samplers.py 27 KB
Newer Older
1
from .k_diffusion import sampling as k_diffusion_sampling
2
from .extra_samplers import uni_pc
comfyanonymous's avatar
comfyanonymous committed
3
import torch
comfyanonymous's avatar
comfyanonymous committed
4
import collections
5
from comfy import model_management
comfyanonymous's avatar
comfyanonymous committed
6
import math
7
import logging
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
def get_area_and_mult(conds, x_in, timestep_in):
    area = (x_in.shape[2], x_in.shape[3], 0, 0)
    strength = 1.0

    if 'timestep_start' in conds:
        timestep_start = conds['timestep_start']
        if timestep_in[0] > timestep_start:
            return None
    if 'timestep_end' in conds:
        timestep_end = conds['timestep_end']
        if timestep_in[0] < timestep_end:
            return None
    if 'area' in conds:
        area = conds['area']
    if 'strength' in conds:
        strength = conds['strength']

    input_x = x_in[:,:,area[2]:area[0] + area[2],area[3]:area[1] + area[3]]
    if 'mask' in conds:
        # Scale the mask to the size of the input
        # The mask should have been resized as we began the sampling process
        mask_strength = 1.0
        if "mask_strength" in conds:
            mask_strength = conds["mask_strength"]
        mask = conds['mask']
        assert(mask.shape[1] == x_in.shape[2])
        assert(mask.shape[2] == x_in.shape[3])
        mask = mask[:,area[2]:area[0] + area[2],area[3]:area[1] + area[3]] * mask_strength
        mask = mask.unsqueeze(1).repeat(input_x.shape[0] // mask.shape[0], input_x.shape[1], 1, 1)
    else:
        mask = torch.ones_like(input_x)
    mult = mask * strength

    if 'mask' not in conds:
        rr = 8
        if area[2] != 0:
            for t in range(rr):
                mult[:,:,t:1+t,:] *= ((1.0/rr) * (t + 1))
        if (area[0] + area[2]) < x_in.shape[2]:
            for t in range(rr):
                mult[:,:,area[0] - 1 - t:area[0] - t,:] *= ((1.0/rr) * (t + 1))
        if area[3] != 0:
            for t in range(rr):
                mult[:,:,:,t:1+t] *= ((1.0/rr) * (t + 1))
        if (area[1] + area[3]) < x_in.shape[3]:
            for t in range(rr):
                mult[:,:,:,area[1] - 1 - t:area[1] - t] *= ((1.0/rr) * (t + 1))

    conditioning = {}
    model_conds = conds["model_conds"]
    for c in model_conds:
        conditioning[c] = model_conds[c].process_cond(batch_size=x_in.shape[0], device=x_in.device, area=area)

comfyanonymous's avatar
comfyanonymous committed
62
    control = conds.get('control', None)
63
64
65
66
67
68
69
70
71
72
73
74
75
76

    patches = None
    if 'gligen' in conds:
        gligen = conds['gligen']
        patches = {}
        gligen_type = gligen[0]
        gligen_model = gligen[1]
        if gligen_type == "position":
            gligen_patch = gligen_model.model.set_position(input_x.shape, gligen[2], input_x.device)
        else:
            gligen_patch = gligen_model.model.set_empty(input_x.shape, input_x.device)

        patches['middle_patch'] = [gligen_patch]

comfyanonymous's avatar
comfyanonymous committed
77
78
    cond_obj = collections.namedtuple('cond_obj', ['input_x', 'mult', 'conditioning', 'area', 'control', 'patches'])
    return cond_obj(input_x, mult, conditioning, area, control, patches)
79
80
81
82
83
84
85
86
87
88
89
90

def cond_equal_size(c1, c2):
    if c1 is c2:
        return True
    if c1.keys() != c2.keys():
        return False
    for k in c1:
        if not c1[k].can_concat(c2[k]):
            return False
    return True

def can_concat_cond(c1, c2):
comfyanonymous's avatar
comfyanonymous committed
91
    if c1.input_x.shape != c2.input_x.shape:
92
93
        return False

comfyanonymous's avatar
comfyanonymous committed
94
95
    def objects_concatable(obj1, obj2):
        if (obj1 is None) != (obj2 is None):
96
            return False
comfyanonymous's avatar
comfyanonymous committed
97
98
99
100
        if obj1 is not None:
            if obj1 is not obj2:
                return False
        return True
101

comfyanonymous's avatar
comfyanonymous committed
102
103
104
105
    if not objects_concatable(c1.control, c2.control):
        return False

    if not objects_concatable(c1.patches, c2.patches):
106
107
        return False

comfyanonymous's avatar
comfyanonymous committed
108
    return cond_equal_size(c1.conditioning, c2.conditioning)
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183

