samplers.py 31.9 KB
Newer Older
1
2
from .k_diffusion import sampling as k_diffusion_sampling
from .k_diffusion import external as k_diffusion_external
3
from .extra_samplers import uni_pc
comfyanonymous's avatar
comfyanonymous committed
4
import torch
5
from comfy import model_management
comfyanonymous's avatar
comfyanonymous committed
6
7
from .ldm.models.diffusion.ddim import DDIMSampler
from .ldm.modules.diffusionmodules.util import make_ddim_timesteps
comfyanonymous's avatar
comfyanonymous committed
8
import math
9
from comfy import model_base
10
import comfy.utils
comfyanonymous's avatar
comfyanonymous committed
11
12
13

def lcm(a, b): #TODO: eventually replace by math.lcm (added in python3.9)
    return abs(a*b) // math.gcd(a, b)
comfyanonymous's avatar
comfyanonymous committed
14

comfyanonymous's avatar
comfyanonymous committed
15
16
#The main sampling function shared by all the samplers
#Returns predicted noise
17
def sampling_function(model_function, x, timestep, uncond, cond, cond_scale, cond_concat=None, model_options={}, seed=None):
comfyanonymous's avatar
comfyanonymous committed
18
        def get_area_and_mult(cond, x_in, cond_concat_in, timestep_in):
19
20
            area = (x_in.shape[2], x_in.shape[3], 0, 0)
            strength = 1.0
21
22
            if 'timestep_start' in cond[1]:
                timestep_start = cond[1]['timestep_start']
23
                if timestep_in[0] > timestep_start:
24
25
26
                    return None
            if 'timestep_end' in cond[1]:
                timestep_end = cond[1]['timestep_end']
27
                if timestep_in[0] < timestep_end:
28
                    return None
29
30
31
32
            if 'area' in cond[1]:
                area = cond[1]['area']
            if 'strength' in cond[1]:
                strength = cond[1]['strength']
33

34
            adm_cond = None
35
36
            if 'adm_encoded' in cond[1]:
                adm_cond = cond[1]['adm_encoded']
37

38
            input_x = x_in[:,:,area[2]:area[0] + area[2],area[3]:area[1] + area[3]]
Jacob Segal's avatar
Jacob Segal committed
39
40
41
            if 'mask' in cond[1]:
                # Scale the mask to the size of the input
                # The mask should have been resized as we began the sampling process
42
43
44
                mask_strength = 1.0
                if "mask_strength" in cond[1]:
                    mask_strength = cond[1]["mask_strength"]
Jacob Segal's avatar
Jacob Segal committed
45
46
47
                mask = cond[1]['mask']
                assert(mask.shape[1] == x_in.shape[2])
                assert(mask.shape[2] == x_in.shape[3])
48
                mask = mask[:,area[2]:area[0] + area[2],area[3]:area[1] + area[3]] * mask_strength
Jacob Segal's avatar
Jacob Segal committed
49
                mask = mask.unsqueeze(1).repeat(input_x.shape[0] // mask.shape[0], input_x.shape[1], 1, 1)
Jacob Segal's avatar
Jacob Segal committed
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
            else:
                mask = torch.ones_like(input_x)
            mult = mask * strength

            if 'mask' not in cond[1]:
                rr = 8
                if area[2] != 0:
                    for t in range(rr):
                        mult[:,:,t:1+t,:] *= ((1.0/rr) * (t + 1))
                if (area[0] + area[2]) < x_in.shape[2]:
                    for t in range(rr):
                        mult[:,:,area[0] - 1 - t:area[0] - t,:] *= ((1.0/rr) * (t + 1))
                if area[3] != 0:
                    for t in range(rr):
                        mult[:,:,:,t:1+t] *= ((1.0/rr) * (t + 1))
                if (area[1] + area[3]) < x_in.shape[3]:
                    for t in range(rr):
                        mult[:,:,:,area[1] - 1 - t:area[1] - t] *= ((1.0/rr) * (t + 1))

comfyanonymous's avatar
comfyanonymous committed
69
70
71
72
73
74
75
76
            conditionning = {}
            conditionning['c_crossattn'] = cond[0]
            if cond_concat_in is not None and len(cond_concat_in) > 0:
                cropped = []
                for x in cond_concat_in:
                    cr = x[:,:,area[2]:area[0] + area[2],area[3]:area[1] + area[3]]
                    cropped.append(cr)
                conditionning['c_concat'] = torch.cat(cropped, dim=1)
comfyanonymous's avatar
comfyanonymous committed
77

