samplers.py 31 KB
Newer Older
1
2
from .k_diffusion import sampling as k_diffusion_sampling
from .k_diffusion import external as k_diffusion_external
3
from .extra_samplers import uni_pc
comfyanonymous's avatar
comfyanonymous committed
4
import torch
5
from comfy import model_management
comfyanonymous's avatar
comfyanonymous committed
6
7
from .ldm.models.diffusion.ddim import DDIMSampler
from .ldm.modules.diffusionmodules.util import make_ddim_timesteps
comfyanonymous's avatar
comfyanonymous committed
8
import math
9
from comfy import model_base
comfyanonymous's avatar
comfyanonymous committed
10
11
12

def lcm(a, b): #TODO: eventually replace by math.lcm (added in python3.9)
    return abs(a*b) // math.gcd(a, b)
comfyanonymous's avatar
comfyanonymous committed
13

comfyanonymous's avatar
comfyanonymous committed
14
15
#The main sampling function shared by all the samplers
#Returns predicted noise
16
def sampling_function(model_function, x, timestep, uncond, cond, cond_scale, cond_concat=None, model_options={}, seed=None):
comfyanonymous's avatar
comfyanonymous committed
17
        def get_area_and_mult(cond, x_in, cond_concat_in, timestep_in):
18
19
            area = (x_in.shape[2], x_in.shape[3], 0, 0)
            strength = 1.0
20
21
            if 'timestep_start' in cond[1]:
                timestep_start = cond[1]['timestep_start']
22
                if timestep_in[0] > timestep_start:
23
24
25
                    return None
            if 'timestep_end' in cond[1]:
                timestep_end = cond[1]['timestep_end']
26
                if timestep_in[0] < timestep_end:
27
                    return None
28
29
30
31
            if 'area' in cond[1]:
                area = cond[1]['area']
            if 'strength' in cond[1]:
                strength = cond[1]['strength']
32

33
            adm_cond = None
34
35
            if 'adm_encoded' in cond[1]:
                adm_cond = cond[1]['adm_encoded']
36

37
            input_x = x_in[:,:,area[2]:area[0] + area[2],area[3]:area[1] + area[3]]
Jacob Segal's avatar
Jacob Segal committed
38
39
40
            if 'mask' in cond[1]:
                # Scale the mask to the size of the input
                # The mask should have been resized as we began the sampling process
41
42
43
                mask_strength = 1.0
                if "mask_strength" in cond[1]:
                    mask_strength = cond[1]["mask_strength"]
Jacob Segal's avatar
Jacob Segal committed
44
45
46
                mask = cond[1]['mask']
                assert(mask.shape[1] == x_in.shape[2])
                assert(mask.shape[2] == x_in.shape[3])
47
                mask = mask[:,area[2]:area[0] + area[2],area[3]:area[1] + area[3]] * mask_strength
Jacob Segal's avatar
Jacob Segal committed
48
                mask = mask.unsqueeze(1).repeat(input_x.shape[0] // mask.shape[0], input_x.shape[1], 1, 1)
Jacob Segal's avatar
Jacob Segal committed
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
            else:
                mask = torch.ones_like(input_x)
            mult = mask * strength

            if 'mask' not in cond[1]:
                rr = 8
                if area[2] != 0:
                    for t in range(rr):
                        mult[:,:,t:1+t,:] *= ((1.0/rr) * (t + 1))
                if (area[0] + area[2]) < x_in.shape[2]:
                    for t in range(rr):
                        mult[:,:,area[0] - 1 - t:area[0] - t,:] *= ((1.0/rr) * (t + 1))
                if area[3] != 0:
                    for t in range(rr):
                        mult[:,:,:,t:1+t] *= ((1.0/rr) * (t + 1))
                if (area[1] + area[3]) < x_in.shape[3]:
                    for t in range(rr):
                        mult[:,:,:,area[1] - 1 - t:area[1] - t] *= ((1.0/rr) * (t + 1))

comfyanonymous's avatar
comfyanonymous committed
68
69
70
71
72
73
74
75
            conditionning = {}
            conditionning['c_crossattn'] = cond[0]
            if cond_concat_in is not None and len(cond_concat_in) > 0:
                cropped = []
                for x in cond_concat_in:
                    cr = x[:,:,area[2]:area[0] + area[2],area[3]:area[1] + area[3]]
                    cropped.append(cr)
                conditionning['c_concat'] = torch.cat(cropped, dim=1)
comfyanonymous's avatar
comfyanonymous committed
76