def cond_cat(c_list):
    c_crossattn = []
    c_concat = []
    c_adm = []
    crossattn_max_len = 0

    temp = {}
    for x in c_list:
        for k in x:
            cur = temp.get(k, [])
            cur.append(x[k])
            temp[k] = cur

    out = {}
    for k in temp:
        conds = temp[k]
        out[k] = conds[0].concat(conds[1:])

    return out

def calc_cond_uncond_batch(model, cond, uncond, x_in, timestep, model_options):
    out_cond = torch.zeros_like(x_in)
    out_count = torch.ones_like(x_in) * 1e-37

    out_uncond = torch.zeros_like(x_in)
    out_uncond_count = torch.ones_like(x_in) * 1e-37

    COND = 0
    UNCOND = 1

    to_run = []
    for x in cond:
        p = get_area_and_mult(x, x_in, timestep)
        if p is None:
            continue

        to_run += [(p, COND)]
    if uncond is not None:
        for x in uncond:
            p = get_area_and_mult(x, x_in, timestep)
            if p is None:
                continue

            to_run += [(p, UNCOND)]

    while len(to_run) > 0:
        first = to_run[0]
        first_shape = first[0][0].shape
        to_batch_temp = []
        for x in range(len(to_run)):
            if can_concat_cond(to_run[x][0], first[0]):
                to_batch_temp += [x]

        to_batch_temp.reverse()
        to_batch = to_batch_temp[:1]

        free_memory = model_management.get_free_memory(x_in.device)
        for i in range(1, len(to_batch_temp) + 1):
            batch_amount = to_batch_temp[:len(to_batch_temp)//i]
            input_shape = [len(batch_amount) * first_shape[0]] + list(first_shape)[1:]
            if model.memory_required(input_shape) < free_memory:
                to_batch = batch_amount
                break

        input_x = []
        mult = []
        c = []
        cond_or_uncond = []
        area = []
        control = None
        patches = None
        for x in to_batch:
            o = to_run.pop(x)
            p = o[0]
comfyanonymous's avatar
comfyanonymous committed
184
185
186
187
188
189
190
            input_x.append(p.input_x)
            mult.append(p.mult)
            c.append(p.conditioning)
            area.append(p.area)
            cond_or_uncond.append(o[1])
            control = p.control
            patches = p.patches
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209

        batch_chunks = len(cond_or_uncond)
        input_x = torch.cat(input_x)
        c = cond_cat(c)
        timestep_ = torch.cat([timestep] * batch_chunks)

        if control is not None:
            c['control'] = control.get_control(input_x, timestep_, c, len(cond_or_uncond))

        transformer_options = {}
        if 'transformer_options' in model_options:
            transformer_options = model_options['transformer_options'].copy()

        if patches is not None:
            if "patches" in transformer_options:
                cur_patches = transformer_options["patches"].copy()
                for p in patches:
                    if p in cur_patches:
                        cur_patches[p] = cur_patches[p] + patches[p]
210
                    else:
211
                        cur_patches[p] = patches[p]
212
                transformer_options["patches"] = cur_patches
213
214
            else:
                transformer_options["patches"] = patches
215

216
217
        transformer_options["cond_or_uncond"] = cond_or_uncond[:]
        transformer_options["sigmas"] = timestep
218

219
        c['transformer_options'] = transformer_options
220

221
222
223
224
225
        if 'model_function_wrapper' in model_options:
            output = model_options['model_function_wrapper'](model.apply_model, {"input": input_x, "timestep": timestep_, "c": c, "cond_or_uncond": cond_or_uncond}).chunk(batch_chunks)
        else:
            output = model.apply_model(input_x, timestep_, **c).chunk(batch_chunks)
        del input_x
comfyanonymous's avatar
comfyanonymous committed
226

227
228
229
230
231
232
233
234
        for o in range(batch_chunks):
            if cond_or_uncond[o] == COND:
                out_cond[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += output[o] * mult[o]
                out_count[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += mult[o]
            else:
                out_uncond[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += output[o] * mult[o]
                out_uncond_count[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += mult[o]
        del mult
comfyanonymous's avatar
comfyanonymous committed
235

236
237
238
239
240
    out_cond /= out_count
    del out_count
    out_uncond /= out_uncond_count
    del out_uncond_count
    return out_cond, out_uncond
comfyanonymous's avatar
comfyanonymous committed
241

242
243
244
#The main sampling function shared by all the samplers
#Returns denoised
def sampling_function(model, x, timestep, uncond, cond, cond_scale, model_options={}, seed=None):
245
        if math.isclose(cond_scale, 1.0) and model_options.get("disable_cfg1_optimization", False) == False:
246
247
248
            uncond_ = None
        else:
            uncond_ = uncond
249