78
79
80
            if adm_cond is not None:
                conditionning['c_adm'] = adm_cond

comfyanonymous's avatar
comfyanonymous committed
81
82
83
            control = None
            if 'control' in cond[1]:
                control = cond[1]['control']
84
85
86
87
88
89
90
91

            patches = None
            if 'gligen' in cond[1]:
                gligen = cond[1]['gligen']
                patches = {}
                gligen_type = gligen[0]
                gligen_model = gligen[1]
                if gligen_type == "position":
comfyanonymous's avatar
comfyanonymous committed
92
                    gligen_patch = gligen_model.model.set_position(input_x.shape, gligen[2], input_x.device)
93
                else:
comfyanonymous's avatar
comfyanonymous committed
94
                    gligen_patch = gligen_model.model.set_empty(input_x.shape, input_x.device)
95
96
97
98

                patches['middle_patch'] = [gligen_patch]

            return (input_x, mult, conditionning, area, control, patches)
comfyanonymous's avatar
comfyanonymous committed
99
100

        def cond_equal_size(c1, c2):
comfyanonymous's avatar
comfyanonymous committed
101
102
            if c1 is c2:
                return True
comfyanonymous's avatar
comfyanonymous committed
103
104
105
            if c1.keys() != c2.keys():
                return False
            if 'c_crossattn' in c1:
comfyanonymous's avatar
comfyanonymous committed
106
107
108
109
110
111
112
113
114
115
                s1 = c1['c_crossattn'].shape
                s2 = c2['c_crossattn'].shape
                if s1 != s2:
                    if s1[0] != s2[0] or s1[2] != s2[2]: #these 2 cases should not happen
                        return False

                    mult_min = lcm(s1[1], s2[1])
                    diff = mult_min // min(s1[1], s2[1])
                    if diff > 4: #arbitrary limit on the padding because it's probably going to impact performance negatively if it's too much
                        return False
comfyanonymous's avatar
comfyanonymous committed
116
117
118
            if 'c_concat' in c1:
                if c1['c_concat'].shape != c2['c_concat'].shape:
                    return False
119
120
121
            if 'c_adm' in c1:
                if c1['c_adm'].shape != c2['c_adm'].shape:
                    return False
comfyanonymous's avatar
comfyanonymous committed
122
123
            return True

comfyanonymous's avatar
comfyanonymous committed
124
125
126
        def can_concat_cond(c1, c2):
            if c1[0].shape != c2[0].shape:
                return False
127
128

            #control
comfyanonymous's avatar
comfyanonymous committed
129
130
131
132
133
134
            if (c1[4] is None) != (c2[4] is None):
                return False
            if c1[4] is not None:
                if c1[4] is not c2[4]:
                    return False

135
136
137
138
139
140
141
            #patches
            if (c1[5] is None) != (c2[5] is None):
                return False
            if (c1[5] is not None):
                if c1[5] is not c2[5]:
                    return False

comfyanonymous's avatar
comfyanonymous committed
142
143
            return cond_equal_size(c1[2], c2[2])

comfyanonymous's avatar
comfyanonymous committed
144
145
146
        def cond_cat(c_list):
            c_crossattn = []
            c_concat = []
147
            c_adm = []
comfyanonymous's avatar
comfyanonymous committed
148
            crossattn_max_len = 0
comfyanonymous's avatar
comfyanonymous committed
149
150
            for x in c_list:
                if 'c_crossattn' in x:
comfyanonymous's avatar
comfyanonymous committed
151
152
153
154
155
156
                    c = x['c_crossattn']
                    if crossattn_max_len == 0:
                        crossattn_max_len = c.shape[1]
                    else:
                        crossattn_max_len = lcm(crossattn_max_len, c.shape[1])
                    c_crossattn.append(c)
comfyanonymous's avatar
comfyanonymous committed
157
158
                if 'c_concat' in x:
                    c_concat.append(x['c_concat'])
159
160
                if 'c_adm' in x:
                    c_adm.append(x['c_adm'])
comfyanonymous's avatar
comfyanonymous committed
161
            out = {}
comfyanonymous's avatar
comfyanonymous committed
162
163
164
165
166
167
168
            c_crossattn_out = []
            for c in c_crossattn:
                if c.shape[1] < crossattn_max_len:
                    c = c.repeat(1, crossattn_max_len // c.shape[1], 1) #padding with repeat doesn't change result
                c_crossattn_out.append(c)

            if len(c_crossattn_out) > 0:
169
                out['c_crossattn'] = torch.cat(c_crossattn_out)
comfyanonymous's avatar
comfyanonymous committed
170
            if len(c_concat) > 0:
171
                out['c_concat'] = torch.cat(c_concat)
172
173
            if len(c_adm) > 0:
                out['c_adm'] = torch.cat(c_adm)
comfyanonymous's avatar
comfyanonymous committed
174
175
            return out

176
        def calc_cond_uncond_batch(model_function, cond, uncond, x_in, timestep, max_total_area, cond_concat_in, model_options):
comfyanonymous's avatar
comfyanonymous committed
177
178
            out_cond = torch.zeros_like(x_in)
            out_count = torch.ones_like(x_in)/100000.0
179
180
181
182
183
184

            out_uncond = torch.zeros_like(x_in)
            out_uncond_count = torch.ones_like(x_in)/100000.0

            COND = 0
            UNCOND = 1
comfyanonymous's avatar
comfyanonymous committed
185