77
78
79
            if adm_cond is not None:
                conditionning['c_adm'] = adm_cond

comfyanonymous's avatar
comfyanonymous committed
80
81
82
            control = None
            if 'control' in cond[1]:
                control = cond[1]['control']
83
84
85
86
87
88
89
90

            patches = None
            if 'gligen' in cond[1]:
                gligen = cond[1]['gligen']
                patches = {}
                gligen_type = gligen[0]
                gligen_model = gligen[1]
                if gligen_type == "position":
comfyanonymous's avatar
comfyanonymous committed
91
                    gligen_patch = gligen_model.model.set_position(input_x.shape, gligen[2], input_x.device)
92
                else:
comfyanonymous's avatar
comfyanonymous committed
93
                    gligen_patch = gligen_model.model.set_empty(input_x.shape, input_x.device)
94
95
96
97

                patches['middle_patch'] = [gligen_patch]

            return (input_x, mult, conditionning, area, control, patches)
comfyanonymous's avatar
comfyanonymous committed
98
99

        def cond_equal_size(c1, c2):
comfyanonymous's avatar
comfyanonymous committed
100
101
            if c1 is c2:
                return True
comfyanonymous's avatar
comfyanonymous committed
102
103
104
            if c1.keys() != c2.keys():
                return False
            if 'c_crossattn' in c1:
comfyanonymous's avatar
comfyanonymous committed
105
106
107
108
109
110
111
112
113
114
                s1 = c1['c_crossattn'].shape
                s2 = c2['c_crossattn'].shape
                if s1 != s2:
                    if s1[0] != s2[0] or s1[2] != s2[2]: #these 2 cases should not happen
                        return False

                    mult_min = lcm(s1[1], s2[1])
                    diff = mult_min // min(s1[1], s2[1])
                    if diff > 4: #arbitrary limit on the padding because it's probably going to impact performance negatively if it's too much
                        return False
comfyanonymous's avatar
comfyanonymous committed
115
116
117
            if 'c_concat' in c1:
                if c1['c_concat'].shape != c2['c_concat'].shape:
                    return False
118
119
120
            if 'c_adm' in c1:
                if c1['c_adm'].shape != c2['c_adm'].shape:
                    return False
comfyanonymous's avatar
comfyanonymous committed
121
122
            return True

comfyanonymous's avatar
comfyanonymous committed
123
124
125
        def can_concat_cond(c1, c2):
            if c1[0].shape != c2[0].shape:
                return False
126
127

            #control
comfyanonymous's avatar
comfyanonymous committed
128
129
130
131
132
133
            if (c1[4] is None) != (c2[4] is None):
                return False
            if c1[4] is not None:
                if c1[4] is not c2[4]:
                    return False

134
135
136
137
138
139
140
            #patches
            if (c1[5] is None) != (c2[5] is None):
                return False
            if (c1[5] is not None):
                if c1[5] is not c2[5]:
                    return False

comfyanonymous's avatar
comfyanonymous committed
141
142
            return cond_equal_size(c1[2], c2[2])

comfyanonymous's avatar
comfyanonymous committed
143
144
145
        def cond_cat(c_list):
            c_crossattn = []
            c_concat = []
146
            c_adm = []
comfyanonymous's avatar
comfyanonymous committed
147
            crossattn_max_len = 0
comfyanonymous's avatar
comfyanonymous committed
148
149
            for x in c_list:
                if 'c_crossattn' in x:
comfyanonymous's avatar
comfyanonymous committed
150
151
152
153
154
155
                    c = x['c_crossattn']
                    if crossattn_max_len == 0:
                        crossattn_max_len = c.shape[1]
                    else:
                        crossattn_max_len = lcm(crossattn_max_len, c.shape[1])
                    c_crossattn.append(c)
comfyanonymous's avatar
comfyanonymous committed
156
157
                if 'c_concat' in x:
                    c_concat.append(x['c_concat'])
158
159
                if 'c_adm' in x:
                    c_adm.append(x['c_adm'])
comfyanonymous's avatar
comfyanonymous committed
160
            out = {}
comfyanonymous's avatar
comfyanonymous committed
161
162
163
164
165
166
167
            c_crossattn_out = []
            for c in c_crossattn:
                if c.shape[1] < crossattn_max_len:
                    c = c.repeat(1, crossattn_max_len // c.shape[1], 1) #padding with repeat doesn't change result
                c_crossattn_out.append(c)

            if len(c_crossattn_out) > 0:
168
                out['c_crossattn'] = torch.cat(c_crossattn_out)
comfyanonymous's avatar
comfyanonymous committed
169
            if len(c_concat) > 0:
170
                out['c_concat'] = torch.cat(c_concat)
171
172
            if len(c_adm) > 0:
                out['c_adm'] = torch.cat(c_adm)
comfyanonymous's avatar
comfyanonymous committed
173
174
            return out

175
        def calc_cond_uncond_batch(model_function, cond, uncond, x_in, timestep, max_total_area, cond_concat_in, model_options):
comfyanonymous's avatar
comfyanonymous committed
176
177
            out_cond = torch.zeros_like(x_in)
            out_count = torch.ones_like(x_in)/100000.0
178
179
180
181
182
183

            out_uncond = torch.zeros_like(x_in)
            out_uncond_count = torch.ones_like(x_in)/100000.0

