samplers.py 30.2 KB
Newer Older
1
from .k_diffusion import sampling as k_diffusion_sampling
2
from .extra_samplers import uni_pc
comfyanonymous's avatar
comfyanonymous committed
3
import torch
comfyanonymous's avatar
comfyanonymous committed
4
import collections
5
from comfy import model_management
comfyanonymous's avatar
comfyanonymous committed
6
import math
7
import logging
8
import comfy.sampler_helpers
9

10
def get_area_and_mult(conds, x_in, timestep_in):
11
12
    dims = tuple(x_in.shape[2:])
    area = None
13
14
15
16
17
18
19
20
21
22
23
    strength = 1.0

    if 'timestep_start' in conds:
        timestep_start = conds['timestep_start']
        if timestep_in[0] > timestep_start:
            return None
    if 'timestep_end' in conds:
        timestep_end = conds['timestep_end']
        if timestep_in[0] < timestep_end:
            return None
    if 'area' in conds:
24
        area = list(conds['area'])
25
26
27
    if 'strength' in conds:
        strength = conds['strength']

28
29
30
31
32
33
    input_x = x_in
    if area is not None:
        for i in range(len(dims)):
            area[i] = min(input_x.shape[i + 2] - area[len(dims) + i], area[i])
            input_x = input_x.narrow(i + 2, area[len(dims) + i], area[i])

34
35
36
37
38
39
40
    if 'mask' in conds:
        # Scale the mask to the size of the input
        # The mask should have been resized as we began the sampling process
        mask_strength = 1.0
        if "mask_strength" in conds:
            mask_strength = conds["mask_strength"]
        mask = conds['mask']
41
42
43
44
45
46
47
48
        assert(mask.shape[1:] == x_in.shape[2:])

        mask = mask[:input_x.shape[0]]
        if area is not None:
            for i in range(len(dims)):
                mask = mask.narrow(i + 1, area[len(dims) + i], area[i])

        mask = mask * mask_strength
49
50
51
52
53
        mask = mask.unsqueeze(1).repeat(input_x.shape[0] // mask.shape[0], input_x.shape[1], 1, 1)
    else:
        mask = torch.ones_like(input_x)
    mult = mask * strength

54
    if 'mask' not in conds and area is not None:
55
        rr = 8
56
57
58
59
60
61
62
63
64
        for i in range(len(dims)):
            if area[len(dims) + i] != 0:
                for t in range(rr):
                    m = mult.narrow(i + 2, t, 1)
                    m *= ((1.0/rr) * (t + 1))
            if (area[i] + area[len(dims) + i]) < x_in.shape[i + 2]:
                for t in range(rr):
                    m = mult.narrow(i + 2, area[i] - 1 - t, 1)
                    m *= ((1.0/rr) * (t + 1))
65
66
67
68
69
70

    conditioning = {}
    model_conds = conds["model_conds"]
    for c in model_conds:
        conditioning[c] = model_conds[c].process_cond(batch_size=x_in.shape[0], device=x_in.device, area=area)

comfyanonymous's avatar
comfyanonymous committed
71
    control = conds.get('control', None)
72
73
74
75
76
77
78
79
80
81
82
83
84
85

    patches = None
    if 'gligen' in conds:
        gligen = conds['gligen']
        patches = {}
        gligen_type = gligen[0]
        gligen_model = gligen[1]
        if gligen_type == "position":
            gligen_patch = gligen_model.model.set_position(input_x.shape, gligen[2], input_x.device)
        else:
            gligen_patch = gligen_model.model.set_empty(input_x.shape, input_x.device)

        patches['middle_patch'] = [gligen_patch]

comfyanonymous's avatar
comfyanonymous committed
86
87
    cond_obj = collections.namedtuple('cond_obj', ['input_x', 'mult', 'conditioning', 'area', 'control', 'patches'])
    return cond_obj(input_x, mult, conditioning, area, control, patches)
88
89
90
91
92
93
94
95
96
97
98
99

def cond_equal_size(c1, c2):
    if c1 is c2:
        return True
    if c1.keys() != c2.keys():
        return False
    for k in c1:
        if not c1[k].can_concat(c2[k]):
            return False
    return True

def can_concat_cond(c1, c2):
comfyanonymous's avatar
comfyanonymous committed
100
    if c1.input_x.shape != c2.input_x.shape:
101
102
        return False

comfyanonymous's avatar
comfyanonymous committed
103
104
    def objects_concatable(obj1, obj2):
        if (obj1 is None) != (obj2 is None):
105
            return False
comfyanonymous's avatar
comfyanonymous committed
106
107
108
109
        if obj1 is not None:
            if obj1 is not obj2:
                return False
        return True
110

comfyanonymous's avatar
comfyanonymous committed
111
112
113
114
    if not objects_concatable(c1.control, c2.control):
        return False

    if not objects_concatable(c1.patches, c2.patches):
115
116
        return False

comfyanonymous's avatar
comfyanonymous committed
117
    return cond_equal_size(c1.conditioning, c2.conditioning)
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138

def cond_cat(c_list):
    c_crossattn = []
    c_concat = []
    c_adm = []
    crossattn_max_len = 0

    temp = {}
    for x in c_list:
        for k in x:
            cur = temp.get(k, [])
            cur.append(x[k])
            temp[k] = cur

    out = {}
    for k in temp:
        conds = temp[k]
        out[k] = conds[0].concat(conds[1:])

    return out

139
140
141
def calc_cond_batch(model, conds, x_in, timestep, model_options):
    out_conds = []
    out_counts = []
142
143
    to_run = []