186
            to_run = []
comfyanonymous's avatar
comfyanonymous committed
187
            for x in cond:
comfyanonymous's avatar
comfyanonymous committed
188
                p = get_area_and_mult(x, x_in, cond_concat_in, timestep)
189
                if p is None:
comfyanonymous's avatar
comfyanonymous committed
190
                    continue
191
192

                to_run += [(p, COND)]
193
194
195
196
197
            if uncond is not None:
                for x in uncond:
                    p = get_area_and_mult(x, x_in, cond_concat_in, timestep)
                    if p is None:
                        continue
198

199
                    to_run += [(p, UNCOND)]
200
201
202
203

            while len(to_run) > 0:
                first = to_run[0]
                first_shape = first[0][0].shape
204
                to_batch_temp = []
205
                for x in range(len(to_run)):
comfyanonymous's avatar
comfyanonymous committed
206
207
                    if can_concat_cond(to_run[x][0], first[0]):
                        to_batch_temp += [x]
208
209
210
211
212
213
214
215
216

                to_batch_temp.reverse()
                to_batch = to_batch_temp[:1]

                for i in range(1, len(to_batch_temp) + 1):
                    batch_amount = to_batch_temp[:len(to_batch_temp)//i]
                    if (len(batch_amount) * first_shape[0] * first_shape[2] * first_shape[3] < max_total_area):
                        to_batch = batch_amount
                        break
217
218
219
220
221
222

                input_x = []
                mult = []
                c = []
                cond_or_uncond = []
                area = []
comfyanonymous's avatar
comfyanonymous committed
223
                control = None
224
                patches = None
225
226
227
228
229
230
231
232
                for x in to_batch:
                    o = to_run.pop(x)
                    p = o[0]
                    input_x += [p[0]]
                    mult += [p[1]]
                    c += [p[2]]
                    area += [p[3]]
                    cond_or_uncond += [o[1]]
comfyanonymous's avatar
comfyanonymous committed
233
                    control = p[4]
234
                    patches = p[5]
235
236
237

                batch_chunks = len(cond_or_uncond)
                input_x = torch.cat(input_x)
comfyanonymous's avatar
comfyanonymous committed
238
                c = cond_cat(c)
comfyanonymous's avatar
comfyanonymous committed
239
                timestep_ = torch.cat([timestep] * batch_chunks)
240

comfyanonymous's avatar
comfyanonymous committed
241
                if control is not None:
242
                    c['control'] = control.get_control(input_x, timestep_, c, len(cond_or_uncond))
comfyanonymous's avatar
comfyanonymous committed
243

244
                transformer_options = {}
245
                if 'transformer_options' in model_options:
246
247
248
                    transformer_options = model_options['transformer_options'].copy()

                if patches is not None:
249
250
251
252
253
254
255
256
257
                    if "patches" in transformer_options:
                        cur_patches = transformer_options["patches"].copy()
                        for p in patches:
                            if p in cur_patches:
                                cur_patches[p] = cur_patches[p] + patches[p]
                            else:
                                cur_patches[p] = patches[p]
                    else:
                        transformer_options["patches"] = patches
258

259
                transformer_options["cond_or_uncond"] = cond_or_uncond[:]
260
                c['transformer_options'] = transformer_options
261

262
263
264
265
                if 'model_function_wrapper' in model_options:
                    output = model_options['model_function_wrapper'](model_function, {"input": input_x, "timestep": timestep_, "c": c, "cond_or_uncond": cond_or_uncond}).chunk(batch_chunks)
                else:
                    output = model_function(input_x, timestep_, **c).chunk(batch_chunks)
comfyanonymous's avatar
comfyanonymous committed
266
                del input_x
267
268
269
270
271
272
273
274

                for o in range(batch_chunks):
                    if cond_or_uncond[o] == COND:
                        out_cond[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += output[o] * mult[o]
                        out_count[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += mult[o]
                    else:
                        out_uncond[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += output[o] * mult[o]
                        out_uncond_count[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += mult[o]
comfyanonymous's avatar
comfyanonymous committed
275
276
277
278
                del mult

            out_cond /= out_count
            del out_count
279
280
281
282
            out_uncond /= out_uncond_count
            del out_uncond_count

            return out_cond, out_uncond
comfyanonymous's avatar
comfyanonymous committed
283
284


285
        max_total_area = model_management.maximum_batch_area()
286
287
288
        if math.isclose(cond_scale, 1.0):
            uncond = None

289
        cond, uncond = calc_cond_uncond_batch(model_function, cond, uncond, x, timestep, max_total_area, cond_concat, model_options)
290
        if "sampler_cfg_function" in model_options:
291
292
            args = {"cond": cond, "uncond": uncond, "cond_scale": cond_scale, "timestep": timestep}
            return model_options["sampler_cfg_function"](args)
293
294
        else:
            return uncond + (cond - uncond) * cond_scale
comfyanonymous's avatar
comfyanonymous committed
295

comfyanonymous's avatar
comfyanonymous committed
296
297
298
299
300
301
302
303
304
305
306
307
308
309

class CompVisVDenoiser(k_diffusion_external.DiscreteVDDPMDenoiser):
    def __init__(self, model, quantize=False, device='cpu'):
        super().__init__(model, model.alphas_cumprod, quantize=quantize)