            COND = 0
            UNCOND = 1
comfyanonymous's avatar
comfyanonymous committed
184

185
            to_run = []
comfyanonymous's avatar
comfyanonymous committed
186
            for x in cond:
comfyanonymous's avatar
comfyanonymous committed
187
                p = get_area_and_mult(x, x_in, cond_concat_in, timestep)
188
                if p is None:
comfyanonymous's avatar
comfyanonymous committed
189
                    continue
190
191

                to_run += [(p, COND)]
192
193
194
195
196
            if uncond is not None:
                for x in uncond:
                    p = get_area_and_mult(x, x_in, cond_concat_in, timestep)
                    if p is None:
                        continue
197

198
                    to_run += [(p, UNCOND)]
199
200
201
202

            while len(to_run) > 0:
                first = to_run[0]
                first_shape = first[0][0].shape
203
                to_batch_temp = []
204
                for x in range(len(to_run)):
comfyanonymous's avatar
comfyanonymous committed
205
206
                    if can_concat_cond(to_run[x][0], first[0]):
                        to_batch_temp += [x]
207
208
209
210
211
212
213
214
215

                to_batch_temp.reverse()
                to_batch = to_batch_temp[:1]

                for i in range(1, len(to_batch_temp) + 1):
                    batch_amount = to_batch_temp[:len(to_batch_temp)//i]
                    if (len(batch_amount) * first_shape[0] * first_shape[2] * first_shape[3] < max_total_area):
                        to_batch = batch_amount
                        break
216
217
218
219
220
221

                input_x = []
                mult = []
                c = []
                cond_or_uncond = []
                area = []
comfyanonymous's avatar
comfyanonymous committed
222
                control = None
223
                patches = None
224
225
226
227
228
229
230
231
                for x in to_batch:
                    o = to_run.pop(x)
                    p = o[0]
                    input_x += [p[0]]
                    mult += [p[1]]
                    c += [p[2]]
                    area += [p[3]]
                    cond_or_uncond += [o[1]]
comfyanonymous's avatar
comfyanonymous committed
232
                    control = p[4]
233
                    patches = p[5]
234
235
236

                batch_chunks = len(cond_or_uncond)
                input_x = torch.cat(input_x)
comfyanonymous's avatar
comfyanonymous committed
237
                c = cond_cat(c)
comfyanonymous's avatar
comfyanonymous committed
238
                timestep_ = torch.cat([timestep] * batch_chunks)
239

comfyanonymous's avatar
comfyanonymous committed
240
                if control is not None:
241
                    c['control'] = control.get_control(input_x, timestep_, c, len(cond_or_uncond))
comfyanonymous's avatar
comfyanonymous committed
242

243
                transformer_options = {}
244
                if 'transformer_options' in model_options:
245
246
247
                    transformer_options = model_options['transformer_options'].copy()

                if patches is not None:
248
249
250
251
252
253
254
255
256
                    if "patches" in transformer_options:
                        cur_patches = transformer_options["patches"].copy()
                        for p in patches:
                            if p in cur_patches:
                                cur_patches[p] = cur_patches[p] + patches[p]
                            else:
                                cur_patches[p] = patches[p]
                    else:
                        transformer_options["patches"] = patches
257
258

                c['transformer_options'] = transformer_options
259

260
261
262
263
                if 'model_function_wrapper' in model_options:
                    output = model_options['model_function_wrapper'](model_function, {"input": input_x, "timestep": timestep_, "c": c, "cond_or_uncond": cond_or_uncond}).chunk(batch_chunks)
                else:
                    output = model_function(input_x, timestep_, **c).chunk(batch_chunks)
comfyanonymous's avatar
comfyanonymous committed
264
                del input_x
265

266
267
                model_management.throw_exception_if_processing_interrupted()

268
269
270
271
272
273
274
                for o in range(batch_chunks):
                    if cond_or_uncond[o] == COND:
                        out_cond[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += output[o] * mult[o]
                        out_count[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += mult[o]
                    else:
                        out_uncond[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += output[o] * mult[o]
                        out_uncond_count[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += mult[o]
comfyanonymous's avatar
comfyanonymous committed
275
276
277
278
                del mult

            out_cond /= out_count
            del out_count
279
280
281
282
            out_uncond /= out_uncond_count
            del out_uncond_count

            return out_cond, out_uncond
comfyanonymous's avatar
comfyanonymous committed
283
284


285
        max_total_area = model_management.maximum_batch_area()
286
287
288
        if math.isclose(cond_scale, 1.0):
            uncond = None