144
145
146
    for i in range(len(conds)):
        out_conds.append(torch.zeros_like(x_in))
        out_counts.append(torch.ones_like(x_in) * 1e-37)
147

148
149
150
151
152
153
154
155
        cond = conds[i]
        if cond is not None:
            for x in cond:
                p = get_area_and_mult(x, x_in, timestep)
                if p is None:
                    continue

                to_run += [(p, i)]
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185

    while len(to_run) > 0:
        first = to_run[0]
        first_shape = first[0][0].shape
        to_batch_temp = []
        for x in range(len(to_run)):
            if can_concat_cond(to_run[x][0], first[0]):
                to_batch_temp += [x]

        to_batch_temp.reverse()
        to_batch = to_batch_temp[:1]

        free_memory = model_management.get_free_memory(x_in.device)
        for i in range(1, len(to_batch_temp) + 1):
            batch_amount = to_batch_temp[:len(to_batch_temp)//i]
            input_shape = [len(batch_amount) * first_shape[0]] + list(first_shape)[1:]
            if model.memory_required(input_shape) < free_memory:
                to_batch = batch_amount
                break

        input_x = []
        mult = []
        c = []
        cond_or_uncond = []
        area = []
        control = None
        patches = None
        for x in to_batch:
            o = to_run.pop(x)
            p = o[0]
comfyanonymous's avatar
comfyanonymous committed
186
187
188
189
190
191
192
            input_x.append(p.input_x)
            mult.append(p.mult)
            c.append(p.conditioning)
            area.append(p.area)
            cond_or_uncond.append(o[1])
            control = p.control
            patches = p.patches
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211

        batch_chunks = len(cond_or_uncond)
        input_x = torch.cat(input_x)
        c = cond_cat(c)
        timestep_ = torch.cat([timestep] * batch_chunks)

        if control is not None:
            c['control'] = control.get_control(input_x, timestep_, c, len(cond_or_uncond))

        transformer_options = {}
        if 'transformer_options' in model_options:
            transformer_options = model_options['transformer_options'].copy()

        if patches is not None:
            if "patches" in transformer_options:
                cur_patches = transformer_options["patches"].copy()
                for p in patches:
                    if p in cur_patches:
                        cur_patches[p] = cur_patches[p] + patches[p]
212
                    else:
213
                        cur_patches[p] = patches[p]
214
                transformer_options["patches"] = cur_patches
215
216
            else:
                transformer_options["patches"] = patches
217

218
219
        transformer_options["cond_or_uncond"] = cond_or_uncond[:]
        transformer_options["sigmas"] = timestep
220

221
        c['transformer_options'] = transformer_options
222

223
224
225
226
        if 'model_function_wrapper' in model_options:
            output = model_options['model_function_wrapper'](model.apply_model, {"input": input_x, "timestep": timestep_, "c": c, "cond_or_uncond": cond_or_uncond}).chunk(batch_chunks)
        else:
            output = model.apply_model(input_x, timestep_, **c).chunk(batch_chunks)
comfyanonymous's avatar
comfyanonymous committed
227

228
        for o in range(batch_chunks):
229
            cond_index = cond_or_uncond[o]
230
231
232
233
234
235
236
237
238
239
240
241
242
            a = area[o]
            if a is None:
                out_conds[cond_index] += output[o] * mult[o]
                out_counts[cond_index] += mult[o]
            else:
                out_c = out_conds[cond_index]
                out_cts = out_counts[cond_index]
                dims = len(a) // 2
                for i in range(dims):
                    out_c = out_c.narrow(i + 2, a[i + dims], a[i])
                    out_cts = out_cts.narrow(i + 2, a[i + dims], a[i])
                out_c += output[o] * mult[o]
                out_cts += mult[o]
comfyanonymous's avatar
comfyanonymous committed
243

244
245
246
247
248
249
250
251
    for i in range(len(out_conds)):
        out_conds[i] /= out_counts[i]

    return out_conds

def calc_cond_uncond_batch(model, cond, uncond, x_in, timestep, model_options): #TODO: remove
    logging.warning("WARNING: The comfy.samplers.calc_cond_uncond_batch function is deprecated please use the calc_cond_batch one instead.")
    return tuple(calc_cond_batch(model, [cond, uncond], x_in, timestep, model_options))
comfyanonymous's avatar
comfyanonymous committed
252