250
        cond_pred, uncond_pred = calc_cond_uncond_batch(model, cond, uncond_, x, timestep, model_options)
251
        if "sampler_cfg_function" in model_options:
Hari's avatar
Hari committed
252
253
            args = {"cond": x - cond_pred, "uncond": x - uncond_pred, "cond_scale": cond_scale, "timestep": timestep, "input": x, "sigma": timestep,
                    "cond_denoised": cond_pred, "uncond_denoised": uncond_pred, "model": model, "model_options": model_options}
254
            cfg_result = x - model_options["sampler_cfg_function"](args)
255
256
        else:
            cfg_result = uncond_pred + (cond_pred - uncond_pred) * cond_scale
257

258
259
260
261
        for fn in model_options.get("sampler_post_cfg_function", []):
            args = {"denoised": cfg_result, "cond": cond, "uncond": uncond, "model": model, "uncond_denoised": uncond_pred, "cond_denoised": cond_pred,
                    "sigma": timestep, "model_options": model_options, "input": x}
            cfg_result = fn(args)
262

263
        return cfg_result
comfyanonymous's avatar
comfyanonymous committed
264

comfyanonymous's avatar
comfyanonymous committed
265
266
267
268
class CFGNoisePredictor(torch.nn.Module):
    def __init__(self, model):
        super().__init__()
        self.inner_model = model
269
    def apply_model(self, x, timestep, cond, uncond, cond_scale, model_options={}, seed=None):
270
        out = sampling_function(self.inner_model, x, timestep, uncond, cond, cond_scale, model_options=model_options, seed=seed)
comfyanonymous's avatar
comfyanonymous committed
271
        return out
comfyanonymous's avatar
comfyanonymous committed
272
273
    def forward(self, *args, **kwargs):
        return self.apply_model(*args, **kwargs)
comfyanonymous's avatar
comfyanonymous committed
274
275

class KSamplerX0Inpaint(torch.nn.Module):
276
    def __init__(self, model, sigmas):
277
278
        super().__init__()
        self.inner_model = model
279
        self.sigmas = sigmas
280
    def forward(self, x, sigma, uncond, cond, cond_scale, denoise_mask, model_options={}, seed=None):
281
        if denoise_mask is not None:
282
            if "denoise_mask_function" in model_options:
283
                denoise_mask = model_options["denoise_mask_function"](sigma, denoise_mask, extra_options={"model": self.inner_model, "sigmas": self.sigmas})
284
            latent_mask = 1. - denoise_mask
285
            x = x * denoise_mask + self.inner_model.inner_model.model_sampling.noise_scaling(sigma.reshape([sigma.shape[0]] + [1] * (len(self.noise.shape) - 1)), self.noise, self.latent_image) * latent_mask
286
        out = self.inner_model(x, sigma, cond=cond, uncond=uncond, cond_scale=cond_scale, model_options=model_options, seed=seed)
287
        if denoise_mask is not None:
comfyanonymous's avatar
comfyanonymous committed
288
            out = out * denoise_mask + self.latent_image * latent_mask
289
        return out
290

comfyanonymous's avatar
comfyanonymous committed
291
def simple_scheduler(model, steps):
comfyanonymous's avatar
comfyanonymous committed
292
    s = model.model_sampling
comfyanonymous's avatar
comfyanonymous committed
293
    sigs = []
comfyanonymous's avatar
comfyanonymous committed
294
    ss = len(s.sigmas) / steps
comfyanonymous's avatar
comfyanonymous committed
295
    for x in range(steps):
comfyanonymous's avatar
comfyanonymous committed
296
        sigs += [float(s.sigmas[-(1 + int(x * ss))])]
comfyanonymous's avatar
comfyanonymous committed
297
298
299
    sigs += [0.0]
    return torch.FloatTensor(sigs)

comfyanonymous's avatar
comfyanonymous committed
300
def ddim_scheduler(model, steps):
comfyanonymous's avatar
comfyanonymous committed
301
    s = model.model_sampling
comfyanonymous's avatar
comfyanonymous committed
302
    sigs = []
303
    ss = max(len(s.sigmas) // steps, 1)
comfyanonymous's avatar
comfyanonymous committed
304
305
306
307
308
    x = 1
    while x < len(s.sigmas):
        sigs += [float(s.sigmas[x])]
        x += ss
    sigs = sigs[::-1]
comfyanonymous's avatar
comfyanonymous committed
309
310
311
    sigs += [0.0]
    return torch.FloatTensor(sigs)

comfyanonymous's avatar
comfyanonymous committed
312
313
314
315
316
317
318
319
320
321
def normal_scheduler(model, steps, sgm=False, floor=False):
    s = model.model_sampling
    start = s.timestep(s.sigma_max)
    end = s.timestep(s.sigma_min)

    if sgm:
        timesteps = torch.linspace(start, end, steps + 1)[:-1]
    else:
        timesteps = torch.linspace(start, end, steps)