    def get_v(self, x, t, cond, **kwargs):
        return self.inner_model.apply_model(x, t, cond, **kwargs)


class CFGNoisePredictor(torch.nn.Module):
    def __init__(self, model):
        super().__init__()
        self.inner_model = model
        self.alphas_cumprod = model.alphas_cumprod
310
311
    def apply_model(self, x, timestep, cond, uncond, cond_scale, cond_concat=None, model_options={}, seed=None):
        out = sampling_function(self.inner_model.apply_model, x, timestep, uncond, cond, cond_scale, cond_concat, model_options=model_options, seed=seed)
comfyanonymous's avatar
comfyanonymous committed
312
313
314
315
        return out


class KSamplerX0Inpaint(torch.nn.Module):
316
317
318
    def __init__(self, model):
        super().__init__()
        self.inner_model = model
319
    def forward(self, x, sigma, uncond, cond, cond_scale, denoise_mask, cond_concat=None, model_options={}, seed=None):
320
321
        if denoise_mask is not None:
            latent_mask = 1. - denoise_mask
322
            x = x * denoise_mask + (self.latent_image + self.noise * sigma.reshape([sigma.shape[0]] + [1] * (len(self.noise.shape) - 1))) * latent_mask
323
        out = self.inner_model(x, sigma, cond=cond, uncond=uncond, cond_scale=cond_scale, cond_concat=cond_concat, model_options=model_options, seed=seed)
324
325
326
327
328
329
        if denoise_mask is not None:
            out *= denoise_mask

        if denoise_mask is not None:
            out += self.latent_image * latent_mask
        return out
330

comfyanonymous's avatar
comfyanonymous committed
331
332
333
334
335
336
337
338
def simple_scheduler(model, steps):
    sigs = []
    ss = len(model.sigmas) / steps
    for x in range(steps):
        sigs += [float(model.sigmas[-(1 + int(x * ss))])]
    sigs += [0.0]
    return torch.FloatTensor(sigs)

comfyanonymous's avatar
comfyanonymous committed
339
340
341
342
def ddim_scheduler(model, steps):
    sigs = []
    ddim_timesteps = make_ddim_timesteps(ddim_discr_method="uniform", num_ddim_timesteps=steps, num_ddpm_timesteps=model.inner_model.inner_model.num_timesteps, verbose=False)
    for x in range(len(ddim_timesteps) - 1, -1, -1):
343
344
345
346
        ts = ddim_timesteps[x]
        if ts > 999:
            ts = 999
        sigs.append(model.t_to_sigma(torch.tensor(ts)))
comfyanonymous's avatar
comfyanonymous committed
347
348
349
    sigs += [0.0]
    return torch.FloatTensor(sigs)

350
351
352
353
354
355
356
357
358
359
360
def sgm_scheduler(model, steps):
    sigs = []
    timesteps = torch.linspace(model.inner_model.inner_model.num_timesteps - 1, 0, steps + 1)[:-1].type(torch.int)
    for x in range(len(timesteps)):
        ts = timesteps[x]
        if ts > 999:
            ts = 999
        sigs.append(model.t_to_sigma(torch.tensor(ts)))
    sigs += [0.0]
    return torch.FloatTensor(sigs)

Jacob Segal's avatar
Jacob Segal committed
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
def get_mask_aabb(masks):
    if masks.numel() == 0:
        return torch.zeros((0, 4), device=masks.device, dtype=torch.int)

    b = masks.shape[0]

    bounding_boxes = torch.zeros((b, 4), device=masks.device, dtype=torch.int)
    is_empty = torch.zeros((b), device=masks.device, dtype=torch.bool)
    for i in range(b):
        mask = masks[i]
        if mask.numel() == 0:
            continue
        if torch.max(mask != 0) == False:
            is_empty[i] = True
            continue
        y, x = torch.where(mask)
        bounding_boxes[i, 0] = torch.min(x)
        bounding_boxes[i, 1] = torch.min(y)
        bounding_boxes[i, 2] = torch.max(x)
        bounding_boxes[i, 3] = torch.max(y)

    return bounding_boxes, is_empty

384
def resolve_areas_and_cond_masks(conditions, h, w, device):
Jacob Segal's avatar
Jacob Segal committed
385
386
387
388
    # We need to decide on an area outside the sampling loop in order to properly generate opposite areas of equal sizes.
    # While we're doing this, we can also resolve the mask device and scaling for performance reasons
    for i in range(len(conditions)):
        c = conditions[i]
389
390
391
392
393
394
395
396
397
        if 'area' in c[1]:
            area = c[1]['area']
            if area[0] == "percentage":
                modified = c[1].copy()
                area = (max(1, round(area[1] * h)), max(1, round(area[2] * w)), round(area[3] * h), round(area[4] * w))
                modified['area'] = area
                c = [c[0], modified]
                conditions[i] = c