253
def cfg_function(model, cond_pred, uncond_pred, cond_scale, x, timestep, model_options={}, cond=None, uncond=None):
254
255
256
257
258
259
    if "sampler_cfg_function" in model_options:
        args = {"cond": x - cond_pred, "uncond": x - uncond_pred, "cond_scale": cond_scale, "timestep": timestep, "input": x, "sigma": timestep,
                "cond_denoised": cond_pred, "uncond_denoised": uncond_pred, "model": model, "model_options": model_options}
        cfg_result = x - model_options["sampler_cfg_function"](args)
    else:
        cfg_result = uncond_pred + (cond_pred - uncond_pred) * cond_scale
260

261
262
263
264
    for fn in model_options.get("sampler_post_cfg_function", []):
        args = {"denoised": cfg_result, "cond": cond, "uncond": uncond, "model": model, "uncond_denoised": uncond_pred, "cond_denoised": cond_pred,
                "sigma": timestep, "model_options": model_options, "input": x}
        cfg_result = fn(args)
265

266
    return cfg_result
267

268
269
270
271
272
273
274
#The main sampling function shared by all the samplers
#Returns denoised
def sampling_function(model, x, timestep, uncond, cond, cond_scale, model_options={}, seed=None):
    if math.isclose(cond_scale, 1.0) and model_options.get("disable_cfg1_optimization", False) == False:
        uncond_ = None
    else:
        uncond_ = uncond
275

276
277
    conds = [cond, uncond_]
    out = calc_cond_batch(model, conds, x, timestep, model_options)
278
    return cfg_function(model, out[0], out[1], cond_scale, x, timestep, model_options=model_options, cond=cond, uncond=uncond_)
comfyanonymous's avatar
comfyanonymous committed
279

comfyanonymous's avatar
comfyanonymous committed
280

281
class KSamplerX0Inpaint:
282
    def __init__(self, model, sigmas):
283
        self.inner_model = model
284
        self.sigmas = sigmas
285
    def __call__(self, x, sigma, denoise_mask, model_options={}, seed=None):
286
        if denoise_mask is not None:
287
            if "denoise_mask_function" in model_options:
288
                denoise_mask = model_options["denoise_mask_function"](sigma, denoise_mask, extra_options={"model": self.inner_model, "sigmas": self.sigmas})
289
            latent_mask = 1. - denoise_mask
290
            x = x * denoise_mask + self.inner_model.inner_model.model_sampling.noise_scaling(sigma.reshape([sigma.shape[0]] + [1] * (len(self.noise.shape) - 1)), self.noise, self.latent_image) * latent_mask
291
        out = self.inner_model(x, sigma, model_options=model_options, seed=seed)
292
        if denoise_mask is not None:
comfyanonymous's avatar
comfyanonymous committed
293
            out = out * denoise_mask + self.latent_image * latent_mask
294
        return out
295

296
297
def simple_scheduler(model_sampling, steps):
    s = model_sampling
comfyanonymous's avatar
comfyanonymous committed
298
    sigs = []
comfyanonymous's avatar
comfyanonymous committed
299
    ss = len(s.sigmas) / steps
comfyanonymous's avatar
comfyanonymous committed
300
    for x in range(steps):
comfyanonymous's avatar
comfyanonymous committed
301
        sigs += [float(s.sigmas[-(1 + int(x * ss))])]
comfyanonymous's avatar
comfyanonymous committed
302
303
304
    sigs += [0.0]
    return torch.FloatTensor(sigs)

305
306
def ddim_scheduler(model_sampling, steps):
    s = model_sampling
comfyanonymous's avatar
comfyanonymous committed
307
    sigs = []
308
    ss = max(len(s.sigmas) // steps, 1)
comfyanonymous's avatar
comfyanonymous committed
309
310
311
312
313
    x = 1
    while x < len(s.sigmas):
        sigs += [float(s.sigmas[x])]
        x += ss
    sigs = sigs[::-1]
comfyanonymous's avatar
comfyanonymous committed
314
315
316
    sigs += [0.0]
    return torch.FloatTensor(sigs)

317
318
def normal_scheduler(model_sampling, steps, sgm=False, floor=False):
    s = model_sampling
comfyanonymous's avatar
comfyanonymous committed
319
320
321
322
323
324
325
326
    start = s.timestep(s.sigma_max)
    end = s.timestep(s.sigma_min)

    if sgm:
        timesteps = torch.linspace(start, end, steps + 1)[:-1]
    else:
        timesteps = torch.linspace(start, end, steps)

327
328
329
    sigs = []
    for x in range(len(timesteps)):
        ts = timesteps[x]
comfyanonymous's avatar
comfyanonymous committed
330
        sigs.append(s.sigma(ts))
331
332
333
    sigs += [0.0]
    return torch.FloatTensor(sigs)