322
323
324
    sigs = []
    for x in range(len(timesteps)):
        ts = timesteps[x]
comfyanonymous's avatar
comfyanonymous committed
325
        sigs.append(s.sigma(ts))
326
327
328
    sigs += [0.0]
    return torch.FloatTensor(sigs)

Jacob Segal's avatar
Jacob Segal committed
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
def get_mask_aabb(masks):
    if masks.numel() == 0:
        return torch.zeros((0, 4), device=masks.device, dtype=torch.int)

    b = masks.shape[0]

    bounding_boxes = torch.zeros((b, 4), device=masks.device, dtype=torch.int)
    is_empty = torch.zeros((b), device=masks.device, dtype=torch.bool)
    for i in range(b):
        mask = masks[i]
        if mask.numel() == 0:
            continue
        if torch.max(mask != 0) == False:
            is_empty[i] = True
            continue
        y, x = torch.where(mask)
        bounding_boxes[i, 0] = torch.min(x)
        bounding_boxes[i, 1] = torch.min(y)
        bounding_boxes[i, 2] = torch.max(x)
        bounding_boxes[i, 3] = torch.max(y)

    return bounding_boxes, is_empty

352
def resolve_areas_and_cond_masks(conditions, h, w, device):
Jacob Segal's avatar
Jacob Segal committed
353
354
355
356
    # We need to decide on an area outside the sampling loop in order to properly generate opposite areas of equal sizes.
    # While we're doing this, we can also resolve the mask device and scaling for performance reasons
    for i in range(len(conditions)):
        c = conditions[i]
357
358
        if 'area' in c:
            area = c['area']
359
            if area[0] == "percentage":
360
                modified = c.copy()
361
362
                area = (max(1, round(area[1] * h)), max(1, round(area[2] * w)), round(area[3] * h), round(area[4] * w))
                modified['area'] = area
363
                c = modified
364
365
                conditions[i] = c

366
367
        if 'mask' in c:
            mask = c['mask']
Jacob Segal's avatar
Jacob Segal committed
368
            mask = mask.to(device=device)
369
            modified = c.copy()
Jacob Segal's avatar
Jacob Segal committed
370
371
            if len(mask.shape) == 2:
                mask = mask.unsqueeze(0)
mara's avatar
mara committed
372
            if mask.shape[1] != h or mask.shape[2] != w:
Jacob Segal's avatar
Jacob Segal committed
373
374
                mask = torch.nn.functional.interpolate(mask.unsqueeze(1), size=(h, w), mode='bilinear', align_corners=False).squeeze(1)

Jacob Segal's avatar
Jacob Segal committed
375
            if modified.get("set_area_to_bounds", False):
Jacob Segal's avatar
Jacob Segal committed
376
                bounds = torch.max(torch.abs(mask),dim=0).values.unsqueeze(0)
Jacob Segal's avatar
Jacob Segal committed
377
378
379
380
                boxes, is_empty = get_mask_aabb(bounds)
                if is_empty[0]:
                    # Use the minimum possible size for efficiency reasons. (Since the mask is all-0, this becomes a noop anyway)
                    modified['area'] = (8, 8, 0, 0)
Jacob Segal's avatar
Jacob Segal committed
381
                else:
Jacob Segal's avatar
Jacob Segal committed
382
                    box = boxes[0]
Jacob Segal's avatar
Jacob Segal committed
383
                    H, W, Y, X = (box[3] - box[1] + 1, box[2] - box[0] + 1, box[1], box[0])
384
385
                    H = max(8, H)
                    W = max(8, W)
Jacob Segal's avatar
Jacob Segal committed
386
387
                    area = (int(H), int(W), int(Y), int(X))
                    modified['area'] = area
Jacob Segal's avatar
Jacob Segal committed
388
389

            modified['mask'] = mask
390
            conditions[i] = modified
Jacob Segal's avatar
Jacob Segal committed
391

comfyanonymous's avatar
comfyanonymous committed
392
def create_cond_with_same_area_if_none(conds, c):
393
    if 'area' not in c:
comfyanonymous's avatar
comfyanonymous committed
394
395
        return