289
        cond, uncond = calc_cond_uncond_batch(model_function, cond, uncond, x, timestep, max_total_area, cond_concat, model_options)
290
        if "sampler_cfg_function" in model_options:
291
292
            args = {"cond": cond, "uncond": uncond, "cond_scale": cond_scale, "timestep": timestep}
            return model_options["sampler_cfg_function"](args)
293
294
        else:
            return uncond + (cond - uncond) * cond_scale
comfyanonymous's avatar
comfyanonymous committed
295

comfyanonymous's avatar
comfyanonymous committed
296
297
298
299
300
301
302
303
304
305
306
307
308
309

class CompVisVDenoiser(k_diffusion_external.DiscreteVDDPMDenoiser):
    def __init__(self, model, quantize=False, device='cpu'):
        super().__init__(model, model.alphas_cumprod, quantize=quantize)

    def get_v(self, x, t, cond, **kwargs):
        return self.inner_model.apply_model(x, t, cond, **kwargs)


class CFGNoisePredictor(torch.nn.Module):
    def __init__(self, model):
        super().__init__()
        self.inner_model = model
        self.alphas_cumprod = model.alphas_cumprod
310
311
    def apply_model(self, x, timestep, cond, uncond, cond_scale, cond_concat=None, model_options={}, seed=None):
        out = sampling_function(self.inner_model.apply_model, x, timestep, uncond, cond, cond_scale, cond_concat, model_options=model_options, seed=seed)
comfyanonymous's avatar
comfyanonymous committed
312
313
314
315
        return out


class KSamplerX0Inpaint(torch.nn.Module):
316
317
318
    def __init__(self, model):
        super().__init__()
        self.inner_model = model
319
    def forward(self, x, sigma, uncond, cond, cond_scale, denoise_mask, cond_concat=None, model_options={}, seed=None):
320
321
        if denoise_mask is not None:
            latent_mask = 1. - denoise_mask
322
            x = x * denoise_mask + (self.latent_image + self.noise * sigma.reshape([sigma.shape[0]] + [1] * (len(self.noise.shape) - 1))) * latent_mask
323
        out = self.inner_model(x, sigma, cond=cond, uncond=uncond, cond_scale=cond_scale, cond_concat=cond_concat, model_options=model_options, seed=seed)
324
325
326
327
328
329
        if denoise_mask is not None:
            out *= denoise_mask

        if denoise_mask is not None:
            out += self.latent_image * latent_mask
        return out
330

comfyanonymous's avatar
comfyanonymous committed
331
332
333
334
335
336
337
338
def simple_scheduler(model, steps):
    sigs = []
    ss = len(model.sigmas) / steps
    for x in range(steps):
        sigs += [float(model.sigmas[-(1 + int(x * ss))])]
    sigs += [0.0]
    return torch.FloatTensor(sigs)

comfyanonymous's avatar
comfyanonymous committed
339
340
341
342
def ddim_scheduler(model, steps):
    sigs = []
    ddim_timesteps = make_ddim_timesteps(ddim_discr_method="uniform", num_ddim_timesteps=steps, num_ddpm_timesteps=model.inner_model.inner_model.num_timesteps, verbose=False)
    for x in range(len(ddim_timesteps) - 1, -1, -1):
343
344
345
346
        ts = ddim_timesteps[x]
        if ts > 999:
            ts = 999
        sigs.append(model.t_to_sigma(torch.tensor(ts)))
comfyanonymous's avatar
comfyanonymous committed
347
348
349
    sigs += [0.0]
    return torch.FloatTensor(sigs)

350
351
352
353
354
355
356
357
358
359
360
def sgm_scheduler(model, steps):
    sigs = []
    timesteps = torch.linspace(model.inner_model.inner_model.num_timesteps - 1, 0, steps + 1)[:-1].type(torch.int)
    for x in range(len(timesteps)):
        ts = timesteps[x]
        if ts > 999:
            ts = 999
        sigs.append(model.t_to_sigma(torch.tensor(ts)))
    sigs += [0.0]
    return torch.FloatTensor(sigs)

comfyanonymous's avatar
comfyanonymous committed
361
362
363
364
365
366
367
368
369
def blank_inpaint_image_like(latent_image):
    blank_image = torch.ones_like(latent_image)
    # these are the values for "zero" in pixel space translated to latent space
    blank_image[:,0] *= 0.8223
    blank_image[:,1] *= -0.6876
    blank_image[:,2] *= 0.6364
    blank_image[:,3] *= 0.1380
    return blank_image

Jacob Segal's avatar
Jacob Segal committed
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
def get_mask_aabb(masks):
    if masks.numel() == 0:
        return torch.zeros((0, 4), device=masks.device, dtype=torch.int)

    b = masks.shape[0]

    bounding_boxes = torch.zeros((b, 4), device=masks.device, dtype=torch.int)
    is_empty = torch.zeros((b), device=masks.device, dtype=torch.bool)
    for i in range(b):
        mask = masks[i]
        if mask.numel() == 0:
            continue
        if torch.max(mask != 0) == False:
            is_empty[i] = True
            continue
        y, x = torch.where(mask)
        bounding_boxes[i, 0] = torch.min(x)
        bounding_boxes[i, 1] = torch.min(y)
        bounding_boxes[i, 2] = torch.max(x)
        bounding_boxes[i, 3] = torch.max(y)