Jacob Segal's avatar
Jacob Segal committed
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
def get_mask_aabb(masks):
    if masks.numel() == 0:
        return torch.zeros((0, 4), device=masks.device, dtype=torch.int)

    b = masks.shape[0]

    bounding_boxes = torch.zeros((b, 4), device=masks.device, dtype=torch.int)
    is_empty = torch.zeros((b), device=masks.device, dtype=torch.bool)
    for i in range(b):
        mask = masks[i]
        if mask.numel() == 0:
            continue
        if torch.max(mask != 0) == False:
            is_empty[i] = True
            continue
        y, x = torch.where(mask)
        bounding_boxes[i, 0] = torch.min(x)
        bounding_boxes[i, 1] = torch.min(y)
        bounding_boxes[i, 2] = torch.max(x)
        bounding_boxes[i, 3] = torch.max(y)

    return bounding_boxes, is_empty

357
def resolve_areas_and_cond_masks_multidim(conditions, dims, device):
Jacob Segal's avatar
Jacob Segal committed
358
359
360
361
    # We need to decide on an area outside the sampling loop in order to properly generate opposite areas of equal sizes.
    # While we're doing this, we can also resolve the mask device and scaling for performance reasons
    for i in range(len(conditions)):
        c = conditions[i]
362
363
        if 'area' in c:
            area = c['area']
364
            if area[0] == "percentage":
365
                modified = c.copy()
366
367
368
369
370
371
372
373
                a = area[1:]
                a_len = len(a) // 2
                area = ()
                for d in range(len(dims)):
                    area += (max(1, round(a[d] * dims[d])),)
                for d in range(len(dims)):
                    area += (round(a[d + a_len] * dims[d]),)

374
                modified['area'] = area
375
                c = modified
376
377
                conditions[i] = c

378
379
        if 'mask' in c:
            mask = c['mask']
Jacob Segal's avatar
Jacob Segal committed
380
            mask = mask.to(device=device)
381
            modified = c.copy()
382
            if len(mask.shape) == len(dims):
Jacob Segal's avatar
Jacob Segal committed
383
                mask = mask.unsqueeze(0)
384
385
            if mask.shape[1:] != dims:
                mask = torch.nn.functional.interpolate(mask.unsqueeze(1), size=dims, mode='bilinear', align_corners=False).squeeze(1)
Jacob Segal's avatar
Jacob Segal committed
386

387
            if modified.get("set_area_to_bounds", False): #TODO: handle dim != 2
Jacob Segal's avatar
Jacob Segal committed
388
                bounds = torch.max(torch.abs(mask),dim=0).values.unsqueeze(0)
Jacob Segal's avatar
Jacob Segal committed
389
390
391
392
                boxes, is_empty = get_mask_aabb(bounds)
                if is_empty[0]:
                    # Use the minimum possible size for efficiency reasons. (Since the mask is all-0, this becomes a noop anyway)
                    modified['area'] = (8, 8, 0, 0)
Jacob Segal's avatar
Jacob Segal committed
393
                else:
Jacob Segal's avatar
Jacob Segal committed
394
                    box = boxes[0]
Jacob Segal's avatar
Jacob Segal committed
395
                    H, W, Y, X = (box[3] - box[1] + 1, box[2] - box[0] + 1, box[1], box[0])
396
397
                    H = max(8, H)
                    W = max(8, W)
Jacob Segal's avatar
Jacob Segal committed
398
399
                    area = (int(H), int(W), int(Y), int(X))
                    modified['area'] = area
Jacob Segal's avatar
Jacob Segal committed
400
401

            modified['mask'] = mask
402
            conditions[i] = modified
Jacob Segal's avatar
Jacob Segal committed
403

404
405
406
407
408
def resolve_areas_and_cond_masks(conditions, h, w, device):
    logging.warning("WARNING: The comfy.samplers.resolve_areas_and_cond_masks function is deprecated please use the resolve_areas_and_cond_masks_multidim one instead.")
    return resolve_areas_and_cond_masks_multidim(conditions, [h, w], device)

def create_cond_with_same_area_if_none(conds, c): #TODO: handle dim != 2
409
    if 'area' not in c:
comfyanonymous's avatar
comfyanonymous committed
410
411
        return

412
    c_area = c['area']
comfyanonymous's avatar
comfyanonymous committed
413
414
    smallest = None
    for x in conds:
415
416
        if 'area' in x:
            a = x['area']
comfyanonymous's avatar
comfyanonymous committed
417
418
419
420
421
            if c_area[2] >= a[2] and c_area[3] >= a[3]:
                if a[0] + a[2] >= c_area[0] + c_area[2]:
                    if a[1] + a[3] >= c_area[1] + c_area[3]:
                        if smallest is None:
                            smallest = x
422
                        elif 'area' not in smallest:
comfyanonymous's avatar
comfyanonymous committed
423
424
                            smallest = x
                        else:
425
                            if smallest['area'][0] * smallest['area'][1] > a[0] * a[1]:
comfyanonymous's avatar
comfyanonymous committed
426
427
428
429
430
431
                                smallest = x
        else:
            if smallest is None:
                smallest = x
    if smallest is None:
        return
432
433
    if 'area' in smallest:
        if smallest['area'] == c_area:
comfyanonymous's avatar
comfyanonymous committed
434
            return
435
436
437
438

    out = c.copy()
    out['model_conds'] = smallest['model_conds'].copy() #TODO: which fields should be copied?
    conds += [out]
comfyanonymous's avatar
comfyanonymous committed
439