Jacob Segal's avatar
Jacob Segal committed
398
399
400
401
402
403
        if 'mask' in c[1]:
            mask = c[1]['mask']
            mask = mask.to(device=device)
            modified = c[1].copy()
            if len(mask.shape) == 2:
                mask = mask.unsqueeze(0)
mara's avatar
mara committed
404
            if mask.shape[1] != h or mask.shape[2] != w:
Jacob Segal's avatar
Jacob Segal committed
405
406
                mask = torch.nn.functional.interpolate(mask.unsqueeze(1), size=(h, w), mode='bilinear', align_corners=False).squeeze(1)

Jacob Segal's avatar
Jacob Segal committed
407
            if modified.get("set_area_to_bounds", False):
Jacob Segal's avatar
Jacob Segal committed
408
                bounds = torch.max(torch.abs(mask),dim=0).values.unsqueeze(0)
Jacob Segal's avatar
Jacob Segal committed
409
410
411
412
                boxes, is_empty = get_mask_aabb(bounds)
                if is_empty[0]:
                    # Use the minimum possible size for efficiency reasons. (Since the mask is all-0, this becomes a noop anyway)
                    modified['area'] = (8, 8, 0, 0)
Jacob Segal's avatar
Jacob Segal committed
413
                else:
Jacob Segal's avatar
Jacob Segal committed
414
                    box = boxes[0]
Jacob Segal's avatar
Jacob Segal committed
415
                    H, W, Y, X = (box[3] - box[1] + 1, box[2] - box[0] + 1, box[1], box[0])
416
417
                    H = max(8, H)
                    W = max(8, W)
Jacob Segal's avatar
Jacob Segal committed
418
419
                    area = (int(H), int(W), int(Y), int(X))
                    modified['area'] = area
Jacob Segal's avatar
Jacob Segal committed
420
421
422
423

            modified['mask'] = mask
            conditions[i] = [c[0], modified]

comfyanonymous's avatar
comfyanonymous committed
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
def create_cond_with_same_area_if_none(conds, c):
    if 'area' not in c[1]:
        return

    c_area = c[1]['area']
    smallest = None
    for x in conds:
        if 'area' in x[1]:
            a = x[1]['area']
            if c_area[2] >= a[2] and c_area[3] >= a[3]:
                if a[0] + a[2] >= c_area[0] + c_area[2]:
                    if a[1] + a[3] >= c_area[1] + c_area[3]:
                        if smallest is None:
                            smallest = x
                        elif 'area' not in smallest[1]:
                            smallest = x
                        else:
                            if smallest[1]['area'][0] * smallest[1]['area'][1] > a[0] * a[1]:
                                smallest = x
        else:
            if smallest is None:
                smallest = x
    if smallest is None:
        return
    if 'area' in smallest[1]:
        if smallest[1]['area'] == c_area:
            return
    n = c[1].copy()
    conds += [[smallest[0], n]]
comfyanonymous's avatar
comfyanonymous committed
453

454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
def calculate_start_end_timesteps(model, conds):
    for t in range(len(conds)):
        x = conds[t]

        timestep_start = None
        timestep_end = None
        if 'start_percent' in x[1]:
            timestep_start = model.sigma_to_t(model.t_to_sigma(torch.tensor(x[1]['start_percent'] * 999.0)))
        if 'end_percent' in x[1]:
            timestep_end = model.sigma_to_t(model.t_to_sigma(torch.tensor(x[1]['end_percent'] * 999.0)))

        if (timestep_start is not None) or (timestep_end is not None):
            n = x[1].copy()
            if (timestep_start is not None):
                n['timestep_start'] = timestep_start
            if (timestep_end is not None):
                n['timestep_end'] = timestep_end
            conds[t] = [x[0], n]

473
474
475
476
477
478
479
480
def pre_run_control(model, conds):
    for t in range(len(conds)):
        x = conds[t]

        timestep_start = None
        timestep_end = None
        percent_to_timestep_function = lambda a: model.sigma_to_t(model.t_to_sigma(torch.tensor(a) * 999.0))
        if 'control' in x[1]:
comfyanonymous's avatar
comfyanonymous committed
481
            x[1]['control'].pre_run(model.inner_model.inner_model, percent_to_timestep_function)
482

483
def apply_empty_x_to_equal_area(conds, uncond, name, uncond_fill_func):
comfyanonymous's avatar
comfyanonymous committed
484
485
486
487
488
489
490
    cond_cnets = []
    cond_other = []
    uncond_cnets = []
    uncond_other = []
    for t in range(len(conds)):
        x = conds[t]
        if 'area' not in x[1]:
491
492
            if name in x[1] and x[1][name] is not None:
                cond_cnets.append(x[1][name])
comfyanonymous's avatar
comfyanonymous committed
493
494
495
496
497
            else:
                cond_other.append((x, t))
    for t in range(len(uncond)):
        x = uncond[t]
        if 'area' not in x[1]:
498
499
            if name in x[1] and x[1][name] is not None:
                uncond_cnets.append(x[1][name])
comfyanonymous's avatar
comfyanonymous committed
500
501
502
503
504
505
506
507
508
            else:
                uncond_other.append((x, t))

    if len(uncond_cnets) > 0:
        return

    for x in range(len(cond_cnets)):
        temp = uncond_other[x % len(uncond_other)]
        o = temp[0]
509
        if name in o[1] and o[1][name] is not None:
comfyanonymous's avatar
comfyanonymous committed
510
            n = o[1].copy()
511
            n[name] = uncond_fill_func(cond_cnets, x)
comfyanonymous's avatar
comfyanonymous committed
512
513
514
            uncond += [[o[0], n]]
        else:
            n = o[1].copy()
515
            n[name] = uncond_fill_func(cond_cnets, x)
comfyanonymous's avatar
comfyanonymous committed
516
517
            uncond[temp[1]] = [o[0], n]

