape[2] != h or mask.shape[3] != w:
                mask = torch.nn.functional.interpolate(mask.unsqueeze(1), size=(h, w), mode='bilinear', align_corners=False).squeeze(1)

Jacob Segal's avatar
Jacob Segal committed
356
            if modified.get("set_area_to_bounds", False):
Jacob Segal's avatar
Jacob Segal committed
357
                bounds = torch.max(torch.abs(mask),dim=0).values.unsqueeze(0)
Jacob Segal's avatar
Jacob Segal committed
358
359
360
361
                boxes, is_empty = get_mask_aabb(bounds)
                if is_empty[0]:
                    # Use the minimum possible size for efficiency reasons. (Since the mask is all-0, this becomes a noop anyway)
                    modified['area'] = (8, 8, 0, 0)
Jacob Segal's avatar
Jacob Segal committed
362
                else:
Jacob Segal's avatar
Jacob Segal committed
363
                    box = boxes[0]
Jacob Segal's avatar
Jacob Segal committed
364
                    H, W, Y, X = (box[3] - box[1] + 1, box[2] - box[0] + 1, box[1], box[0])
365
366
                    H = max(8, H)
                    W = max(8, W)
Jacob Segal's avatar
Jacob Segal committed
367
368
                    area = (int(H), int(W), int(Y), int(X))
                    modified['area'] = area
Jacob Segal's avatar
Jacob Segal committed
369
370
371
372

            modified['mask'] = mask
            conditions[i] = [c[0], modified]

comfyanonymous's avatar
comfyanonymous committed
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
def create_cond_with_same_area_if_none(conds, c):
    if 'area' not in c[1]:
        return

    c_area = c[1]['area']
    smallest = None
    for x in conds:
        if 'area' in x[1]:
            a = x[1]['area']
            if c_area[2] >= a[2] and c_area[3] >= a[3]:
                if a[0] + a[2] >= c_area[0] + c_area[2]:
                    if a[1] + a[3] >= c_area[1] + c_area[3]:
                        if smallest is None:
                            smallest = x
                        elif 'area' not in smallest[1]:
                            smallest = x
                        else:
                            if smallest[1]['area'][0] * smallest[1]['area'][1] > a[0] * a[1]:
                                smallest = x
        else:
            if smallest is None:
                smallest = x
    if smallest is None:
        return
    if 'area' in smallest[1]:
        if smallest[1]['area'] == c_area:
            return
    n = c[1].copy()
    conds += [[smallest[0], n]]
comfyanonymous's avatar
comfyanonymous committed
402

403
def apply_empty_x_to_equal_area(conds, uncond, name, uncond_fill_func):
comfyanonymous's avatar
comfyanonymous committed
404
405
406
407
408
409
410
    cond_cnets = []
    cond_other = []
    uncond_cnets = []
    uncond_other = []
    for t in range(len(conds)):
        x = conds[t]
        if 'area' not in x[1]:
411
412
            if name in x[1] and x[1][name] is not None:
                cond_cnets.append(x[1][name])
comfyanonymous's avatar
comfyanonymous committed
413
414
415
416
417
            else:
                cond_other.append((x, t))
    for t in range(len(uncond)):
        x = uncond[t]
        if 'area' not in x[1]:
418
419
            if name in x[1] and x[1][name] is not None:
                uncond_cnets.append(x[1][name])
comfyanonymous's avatar
comfyanonymous committed
420
421
422
423
424
425
426
427
428
            else:
                uncond_other.append((x, t))

    if len(uncond_cnets) > 0:
        return

    for x in range(len(cond_cnets)):
        temp = uncond_other[x % len(uncond_other)]
        o = temp[0]
429
        if name in o[1] and o[1][name] is not None:
comfyanonymous's avatar
comfyanonymous committed
430
            n = o[1].copy()
431
            n[name] = uncond_fill_func(cond_cnets, x)
comfyanonymous's avatar
comfyanonymous committed
432
433
434
            uncond += [[o[0], n]]
        else:
            n = o[1].copy()
435
            n[name] = uncond_fill_func(cond_cnets, x)
comfyanonymous's avatar
comfyanonymous committed
436
437
            uncond[temp[1]] = [o[0], n]