440
def calculate_start_end_timesteps(model, conds):
441
    s = model.model_sampling
442
443
444
445
446
    for t in range(len(conds)):
        x = conds[t]

        timestep_start = None
        timestep_end = None
447
        if 'start_percent' in x:
448
            timestep_start = s.percent_to_sigma(x['start_percent'])
449
        if 'end_percent' in x:
450
            timestep_end = s.percent_to_sigma(x['end_percent'])
451
452

        if (timestep_start is not None) or (timestep_end is not None):
453
            n = x.copy()
454
455
456
457
            if (timestep_start is not None):
                n['timestep_start'] = timestep_start
            if (timestep_end is not None):
                n['timestep_end'] = timestep_end
458
            conds[t] = n
459

460
def pre_run_control(model, conds):
461
    s = model.model_sampling
462
463
464
465
466
    for t in range(len(conds)):
        x = conds[t]

        timestep_start = None
        timestep_end = None
467
        percent_to_timestep_function = lambda a: s.percent_to_sigma(a)
468
        if 'control' in x:
469
            x['control'].pre_run(model, percent_to_timestep_function)
470

471
def apply_empty_x_to_equal_area(conds, uncond, name, uncond_fill_func):
comfyanonymous's avatar
comfyanonymous committed
472
473
474
475
476
477
    cond_cnets = []
    cond_other = []
    uncond_cnets = []
    uncond_other = []
    for t in range(len(conds)):
        x = conds[t]
478
479
480
        if 'area' not in x:
            if name in x and x[name] is not None:
                cond_cnets.append(x[name])
comfyanonymous's avatar
comfyanonymous committed
481
482
483
484
            else:
                cond_other.append((x, t))
    for t in range(len(uncond)):
        x = uncond[t]
485
486
487
        if 'area' not in x:
            if name in x and x[name] is not None:
                uncond_cnets.append(x[name])
comfyanonymous's avatar
comfyanonymous committed
488
489
490
491
492
493
494
495
496
            else:
                uncond_other.append((x, t))

    if len(uncond_cnets) > 0:
        return

    for x in range(len(cond_cnets)):
        temp = uncond_other[x % len(uncond_other)]
        o = temp[0]
497
498
        if name in o and o[name] is not None:
            n = o.copy()
499
            n[name] = uncond_fill_func(cond_cnets, x)
500
            uncond += [n]
comfyanonymous's avatar
comfyanonymous committed
501
        else:
502
            n = o.copy()
503
            n[name] = uncond_fill_func(cond_cnets, x)
504
            uncond[temp[1]] = n
505

506
def encode_model_conds(model_function, conds, noise, device, prompt_type, **kwargs):
507
508
    for t in range(len(conds)):
        x = conds[t]
509
        params = x.copy()
510
        params["device"] = device
511
        params["noise"] = noise
512
513
514
515
        default_width = None
        if len(noise.shape) >= 4: #TODO: 8 multiple should be set by the model
            default_width = noise.shape[3] * 8
        params["width"] = params.get("width", default_width)
516
517
        params["height"] = params.get("height", noise.shape[2] * 8)
        params["prompt_type"] = params.get("prompt_type", prompt_type)
518
519
520
521
522
        for k in kwargs:
            if k not in params:
                params[k] = kwargs[k]

        out = model_function(**params)
523
524
525
526
527
528
        x = x.copy()
        model_conds = x['model_conds'].copy()
        for k in out:
            model_conds[k] = out[k]
        x['model_conds'] = model_conds
        conds[t] = x
529
    return conds
530

comfyanonymous's avatar
comfyanonymous committed
531
532
533
534
535
class Sampler:
    def sample(self):
        pass

    def max_denoise(self, model_wrap, sigmas):
comfyanonymous's avatar
comfyanonymous committed
536
537
538
        max_sigma = float(model_wrap.inner_model.model_sampling.sigma_max)
        sigma = float(sigmas[0])
        return math.isclose(max_sigma, sigma, rel_tol=1e-05) or sigma > max_sigma
comfyanonymous's avatar
comfyanonymous committed
539

comfyanonymous's avatar
comfyanonymous committed
540
KSAMPLER_NAMES = ["euler", "euler_ancestral", "heun", "heunpp2","dpm_2", "dpm_2_ancestral",
comfyanonymous's avatar
comfyanonymous committed
541
                  "lms", "dpm_fast", "dpm_adaptive", "dpmpp_2s_ancestral", "dpmpp_sde", "dpmpp_sde_gpu",
comfyanonymous's avatar
comfyanonymous committed
542
                  "dpmpp_2m", "dpmpp_2m_sde", "dpmpp_2m_sde_gpu", "dpmpp_3m_sde", "dpmpp_3m_sde_gpu", "ddpm", "lcm"]
comfyanonymous's avatar
comfyanonymous committed
543