396
    c_area = c['area']
comfyanonymous's avatar
comfyanonymous committed
397
398
    smallest = None
    for x in conds:
399
400
        if 'area' in x:
            a = x['area']
comfyanonymous's avatar
comfyanonymous committed
401
402
403
404
405
            if c_area[2] >= a[2] and c_area[3] >= a[3]:
                if a[0] + a[2] >= c_area[0] + c_area[2]:
                    if a[1] + a[3] >= c_area[1] + c_area[3]:
                        if smallest is None:
                            smallest = x
406
                        elif 'area' not in smallest:
comfyanonymous's avatar
comfyanonymous committed
407
408
                            smallest = x
                        else:
409
                            if smallest['area'][0] * smallest['area'][1] > a[0] * a[1]:
comfyanonymous's avatar
comfyanonymous committed
410
411
412
413
414
415
                                smallest = x
        else:
            if smallest is None:
                smallest = x
    if smallest is None:
        return
416
417
    if 'area' in smallest:
        if smallest['area'] == c_area:
comfyanonymous's avatar
comfyanonymous committed
418
            return
419
420
421
422

    out = c.copy()
    out['model_conds'] = smallest['model_conds'].copy() #TODO: which fields should be copied?
    conds += [out]
comfyanonymous's avatar
comfyanonymous committed
423

424
def calculate_start_end_timesteps(model, conds):
425
    s = model.model_sampling
426
427
428
429
430
    for t in range(len(conds)):
        x = conds[t]

        timestep_start = None
        timestep_end = None
431
        if 'start_percent' in x:
432
            timestep_start = s.percent_to_sigma(x['start_percent'])
433
        if 'end_percent' in x:
434
            timestep_end = s.percent_to_sigma(x['end_percent'])
435
436

        if (timestep_start is not None) or (timestep_end is not None):
437
            n = x.copy()
438
439
440
441
            if (timestep_start is not None):
                n['timestep_start'] = timestep_start
            if (timestep_end is not None):
                n['timestep_end'] = timestep_end
442
            conds[t] = n
443

444
def pre_run_control(model, conds):
445
    s = model.model_sampling
446
447
448
449
450
    for t in range(len(conds)):
        x = conds[t]

        timestep_start = None
        timestep_end = None
451
        percent_to_timestep_function = lambda a: s.percent_to_sigma(a)
452
        if 'control' in x:
453
            x['control'].pre_run(model, percent_to_timestep_function)
454

455
def apply_empty_x_to_equal_area(conds, uncond, name, uncond_fill_func):
comfyanonymous's avatar
comfyanonymous committed
456
457
458
459
460
461
    cond_cnets = []
    cond_other = []
    uncond_cnets = []
    uncond_other = []
    for t in range(len(conds)):
        x = conds[t]
462
463
464
        if 'area' not in x:
            if name in x and x[name] is not None:
                cond_cnets.append(x[name])
comfyanonymous's avatar
comfyanonymous committed
465
466
467
468
            else:
                cond_other.append((x, t))
    for t in range(len(uncond)):
        x = uncond[t]
469
470
471
        if 'area' not in x:
            if name in x and x[name] is not None:
                uncond_cnets.append(x[name])
comfyanonymous's avatar
comfyanonymous committed
472
473
474
475
476
477
478
479
480
            else:
                uncond_other.append((x, t))

    if len(uncond_cnets) > 0:
        return

    for x in range(len(cond_cnets)):
        temp = uncond_other[x % len(uncond_other)]
        o = temp[0]
481
482
        if name in o and o[name] is not None:
            n = o.copy()
483
            n[name] = uncond_fill_func(cond_cnets, x)
484
            uncond += [n]
comfyanonymous's avatar
comfyanonymous committed
485
        else:
486
            n = o.copy()
487
            n[name] = uncond_fill_func(cond_cnets, x)
488
            uncond[temp[1]] = n
489

490
def encode_model_conds(model_function, conds, noise, device, prompt_type, **kwargs):
491
492
    for t in range(len(conds)):
        x = conds[t]
493
        params = x.copy()
494
        params["device"] = device
495
496
497
498
        params["noise"] = noise
        params["width"] = params.get("width", noise.shape[3] * 8)
        params["height"] = params.get("height", noise.shape[2] * 8)
        params["prompt_type"] = params.get("prompt_type", prompt_type)
499
500
501
502
503
        for k in kwargs:
            if k not in params:
                params[k] = kwargs[k]

        out = model_function(**params)
504
505
506
507
508
509
        x = x.copy()
        model_conds = x['model_conds'].copy()
        for k in out:
            model_conds[k] = out[k]
        x['model_conds'] = model_conds
        conds[t] = x
510
    return conds
511