    return bounding_boxes, is_empty

Jacob Segal's avatar
Jacob Segal committed
393
394
395
396
397
398
399
400
401
402
403
def resolve_cond_masks(conditions, h, w, device):
    # We need to decide on an area outside the sampling loop in order to properly generate opposite areas of equal sizes.
    # While we're doing this, we can also resolve the mask device and scaling for performance reasons
    for i in range(len(conditions)):
        c = conditions[i]
        if 'mask' in c[1]:
            mask = c[1]['mask']
            mask = mask.to(device=device)
            modified = c[1].copy()
            if len(mask.shape) == 2:
                mask = mask.unsqueeze(0)
mara's avatar
mara committed
404
            if mask.shape[1] != h or mask.shape[2] != w:
Jacob Segal's avatar
Jacob Segal committed
405
406
                mask = torch.nn.functional.interpolate(mask.unsqueeze(1), size=(h, w), mode='bilinear', align_corners=False).squeeze(1)

Jacob Segal's avatar
Jacob Segal committed
407
            if modified.get("set_area_to_bounds", False):
Jacob Segal's avatar
Jacob Segal committed
408
                bounds = torch.max(torch.abs(mask),dim=0).values.unsqueeze(0)
Jacob Segal's avatar
Jacob Segal committed
409
410
411
412
                boxes, is_empty = get_mask_aabb(bounds)
                if is_empty[0]:
                    # Use the minimum possible size for efficiency reasons. (Since the mask is all-0, this becomes a noop anyway)
                    modified['area'] = (8, 8, 0, 0)
Jacob Segal's avatar
Jacob Segal committed
413
                else:
Jacob Segal's avatar
Jacob Segal committed
414
                    box = boxes[0]
Jacob Segal's avatar
Jacob Segal committed
415
                    H, W, Y, X = (box[3] - box[1] + 1, box[2] - box[0] + 1, box[1], box[0])
416
417
                    H = max(8, H)
                    W = max(8, W)
Jacob Segal's avatar
Jacob Segal committed
418
419
                    area = (int(H), int(W), int(Y), int(X))
                    modified['area'] = area
Jacob Segal's avatar
Jacob Segal committed
420
421
422
423

            modified['mask'] = mask
            conditions[i] = [c[0], modified]

comfyanonymous's avatar
comfyanonymous committed
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
def create_cond_with_same_area_if_none(conds, c):
    if 'area' not in c[1]:
        return

    c_area = c[1]['area']
    smallest = None
    for x in conds:
        if 'area' in x[1]:
            a = x[1]['area']
            if c_area[2] >= a[2] and c_area[3] >= a[3]:
                if a[0] + a[2] >= c_area[0] + c_area[2]:
                    if a[1] + a[3] >= c_area[1] + c_area[3]:
                        if smallest is None:
                            smallest = x
                        elif 'area' not in smallest[1]:
                            smallest = x
                        else:
                            if smallest[1]['area'][0] * smallest[1]['area'][1] > a[0] * a[1]:
                                smallest = x
        else:
            if smallest is None:
                smallest = x
    if smallest is None:
        return
    if 'area' in smallest[1]:
        if smallest[1]['area'] == c_area:
            return
    n = c[1].copy()
    conds += [[smallest[0], n]]
comfyanonymous's avatar
comfyanonymous committed
453

454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
def calculate_start_end_timesteps(model, conds):
    for t in range(len(conds)):
        x = conds[t]

        timestep_start = None
        timestep_end = None
        if 'start_percent' in x[1]:
            timestep_start = model.sigma_to_t(model.t_to_sigma(torch.tensor(x[1]['start_percent'] * 999.0)))
        if 'end_percent' in x[1]:
            timestep_end = model.sigma_to_t(model.t_to_sigma(torch.tensor(x[1]['end_percent'] * 999.0)))

        if (timestep_start is not None) or (timestep_end is not None):
            n = x[1].copy()
            if (timestep_start is not None):
                n['timestep_start'] = timestep_start
            if (timestep_end is not None):
                n['timestep_end'] = timestep_end
            conds[t] = [x[0], n]

473
474
475
476
477
478
479
480
def pre_run_control(model, conds):
    for t in range(len(conds)):
        x = conds[t]

        timestep_start = None
        timestep_end = None
        percent_to_timestep_function = lambda a: model.sigma_to_t(model.t_to_sigma(torch.tensor(a) * 999.0))
        if 'control' in x[1]:
comfyanonymous's avatar
comfyanonymous committed
481
            x[1]['control'].pre_run(model.inner_model.inner_model, percent_to_timestep_function)
482