544
545
546
547
548
class KSAMPLER(Sampler):
    def __init__(self, sampler_function, extra_options={}, inpaint_options={}):
        self.sampler_function = sampler_function
        self.extra_options = extra_options
        self.inpaint_options = inpaint_options
comfyanonymous's avatar
comfyanonymous committed
549

550
551
    def sample(self, model_wrap, sigmas, extra_args, callback, noise, latent_image=None, denoise_mask=None, disable_pbar=False):
        extra_args["denoise_mask"] = denoise_mask
552
        model_k = KSamplerX0Inpaint(model_wrap, sigmas)
553
554
555
556
557
558
        model_k.latent_image = latent_image
        if self.inpaint_options.get("random", False): #TODO: Should this be the default?
            generator = torch.manual_seed(extra_args.get("seed", 41) + 1)
            model_k.noise = torch.randn(noise.shape, generator=generator, device="cpu").to(noise.dtype).to(noise.device)
        else:
            model_k.noise = noise
comfyanonymous's avatar
comfyanonymous committed
559

560
        noise = model_wrap.inner_model.model_sampling.noise_scaling(sigmas[0], noise, latent_image, self.max_denoise(model_wrap, sigmas))
561
562
563
564
565
566
567

        k_callback = None
        total_steps = len(sigmas) - 1
        if callback is not None:
            k_callback = lambda x: callback(x["i"], x["denoised"], x["x"], total_steps)

        samples = self.sampler_function(model_k, noise, sigmas, extra_args=extra_args, callback=k_callback, disable=disable_pbar, **self.extra_options)
568
        samples = model_wrap.inner_model.model_sampling.inverse_noise_scaling(sigmas[-1], samples)
569
570
571
572
573
574
        return samples


def ksampler(sampler_name, extra_options={}, inpaint_options={}):
    if sampler_name == "dpm_fast":
        def dpm_fast_function(model, noise, sigmas, extra_args, callback, disable):
575
576
577
            if len(sigmas) <= 1:
                return noise

comfyanonymous's avatar
comfyanonymous committed
578
579
580
            sigma_min = sigmas[-1]
            if sigma_min == 0:
                sigma_min = sigmas[-2]
581
582
583
584
            total_steps = len(sigmas) - 1
            return k_diffusion_sampling.sample_dpm_fast(model, noise, sigma_min, sigmas[0], total_steps, extra_args=extra_args, callback=callback, disable=disable)
        sampler_function = dpm_fast_function
    elif sampler_name == "dpm_adaptive":
585
        def dpm_adaptive_function(model, noise, sigmas, extra_args, callback, disable, **extra_options):
586
587
588
            if len(sigmas) <= 1:
                return noise

589
590
591
            sigma_min = sigmas[-1]
            if sigma_min == 0:
                sigma_min = sigmas[-2]
592
            return k_diffusion_sampling.sample_dpm_adaptive(model, noise, sigma_min, sigmas[0], extra_args=extra_args, callback=callback, disable=disable, **extra_options)
593
594
595
        sampler_function = dpm_adaptive_function
    else:
        sampler_function = getattr(k_diffusion_sampling, "sample_{}".format(sampler_name))
comfyanonymous's avatar
comfyanonymous committed
596

597
    return KSAMPLER(sampler_function, extra_options, inpaint_options)
comfyanonymous's avatar
comfyanonymous committed
598
599


600
601
602
def process_conds(model, noise, conds, device, latent_image=None, denoise_mask=None, seed=None):
    for k in conds:
        conds[k] = conds[k][:]
603
        resolve_areas_and_cond_masks_multidim(conds[k], noise.shape[2:], device)
comfyanonymous's avatar
comfyanonymous committed
604

605
606
    for k in conds:
        calculate_start_end_timesteps(model, conds[k])
comfyanonymous's avatar
comfyanonymous committed
607

608
609
610
    if hasattr(model, 'extra_conds'):
        for k in conds:
            conds[k] = encode_model_conds(model.extra_conds, conds[k], noise, device, k, latent_image=latent_image, denoise_mask=denoise_mask, seed=seed)
comfyanonymous's avatar
comfyanonymous committed
611

612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
    #make sure each cond area has an opposite one with the same area
    for k in conds:
        for c in conds[k]:
            for kk in conds:
                if k != kk:
                    create_cond_with_same_area_if_none(conds[kk], c)

    for k in conds:
        pre_run_control(model, conds[k])

    if "positive" in conds:
        positive = conds["positive"]
        for k in conds:
            if k != "positive":
                apply_empty_x_to_equal_area(list(filter(lambda c: c.get('control_apply_to_uncond', False) == True, positive)), conds[k], 'control', lambda cond_cnets, x: cond_cnets[x])
                apply_empty_x_to_equal_area(positive, conds[k], 'gligen', lambda cond_cnets, x: cond_cnets[x])
comfyanonymous's avatar
comfyanonymous committed
628