518
def encode_adm(model, conds, batch_size, width, height, device, prompt_type):
519
520
    for t in range(len(conds)):
        x = conds[t]
comfyanonymous's avatar
comfyanonymous committed
521
        adm_out = None
522
523
        if 'adm' in x[1]:
            adm_out = x[1]["adm"]
524
        else:
525
            params = x[1].copy()
526
527
528
            params["width"] = params.get("width", width * 8)
            params["height"] = params.get("height", height * 8)
            params["prompt_type"] = params.get("prompt_type", prompt_type)
529
            adm_out = model.encode_adm(device=device, **params)
530

comfyanonymous's avatar
comfyanonymous committed
531
532
        if adm_out is not None:
            x[1] = x[1].copy()
533
            x[1]["adm_encoded"] = comfy.utils.repeat_to_batch_size(adm_out, batch_size).to(device)
534
535
536

    return conds

537

comfyanonymous's avatar
comfyanonymous committed
538
539
540
541
542
class Sampler:
    def sample(self):
        pass

    def max_denoise(self, model_wrap, sigmas):
comfyanonymous's avatar
comfyanonymous committed
543
        return math.isclose(float(model_wrap.sigma_max), float(sigmas[0]), rel_tol=1e-05)
comfyanonymous's avatar
comfyanonymous committed
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591

class DDIM(Sampler):
    def sample(self, model_wrap, sigmas, extra_args, callback, noise, latent_image=None, denoise_mask=None, disable_pbar=False):
        timesteps = []
        for s in range(sigmas.shape[0]):
            timesteps.insert(0, model_wrap.sigma_to_discrete_timestep(sigmas[s]))
        noise_mask = None
        if denoise_mask is not None:
            noise_mask = 1.0 - denoise_mask

        ddim_callback = None
        if callback is not None:
            total_steps = len(timesteps) - 1
            ddim_callback = lambda pred_x0, i: callback(i, pred_x0, None, total_steps)

        max_denoise = self.max_denoise(model_wrap, sigmas)

        ddim_sampler = DDIMSampler(model_wrap.inner_model.inner_model, device=noise.device)
        ddim_sampler.make_schedule_timesteps(ddim_timesteps=timesteps, verbose=False)
        z_enc = ddim_sampler.stochastic_encode(latent_image, torch.tensor([len(timesteps) - 1] * noise.shape[0]).to(noise.device), noise=noise, max_denoise=max_denoise)
        samples, _ = ddim_sampler.sample_custom(ddim_timesteps=timesteps,
                                                batch_size=noise.shape[0],
                                                shape=noise.shape[1:],
                                                verbose=False,
                                                eta=0.0,
                                                x_T=z_enc,
                                                x0=latent_image,
                                                img_callback=ddim_callback,
                                                denoise_function=model_wrap.predict_eps_discrete_timestep,
                                                extra_args=extra_args,
                                                mask=noise_mask,
                                                to_zero=sigmas[-1]==0,
                                                end_step=sigmas.shape[0] - 1,
                                                disable_pbar=disable_pbar)
        return samples

class UNIPC(Sampler):
    def sample(self, model_wrap, sigmas, extra_args, callback, noise, latent_image=None, denoise_mask=None, disable_pbar=False):
        return uni_pc.sample_unipc(model_wrap, noise, latent_image, sigmas, sampling_function=sampling_function, max_denoise=self.max_denoise(model_wrap, sigmas), extra_args=extra_args, noise_mask=denoise_mask, callback=callback, disable=disable_pbar)

class UNIPCBH2(Sampler):
    def sample(self, model_wrap, sigmas, extra_args, callback, noise, latent_image=None, denoise_mask=None, disable_pbar=False):
        return uni_pc.sample_unipc(model_wrap, noise, latent_image, sigmas, sampling_function=sampling_function, max_denoise=self.max_denoise(model_wrap, sigmas), extra_args=extra_args, noise_mask=denoise_mask, callback=callback, variant='bh2', disable=disable_pbar)