483
def apply_empty_x_to_equal_area(conds, uncond, name, uncond_fill_func):
comfyanonymous's avatar
comfyanonymous committed
484
485
486
487
488
489
490
    cond_cnets = []
    cond_other = []
    uncond_cnets = []
    uncond_other = []
    for t in range(len(conds)):
        x = conds[t]
        if 'area' not in x[1]:
491
492
            if name in x[1] and x[1][name] is not None:
                cond_cnets.append(x[1][name])
comfyanonymous's avatar
comfyanonymous committed
493
494
495
496
497
            else:
                cond_other.append((x, t))
    for t in range(len(uncond)):
        x = uncond[t]
        if 'area' not in x[1]:
498
499
            if name in x[1] and x[1][name] is not None:
                uncond_cnets.append(x[1][name])
comfyanonymous's avatar
comfyanonymous committed
500
501
502
503
504
505
506
507
508
            else:
                uncond_other.append((x, t))

    if len(uncond_cnets) > 0:
        return

    for x in range(len(cond_cnets)):
        temp = uncond_other[x % len(uncond_other)]
        o = temp[0]
509
        if name in o[1] and o[1][name] is not None:
comfyanonymous's avatar
comfyanonymous committed
510
            n = o[1].copy()
511
            n[name] = uncond_fill_func(cond_cnets, x)
comfyanonymous's avatar
comfyanonymous committed
512
513
514
            uncond += [[o[0], n]]
        else:
            n = o[1].copy()
515
            n[name] = uncond_fill_func(cond_cnets, x)
comfyanonymous's avatar
comfyanonymous committed
516
517
            uncond[temp[1]] = [o[0], n]

518
def encode_adm(model, conds, batch_size, width, height, device, prompt_type):
519
520
    for t in range(len(conds)):
        x = conds[t]
comfyanonymous's avatar
comfyanonymous committed
521
        adm_out = None
522
523
        if 'adm' in x[1]:
            adm_out = x[1]["adm"]
524
        else:
525
            params = x[1].copy()
526
527
528
            params["width"] = params.get("width", width * 8)
            params["height"] = params.get("height", height * 8)
            params["prompt_type"] = params.get("prompt_type", prompt_type)
529
            adm_out = model.encode_adm(device=device, **params)
530

comfyanonymous's avatar
comfyanonymous committed
531
532
        if adm_out is not None:
            x[1] = x[1].copy()
533
            x[1]["adm_encoded"] = torch.cat([adm_out] * batch_size).to(device)
534
535
536

    return conds

537

comfyanonymous's avatar
comfyanonymous committed
538
class KSampler:
539
    SCHEDULERS = ["normal", "karras", "exponential", "sgm_uniform", "simple", "ddim_uniform"]
540
    SAMPLERS = ["euler", "euler_ancestral", "heun", "dpm_2", "dpm_2_ancestral",
541
                "lms", "dpm_fast", "dpm_adaptive", "dpmpp_2s_ancestral", "dpmpp_sde", "dpmpp_sde_gpu",
542
                "dpmpp_2m", "dpmpp_2m_sde", "dpmpp_2m_sde_gpu", "dpmpp_3m_sde", "dpmpp_3m_sde_gpu", "ddim", "uni_pc", "uni_pc_bh2"]
comfyanonymous's avatar
comfyanonymous committed
543

544
    def __init__(self, model, steps, device, sampler=None, scheduler=None, denoise=None, model_options={}):
comfyanonymous's avatar
comfyanonymous committed
545
        self.model = model
comfyanonymous's avatar
comfyanonymous committed
546
        self.model_denoise = CFGNoisePredictor(self.model)
547
        if self.model.model_type == model_base.ModelType.V_PREDICTION:
comfyanonymous's avatar
comfyanonymous committed
548
            self.model_wrap = CompVisVDenoiser(self.model_denoise, quantize=True)
comfyanonymous's avatar
comfyanonymous committed
549
        else:
comfyanonymous's avatar
comfyanonymous committed
550
            self.model_wrap = k_diffusion_external.CompVisDenoiser(self.model_denoise, quantize=True)
551

comfyanonymous's avatar
comfyanonymous committed
552
        self.model_k = KSamplerX0Inpaint(self.model_wrap)
comfyanonymous's avatar
comfyanonymous committed
553
554
555
556
557
558
559
        self.device = device
        if scheduler not in self.SCHEDULERS:
            scheduler = self.SCHEDULERS[0]
        if sampler not in self.SAMPLERS:
            sampler = self.SAMPLERS[0]
        self.scheduler = scheduler
        self.sampler = sampler
560
561
        self.sigma_min=float(self.model_wrap.sigma_min)
        self.sigma_max=float(self.model_wrap.sigma_max)
comfyanonymous's avatar
comfyanonymous committed
562
        self.set_steps(steps, denoise)
563
        self.denoise = denoise
564
        self.model_options = model_options
comfyanonymous's avatar
comfyanonymous committed
565

comfyanonymous's avatar
comfyanonymous committed
566
567
568
569
570
571
572
573
574
575
    def calculate_sigmas(self, steps):
        sigmas = None

        discard_penultimate_sigma = False
        if self.sampler in ['dpm_2', 'dpm_2_ancestral']:
            steps += 1
            discard_penultimate_sigma = True

