samplers.py 27.9 KB
Newer Older
1
from .k_diffusion import sampling as k_diffusion_sampling
2
from .extra_samplers import uni_pc
comfyanonymous's avatar
comfyanonymous committed
3
import torch
4
import enum
5
from comfy import model_management
comfyanonymous's avatar
comfyanonymous committed
6
import math
7
from comfy import model_base
8
import comfy.utils
9
import comfy.conds
10
11


comfyanonymous's avatar
comfyanonymous committed
12
#The main sampling function shared by all the samplers
comfyanonymous's avatar
comfyanonymous committed
13
#Returns denoised
14
def sampling_function(model, x, timestep, uncond, cond, cond_scale, model_options={}, seed=None):
15
        def get_area_and_mult(conds, x_in, timestep_in):
16
17
            area = (x_in.shape[2], x_in.shape[3], 0, 0)
            strength = 1.0
18
19
20

            if 'timestep_start' in conds:
                timestep_start = conds['timestep_start']
21
                if timestep_in[0] > timestep_start:
22
                    return None
23
24
            if 'timestep_end' in conds:
                timestep_end = conds['timestep_end']
25
                if timestep_in[0] < timestep_end:
26
                    return None
27
28
29
30
            if 'area' in conds:
                area = conds['area']
            if 'strength' in conds:
                strength = conds['strength']
31

32
            input_x = x_in[:,:,area[2]:area[0] + area[2],area[3]:area[1] + area[3]]
33
            if 'mask' in conds:
Jacob Segal's avatar
Jacob Segal committed
34
35
                # Scale the mask to the size of the input
                # The mask should have been resized as we began the sampling process
36
                mask_strength = 1.0
37
38
39
                if "mask_strength" in conds:
                    mask_strength = conds["mask_strength"]
                mask = conds['mask']
Jacob Segal's avatar
Jacob Segal committed
40
41
                assert(mask.shape[1] == x_in.shape[2])
                assert(mask.shape[2] == x_in.shape[3])
42
                mask = mask[:,area[2]:area[0] + area[2],area[3]:area[1] + area[3]] * mask_strength
Jacob Segal's avatar
Jacob Segal committed
43
                mask = mask.unsqueeze(1).repeat(input_x.shape[0] // mask.shape[0], input_x.shape[1], 1, 1)
Jacob Segal's avatar
Jacob Segal committed
44
45
46
47
            else:
                mask = torch.ones_like(input_x)
            mult = mask * strength

48
            if 'mask' not in conds:
Jacob Segal's avatar
Jacob Segal committed
49
50
51
52
53
54
55
56
57
58
59
60
61
62
                rr = 8
                if area[2] != 0:
                    for t in range(rr):
                        mult[:,:,t:1+t,:] *= ((1.0/rr) * (t + 1))
                if (area[0] + area[2]) < x_in.shape[2]:
                    for t in range(rr):
                        mult[:,:,area[0] - 1 - t:area[0] - t,:] *= ((1.0/rr) * (t + 1))
                if area[3] != 0:
                    for t in range(rr):
                        mult[:,:,:,t:1+t] *= ((1.0/rr) * (t + 1))
                if (area[1] + area[3]) < x_in.shape[3]:
                    for t in range(rr):
                        mult[:,:,:,area[1] - 1 - t:area[1] - t] *= ((1.0/rr) * (t + 1))

comfyanonymous's avatar
comfyanonymous committed
63
            conditionning = {}
64
65
66
            model_conds = conds["model_conds"]
            for c in model_conds:
                conditionning[c] = model_conds[c].process_cond(batch_size=x_in.shape[0], device=x_in.device, area=area)
67

comfyanonymous's avatar
comfyanonymous committed
68
            control = None
69
70
            if 'control' in conds:
                control = conds['control']
71
72

            patches = None
73
74
            if 'gligen' in conds:
                gligen = conds['gligen']
75
76
77
78
                patches = {}
                gligen_type = gligen[0]
                gligen_model = gligen[1]
                if gligen_type == "position":
comfyanonymous's avatar
comfyanonymous committed
79
                    gligen_patch = gligen_model.model.set_position(input_x.shape, gligen[2], input_x.device)
80
                else:
comfyanonymous's avatar
comfyanonymous committed
81
                    gligen_patch = gligen_model.model.set_empty(input_x.shape, input_x.device)
82
83
84
85

                patches['middle_patch'] = [gligen_patch]

            return (input_x, mult, conditionning, area, control, patches)
comfyanonymous's avatar
comfyanonymous committed
86
87

        def cond_equal_size(c1, c2):
comfyanonymous's avatar
comfyanonymous committed
88
89
            if c1 is c2:
                return True
comfyanonymous's avatar
comfyanonymous committed
90
91
            if c1.keys() != c2.keys():
                return False
92
93
            for k in c1:
                if not c1[k].can_concat(c2[k]):
94
                    return False
comfyanonymous's avatar
comfyanonymous committed
95
96
            return True

comfyanonymous's avatar
comfyanonymous committed
97
98
99
        def can_concat_cond(c1, c2):
            if c1[0].shape != c2[0].shape:
                return False
100
101