438

439
440
441
442
443
444
def encode_adm(noise_augmentor, conds, batch_size, device):
    for t in range(len(conds)):
        x = conds[t]
        if 'adm' in x[1]:
            adm_inputs = []
            weights = []
445
            noise_aug = []
446
447
448
449
            adm_in = x[1]["adm"]
            for adm_c in adm_in:
                adm_cond = adm_c[0].image_embeds
                weight = adm_c[1]
450
451
452
                noise_augment = adm_c[2]
                noise_level = round((noise_augmentor.max_noise_level - 1) * noise_augment)
                c_adm, noise_level_emb = noise_augmentor(adm_cond.to(device), noise_level=torch.tensor([noise_level], device=device))
453
454
                adm_out = torch.cat((c_adm, noise_level_emb), 1) * weight
                weights.append(weight)
455
                noise_aug.append(noise_augment)
456
457
                adm_inputs.append(adm_out)

458
459
460
461
462
463
464
            if len(noise_aug) > 1:
                adm_out = torch.stack(adm_inputs).sum(0)
                #TODO: add a way to control this
                noise_augment = 0.05
                noise_level = round((noise_augmentor.max_noise_level - 1) * noise_augment)
                c_adm, noise_level_emb = noise_augmentor(adm_out[:, :noise_augmentor.time_embed.dim], noise_level=torch.tensor([noise_level], device=device))
                adm_out = torch.cat((c_adm, noise_level_emb), 1)
465
466
467
        else:
            adm_out = torch.zeros((1, noise_augmentor.time_embed.dim * 2), device=device)
        x[1] = x[1].copy()
468
        x[1]["adm_encoded"] = torch.cat([adm_out] * batch_size)
469
470
471

    return conds

472

comfyanonymous's avatar
comfyanonymous committed
473
class KSampler:
comfyanonymous's avatar
comfyanonymous committed
474
    SCHEDULERS = ["karras", "normal", "simple", "ddim_uniform"]
475
476
477
    SAMPLERS = ["euler", "euler_ancestral", "heun", "dpm_2", "dpm_2_ancestral",
                "lms", "dpm_fast", "dpm_adaptive", "dpmpp_2s_ancestral", "dpmpp_sde",
                "dpmpp_2m", "ddim", "uni_pc", "uni_pc_bh2"]
comfyanonymous's avatar
comfyanonymous committed
478

479
    def __init__(self, model, steps, device, sampler=None, scheduler=None, denoise=None, model_options={}):
comfyanonymous's avatar
comfyanonymous committed
480
        self.model = model
comfyanonymous's avatar
comfyanonymous committed
481
        self.model_denoise = CFGNoisePredictor(self.model)
comfyanonymous's avatar
comfyanonymous committed
482
        if self.model.parameterization == "v":
comfyanonymous's avatar
comfyanonymous committed
483
            self.model_wrap = CompVisVDenoiser(self.model_denoise, quantize=True)
comfyanonymous's avatar
comfyanonymous committed
484
        else:
comfyanonymous's avatar
comfyanonymous committed
485
486
487
            self.model_wrap = k_diffusion_external.CompVisDenoiser(self.model_denoise, quantize=True)
        self.model_wrap.parameterization = self.model.parameterization
        self.model_k = KSamplerX0Inpaint(self.model_wrap)
comfyanonymous's avatar
comfyanonymous committed
488
489
490
491
492
493
494
        self.device = device
        if scheduler not in self.SCHEDULERS:
            scheduler = self.SCHEDULERS[0]
        if sampler not in self.SAMPLERS:
            sampler = self.SAMPLERS[0]
        self.scheduler = scheduler
        self.sampler = sampler
495
496
        self.sigma_min=float(self.model_wrap.sigma_min)
        self.sigma_max=float(self.model_wrap.sigma_max)
comfyanonymous's avatar
comfyanonymous committed
497
        self.set_steps(steps, denoise)
498
        self.denoise = denoise
499
        self.model_options = model_options
comfyanonymous's avatar
comfyanonymous committed
500

comfyanonymous's avatar
comfyanonymous committed
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
    def calculate_sigmas(self, steps):
        sigmas = None

        discard_penultimate_sigma = False
        if self.sampler in ['dpm_2', 'dpm_2_ancestral']:
            steps += 1
            discard_penultimate_sigma = True

        if self.scheduler == "karras":
            sigmas = k_diffusion_sampling.get_sigmas_karras(n=steps, sigma_min=self.sigma_min, sigma_max=self.sigma_max)
        elif self.scheduler == "normal":
            sigmas = self.model_wrap.get_sigmas(steps)
        elif self.scheduler == "simple":
            sigmas = simple_scheduler(self.model_wrap, steps)
        elif self.scheduler == "ddim_uniform":
            sigmas = ddim_scheduler(self.model_wrap, steps)
        else:
            print("error invalid scheduler", self.scheduler)