629
630
    return conds

631
632
633
634
635
636
637
class CFGGuider:
    def __init__(self, model_patcher):
        self.model_patcher = model_patcher
        self.model_options = model_patcher.model_options
        self.original_conds = {}
        self.cfg = 1.0

comfyanonymous's avatar
comfyanonymous committed
638
639
    def set_conds(self, positive, negative):
        self.inner_set_conds({"positive": positive, "negative": negative})
640
641
642
643

    def set_cfg(self, cfg):
        self.cfg = cfg

comfyanonymous's avatar
comfyanonymous committed
644
645
646
647
    def inner_set_conds(self, conds):
        for k in conds:
            self.original_conds[k] = comfy.sampler_helpers.convert_cond(conds[k])

648
649
650
651
652
653
654
655
656
    def __call__(self, *args, **kwargs):
        return self.predict_noise(*args, **kwargs)

    def predict_noise(self, x, timestep, model_options={}, seed=None):
        return sampling_function(self.inner_model, x, timestep, self.conds.get("negative", None), self.conds.get("positive", None), self.cfg, model_options=model_options, seed=seed)

    def inner_sample(self, noise, latent_image, device, sampler, sigmas, denoise_mask, callback, disable_pbar, seed):
        if latent_image is not None and torch.count_nonzero(latent_image) > 0: #Don't shift the empty latent image.
            latent_image = self.inner_model.process_latent_in(latent_image)
657

658
659
660
661
662
663
664
665
        self.conds = process_conds(self.inner_model, noise, self.conds, device, latent_image, denoise_mask, seed)

        extra_args = {"model_options": self.model_options, "seed":seed}

        samples = sampler.sample(self, sigmas, extra_args, callback, noise, latent_image, denoise_mask, disable_pbar)
        return self.inner_model.process_latent_out(samples.to(torch.float32))

    def sample(self, noise, latent_image, sampler, sigmas, denoise_mask=None, callback=None, disable_pbar=False, seed=None):
comfyanonymous's avatar
comfyanonymous committed
666
667
668
        if sigmas.shape[-1] == 0:
            return latent_image

669
670
671
672
673
674
675
676
677
        self.conds = {}
        for k in self.original_conds:
            self.conds[k] = list(map(lambda a: a.copy(), self.original_conds[k]))

        self.inner_model, self.conds, self.loaded_models = comfy.sampler_helpers.prepare_sampling(self.model_patcher, noise.shape, self.conds)
        device = self.model_patcher.load_device

        if denoise_mask is not None:
            denoise_mask = comfy.sampler_helpers.prepare_mask(denoise_mask, noise.shape, device)
678

679
680
681
        noise = noise.to(device)
        latent_image = latent_image.to(device)
        sigmas = sigmas.to(device)
682

683
        output = self.inner_sample(noise, latent_image, device, sampler, sigmas, denoise_mask, callback, disable_pbar, seed)
comfyanonymous's avatar
comfyanonymous committed
684

685
686
687
688
689
        comfy.sampler_helpers.cleanup_models(self.conds, self.loaded_models)
        del self.inner_model
        del self.conds
        del self.loaded_models
        return output
comfyanonymous's avatar
comfyanonymous committed
690
691


692
def sample(model, noise, positive, negative, cfg, device, sampler, sigmas, model_options={}, latent_image=None, denoise_mask=None, callback=None, disable_pbar=False, seed=None):
693
    cfg_guider = CFGGuider(model)
comfyanonymous's avatar
comfyanonymous committed
694
    cfg_guider.set_conds(positive, negative)
695
696
    cfg_guider.set_cfg(cfg)
    return cfg_guider.sample(noise, latent_image, sampler, sigmas, denoise_mask, callback, disable_pbar, seed)
comfyanonymous's avatar
comfyanonymous committed
697
698


comfyanonymous's avatar
comfyanonymous committed
699
700
701
SCHEDULER_NAMES = ["normal", "karras", "exponential", "sgm_uniform", "simple", "ddim_uniform"]
SAMPLER_NAMES = KSAMPLER_NAMES + ["ddim", "uni_pc", "uni_pc_bh2"]

702
def calculate_sigmas(model_sampling, scheduler_name, steps):
comfyanonymous's avatar
comfyanonymous committed
703
    if scheduler_name == "karras":
704
        sigmas = k_diffusion_sampling.get_sigmas_karras(n=steps, sigma_min=float(model_sampling.sigma_min), sigma_max=float(model_sampling.sigma_max))
comfyanonymous's avatar
comfyanonymous committed
705
    elif scheduler_name == "exponential":
706
        sigmas = k_diffusion_sampling.get_sigmas_exponential(n=steps, sigma_min=float(model_sampling.sigma_min), sigma_max=float(model_sampling.sigma_max))
comfyanonymous's avatar
comfyanonymous committed
707
    elif scheduler_name == "normal":
708
        sigmas = normal_scheduler(model_sampling, steps)
comfyanonymous's avatar
comfyanonymous committed
709
    elif scheduler_name == "simple":
710
        sigmas = simple_scheduler(model_sampling, steps)
comfyanonymous's avatar
comfyanonymous committed
711
    elif scheduler_name == "ddim_uniform":
712
        sigmas = ddim_scheduler(model_sampling, steps)
comfyanonymous's avatar
comfyanonymous committed
713
    elif scheduler_name == "sgm_uniform":
714
        sigmas = normal_scheduler(model_sampling, steps, sgm=True)
comfyanonymous's avatar
comfyanonymous committed
715
    else:
716
        logging.error("error invalid scheduler {}".format(scheduler_name))
comfyanonymous's avatar
comfyanonymous committed
717
718
    return sigmas