comfyanonymous's avatar
comfyanonymous committed
512
513
514
515
516
class Sampler:
    def sample(self):
        pass

    def max_denoise(self, model_wrap, sigmas):
comfyanonymous's avatar
comfyanonymous committed
517
518
519
        max_sigma = float(model_wrap.inner_model.model_sampling.sigma_max)
        sigma = float(sigmas[0])
        return math.isclose(max_sigma, sigma, rel_tol=1e-05) or sigma > max_sigma
comfyanonymous's avatar
comfyanonymous committed
520

comfyanonymous's avatar
comfyanonymous committed
521
KSAMPLER_NAMES = ["euler", "euler_ancestral", "heun", "heunpp2","dpm_2", "dpm_2_ancestral",
comfyanonymous's avatar
comfyanonymous committed
522
                  "lms", "dpm_fast", "dpm_adaptive", "dpmpp_2s_ancestral", "dpmpp_sde", "dpmpp_sde_gpu",
comfyanonymous's avatar
comfyanonymous committed
523
                  "dpmpp_2m", "dpmpp_2m_sde", "dpmpp_2m_sde_gpu", "dpmpp_3m_sde", "dpmpp_3m_sde_gpu", "ddpm", "lcm"]
comfyanonymous's avatar
comfyanonymous committed
524

525
526
527
528
529
class KSAMPLER(Sampler):
    def __init__(self, sampler_function, extra_options={}, inpaint_options={}):
        self.sampler_function = sampler_function
        self.extra_options = extra_options
        self.inpaint_options = inpaint_options
comfyanonymous's avatar
comfyanonymous committed
530

531
532
    def sample(self, model_wrap, sigmas, extra_args, callback, noise, latent_image=None, denoise_mask=None, disable_pbar=False):
        extra_args["denoise_mask"] = denoise_mask
533
        model_k = KSamplerX0Inpaint(model_wrap, sigmas)
534
535
536
537
538
539
        model_k.latent_image = latent_image
        if self.inpaint_options.get("random", False): #TODO: Should this be the default?
            generator = torch.manual_seed(extra_args.get("seed", 41) + 1)
            model_k.noise = torch.randn(noise.shape, generator=generator, device="cpu").to(noise.dtype).to(noise.device)
        else:
            model_k.noise = noise
comfyanonymous's avatar
comfyanonymous committed
540

541
        noise = model_wrap.inner_model.model_sampling.noise_scaling(sigmas[0], noise, latent_image, self.max_denoise(model_wrap, sigmas))
542
543
544
545
546
547
548
549
550
551
552
553
554

        k_callback = None
        total_steps = len(sigmas) - 1
        if callback is not None:
            k_callback = lambda x: callback(x["i"], x["denoised"], x["x"], total_steps)

        samples = self.sampler_function(model_k, noise, sigmas, extra_args=extra_args, callback=k_callback, disable=disable_pbar, **self.extra_options)
        return samples


def ksampler(sampler_name, extra_options={}, inpaint_options={}):
    if sampler_name == "dpm_fast":
        def dpm_fast_function(model, noise, sigmas, extra_args, callback, disable):
comfyanonymous's avatar
comfyanonymous committed
555
556
557
            sigma_min = sigmas[-1]
            if sigma_min == 0:
                sigma_min = sigmas[-2]
558
559
560
561
            total_steps = len(sigmas) - 1
            return k_diffusion_sampling.sample_dpm_fast(model, noise, sigma_min, sigmas[0], total_steps, extra_args=extra_args, callback=callback, disable=disable)
        sampler_function = dpm_fast_function
    elif sampler_name == "dpm_adaptive":
562
        def dpm_adaptive_function(model, noise, sigmas, extra_args, callback, disable, **extra_options):
563
564
565
            sigma_min = sigmas[-1]
            if sigma_min == 0:
                sigma_min = sigmas[-2]
566
            return k_diffusion_sampling.sample_dpm_adaptive(model, noise, sigma_min, sigmas[0], extra_args=extra_args, callback=callback, disable=disable, **extra_options)
567
568
569
        sampler_function = dpm_adaptive_function
    else:
        sampler_function = getattr(k_diffusion_sampling, "sample_{}".format(sampler_name))
comfyanonymous's avatar
comfyanonymous committed
570