            #control
comfyanonymous's avatar
comfyanonymous committed
102
103
104
105
106
107
            if (c1[4] is None) != (c2[4] is None):
                return False
            if c1[4] is not None:
                if c1[4] is not c2[4]:
                    return False

108
109
110
111
112
113
114
            #patches
            if (c1[5] is None) != (c2[5] is None):
                return False
            if (c1[5] is not None):
                if c1[5] is not c2[5]:
                    return False

comfyanonymous's avatar
comfyanonymous committed
115
116
            return cond_equal_size(c1[2], c2[2])

comfyanonymous's avatar
comfyanonymous committed
117
118
119
        def cond_cat(c_list):
            c_crossattn = []
            c_concat = []
120
            c_adm = []
comfyanonymous's avatar
comfyanonymous committed
121
            crossattn_max_len = 0
122
123

            temp = {}
comfyanonymous's avatar
comfyanonymous committed
124
            for x in c_list:
125
126
127
128
129
                for k in x:
                    cur = temp.get(k, [])
                    cur.append(x[k])
                    temp[k] = cur

comfyanonymous's avatar
comfyanonymous committed
130
            out = {}
131
132
133
134
            for k in temp:
                conds = temp[k]
                out[k] = conds[0].concat(conds[1:])

comfyanonymous's avatar
comfyanonymous committed
135
136
            return out

137
        def calc_cond_uncond_batch(model, cond, uncond, x_in, timestep, model_options):
comfyanonymous's avatar
comfyanonymous committed
138
            out_cond = torch.zeros_like(x_in)
comfyanonymous's avatar
comfyanonymous committed
139
            out_count = torch.ones_like(x_in) * 1e-37
140
141

            out_uncond = torch.zeros_like(x_in)
comfyanonymous's avatar
comfyanonymous committed
142
            out_uncond_count = torch.ones_like(x_in) * 1e-37
143
144
145

            COND = 0
            UNCOND = 1
comfyanonymous's avatar
comfyanonymous committed
146

147
            to_run = []
comfyanonymous's avatar
comfyanonymous committed
148
            for x in cond:
149
                p = get_area_and_mult(x, x_in, timestep)
150
                if p is None:
comfyanonymous's avatar
comfyanonymous committed
151
                    continue
152
153

                to_run += [(p, COND)]
154
155
            if uncond is not None:
                for x in uncond:
156
                    p = get_area_and_mult(x, x_in, timestep)
157
158
                    if p is None:
                        continue
159

160
                    to_run += [(p, UNCOND)]
161
162
163
164

            while len(to_run) > 0:
                first = to_run[0]
                first_shape = first[0][0].shape
165
                to_batch_temp = []
166
                for x in range(len(to_run)):
comfyanonymous's avatar
comfyanonymous committed
167
168
                    if can_concat_cond(to_run[x][0], first[0]):
                        to_batch_temp += [x]
169
170
171
172

                to_batch_temp.reverse()
                to_batch = to_batch_temp[:1]

173
                free_memory = model_management.get_free_memory(x_in.device)
174
175
                for i in range(1, len(to_batch_temp) + 1):
                    batch_amount = to_batch_temp[:len(to_batch_temp)//i]
176
177
                    input_shape = [len(batch_amount) * first_shape[0]] + list(first_shape)[1:]
                    if model.memory_required(input_shape) < free_memory:
178
179
                        to_batch = batch_amount
                        break
180
181
182
183
184
185

                input_x = []
                mult = []
                c = []
                cond_or_uncond = []
                area = []
comfyanonymous's avatar
comfyanonymous committed
186
                control = None
187
                patches = None
188
189
190
191
192
193
194
195
                for x in to_batch:
                    o = to_run.pop(x)
                    p = o[0]
                    input_x += [p[0]]
                    mult += [p[1]]
                    c += [p[2]]
                    area += [p[3]]
                    cond_or_uncond += [o[1]]
comfyanonymous's avatar
comfyanonymous committed
196
                    control = p[4]
197
                    patches = p[5]
198
199
200

                batch_chunks = len(cond_or_uncond)
                input_x = torch.cat(input_x)
comfyanonymous's avatar
comfyanonymous committed
201
                c = cond_cat(c)
comfyanonymous's avatar
comfyanonymous committed
202
                timestep_ = torch.cat([timestep] * batch_chunks)
203

comfyanonymous's avatar
comfyanonymous committed
204
                if control is not None:
205
                    c['control'] = control.get_control(input_x, timestep_, c, len(cond_or_uncond))
comfyanonymous's avatar
comfyanonymous committed
206