        if self.scheduler == "karras":
            sigmas = k_diffusion_sampling.get_sigmas_karras(n=steps, sigma_min=self.sigma_min, sigma_max=self.sigma_max)
576
577
        elif self.scheduler == "exponential":
            sigmas = k_diffusion_sampling.get_sigmas_exponential(n=steps, sigma_min=self.sigma_min, sigma_max=self.sigma_max)
comfyanonymous's avatar
comfyanonymous committed
578
579
580
581
582
583
        elif self.scheduler == "normal":
            sigmas = self.model_wrap.get_sigmas(steps)
        elif self.scheduler == "simple":
            sigmas = simple_scheduler(self.model_wrap, steps)
        elif self.scheduler == "ddim_uniform":
            sigmas = ddim_scheduler(self.model_wrap, steps)
584
585
        elif self.scheduler == "sgm_uniform":
            sigmas = sgm_scheduler(self.model_wrap, steps)
comfyanonymous's avatar
comfyanonymous committed
586
587
588
589
590
591
592
        else:
            print("error invalid scheduler", self.scheduler)

        if discard_penultimate_sigma:
            sigmas = torch.cat([sigmas[:-2], sigmas[-1:]])
        return sigmas

comfyanonymous's avatar
comfyanonymous committed
593
594
    def set_steps(self, steps, denoise=None):
        self.steps = steps
595
        if denoise is None or denoise > 0.9999:
comfyanonymous's avatar
comfyanonymous committed
596
            self.sigmas = self.calculate_sigmas(steps).to(self.device)
comfyanonymous's avatar
comfyanonymous committed
597
598
        else:
            new_steps = int(steps/denoise)
comfyanonymous's avatar
comfyanonymous committed
599
            sigmas = self.calculate_sigmas(new_steps).to(self.device)
comfyanonymous's avatar
comfyanonymous committed
600
601
            self.sigmas = sigmas[-(steps + 1):]

602
    def sample(self, noise, positive, negative, cfg, latent_image=None, start_step=None, last_step=None, force_full_denoise=False, denoise_mask=None, sigmas=None, callback=None, disable_pbar=False, seed=None):
603
604
        if sigmas is None:
            sigmas = self.sigmas
comfyanonymous's avatar
comfyanonymous committed
605
606
        sigma_min = self.sigma_min

comfyanonymous's avatar
comfyanonymous committed
607
        if last_step is not None and last_step < (len(sigmas) - 1):
comfyanonymous's avatar
comfyanonymous committed
608
609
            sigma_min = sigmas[last_step]
            sigmas = sigmas[:last_step + 1]
comfyanonymous's avatar
comfyanonymous committed
610
611
612
            if force_full_denoise:
                sigmas[-1] = 0

comfyanonymous's avatar
comfyanonymous committed
613
        if start_step is not None:
comfyanonymous's avatar
comfyanonymous committed
614
615
616
617
618
619
620
            if start_step < (len(sigmas) - 1):
                sigmas = sigmas[start_step:]
            else:
                if latent_image is not None:
                    return latent_image
                else:
                    return torch.zeros_like(noise)
comfyanonymous's avatar
comfyanonymous committed
621

comfyanonymous's avatar
comfyanonymous committed
622
623
        positive = positive[:]
        negative = negative[:]
Jacob Segal's avatar
Jacob Segal committed
624
625
626
627

        resolve_cond_masks(positive, noise.shape[2], noise.shape[3], self.device)
        resolve_cond_masks(negative, noise.shape[2], noise.shape[3], self.device)

628
629
630
        calculate_start_end_timesteps(self.model_wrap, negative)
        calculate_start_end_timesteps(self.model_wrap, positive)

comfyanonymous's avatar
comfyanonymous committed
631
632
633
634
635
636
        #make sure each cond area has an opposite one with the same area
        for c in positive:
            create_cond_with_same_area_if_none(negative, c)
        for c in negative:
            create_cond_with_same_area_if_none(positive, c)

637
638
        pre_run_control(self.model_wrap, negative + positive)

639
        apply_empty_x_to_equal_area(list(filter(lambda c: c[1].get('control_apply_to_uncond', False) == True, positive)), negative, 'control', lambda cond_cnets, x: cond_cnets[x])
640
        apply_empty_x_to_equal_area(positive, negative, 'gligen', lambda cond_cnets, x: cond_cnets[x])
comfyanonymous's avatar
comfyanonymous committed
641

comfyanonymous's avatar
comfyanonymous committed
642
        if self.model.is_adm():
643
644
            positive = encode_adm(self.model, positive, noise.shape[0], noise.shape[3], noise.shape[2], self.device, "positive")
            negative = encode_adm(self.model, negative, noise.shape[0], noise.shape[3], noise.shape[2], self.device, "negative")
645

646
647
648
        if latent_image is not None:
            latent_image = self.model.process_latent_in(latent_image)