KSAMPLER_NAMES = ["euler", "euler_ancestral", "heun", "dpm_2", "dpm_2_ancestral",
                  "lms", "dpm_fast", "dpm_adaptive", "dpmpp_2s_ancestral", "dpmpp_sde", "dpmpp_sde_gpu",
                  "dpmpp_2m", "dpmpp_2m_sde", "dpmpp_2m_sde_gpu", "dpmpp_3m_sde", "dpmpp_3m_sde_gpu", "ddpm"]

comfyanonymous's avatar
comfyanonymous committed
592
def ksampler(sampler_name, extra_options={}):
comfyanonymous's avatar
comfyanonymous committed
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
    class KSAMPLER(Sampler):
        def sample(self, model_wrap, sigmas, extra_args, callback, noise, latent_image=None, denoise_mask=None, disable_pbar=False):
            extra_args["denoise_mask"] = denoise_mask
            model_k = KSamplerX0Inpaint(model_wrap)
            model_k.latent_image = latent_image
            model_k.noise = noise

            if self.max_denoise(model_wrap, sigmas):
                noise = noise * torch.sqrt(1.0 + sigmas[0] ** 2.0)
            else:
                noise = noise * sigmas[0]

            k_callback = None
            total_steps = len(sigmas) - 1
            if callback is not None:
                k_callback = lambda x: callback(x["i"], x["denoised"], x["x"], total_steps)

            sigma_min = sigmas[-1]
            if sigma_min == 0:
                sigma_min = sigmas[-2]

            if latent_image is not None:
                noise += latent_image
            if sampler_name == "dpm_fast":
                samples = k_diffusion_sampling.sample_dpm_fast(model_k, noise, sigma_min, sigmas[0], total_steps, extra_args=extra_args, callback=k_callback, disable=disable_pbar)
            elif sampler_name == "dpm_adaptive":
                samples = k_diffusion_sampling.sample_dpm_adaptive(model_k, noise, sigma_min, sigmas[0], extra_args=extra_args, callback=k_callback, disable=disable_pbar)
            else:
comfyanonymous's avatar
comfyanonymous committed
621
                samples = getattr(k_diffusion_sampling, "sample_{}".format(sampler_name))(model_k, noise, sigmas, extra_args=extra_args, callback=k_callback, disable=disable_pbar, **extra_options)
comfyanonymous's avatar
comfyanonymous committed
622
623
624
            return samples
    return KSAMPLER

comfyanonymous's avatar
comfyanonymous committed
625
626
627
628
629
630
631
def wrap_model(model):
    model_denoise = CFGNoisePredictor(model)
    if model.model_type == model_base.ModelType.V_PREDICTION:
        model_wrap = CompVisVDenoiser(model_denoise, quantize=True)
    else:
        model_wrap = k_diffusion_external.CompVisDenoiser(model_denoise, quantize=True)
    return model_wrap
comfyanonymous's avatar
comfyanonymous committed
632
633
634
635
636
637
638
639

def sample(model, noise, positive, negative, cfg, device, sampler, sigmas, model_options={}, latent_image=None, denoise_mask=None, callback=None, disable_pbar=False, seed=None):
    positive = positive[:]
    negative = negative[:]

    resolve_areas_and_cond_masks(positive, noise.shape[2], noise.shape[3], device)
    resolve_areas_and_cond_masks(negative, noise.shape[2], noise.shape[3], device)

comfyanonymous's avatar
comfyanonymous committed
640
    model_wrap = wrap_model(model)
comfyanonymous's avatar
comfyanonymous committed
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664

    calculate_start_end_timesteps(model_wrap, negative)
    calculate_start_end_timesteps(model_wrap, positive)

    #make sure each cond area has an opposite one with the same area
    for c in positive:
        create_cond_with_same_area_if_none(negative, c)
    for c in negative:
        create_cond_with_same_area_if_none(positive, c)

    pre_run_control(model_wrap, negative + positive)

    apply_empty_x_to_equal_area(list(filter(lambda c: c[1].get('control_apply_to_uncond', False) == True, positive)), negative, 'control', lambda cond_cnets, x: cond_cnets[x])
    apply_empty_x_to_equal_area(positive, negative, 'gligen', lambda cond_cnets, x: cond_cnets[x])

    if model.is_adm():
        positive = encode_adm(model, positive, noise.shape[0], noise.shape[3], noise.shape[2], device, "positive")
        negative = encode_adm(model, negative, noise.shape[0], noise.shape[3], noise.shape[2], device, "negative")

    if latent_image is not None:
        latent_image = model.process_latent_in(latent_image)

    extra_args = {"cond":positive, "uncond":negative, "cond_scale": cfg, "model_options": model_options, "seed":seed}

665
666
667
668
    if hasattr(model, 'cond_concat'):
        cond_concat = model.cond_concat(noise=noise, latent_image=latent_image, denoise_mask=denoise_mask)
        if cond_concat is not None:
            extra_args["cond_concat"] = cond_concat
comfyanonymous's avatar
comfyanonymous committed
669
670
671
672

    samples = sampler.sample(model_wrap, sigmas, extra_args, callback, noise, latent_image, denoise_mask, disable_pbar)
    return model.process_latent_out(samples.to(torch.float32))

comfyanonymous's avatar
comfyanonymous committed
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
SCHEDULER_NAMES = ["normal", "karras", "exponential", "sgm_uniform", "simple", "ddim_uniform"]
SAMPLER_NAMES = KSAMPLER_NAMES + ["ddim", "uni_pc", "uni_pc_bh2"]