207
                transformer_options = {}
208
                if 'transformer_options' in model_options:
209
210
211
                    transformer_options = model_options['transformer_options'].copy()

                if patches is not None:
212
213
214
215
216
217
218
219
220
                    if "patches" in transformer_options:
                        cur_patches = transformer_options["patches"].copy()
                        for p in patches:
                            if p in cur_patches:
                                cur_patches[p] = cur_patches[p] + patches[p]
                            else:
                                cur_patches[p] = patches[p]
                    else:
                        transformer_options["patches"] = patches
221

222
                transformer_options["cond_or_uncond"] = cond_or_uncond[:]
223
                c['transformer_options'] = transformer_options
224

225
                if 'model_function_wrapper' in model_options:
226
                    output = model_options['model_function_wrapper'](model.apply_model, {"input": input_x, "timestep": timestep_, "c": c, "cond_or_uncond": cond_or_uncond}).chunk(batch_chunks)
227
                else:
228
                    output = model.apply_model(input_x, timestep_, **c).chunk(batch_chunks)
comfyanonymous's avatar
comfyanonymous committed
229
                del input_x
230
231
232
233
234
235
236
237

                for o in range(batch_chunks):
                    if cond_or_uncond[o] == COND:
                        out_cond[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += output[o] * mult[o]
                        out_count[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += mult[o]
                    else:
                        out_uncond[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += output[o] * mult[o]
                        out_uncond_count[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += mult[o]
comfyanonymous's avatar
comfyanonymous committed
238
239
240
241
                del mult

            out_cond /= out_count
            del out_count
242
243
244
            out_uncond /= out_uncond_count
            del out_uncond_count
            return out_cond, out_uncond
comfyanonymous's avatar
comfyanonymous committed
245
246


247
248
249
        if math.isclose(cond_scale, 1.0):
            uncond = None

250
        cond, uncond = calc_cond_uncond_batch(model, cond, uncond, x, timestep, model_options)
251
        if "sampler_cfg_function" in model_options:
comfyanonymous's avatar
comfyanonymous committed
252
            args = {"cond": x - cond, "uncond": x - uncond, "cond_scale": cond_scale, "timestep": timestep, "input": x, "sigma": timestep}
253
            return x - model_options["sampler_cfg_function"](args)
254
255
        else:
            return uncond + (cond - uncond) * cond_scale
comfyanonymous's avatar
comfyanonymous committed
256

comfyanonymous's avatar
comfyanonymous committed
257
258
259
260
class CFGNoisePredictor(torch.nn.Module):
    def __init__(self, model):
        super().__init__()
        self.inner_model = model
261
    def apply_model(self, x, timestep, cond, uncond, cond_scale, model_options={}, seed=None):
262
        out = sampling_function(self.inner_model, x, timestep, uncond, cond, cond_scale, model_options=model_options, seed=seed)
comfyanonymous's avatar
comfyanonymous committed
263
        return out
comfyanonymous's avatar
comfyanonymous committed
264
265
    def forward(self, *args, **kwargs):
        return self.apply_model(*args, **kwargs)
comfyanonymous's avatar
comfyanonymous committed
266
267

class KSamplerX0Inpaint(torch.nn.Module):
268
269
270
    def __init__(self, model):
        super().__init__()
        self.inner_model = model
271
    def forward(self, x, sigma, uncond, cond, cond_scale, denoise_mask, model_options={}, seed=None):
272
273
        if denoise_mask is not None:
            latent_mask = 1. - denoise_mask
274
            x = x * denoise_mask + (self.latent_image + self.noise * sigma.reshape([sigma.shape[0]] + [1] * (len(self.noise.shape) - 1))) * latent_mask
275
        out = self.inner_model(x, sigma, cond=cond, uncond=uncond, cond_scale=cond_scale, model_options=model_options, seed=seed)
276
277
278
279
280
281
        if denoise_mask is not None:
            out *= denoise_mask

        if denoise_mask is not None:
            out += self.latent_image * latent_mask
        return out
282

comfyanonymous's avatar
comfyanonymous committed
283
def simple_scheduler(model, steps):
comfyanonymous's avatar
comfyanonymous committed
284
    s = model.model_sampling
comfyanonymous's avatar
comfyanonymous committed
285
    sigs = []
comfyanonymous's avatar
comfyanonymous committed
286
    ss = len(s.sigmas) / steps
comfyanonymous's avatar
comfyanonymous committed
287
    for x in range(steps):
comfyanonymous's avatar
comfyanonymous committed
288
        sigs += [float(s.sigmas[-(1 + int(x * ss))])]
comfyanonymous's avatar
comfyanonymous committed
289
290
291
    sigs += [0.0]
    return torch.FloatTensor(sigs)

