samplers.py 11.2 KB
Newer Older
1
2
from .k_diffusion import sampling as k_diffusion_sampling
from .k_diffusion import external as k_diffusion_external
comfyanonymous's avatar
comfyanonymous committed
3
4
import torch
import contextlib
5
import model_management
comfyanonymous's avatar
comfyanonymous committed
6
7
8
9
10
11
12

class CFGDenoiser(torch.nn.Module):
    def __init__(self, model):
        super().__init__()
        self.inner_model = model

    def forward(self, x, sigma, uncond, cond, cond_scale):
comfyanonymous's avatar
comfyanonymous committed
13
        if len(uncond[0]) == len(cond[0]) and x.shape[0] * x.shape[2] * x.shape[3] < (96 * 96): #TODO check memory instead
comfyanonymous's avatar
comfyanonymous committed
14
15
16
17
18
19
20
21
22
            x_in = torch.cat([x] * 2)
            sigma_in = torch.cat([sigma] * 2)
            cond_in = torch.cat([uncond, cond])
            uncond, cond = self.inner_model(x_in, sigma_in, cond=cond_in).chunk(2)
        else:
            cond = self.inner_model(x, sigma, cond=cond)
            uncond = self.inner_model(x, sigma, cond=uncond)
        return uncond + (cond - uncond) * cond_scale

comfyanonymous's avatar
comfyanonymous committed
23
24
25
26
27
class CFGDenoiserComplex(torch.nn.Module):
    def __init__(self, model):
        super().__init__()
        self.inner_model = model
    def forward(self, x, sigma, uncond, cond, cond_scale):
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
        def get_area_and_mult(cond, x_in, sigma):
            area = (x_in.shape[2], x_in.shape[3], 0, 0)
            strength = 1.0
            min_sigma = 0.0
            max_sigma = 999.0
            if 'area' in cond[1]:
                area = cond[1]['area']
            if 'strength' in cond[1]:
                strength = cond[1]['strength']
            if 'min_sigma' in cond[1]:
                min_sigma = cond[1]['min_sigma']
            if 'max_sigma' in cond[1]:
                max_sigma = cond[1]['max_sigma']
            if sigma < min_sigma or sigma > max_sigma:
                return None
            input_x = x_in[:,:,area[2]:area[0] + area[2],area[3]:area[1] + area[3]]
            mult = torch.ones_like(input_x) * strength

            rr = 8
            if area[2] != 0:
                for t in range(rr):
                    mult[:,:,area[2]+t:area[2]+1+t,:] *= ((1.0/rr) * (t + 1))
            if (area[0] + area[2]) < x_in.shape[2]:
                for t in range(rr):
                    mult[:,:,area[0] + area[2] - 1 - t:area[0] + area[2] - t,:] *= ((1.0/rr) * (t + 1))
            if area[3] != 0:
                for t in range(rr):
                    mult[:,:,:,area[3]+t:area[3]+1+t] *= ((1.0/rr) * (t + 1))
            if (area[1] + area[3]) < x_in.shape[3]:
                for t in range(rr):
                    mult[:,:,:,area[1] + area[3] - 1 - t:area[1] + area[3] - t] *= ((1.0/rr) * (t + 1))
            return (input_x, mult, cond[0], area)

        def calc_cond_uncond_batch(cond, uncond, x_in, sigma, max_total_area):
comfyanonymous's avatar
comfyanonymous committed
62
63
            out_cond = torch.zeros_like(x_in)
            out_count = torch.ones_like(x_in)/100000.0
64
65
66
67

            out_uncond = torch.zeros_like(x_in)
            out_uncond_count = torch.ones_like(x_in)/100000.0

comfyanonymous's avatar
comfyanonymous committed
68
            sigma_cmp = sigma[0]
69
70
            COND = 0
            UNCOND = 1
comfyanonymous's avatar
comfyanonymous committed
71

72
            to_run = []
comfyanonymous's avatar
comfyanonymous committed
73
            for x in cond:
74
75
                p = get_area_and_mult(x, x_in, sigma_cmp)
                if p is None:
comfyanonymous's avatar
comfyanonymous committed
76
                    continue
77
78
79
80
81
82
83
84
85
86
87
88

                to_run += [(p, COND)]
            for x in uncond:
                p = get_area_and_mult(x, x_in, sigma_cmp)
                if p is None:
                    continue

                to_run += [(p, UNCOND)]

            while len(to_run) > 0:
                first = to_run[0]
                first_shape = first[0][0].shape
89
                to_batch_temp = []
90
91
92
                for x in range(len(to_run)):
                    if to_run[x][0][0].shape == first_shape:
                        if to_run[x][0][2].shape == first[0][2].shape:
93
94
95
96
97
98
99
100
101
102
                            to_batch_temp += [x]