        if discard_penultimate_sigma:
            sigmas = torch.cat([sigmas[:-2], sigmas[-1:]])
        return sigmas

comfyanonymous's avatar
comfyanonymous committed
524
525
    def set_steps(self, steps, denoise=None):
        self.steps = steps
526
        if denoise is None or denoise > 0.9999:
comfyanonymous's avatar
comfyanonymous committed
527
            self.sigmas = self.calculate_sigmas(steps).to(self.device)
comfyanonymous's avatar
comfyanonymous committed
528
529
        else:
            new_steps = int(steps/denoise)
comfyanonymous's avatar
comfyanonymous committed
530
            sigmas = self.calculate_sigmas(new_steps).to(self.device)
comfyanonymous's avatar
comfyanonymous committed
531
532
            self.sigmas = sigmas[-(steps + 1):]

533
    def sample(self, noise, positive, negative, cfg, latent_image=None, start_step=None, last_step=None, force_full_denoise=False, denoise_mask=None, sigmas=None, callback=None, disable_pbar=False):
534
535
        if sigmas is None:
            sigmas = self.sigmas
comfyanonymous's avatar
comfyanonymous committed
536
537
        sigma_min = self.sigma_min

comfyanonymous's avatar
comfyanonymous committed
538
        if last_step is not None and last_step < (len(sigmas) - 1):
comfyanonymous's avatar
comfyanonymous committed
539
540
            sigma_min = sigmas[last_step]
            sigmas = sigmas[:last_step + 1]
comfyanonymous's avatar
comfyanonymous committed
541
542
543
            if force_full_denoise:
                sigmas[-1] = 0

comfyanonymous's avatar
comfyanonymous committed
544
        if start_step is not None:
comfyanonymous's avatar
comfyanonymous committed
545
546
547
548
549
550
551
            if start_step < (len(sigmas) - 1):
                sigmas = sigmas[start_step:]
            else:
                if latent_image is not None:
                    return latent_image
                else:
                    return torch.zeros_like(noise)
comfyanonymous's avatar
comfyanonymous committed
552

comfyanonymous's avatar
comfyanonymous committed
553
554
        positive = positive[:]
        negative = negative[:]
Jacob Segal's avatar
Jacob Segal committed
555
556
557
558

        resolve_cond_masks(positive, noise.shape[2], noise.shape[3], self.device)
        resolve_cond_masks(negative, noise.shape[2], noise.shape[3], self.device)

comfyanonymous's avatar
comfyanonymous committed
559
560
561
562
563
564
        #make sure each cond area has an opposite one with the same area
        for c in positive:
            create_cond_with_same_area_if_none(negative, c)
        for c in negative:
            create_cond_with_same_area_if_none(positive, c)

565
566
        apply_empty_x_to_equal_area(positive, negative, 'control', lambda cond_cnets, x: cond_cnets[x])
        apply_empty_x_to_equal_area(positive, negative, 'gligen', lambda cond_cnets, x: cond_cnets[x])
comfyanonymous's avatar
comfyanonymous committed
567

comfyanonymous's avatar
comfyanonymous committed
568
569
570
571
572
        if self.model.model.diffusion_model.dtype == torch.float16:
            precision_scope = torch.autocast
        else:
            precision_scope = contextlib.nullcontext

573
574
575
576
        if hasattr(self.model, 'noise_augmentor'): #unclip
            positive = encode_adm(self.model.noise_augmentor, positive, noise.shape[0], self.device)
            negative = encode_adm(self.model.noise_augmentor, negative, noise.shape[0], self.device)

577
        extra_args = {"cond":positive, "uncond":negative, "cond_scale": cfg, "model_options": self.model_options}
comfyanonymous's avatar
comfyanonymous committed
578

comfyanonymous's avatar
comfyanonymous committed
579
        cond_concat = None
580
        if hasattr(self.model, 'concat_keys'): #inpaint
comfyanonymous's avatar
comfyanonymous committed
581
582
583
584
585
586
            cond_concat = []
            for ck in self.model.concat_keys:
                if denoise_mask is not None:
                    if ck == "mask":
                        cond_concat.append(denoise_mask[:,:1])
                    elif ck == "masked_image":
587
                        cond_concat.append(latent_image) #NOTE: the latent_image should be masked by the mask in pixel space
comfyanonymous's avatar
comfyanonymous committed
588
589
590
591
592
593
594
                else:
                    if ck == "mask":
                        cond_concat.append(torch.ones_like(noise)[:,:1])
                    elif ck == "masked_image":
                        cond_concat.append(blank_inpaint_image_like(noise))
            extra_args["cond_concat"] = cond_concat