comfyanonymous's avatar
comfyanonymous committed
292
def ddim_scheduler(model, steps):
comfyanonymous's avatar
comfyanonymous committed
293
    s = model.model_sampling
comfyanonymous's avatar
comfyanonymous committed
294
    sigs = []
comfyanonymous's avatar
comfyanonymous committed
295
296
297
298
299
300
    ss = len(s.sigmas) // steps
    x = 1
    while x < len(s.sigmas):
        sigs += [float(s.sigmas[x])]
        x += ss
    sigs = sigs[::-1]
comfyanonymous's avatar
comfyanonymous committed
301
302
303
    sigs += [0.0]
    return torch.FloatTensor(sigs)

comfyanonymous's avatar
comfyanonymous committed
304
305
306
307
308
309
310
311
312
313
def normal_scheduler(model, steps, sgm=False, floor=False):
    s = model.model_sampling
    start = s.timestep(s.sigma_max)
    end = s.timestep(s.sigma_min)

    if sgm:
        timesteps = torch.linspace(start, end, steps + 1)[:-1]
    else:
        timesteps = torch.linspace(start, end, steps)

314
315
316
    sigs = []
    for x in range(len(timesteps)):
        ts = timesteps[x]
comfyanonymous's avatar
comfyanonymous committed
317
        sigs.append(s.sigma(ts))
318
319
320
    sigs += [0.0]
    return torch.FloatTensor(sigs)

Jacob Segal's avatar
Jacob Segal committed
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
def get_mask_aabb(masks):
    if masks.numel() == 0:
        return torch.zeros((0, 4), device=masks.device, dtype=torch.int)

    b = masks.shape[0]

    bounding_boxes = torch.zeros((b, 4), device=masks.device, dtype=torch.int)
    is_empty = torch.zeros((b), device=masks.device, dtype=torch.bool)
    for i in range(b):
        mask = masks[i]
        if mask.numel() == 0:
            continue
        if torch.max(mask != 0) == False:
            is_empty[i] = True
            continue
        y, x = torch.where(mask)
        bounding_boxes[i, 0] = torch.min(x)
        bounding_boxes[i, 1] = torch.min(y)
        bounding_boxes[i, 2] = torch.max(x)
        bounding_boxes[i, 3] = torch.max(y)

    return bounding_boxes, is_empty

344
def resolve_areas_and_cond_masks(conditions, h, w, device):
Jacob Segal's avatar
Jacob Segal committed
345
346
347
348
    # We need to decide on an area outside the sampling loop in order to properly generate opposite areas of equal sizes.
    # While we're doing this, we can also resolve the mask device and scaling for performance reasons
    for i in range(len(conditions)):
        c = conditions[i]
349
350
        if 'area' in c:
            area = c['area']
351
            if area[0] == "percentage":
352
                modified = c.copy()
353
354
                area = (max(1, round(area[1] * h)), max(1, round(area[2] * w)), round(area[3] * h), round(area[4] * w))
                modified['area'] = area
355
                c = modified
356
357
                conditions[i] = c

358
359
        if 'mask' in c:
            mask = c['mask']
Jacob Segal's avatar
Jacob Segal committed
360
            mask = mask.to(device=device)
361
            modified = c.copy()
Jacob Segal's avatar
Jacob Segal committed
362
363
            if len(mask.shape) == 2:
                mask = mask.unsqueeze(0)
mara's avatar
mara committed
364
            if mask.shape[1] != h or mask.shape[2] != w:
Jacob Segal's avatar
Jacob Segal committed
365
366
                mask = torch.nn.functional.interpolate(mask.unsqueeze(1), size=(h, w), mode='bilinear', align_corners=False).squeeze(1)

Jacob Segal's avatar
Jacob Segal committed
367
            if modified.get("set_area_to_bounds", False):
Jacob Segal's avatar
Jacob Segal committed
368
                bounds = torch.max(torch.abs(mask),dim=0).values.unsqueeze(0)
Jacob Segal's avatar
Jacob Segal committed
369
370
371
372
                boxes, is_empty = get_mask_aabb(bounds)
                if is_empty[0]:
                    # Use the minimum possible size for efficiency reasons. (Since the mask is all-0, this becomes a noop anyway)
                    modified['area'] = (8, 8, 0, 0)
Jacob Segal's avatar
Jacob Segal committed
373
                else:
Jacob Segal's avatar
Jacob Segal committed
374
                    box = boxes[0]
Jacob Segal's avatar
Jacob Segal committed
375
                    H, W, Y, X = (box[3] - box[1] + 1, box[2] - box[0] + 1, box[1], box[0])
376
377
                    H = max(8, H)
                    W = max(8, W)
Jacob Segal's avatar
Jacob Segal committed
378
379
                    area = (int(H), int(W), int(Y), int(X))
                    modified['area'] = area
Jacob Segal's avatar
Jacob Segal committed
380
381

            modified['mask'] = mask
382
            conditions[i] = modified
Jacob Segal's avatar
Jacob Segal committed
383

comfyanonymous's avatar
comfyanonymous committed
384
def create_cond_with_same_area_if_none(conds, c):
385
    if 'area' not in c:
comfyanonymous's avatar
comfyanonymous committed
386
387
        return