649
        extra_args = {"cond":positive, "uncond":negative, "cond_scale": cfg, "model_options": self.model_options, "seed":seed}
comfyanonymous's avatar
comfyanonymous committed
650

comfyanonymous's avatar
comfyanonymous committed
651
        cond_concat = None
652
        if hasattr(self.model, 'concat_keys'): #inpaint
comfyanonymous's avatar
comfyanonymous committed
653
654
655
656
657
658
            cond_concat = []
            for ck in self.model.concat_keys:
                if denoise_mask is not None:
                    if ck == "mask":
                        cond_concat.append(denoise_mask[:,:1])
                    elif ck == "masked_image":
659
                        cond_concat.append(latent_image) #NOTE: the latent_image should be masked by the mask in pixel space
comfyanonymous's avatar
comfyanonymous committed
660
661
662
663
664
665
666
                else:
                    if ck == "mask":
                        cond_concat.append(torch.ones_like(noise)[:,:1])
                    elif ck == "masked_image":
                        cond_concat.append(blank_inpaint_image_like(noise))
            extra_args["cond_concat"] = cond_concat

667
668
669
670
671
        if sigmas[0] != self.sigmas[0] or (self.denoise is not None and self.denoise < 1.0):
            max_denoise = False
        else:
            max_denoise = True

672

673
674
675
676
677
678
679
        if self.sampler == "uni_pc":
            samples = uni_pc.sample_unipc(self.model_wrap, noise, latent_image, sigmas, sampling_function=sampling_function, max_denoise=max_denoise, extra_args=extra_args, noise_mask=denoise_mask, callback=callback, disable=disable_pbar)
        elif self.sampler == "uni_pc_bh2":
            samples = uni_pc.sample_unipc(self.model_wrap, noise, latent_image, sigmas, sampling_function=sampling_function, max_denoise=max_denoise, extra_args=extra_args, noise_mask=denoise_mask, callback=callback, variant='bh2', disable=disable_pbar)
        elif self.sampler == "ddim":
            timesteps = []
            for s in range(sigmas.shape[0]):
680
                timesteps.insert(0, self.model_wrap.sigma_to_discrete_timestep(sigmas[s]))
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
            noise_mask = None
            if denoise_mask is not None:
                noise_mask = 1.0 - denoise_mask

            ddim_callback = None
            if callback is not None:
                total_steps = len(timesteps) - 1
                ddim_callback = lambda pred_x0, i: callback(i, pred_x0, None, total_steps)

            sampler = DDIMSampler(self.model, device=self.device)
            sampler.make_schedule_timesteps(ddim_timesteps=timesteps, verbose=False)
            z_enc = sampler.stochastic_encode(latent_image, torch.tensor([len(timesteps) - 1] * noise.shape[0]).to(self.device), noise=noise, max_denoise=max_denoise)
            samples, _ = sampler.sample_custom(ddim_timesteps=timesteps,
                                                    conditioning=positive,
                                                    batch_size=noise.shape[0],
                                                    shape=noise.shape[1:],
                                                    verbose=False,
                                                    unconditional_guidance_scale=cfg,
                                                    unconditional_conditioning=negative,
                                                    eta=0.0,
                                                    x_T=z_enc,
                                                    x0=latent_image,
                                                    img_callback=ddim_callback,
704
                                                    denoise_function=self.model_wrap.predict_eps_discrete_timestep,
705
706
707
708
709
                                                    extra_args=extra_args,
                                                    mask=noise_mask,
                                                    to_zero=sigmas[-1]==0,
                                                    end_step=sigmas.shape[0] - 1,
                                                    disable_pbar=disable_pbar)
710

711
712
713
714
        else:
            extra_args["denoise_mask"] = denoise_mask
            self.model_k.latent_image = latent_image
            self.model_k.noise = noise
715

716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
            if max_denoise:
                noise = noise * torch.sqrt(1.0 + sigmas[0] ** 2.0)
            else:
                noise = noise * sigmas[0]

            k_callback = None
            total_steps = len(sigmas) - 1
            if callback is not None:
                k_callback = lambda x: callback(x["i"], x["denoised"], x["x"], total_steps)

            if latent_image is not None:
                noise += latent_image
            if self.sampler == "dpm_fast":
                samples = k_diffusion_sampling.sample_dpm_fast(self.model_k, noise, sigma_min, sigmas[0], total_steps, extra_args=extra_args, callback=k_callback, disable=disable_pbar)
            elif self.sampler == "dpm_adaptive":
                samples = k_diffusion_sampling.sample_dpm_adaptive(self.model_k, noise, sigma_min, sigmas[0], extra_args=extra_args, callback=k_callback, disable=disable_pbar)
            else:
                samples = getattr(k_diffusion_sampling, "sample_{}".format(self.sampler))(self.model_k, noise, sigmas, extra_args=extra_args, callback=k_callback, disable=disable_pbar)
734

735
        return self.model.process_latent_out(samples.to(torch.float32))