571
    return KSAMPLER(sampler_function, extra_options, inpaint_options)
comfyanonymous's avatar
comfyanonymous committed
572

comfyanonymous's avatar
comfyanonymous committed
573
574
def wrap_model(model):
    model_denoise = CFGNoisePredictor(model)
comfyanonymous's avatar
comfyanonymous committed
575
    return model_denoise
comfyanonymous's avatar
comfyanonymous committed
576
577
578
579
580
581
582
583

def sample(model, noise, positive, negative, cfg, device, sampler, sigmas, model_options={}, latent_image=None, denoise_mask=None, callback=None, disable_pbar=False, seed=None):
    positive = positive[:]
    negative = negative[:]

    resolve_areas_and_cond_masks(positive, noise.shape[2], noise.shape[3], device)
    resolve_areas_and_cond_masks(negative, noise.shape[2], noise.shape[3], device)

comfyanonymous's avatar
comfyanonymous committed
584
    model_wrap = wrap_model(model)
comfyanonymous's avatar
comfyanonymous committed
585

586
587
    calculate_start_end_timesteps(model, negative)
    calculate_start_end_timesteps(model, positive)
comfyanonymous's avatar
comfyanonymous committed
588

589
    if latent_image is not None and torch.count_nonzero(latent_image) > 0: #Don't shift the empty latent image.
590
591
        latent_image = model.process_latent_in(latent_image)

592
    if hasattr(model, 'extra_conds'):
593
594
        positive = encode_model_conds(model.extra_conds, positive, noise, device, "positive", latent_image=latent_image, denoise_mask=denoise_mask, seed=seed)
        negative = encode_model_conds(model.extra_conds, negative, noise, device, "negative", latent_image=latent_image, denoise_mask=denoise_mask, seed=seed)
595

comfyanonymous's avatar
comfyanonymous committed
596
597
598
599
600
601
    #make sure each cond area has an opposite one with the same area
    for c in positive:
        create_cond_with_same_area_if_none(negative, c)
    for c in negative:
        create_cond_with_same_area_if_none(positive, c)

602
    pre_run_control(model, negative + positive)
comfyanonymous's avatar
comfyanonymous committed
603

604
    apply_empty_x_to_equal_area(list(filter(lambda c: c.get('control_apply_to_uncond', False) == True, positive)), negative, 'control', lambda cond_cnets, x: cond_cnets[x])
comfyanonymous's avatar
comfyanonymous committed
605
606
607
608
609
610
611
    apply_empty_x_to_equal_area(positive, negative, 'gligen', lambda cond_cnets, x: cond_cnets[x])

    extra_args = {"cond":positive, "uncond":negative, "cond_scale": cfg, "model_options": model_options, "seed":seed}

    samples = sampler.sample(model_wrap, sigmas, extra_args, callback, noise, latent_image, denoise_mask, disable_pbar)
    return model.process_latent_out(samples.to(torch.float32))

comfyanonymous's avatar
comfyanonymous committed
612
613
614
615
616
SCHEDULER_NAMES = ["normal", "karras", "exponential", "sgm_uniform", "simple", "ddim_uniform"]
SAMPLER_NAMES = KSAMPLER_NAMES + ["ddim", "uni_pc", "uni_pc_bh2"]

def calculate_sigmas_scheduler(model, scheduler_name, steps):
    if scheduler_name == "karras":
comfyanonymous's avatar
comfyanonymous committed
617
        sigmas = k_diffusion_sampling.get_sigmas_karras(n=steps, sigma_min=float(model.model_sampling.sigma_min), sigma_max=float(model.model_sampling.sigma_max))
comfyanonymous's avatar
comfyanonymous committed
618
    elif scheduler_name == "exponential":
comfyanonymous's avatar
comfyanonymous committed
619
        sigmas = k_diffusion_sampling.get_sigmas_exponential(n=steps, sigma_min=float(model.model_sampling.sigma_min), sigma_max=float(model.model_sampling.sigma_max))
comfyanonymous's avatar
comfyanonymous committed
620
    elif scheduler_name == "normal":
comfyanonymous's avatar
comfyanonymous committed
621
        sigmas = normal_scheduler(model, steps)
comfyanonymous's avatar
comfyanonymous committed
622
    elif scheduler_name == "simple":
comfyanonymous's avatar
comfyanonymous committed
623
        sigmas = simple_scheduler(model, steps)
comfyanonymous's avatar
comfyanonymous committed
624
    elif scheduler_name == "ddim_uniform":
comfyanonymous's avatar
comfyanonymous committed
625
        sigmas = ddim_scheduler(model, steps)
comfyanonymous's avatar
comfyanonymous committed
626
    elif scheduler_name == "sgm_uniform":
comfyanonymous's avatar
comfyanonymous committed
627
        sigmas = normal_scheduler(model, steps, sgm=True)
comfyanonymous's avatar
comfyanonymous committed
628
    else:
629
        logging.error("error invalid scheduler {}".format(scheduler_name))
comfyanonymous's avatar
comfyanonymous committed
630
631
    return sigmas