388
    c_area = c['area']
comfyanonymous's avatar
comfyanonymous committed
389
390
    smallest = None
    for x in conds:
391
392
        if 'area' in x:
            a = x['area']
comfyanonymous's avatar
comfyanonymous committed
393
394
395
396
397
            if c_area[2] >= a[2] and c_area[3] >= a[3]:
                if a[0] + a[2] >= c_area[0] + c_area[2]:
                    if a[1] + a[3] >= c_area[1] + c_area[3]:
                        if smallest is None:
                            smallest = x
398
                        elif 'area' not in smallest:
comfyanonymous's avatar
comfyanonymous committed
399
400
                            smallest = x
                        else:
401
                            if smallest['area'][0] * smallest['area'][1] > a[0] * a[1]:
comfyanonymous's avatar
comfyanonymous committed
402
403
404
405
406
407
                                smallest = x
        else:
            if smallest is None:
                smallest = x
    if smallest is None:
        return
408
409
    if 'area' in smallest:
        if smallest['area'] == c_area:
comfyanonymous's avatar
comfyanonymous committed
410
            return
411
412
413
414

    out = c.copy()
    out['model_conds'] = smallest['model_conds'].copy() #TODO: which fields should be copied?
    conds += [out]
comfyanonymous's avatar
comfyanonymous committed
415

416
def calculate_start_end_timesteps(model, conds):
417
    s = model.model_sampling
418
419
420
421
422
    for t in range(len(conds)):
        x = conds[t]

        timestep_start = None
        timestep_end = None
423
        if 'start_percent' in x:
424
            timestep_start = s.percent_to_sigma(x['start_percent'])
425
        if 'end_percent' in x:
426
            timestep_end = s.percent_to_sigma(x['end_percent'])
427
428

        if (timestep_start is not None) or (timestep_end is not None):
429
            n = x.copy()
430
431
432
433
            if (timestep_start is not None):
                n['timestep_start'] = timestep_start
            if (timestep_end is not None):
                n['timestep_end'] = timestep_end
434
            conds[t] = n
435

436
def pre_run_control(model, conds):
437
    s = model.model_sampling
438
439
440
441
442
    for t in range(len(conds)):
        x = conds[t]

        timestep_start = None
        timestep_end = None
443
        percent_to_timestep_function = lambda a: s.percent_to_sigma(a)
444
        if 'control' in x:
445
            x['control'].pre_run(model, percent_to_timestep_function)
446

447
def apply_empty_x_to_equal_area(conds, uncond, name, uncond_fill_func):
comfyanonymous's avatar
comfyanonymous committed
448
449
450
451
452
453
    cond_cnets = []
    cond_other = []
    uncond_cnets = []
    uncond_other = []
    for t in range(len(conds)):
        x = conds[t]
454
455
456
        if 'area' not in x:
            if name in x and x[name] is not None:
                cond_cnets.append(x[name])
comfyanonymous's avatar
comfyanonymous committed
457
458
459
460
            else:
                cond_other.append((x, t))
    for t in range(len(uncond)):
        x = uncond[t]
461
462
463
        if 'area' not in x:
            if name in x and x[name] is not None:
                uncond_cnets.append(x[name])
comfyanonymous's avatar
comfyanonymous committed
464
465
466
467
468
469
470
471
472
            else:
                uncond_other.append((x, t))

    if len(uncond_cnets) > 0:
        return

    for x in range(len(cond_cnets)):
        temp = uncond_other[x % len(uncond_other)]
        o = temp[0]
473
474
        if name in o and o[name] is not None:
            n = o.copy()
475
            n[name] = uncond_fill_func(cond_cnets, x)
476
            uncond += [n]
comfyanonymous's avatar
comfyanonymous committed
477
        else:
478
            n = o.copy()
479
            n[name] = uncond_fill_func(cond_cnets, x)
480
            uncond[temp[1]] = n
481

482
def encode_model_conds(model_function, conds, noise, device, prompt_type, **kwargs):
483
484
    for t in range(len(conds)):
        x = conds[t]
485
        params = x.copy()
486
        params["device"] = device
487
488
489
490
        params["noise"] = noise
        params["width"] = params.get("width", noise.shape[3] * 8)
        params["height"] = params.get("height", noise.shape[2] * 8)
        params["prompt_type"] = params.get("prompt_type", prompt_type)
491
492
493
494
495
        for k in kwargs:
            if k not in params:
                params[k] = kwargs[k]

        out = model_function(**params)
496
497
498
499
500
501
        x = x.copy()
        model_conds = x['model_conds'].copy()
        for k in out:
            model_conds[k] = out[k]
        x['model_conds'] = model_conds
        conds[t] = x
502
    return conds
503