                to_batch_temp.reverse()
                to_batch = to_batch_temp[:1]

                for i in range(1, len(to_batch_temp) + 1):
                    batch_amount = to_batch_temp[:len(to_batch_temp)//i]
                    if (len(batch_amount) * first_shape[0] * first_shape[2] * first_shape[3] < max_total_area):
                        to_batch = batch_amount
                        break
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123

                input_x = []
                mult = []
                c = []
                cond_or_uncond = []
                area = []
                for x in to_batch:
                    o = to_run.pop(x)
                    p = o[0]
                    input_x += [p[0]]
                    mult += [p[1]]
                    c += [p[2]]
                    area += [p[3]]
                    cond_or_uncond += [o[1]]

                batch_chunks = len(cond_or_uncond)
                input_x = torch.cat(input_x)
                c = torch.cat(c)
                sigma_ = torch.cat([sigma] * batch_chunks)

                output = self.inner_model(input_x, sigma_, cond=c).chunk(batch_chunks)
comfyanonymous's avatar
comfyanonymous committed
124
                del input_x
125
126
127
128
129
130
131
132

                for o in range(batch_chunks):
                    if cond_or_uncond[o] == COND:
                        out_cond[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += output[o] * mult[o]
                        out_count[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += mult[o]
                    else:
                        out_uncond[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += output[o] * mult[o]
                        out_uncond_count[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += mult[o]
comfyanonymous's avatar
comfyanonymous committed
133
134
135
136
                del mult

            out_cond /= out_count
            del out_count
137
138
139
140
            out_uncond /= out_uncond_count
            del out_uncond_count

            return out_cond, out_uncond
comfyanonymous's avatar
comfyanonymous committed
141
142


143
144
        max_total_area = model_management.maximum_batch_area()
        cond, uncond = calc_cond_uncond_batch(cond, uncond, x, sigma, max_total_area)
comfyanonymous's avatar
comfyanonymous committed
145
        return uncond + (cond - uncond) * cond_scale
comfyanonymous's avatar
comfyanonymous committed
146
147
148
149
150
151
152
153
154

def simple_scheduler(model, steps):
    sigs = []
    ss = len(model.sigmas) / steps
    for x in range(steps):
        sigs += [float(model.sigmas[-(1 + int(x * ss))])]
    sigs += [0.0]
    return torch.FloatTensor(sigs)

comfyanonymous's avatar
comfyanonymous committed
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
def create_cond_with_same_area_if_none(conds, c):
    if 'area' not in c[1]:
        return

    c_area = c[1]['area']
    smallest = None
    for x in conds:
        if 'area' in x[1]:
            a = x[1]['area']
            if c_area[2] >= a[2] and c_area[3] >= a[3]:
                if a[0] + a[2] >= c_area[0] + c_area[2]:
                    if a[1] + a[3] >= c_area[1] + c_area[3]:
                        if smallest is None:
                            smallest = x
                        elif 'area' not in smallest[1]:
                            smallest = x
                        else:
                            if smallest[1]['area'][0] * smallest[1]['area'][1] > a[0] * a[1]:
                                smallest = x
        else:
            if smallest is None:
                smallest = x
    if smallest is None:
        return
    if 'area' in smallest[1]:
        if smallest[1]['area'] == c_area:
            return
    n = c[1].copy()
    conds += [[smallest[0], n]]
comfyanonymous's avatar
comfyanonymous committed
184
185
186
187
188
189
190
191
192
193

class KSampler:
    SCHEDULERS = ["karras", "normal", "simple"]
    SAMPLERS = ["sample_euler", "sample_euler_ancestral", "sample_heun", "sample_dpm_2", "sample_dpm_2_ancestral",
                "sample_lms", "sample_dpm_fast", "sample_dpm_adaptive", "sample_dpmpp_2s_ancestral", "sample_dpmpp_sde",
                "sample_dpmpp_2m"]

    def __init__(self, model, steps, device, sampler=None, scheduler=None, denoise=None):
        self.model = model
        if self.model.parameterization == "v":
194
            self.model_wrap = k_diffusion_external.CompVisVDenoiser(self.model, quantize=True)
comfyanonymous's avatar
comfyanonymous committed
195
        else:
196
            self.model_wrap = k_diffusion_external.CompVisDenoiser(self.model, quantize=True)
comfyanonymous's avatar
comfyanonymous committed
197
        self.model_k = CFGDenoiserComplex(self.model_wrap)
comfyanonymous's avatar
comfyanonymous committed
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
        self.device = device
        if scheduler not in self.SCHEDULERS:
            scheduler = self.SCHEDULERS[0]
        if sampler not in self.SAMPLERS:
            sampler = self.SAMPLERS[0]
        self.scheduler = scheduler
        self.sampler = sampler
        self.sigma_min=float(self.model_wrap.sigmas[0])
        self.sigma_max=float(self.model_wrap.sigmas[-1])
        self.set_steps(steps, denoise)