def calculate_sigmas_scheduler(model, scheduler_name, steps):
    model_wrap = wrap_model(model)
    if scheduler_name == "karras":
        sigmas = k_diffusion_sampling.get_sigmas_karras(n=steps, sigma_min=float(model_wrap.sigma_min), sigma_max=float(model_wrap.sigma_max))
    elif scheduler_name == "exponential":
        sigmas = k_diffusion_sampling.get_sigmas_exponential(n=steps, sigma_min=float(model_wrap.sigma_min), sigma_max=float(model_wrap.sigma_max))
    elif scheduler_name == "normal":
        sigmas = model_wrap.get_sigmas(steps)
    elif scheduler_name == "simple":
        sigmas = simple_scheduler(model_wrap, steps)
    elif scheduler_name == "ddim_uniform":
        sigmas = ddim_scheduler(model_wrap, steps)
    elif scheduler_name == "sgm_uniform":
        sigmas = sgm_scheduler(model_wrap, steps)
    else:
        print("error invalid scheduler", self.scheduler)
    return sigmas

694
695
696
697
698
699
700
701
702
703
704
def sampler_class(name):
    if name == "uni_pc":
        sampler = UNIPC
    elif name == "uni_pc_bh2":
        sampler = UNIPCBH2
    elif name == "ddim":
        sampler = DDIM
    else:
        sampler = ksampler(name)
    return sampler

comfyanonymous's avatar
comfyanonymous committed
705
class KSampler:
comfyanonymous's avatar
comfyanonymous committed
706
707
    SCHEDULERS = SCHEDULER_NAMES
    SAMPLERS = SAMPLER_NAMES
comfyanonymous's avatar
comfyanonymous committed
708

709
    def __init__(self, model, steps, device, sampler=None, scheduler=None, denoise=None, model_options={}):
comfyanonymous's avatar
comfyanonymous committed
710
711
712
713
714
715
716
717
718
        self.model = model
        self.device = device
        if scheduler not in self.SCHEDULERS:
            scheduler = self.SCHEDULERS[0]
        if sampler not in self.SAMPLERS:
            sampler = self.SAMPLERS[0]
        self.scheduler = scheduler
        self.sampler = sampler
        self.set_steps(steps, denoise)
719
        self.denoise = denoise
720
        self.model_options = model_options
comfyanonymous's avatar
comfyanonymous committed
721

comfyanonymous's avatar
comfyanonymous committed
722
723
724
725
726
727
728
729
    def calculate_sigmas(self, steps):
        sigmas = None

        discard_penultimate_sigma = False
        if self.sampler in ['dpm_2', 'dpm_2_ancestral']:
            steps += 1
            discard_penultimate_sigma = True

comfyanonymous's avatar
comfyanonymous committed
730
        sigmas = calculate_sigmas_scheduler(self.model, self.scheduler, steps)
comfyanonymous's avatar
comfyanonymous committed
731
732
733
734
735

        if discard_penultimate_sigma:
            sigmas = torch.cat([sigmas[:-2], sigmas[-1:]])
        return sigmas

comfyanonymous's avatar
comfyanonymous committed
736
737
    def set_steps(self, steps, denoise=None):
        self.steps = steps
738
        if denoise is None or denoise > 0.9999:
comfyanonymous's avatar
comfyanonymous committed
739
            self.sigmas = self.calculate_sigmas(steps).to(self.device)
comfyanonymous's avatar
comfyanonymous committed
740
741
        else:
            new_steps = int(steps/denoise)
comfyanonymous's avatar
comfyanonymous committed
742
            sigmas = self.calculate_sigmas(new_steps).to(self.device)
comfyanonymous's avatar
comfyanonymous committed
743
744
            self.sigmas = sigmas[-(steps + 1):]

745
    def sample(self, noise, positive, negative, cfg, latent_image=None, start_step=None, last_step=None, force_full_denoise=False, denoise_mask=None, sigmas=None, callback=None, disable_pbar=False, seed=None):
746
747
        if sigmas is None:
            sigmas = self.sigmas
comfyanonymous's avatar
comfyanonymous committed
748

comfyanonymous's avatar
comfyanonymous committed
749
        if last_step is not None and last_step < (len(sigmas) - 1):
comfyanonymous's avatar
comfyanonymous committed
750
            sigmas = sigmas[:last_step + 1]
comfyanonymous's avatar
comfyanonymous committed
751
752
753
            if force_full_denoise:
                sigmas[-1] = 0

comfyanonymous's avatar
comfyanonymous committed
754
        if start_step is not None:
comfyanonymous's avatar
comfyanonymous committed
755
756
757
758
759
760
761
            if start_step < (len(sigmas) - 1):
                sigmas = sigmas[start_step:]
            else:
                if latent_image is not None:
                    return latent_image
                else:
                    return torch.zeros_like(noise)
comfyanonymous's avatar
comfyanonymous committed
762

763
        sampler = sampler_class(self.sampler)
764

comfyanonymous's avatar
comfyanonymous committed
765
        return sample(self.model, noise, positive, negative, cfg, self.device, sampler(), sigmas, self.model_options, latent_image=latent_image, denoise_mask=denoise_mask, callback=callback, disable_pbar=disable_pbar, seed=seed)