comfyanonymous's avatar
comfyanonymous committed
504
505
506
507
508
class Sampler:
    def sample(self):
        pass

    def max_denoise(self, model_wrap, sigmas):
comfyanonymous's avatar
comfyanonymous committed
509
510
511
        max_sigma = float(model_wrap.inner_model.model_sampling.sigma_max)
        sigma = float(sigmas[0])
        return math.isclose(max_sigma, sigma, rel_tol=1e-05) or sigma > max_sigma
comfyanonymous's avatar
comfyanonymous committed
512
513
514

class UNIPC(Sampler):
    def sample(self, model_wrap, sigmas, extra_args, callback, noise, latent_image=None, denoise_mask=None, disable_pbar=False):
515
        return uni_pc.sample_unipc(model_wrap, noise, latent_image, sigmas, max_denoise=self.max_denoise(model_wrap, sigmas), extra_args=extra_args, noise_mask=denoise_mask, callback=callback, disable=disable_pbar)
comfyanonymous's avatar
comfyanonymous committed
516
517
518

class UNIPCBH2(Sampler):
    def sample(self, model_wrap, sigmas, extra_args, callback, noise, latent_image=None, denoise_mask=None, disable_pbar=False):
519
        return uni_pc.sample_unipc(model_wrap, noise, latent_image, sigmas, max_denoise=self.max_denoise(model_wrap, sigmas), extra_args=extra_args, noise_mask=denoise_mask, callback=callback, variant='bh2', disable=disable_pbar)
comfyanonymous's avatar
comfyanonymous committed
520

comfyanonymous's avatar
comfyanonymous committed
521
KSAMPLER_NAMES = ["euler", "euler_ancestral", "heun", "heunpp2","dpm_2", "dpm_2_ancestral",
comfyanonymous's avatar
comfyanonymous committed
522
                  "lms", "dpm_fast", "dpm_adaptive", "dpmpp_2s_ancestral", "dpmpp_sde", "dpmpp_sde_gpu",
comfyanonymous's avatar
comfyanonymous committed
523
                  "dpmpp_2m", "dpmpp_2m_sde", "dpmpp_2m_sde_gpu", "dpmpp_3m_sde", "dpmpp_3m_sde_gpu", "ddpm", "lcm"]
comfyanonymous's avatar
comfyanonymous committed
524

525
526
527
528
529
class KSAMPLER(Sampler):
    def __init__(self, sampler_function, extra_options={}, inpaint_options={}):
        self.sampler_function = sampler_function
        self.extra_options = extra_options
        self.inpaint_options = inpaint_options
comfyanonymous's avatar
comfyanonymous committed
530

531
532
533
534
535
536
537
538
539
    def sample(self, model_wrap, sigmas, extra_args, callback, noise, latent_image=None, denoise_mask=None, disable_pbar=False):
        extra_args["denoise_mask"] = denoise_mask
        model_k = KSamplerX0Inpaint(model_wrap)
        model_k.latent_image = latent_image
        if self.inpaint_options.get("random", False): #TODO: Should this be the default?
            generator = torch.manual_seed(extra_args.get("seed", 41) + 1)
            model_k.noise = torch.randn(noise.shape, generator=generator, device="cpu").to(noise.dtype).to(noise.device)
        else:
            model_k.noise = noise
comfyanonymous's avatar
comfyanonymous committed
540

541
542
543
544
545
546
547
548
549
550
551
552
        if self.max_denoise(model_wrap, sigmas):
            noise = noise * torch.sqrt(1.0 + sigmas[0] ** 2.0)
        else:
            noise = noise * sigmas[0]

        k_callback = None
        total_steps = len(sigmas) - 1
        if callback is not None:
            k_callback = lambda x: callback(x["i"], x["denoised"], x["x"], total_steps)

        if latent_image is not None:
            noise += latent_image
comfyanonymous's avatar
comfyanonymous committed
553

554
555
556
557
558
559
560
        samples = self.sampler_function(model_k, noise, sigmas, extra_args=extra_args, callback=k_callback, disable=disable_pbar, **self.extra_options)
        return samples


def ksampler(sampler_name, extra_options={}, inpaint_options={}):
    if sampler_name == "dpm_fast":
        def dpm_fast_function(model, noise, sigmas, extra_args, callback, disable):
comfyanonymous's avatar
comfyanonymous committed
561
562
563
            sigma_min = sigmas[-1]
            if sigma_min == 0:
                sigma_min = sigmas[-2]
564
565
566
567
568
569
570
571
572
573
574
575
            total_steps = len(sigmas) - 1
            return k_diffusion_sampling.sample_dpm_fast(model, noise, sigma_min, sigmas[0], total_steps, extra_args=extra_args, callback=callback, disable=disable)
        sampler_function = dpm_fast_function
    elif sampler_name == "dpm_adaptive":
        def dpm_adaptive_function(model, noise, sigmas, extra_args, callback, disable):
            sigma_min = sigmas[-1]
            if sigma_min == 0:
                sigma_min = sigmas[-2]
            return k_diffusion_sampling.sample_dpm_adaptive(model, noise, sigma_min, sigmas[0], extra_args=extra_args, callback=callback, disable=disable)
        sampler_function = dpm_adaptive_function
    else:
        sampler_function = getattr(k_diffusion_sampling, "sample_{}".format(sampler_name))
comfyanonymous's avatar
comfyanonymous committed
576