    def _calculate_sigmas(self, steps):
        sigmas = None

        discard_penultimate_sigma = False
        if self.sampler in ['sample_dpm_2', 'sample_dpm_2_ancestral']:
            steps += 1
            discard_penultimate_sigma = True

        if self.scheduler == "karras":
218
            sigmas = k_diffusion_sampling.get_sigmas_karras(n=steps, sigma_min=self.sigma_min, sigma_max=self.sigma_max, device=self.device)
comfyanonymous's avatar
comfyanonymous committed
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
        elif self.scheduler == "normal":
            sigmas = self.model_wrap.get_sigmas(steps).to(self.device)
        elif self.scheduler == "simple":
            sigmas = simple_scheduler(self.model_wrap, steps).to(self.device)
        else:
            print("error invalid scheduler", self.scheduler)

        if discard_penultimate_sigma:
            sigmas = torch.cat([sigmas[:-2], sigmas[-1:]])
        return sigmas

    def set_steps(self, steps, denoise=None):
        self.steps = steps
        if denoise is None:
            self.sigmas = self._calculate_sigmas(steps)
        else:
            new_steps = int(steps/denoise)
            sigmas = self._calculate_sigmas(new_steps)
            self.sigmas = sigmas[-(steps + 1):]


comfyanonymous's avatar
comfyanonymous committed
240
    def sample(self, noise, positive, negative, cfg, latent_image=None, start_step=None, last_step=None, force_full_denoise=False):
comfyanonymous's avatar
comfyanonymous committed
241
242
243
        sigmas = self.sigmas
        sigma_min = self.sigma_min

comfyanonymous's avatar
comfyanonymous committed
244
        if last_step is not None and last_step < (len(sigmas) - 1):
comfyanonymous's avatar
comfyanonymous committed
245
246
            sigma_min = sigmas[last_step]
            sigmas = sigmas[:last_step + 1]
comfyanonymous's avatar
comfyanonymous committed
247
248
249
            if force_full_denoise:
                sigmas[-1] = 0

comfyanonymous's avatar
comfyanonymous committed
250
        if start_step is not None:
comfyanonymous's avatar
comfyanonymous committed
251
252
253
254
255
256
257
            if start_step < (len(sigmas) - 1):
                sigmas = sigmas[start_step:]
            else:
                if latent_image is not None:
                    return latent_image
                else:
                    return torch.zeros_like(noise)
comfyanonymous's avatar
comfyanonymous committed
258
259
260
261
262

        noise *= sigmas[0]
        if latent_image is not None:
            noise += latent_image

comfyanonymous's avatar
comfyanonymous committed
263
264
265
266
267
268
269
270
        positive = positive[:]
        negative = negative[:]
        #make sure each cond area has an opposite one with the same area
        for c in positive:
            create_cond_with_same_area_if_none(negative, c)
        for c in negative:
            create_cond_with_same_area_if_none(positive, c)

comfyanonymous's avatar
comfyanonymous committed
271
272
273
274
275
276
277
        if self.model.model.diffusion_model.dtype == torch.float16:
            precision_scope = torch.autocast
        else:
            precision_scope = contextlib.nullcontext

        with precision_scope(self.device):
            if self.sampler == "sample_dpm_fast":
278
                samples = k_diffusion_sampling.sample_dpm_fast(self.model_k, noise, sigma_min, sigmas[0], self.steps, extra_args={"cond":positive, "uncond":negative, "cond_scale": cfg})
comfyanonymous's avatar
comfyanonymous committed
279
            elif self.sampler == "sample_dpm_adaptive":
280
                samples = k_diffusion_sampling.sample_dpm_adaptive(self.model_k, noise, sigma_min, sigmas[0], extra_args={"cond":positive, "uncond":negative, "cond_scale": cfg})
comfyanonymous's avatar
comfyanonymous committed
281
            else:
282
                samples = getattr(k_diffusion_sampling, self.sampler)(self.model_k, noise, sigmas, extra_args={"cond":positive, "uncond":negative, "cond_scale": cfg})
comfyanonymous's avatar
comfyanonymous committed
283
        return samples.to(torch.float32)