595
596
597
598
599
        if sigmas[0] != self.sigmas[0] or (self.denoise is not None and self.denoise < 1.0):
            max_denoise = False
        else:
            max_denoise = True

600
        with precision_scope(model_management.get_autocast_device(self.device)):
601
            if self.sampler == "uni_pc":
602
                samples = uni_pc.sample_unipc(self.model_wrap, noise, latent_image, sigmas, sampling_function=sampling_function, max_denoise=max_denoise, extra_args=extra_args, noise_mask=denoise_mask, callback=callback, disable=disable_pbar)
comfyanonymous's avatar
comfyanonymous committed
603
            elif self.sampler == "uni_pc_bh2":
604
                samples = uni_pc.sample_unipc(self.model_wrap, noise, latent_image, sigmas, sampling_function=sampling_function, max_denoise=max_denoise, extra_args=extra_args, noise_mask=denoise_mask, callback=callback, variant='bh2', disable=disable_pbar)
comfyanonymous's avatar
comfyanonymous committed
605
606
607
608
609
610
611
            elif self.sampler == "ddim":
                timesteps = []
                for s in range(sigmas.shape[0]):
                    timesteps.insert(0, self.model_wrap.sigma_to_t(sigmas[s]))
                noise_mask = None
                if denoise_mask is not None:
                    noise_mask = 1.0 - denoise_mask
612
613
614

                ddim_callback = None
                if callback is not None:
615
616
                    total_steps = len(timesteps) - 1
                    ddim_callback = lambda pred_x0, i: callback(i, pred_x0, None, total_steps)
617

comfyanonymous's avatar
comfyanonymous committed
618
                sampler = DDIMSampler(self.model, device=self.device)
comfyanonymous's avatar
comfyanonymous committed
619
620
621
622
623
624
625
626
627
628
629
630
                sampler.make_schedule_timesteps(ddim_timesteps=timesteps, verbose=False)
                z_enc = sampler.stochastic_encode(latent_image, torch.tensor([len(timesteps) - 1] * noise.shape[0]).to(self.device), noise=noise, max_denoise=max_denoise)
                samples, _ = sampler.sample_custom(ddim_timesteps=timesteps,
                                                     conditioning=positive,
                                                     batch_size=noise.shape[0],
                                                     shape=noise.shape[1:],
                                                     verbose=False,
                                                     unconditional_guidance_scale=cfg,
                                                     unconditional_conditioning=negative,
                                                     eta=0.0,
                                                     x_T=z_enc,
                                                     x0=latent_image,
631
                                                     img_callback=ddim_callback,
comfyanonymous's avatar
comfyanonymous committed
632
                                                     denoise_function=sampling_function,
633
                                                     extra_args=extra_args,
comfyanonymous's avatar
comfyanonymous committed
634
635
                                                     mask=noise_mask,
                                                     to_zero=sigmas[-1]==0,
636
637
                                                     end_step=sigmas.shape[0] - 1,
                                                     disable_pbar=disable_pbar)
comfyanonymous's avatar
comfyanonymous committed
638

comfyanonymous's avatar
comfyanonymous committed
639
            else:
640
641
642
643
644
645
                extra_args["denoise_mask"] = denoise_mask
                self.model_k.latent_image = latent_image
                self.model_k.noise = noise

                noise = noise * sigmas[0]

646
                k_callback = None
647
                total_steps = len(sigmas) - 1
648
                if callback is not None:
649
                    k_callback = lambda x: callback(x["i"], x["denoised"], x["x"], total_steps)
650

651
652
                if latent_image is not None:
                    noise += latent_image
653
                if self.sampler == "dpm_fast":
654
                    samples = k_diffusion_sampling.sample_dpm_fast(self.model_k, noise, sigma_min, sigmas[0], total_steps, extra_args=extra_args, callback=k_callback, disable=disable_pbar)
655
                elif self.sampler == "dpm_adaptive":
656
                    samples = k_diffusion_sampling.sample_dpm_adaptive(self.model_k, noise, sigma_min, sigmas[0], extra_args=extra_args, callback=k_callback, disable=disable_pbar)
657
                else:
658
                    samples = getattr(k_diffusion_sampling, "sample_{}".format(self.sampler))(self.model_k, noise, sigmas, extra_args=extra_args, callback=k_callback, disable=disable_pbar)
659

comfyanonymous's avatar
comfyanonymous committed
660
        return samples.to(torch.float32)