577
    return KSAMPLER(sampler_function, extra_options, inpaint_options)
comfyanonymous's avatar
comfyanonymous committed
578

comfyanonymous's avatar
comfyanonymous committed
579
580
def wrap_model(model):
    model_denoise = CFGNoisePredictor(model)
comfyanonymous's avatar
comfyanonymous committed
581
    return model_denoise
comfyanonymous's avatar
comfyanonymous committed
582
583
584
585
586
587
588
589

def sample(model, noise, positive, negative, cfg, device, sampler, sigmas, model_options={}, latent_image=None, denoise_mask=None, callback=None, disable_pbar=False, seed=None):
    positive = positive[:]
    negative = negative[:]

    resolve_areas_and_cond_masks(positive, noise.shape[2], noise.shape[3], device)
    resolve_areas_and_cond_masks(negative, noise.shape[2], noise.shape[3], device)

comfyanonymous's avatar
comfyanonymous committed
590
    model_wrap = wrap_model(model)
comfyanonymous's avatar
comfyanonymous committed
591

592
593
    calculate_start_end_timesteps(model, negative)
    calculate_start_end_timesteps(model, positive)
comfyanonymous's avatar
comfyanonymous committed
594
595
596
597
598
599
600

    #make sure each cond area has an opposite one with the same area
    for c in positive:
        create_cond_with_same_area_if_none(negative, c)
    for c in negative:
        create_cond_with_same_area_if_none(positive, c)

601
    pre_run_control(model, negative + positive)
comfyanonymous's avatar
comfyanonymous committed
602

603
    apply_empty_x_to_equal_area(list(filter(lambda c: c.get('control_apply_to_uncond', False) == True, positive)), negative, 'control', lambda cond_cnets, x: cond_cnets[x])
comfyanonymous's avatar
comfyanonymous committed
604
605
    apply_empty_x_to_equal_area(positive, negative, 'gligen', lambda cond_cnets, x: cond_cnets[x])

606
607
608
    if latent_image is not None:
        latent_image = model.process_latent_in(latent_image)

609
610
611
    if hasattr(model, 'extra_conds'):
        positive = encode_model_conds(model.extra_conds, positive, noise, device, "positive", latent_image=latent_image, denoise_mask=denoise_mask)
        negative = encode_model_conds(model.extra_conds, negative, noise, device, "negative", latent_image=latent_image, denoise_mask=denoise_mask)
comfyanonymous's avatar
comfyanonymous committed
612
613
614
615
616
617

    extra_args = {"cond":positive, "uncond":negative, "cond_scale": cfg, "model_options": model_options, "seed":seed}

    samples = sampler.sample(model_wrap, sigmas, extra_args, callback, noise, latent_image, denoise_mask, disable_pbar)
    return model.process_latent_out(samples.to(torch.float32))

comfyanonymous's avatar
comfyanonymous committed
618
619
620
621
622
SCHEDULER_NAMES = ["normal", "karras", "exponential", "sgm_uniform", "simple", "ddim_uniform"]
SAMPLER_NAMES = KSAMPLER_NAMES + ["ddim", "uni_pc", "uni_pc_bh2"]

def calculate_sigmas_scheduler(model, scheduler_name, steps):
    if scheduler_name == "karras":
comfyanonymous's avatar
comfyanonymous committed
623
        sigmas = k_diffusion_sampling.get_sigmas_karras(n=steps, sigma_min=float(model.model_sampling.sigma_min), sigma_max=float(model.model_sampling.sigma_max))
comfyanonymous's avatar
comfyanonymous committed
624
    elif scheduler_name == "exponential":
comfyanonymous's avatar
comfyanonymous committed
625
        sigmas = k_diffusion_sampling.get_sigmas_exponential(n=steps, sigma_min=float(model.model_sampling.sigma_min), sigma_max=float(model.model_sampling.sigma_max))
comfyanonymous's avatar
comfyanonymous committed
626
    elif scheduler_name == "normal":
comfyanonymous's avatar
comfyanonymous committed
627
        sigmas = normal_scheduler(model, steps)
comfyanonymous's avatar
comfyanonymous committed
628
    elif scheduler_name == "simple":
comfyanonymous's avatar
comfyanonymous committed
629
        sigmas = simple_scheduler(model, steps)
comfyanonymous's avatar
comfyanonymous committed
630
    elif scheduler_name == "ddim_uniform":
comfyanonymous's avatar
comfyanonymous committed
631
        sigmas = ddim_scheduler(model, steps)
comfyanonymous's avatar
comfyanonymous committed
632
    elif scheduler_name == "sgm_uniform":
comfyanonymous's avatar
comfyanonymous committed
633
        sigmas = normal_scheduler(model, steps, sgm=True)
comfyanonymous's avatar
comfyanonymous committed
634
635
636
637
    else:
        print("error invalid scheduler", self.scheduler)
    return sigmas