632
def sampler_object(name):
633
    if name == "uni_pc":
comfyanonymous's avatar
comfyanonymous committed
634
        sampler = KSAMPLER(uni_pc.sample_unipc)
635
    elif name == "uni_pc_bh2":
comfyanonymous's avatar
comfyanonymous committed
636
        sampler = KSAMPLER(uni_pc.sample_unipc_bh2)
637
    elif name == "ddim":
638
        sampler = ksampler("euler", inpaint_options={"random": True})
639
640
641
642
    else:
        sampler = ksampler(name)
    return sampler

comfyanonymous's avatar
comfyanonymous committed
643
class KSampler:
comfyanonymous's avatar
comfyanonymous committed
644
645
    SCHEDULERS = SCHEDULER_NAMES
    SAMPLERS = SAMPLER_NAMES
646
    DISCARD_PENULTIMATE_SIGMA_SAMPLERS = set(('dpm_2', 'dpm_2_ancestral', 'uni_pc', 'uni_pc_bh2'))
comfyanonymous's avatar
comfyanonymous committed
647

648
    def __init__(self, model, steps, device, sampler=None, scheduler=None, denoise=None, model_options={}):
comfyanonymous's avatar
comfyanonymous committed
649
650
651
652
653
654
655
656
657
        self.model = model
        self.device = device
        if scheduler not in self.SCHEDULERS:
            scheduler = self.SCHEDULERS[0]
        if sampler not in self.SAMPLERS:
            sampler = self.SAMPLERS[0]
        self.scheduler = scheduler
        self.sampler = sampler
        self.set_steps(steps, denoise)
658
        self.denoise = denoise
659
        self.model_options = model_options
comfyanonymous's avatar
comfyanonymous committed
660

comfyanonymous's avatar
comfyanonymous committed
661
662
663
664
    def calculate_sigmas(self, steps):
        sigmas = None

        discard_penultimate_sigma = False
665
        if self.sampler in self.DISCARD_PENULTIMATE_SIGMA_SAMPLERS:
comfyanonymous's avatar
comfyanonymous committed
666
667
668
            steps += 1
            discard_penultimate_sigma = True

comfyanonymous's avatar
comfyanonymous committed
669
        sigmas = calculate_sigmas_scheduler(self.model, self.scheduler, steps)
comfyanonymous's avatar
comfyanonymous committed
670
671
672
673
674

        if discard_penultimate_sigma:
            sigmas = torch.cat([sigmas[:-2], sigmas[-1:]])
        return sigmas

comfyanonymous's avatar
comfyanonymous committed
675
676
    def set_steps(self, steps, denoise=None):
        self.steps = steps
677
        if denoise is None or denoise > 0.9999:
comfyanonymous's avatar
comfyanonymous committed
678
            self.sigmas = self.calculate_sigmas(steps).to(self.device)
comfyanonymous's avatar
comfyanonymous committed
679
680
        else:
            new_steps = int(steps/denoise)
comfyanonymous's avatar
comfyanonymous committed
681
            sigmas = self.calculate_sigmas(new_steps).to(self.device)
comfyanonymous's avatar
comfyanonymous committed
682
683
            self.sigmas = sigmas[-(steps + 1):]

684
    def sample(self, noise, positive, negative, cfg, latent_image=None, start_step=None, last_step=None, force_full_denoise=False, denoise_mask=None, sigmas=None, callback=None, disable_pbar=False, seed=None):
685
686
        if sigmas is None:
            sigmas = self.sigmas
comfyanonymous's avatar
comfyanonymous committed
687

comfyanonymous's avatar
comfyanonymous committed
688
        if last_step is not None and last_step < (len(sigmas) - 1):
comfyanonymous's avatar
comfyanonymous committed
689
            sigmas = sigmas[:last_step + 1]
comfyanonymous's avatar
comfyanonymous committed
690
691
692
            if force_full_denoise:
                sigmas[-1] = 0

comfyanonymous's avatar
comfyanonymous committed
693
        if start_step is not None:
comfyanonymous's avatar
comfyanonymous committed
694
695
696
697
698
699
700
            if start_step < (len(sigmas) - 1):
                sigmas = sigmas[start_step:]
            else:
                if latent_image is not None:
                    return latent_image
                else:
                    return torch.zeros_like(noise)
comfyanonymous's avatar
comfyanonymous committed
701

702
        sampler = sampler_object(self.sampler)
703

704
        return sample(self.model, noise, positive, negative, cfg, self.device, sampler, sigmas, self.model_options, latent_image=latent_image, denoise_mask=denoise_mask, callback=callback, disable_pbar=disable_pbar, seed=seed)