719
def sampler_object(name):
720
    if name == "uni_pc":
comfyanonymous's avatar
comfyanonymous committed
721
        sampler = KSAMPLER(uni_pc.sample_unipc)
722
    elif name == "uni_pc_bh2":
comfyanonymous's avatar
comfyanonymous committed
723
        sampler = KSAMPLER(uni_pc.sample_unipc_bh2)
724
    elif name == "ddim":
725
        sampler = ksampler("euler", inpaint_options={"random": True})
726
727
728
729
    else:
        sampler = ksampler(name)
    return sampler

comfyanonymous's avatar
comfyanonymous committed
730
class KSampler:
comfyanonymous's avatar
comfyanonymous committed
731
732
    SCHEDULERS = SCHEDULER_NAMES
    SAMPLERS = SAMPLER_NAMES
733
    DISCARD_PENULTIMATE_SIGMA_SAMPLERS = set(('dpm_2', 'dpm_2_ancestral', 'uni_pc', 'uni_pc_bh2'))
comfyanonymous's avatar
comfyanonymous committed
734

735
    def __init__(self, model, steps, device, sampler=None, scheduler=None, denoise=None, model_options={}):
comfyanonymous's avatar
comfyanonymous committed
736
737
738
739
740
741
742
743
744
        self.model = model
        self.device = device
        if scheduler not in self.SCHEDULERS:
            scheduler = self.SCHEDULERS[0]
        if sampler not in self.SAMPLERS:
            sampler = self.SAMPLERS[0]
        self.scheduler = scheduler
        self.sampler = sampler
        self.set_steps(steps, denoise)
745
        self.denoise = denoise
746
        self.model_options = model_options
comfyanonymous's avatar
comfyanonymous committed
747

comfyanonymous's avatar
comfyanonymous committed
748
749
750
751
    def calculate_sigmas(self, steps):
        sigmas = None

        discard_penultimate_sigma = False
752
        if self.sampler in self.DISCARD_PENULTIMATE_SIGMA_SAMPLERS:
comfyanonymous's avatar
comfyanonymous committed
753
754
755
            steps += 1
            discard_penultimate_sigma = True

756
        sigmas = calculate_sigmas(self.model.get_model_object("model_sampling"), self.scheduler, steps)
comfyanonymous's avatar
comfyanonymous committed
757
758
759
760
761

        if discard_penultimate_sigma:
            sigmas = torch.cat([sigmas[:-2], sigmas[-1:]])
        return sigmas

comfyanonymous's avatar
comfyanonymous committed
762
763
    def set_steps(self, steps, denoise=None):
        self.steps = steps
764
        if denoise is None or denoise > 0.9999:
comfyanonymous's avatar
comfyanonymous committed
765
            self.sigmas = self.calculate_sigmas(steps).to(self.device)
comfyanonymous's avatar
comfyanonymous committed
766
        else:
comfyanonymous's avatar
comfyanonymous committed
767
768
769
770
771
772
            if denoise <= 0.0:
                self.sigmas = torch.FloatTensor([])
            else:
                new_steps = int(steps/denoise)
                sigmas = self.calculate_sigmas(new_steps).to(self.device)
                self.sigmas = sigmas[-(steps + 1):]
comfyanonymous's avatar
comfyanonymous committed
773

774
    def sample(self, noise, positive, negative, cfg, latent_image=None, start_step=None, last_step=None, force_full_denoise=False, denoise_mask=None, sigmas=None, callback=None, disable_pbar=False, seed=None):
775
776
        if sigmas is None:
            sigmas = self.sigmas
comfyanonymous's avatar
comfyanonymous committed
777

comfyanonymous's avatar
comfyanonymous committed
778
        if last_step is not None and last_step < (len(sigmas) - 1):
comfyanonymous's avatar
comfyanonymous committed
779
            sigmas = sigmas[:last_step + 1]
comfyanonymous's avatar
comfyanonymous committed
780
781
782
            if force_full_denoise:
                sigmas[-1] = 0

comfyanonymous's avatar
comfyanonymous committed
783
        if start_step is not None:
comfyanonymous's avatar
comfyanonymous committed
784
785
786
787
788
789
790
            if start_step < (len(sigmas) - 1):
                sigmas = sigmas[start_step:]
            else:
                if latent_image is not None:
                    return latent_image
                else:
                    return torch.zeros_like(noise)
comfyanonymous's avatar
comfyanonymous committed
791

792
        sampler = sampler_object(self.sampler)
793

794
        return sample(self.model, noise, positive, negative, cfg, self.device, sampler, sigmas, self.model_options, latent_image=latent_image, denoise_mask=denoise_mask, callback=callback, disable_pbar=disable_pbar, seed=seed)