638
def sampler_object(name):
639
    if name == "uni_pc":
640
        sampler = UNIPC()
641
    elif name == "uni_pc_bh2":
642
        sampler = UNIPCBH2()
643
    elif name == "ddim":
644
        sampler = ksampler("euler", inpaint_options={"random": True})
645
646
647
648
    else:
        sampler = ksampler(name)
    return sampler

comfyanonymous's avatar
comfyanonymous committed
649
class KSampler:
comfyanonymous's avatar
comfyanonymous committed
650
651
    SCHEDULERS = SCHEDULER_NAMES
    SAMPLERS = SAMPLER_NAMES
comfyanonymous's avatar
comfyanonymous committed
652

653
    def __init__(self, model, steps, device, sampler=None, scheduler=None, denoise=None, model_options={}):
comfyanonymous's avatar
comfyanonymous committed
654
655
656
657
658
659
660
661
662
        self.model = model
        self.device = device
        if scheduler not in self.SCHEDULERS:
            scheduler = self.SCHEDULERS[0]
        if sampler not in self.SAMPLERS:
            sampler = self.SAMPLERS[0]
        self.scheduler = scheduler
        self.sampler = sampler
        self.set_steps(steps, denoise)
663
        self.denoise = denoise
664
        self.model_options = model_options
comfyanonymous's avatar
comfyanonymous committed
665

comfyanonymous's avatar
comfyanonymous committed
666
667
668
669
    def calculate_sigmas(self, steps):
        sigmas = None

        discard_penultimate_sigma = False
670
        if self.sampler in ['dpm_2', 'dpm_2_ancestral', 'uni_pc', 'uni_pc_bh2']:
comfyanonymous's avatar
comfyanonymous committed
671
672
673
            steps += 1
            discard_penultimate_sigma = True

comfyanonymous's avatar
comfyanonymous committed
674
        sigmas = calculate_sigmas_scheduler(self.model, self.scheduler, steps)
comfyanonymous's avatar
comfyanonymous committed
675
676
677
678
679

        if discard_penultimate_sigma:
            sigmas = torch.cat([sigmas[:-2], sigmas[-1:]])
        return sigmas

comfyanonymous's avatar
comfyanonymous committed
680
681
    def set_steps(self, steps, denoise=None):
        self.steps = steps
682
        if denoise is None or denoise > 0.9999:
comfyanonymous's avatar
comfyanonymous committed
683
            self.sigmas = self.calculate_sigmas(steps).to(self.device)
comfyanonymous's avatar
comfyanonymous committed
684
685
        else:
            new_steps = int(steps/denoise)
comfyanonymous's avatar
comfyanonymous committed
686
            sigmas = self.calculate_sigmas(new_steps).to(self.device)
comfyanonymous's avatar
comfyanonymous committed
687
688
            self.sigmas = sigmas[-(steps + 1):]

689
    def sample(self, noise, positive, negative, cfg, latent_image=None, start_step=None, last_step=None, force_full_denoise=False, denoise_mask=None, sigmas=None, callback=None, disable_pbar=False, seed=None):
690
691
        if sigmas is None:
            sigmas = self.sigmas
comfyanonymous's avatar
comfyanonymous committed
692

comfyanonymous's avatar
comfyanonymous committed
693
        if last_step is not None and last_step < (len(sigmas) - 1):
comfyanonymous's avatar
comfyanonymous committed
694
            sigmas = sigmas[:last_step + 1]
comfyanonymous's avatar
comfyanonymous committed
695
696
697
            if force_full_denoise:
                sigmas[-1] = 0

comfyanonymous's avatar
comfyanonymous committed
698
        if start_step is not None:
comfyanonymous's avatar
comfyanonymous committed
699
700
701
702
703
704
705
            if start_step < (len(sigmas) - 1):
                sigmas = sigmas[start_step:]
            else:
                if latent_image is not None:
                    return latent_image
                else:
                    return torch.zeros_like(noise)
comfyanonymous's avatar
comfyanonymous committed
706

707
        sampler = sampler_object(self.sampler)
708

709
        return sample(self.model, noise, positive, negative, cfg, self.device, sampler, sigmas, self.model_options, latent_image=latent_image, denoise_mask=denoise_mask, callback=callback, disable_pbar=disable_pbar, seed=seed)