samplers.py 32.3 KB
Newer Older
1
2
from .k_diffusion import sampling as k_diffusion_sampling
from .k_diffusion import external as k_diffusion_external
3
from .extra_samplers import uni_pc
comfyanonymous's avatar
comfyanonymous committed
4
import torch
5
from comfy import model_management
comfyanonymous's avatar
comfyanonymous committed
6
7
from .ldm.models.diffusion.ddim import DDIMSampler
from .ldm.modules.diffusionmodules.util import make_ddim_timesteps
comfyanonymous's avatar
comfyanonymous committed
8
import math
9
from comfy import model_base
10
import comfy.utils
comfyanonymous's avatar
comfyanonymous committed
11

12

comfyanonymous's avatar
comfyanonymous committed
13
14
def lcm(a, b): #TODO: eventually replace by math.lcm (added in python3.9)
    return abs(a*b) // math.gcd(a, b)
comfyanonymous's avatar
comfyanonymous committed
15

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
class CONDRegular:
    def __init__(self, cond):
        self.cond = cond

    def can_concat(self, other):
        if self.cond.shape != other.cond.shape:
            return False
        return True

    def concat(self, others):
        conds = [self.cond]
        for x in others:
            conds.append(x.cond)
        return torch.cat(conds)

class CONDCrossAttn:
    def __init__(self, cond):
        self.cond = cond

    def can_concat(self, other):
        s1 = self.cond.shape
        s2 = other.cond.shape
        if s1 != s2:
            if s1[0] != s2[0] or s1[2] != s2[2]: #these 2 cases should not happen
                return False

            mult_min = lcm(s1[1], s2[1])
            diff = mult_min // min(s1[1], s2[1])
            if diff > 4: #arbitrary limit on the padding because it's probably going to impact performance negatively if it's too much
                return False
        return True

    def concat(self, others):
        conds = [self.cond]
        crossattn_max_len = self.cond.shape[1]
        for x in others:
            c = x.cond
            crossattn_max_len = lcm(crossattn_max_len, c.shape[1])
            conds.append(c)

        out = []
        for c in conds:
            if c.shape[1] < crossattn_max_len:
                c = c.repeat(1, crossattn_max_len // c.shape[1], 1) #padding with repeat doesn't change result
            out.append(c)
        return torch.cat(out)


comfyanonymous's avatar
comfyanonymous committed
64
65
#The main sampling function shared by all the samplers
#Returns predicted noise
66
67
def sampling_function(model_function, x, timestep, uncond, cond, cond_scale, model_options={}, seed=None):
        def get_area_and_mult(cond, x_in, timestep_in):
68
69
            area = (x_in.shape[2], x_in.shape[3], 0, 0)
            strength = 1.0
70
71
            if 'timestep_start' in cond[1]:
                timestep_start = cond[1]['timestep_start']
72
                if timestep_in[0] > timestep_start:
73
74
75
                    return None
            if 'timestep_end' in cond[1]:
                timestep_end = cond[1]['timestep_end']
76
                if timestep_in[0] < timestep_end:
77
                    return None
78
79
80
81
            if 'area' in cond[1]:
                area = cond[1]['area']
            if 'strength' in cond[1]:
                strength = cond[1]['strength']
82

83
            adm_cond = None
84
85
            if 'adm_encoded' in cond[1]:
                adm_cond = cond[1]['adm_encoded']
86

87
            input_x = x_in[:,:,area[2]:area[0] + area[2],area[3]:area[1] + area[3]]
Jacob Segal's avatar
Jacob Segal committed
88
89
90
            if 'mask' in cond[1]:
                # Scale the mask to the size of the input
                # The mask should have been resized as we began the sampling process
91
92
93
                mask_strength = 1.0
                if "mask_strength" in cond[1]:
                    mask_strength = cond[1]["mask_strength"]
Jacob Segal's avatar
Jacob Segal committed
94
95
96
                mask = cond[1]['mask']
                assert(mask.shape[1] == x_in.shape[2])
                assert(mask.shape[2] == x_in.shape[3])
97
                mask = mask[:,area[2]:area[0] + area[2],area[3]:area[1] + area[3]] * mask_strength
Jacob Segal's avatar
Jacob Segal committed
98
                mask = mask.unsqueeze(1).repeat(input_x.shape[0] // mask.shape[0], input_x.shape[1], 1, 1)
Jacob Segal's avatar
Jacob Segal committed
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
            else:
                mask = torch.ones_like(input_x)
            mult = mask * strength

            if 'mask' not in cond[1]:
                rr = 8
                if area[2] != 0:
                    for t in range(rr):
                        mult[:,:,t:1+t,:] *= ((1.0/rr) * (t + 1))
                if (area[0] + area[2]) < x_in.shape[2]:
                    for t in range(rr):
                        mult[:,:,area[0] - 1 - t:area[0] - t,:] *= ((1.0/rr) * (t + 1))
                if area[3] != 0:
                    for t in range(rr):
                        mult[:,:,:,t:1+t] *= ((1.0/rr) * (t + 1))
                if (area[1] + area[3]) < x_in.shape[3]:
                    for t in range(rr):
                        mult[:,:,:,area[1] - 1 - t:area[1] - t] *= ((1.0/rr) * (t + 1))

comfyanonymous's avatar
comfyanonymous committed
118
            conditionning = {}
119
            conditionning['c_crossattn'] = CONDCrossAttn(cond[0])
120
121
122
123
124
125
126
127

            if 'concat' in cond[1]:
                cond_concat_in = cond[1]['concat']
                if cond_concat_in is not None and len(cond_concat_in) > 0:
                    cropped = []
                    for x in cond_concat_in:
                        cr = x[:,:,area[2]:area[0] + area[2],area[3]:area[1] + area[3]]
                        cropped.append(cr)
128
                    conditionning['c_concat'] = CONDRegular(torch.cat(cropped, dim=1))
comfyanonymous's avatar
comfyanonymous committed
129

130
            if adm_cond is not None:
131
                conditionning['c_adm'] = CONDRegular(adm_cond)
132

comfyanonymous's avatar
comfyanonymous committed
133
134
135
            control = None
            if 'control' in cond[1]:
                control = cond[1]['control']
136
137
138
139
140
141
142
143

            patches = None
            if 'gligen' in cond[1]:
                gligen = cond[1]['gligen']
                patches = {}
                gligen_type = gligen[0]
                gligen_model = gligen[1]
                if gligen_type == "position":
comfyanonymous's avatar
comfyanonymous committed
144
                    gligen_patch = gligen_model.model.set_position(input_x.shape, gligen[2], input_x.device)
145
                else:
comfyanonymous's avatar
comfyanonymous committed
146
                    gligen_patch = gligen_model.model.set_empty(input_x.shape, input_x.device)
147
148
149
150

                patches['middle_patch'] = [gligen_patch]

            return (input_x, mult, conditionning, area, control, patches)
comfyanonymous's avatar
comfyanonymous committed
151
152

        def cond_equal_size(c1, c2):
comfyanonymous's avatar
comfyanonymous committed
153
154
            if c1 is c2:
                return True
comfyanonymous's avatar
comfyanonymous committed
155
156
            if c1.keys() != c2.keys():
                return False
157
158
            for k in c1:
                if not c1[k].can_concat(c2[k]):
159
                    return False
comfyanonymous's avatar
comfyanonymous committed
160
161
            return True

comfyanonymous's avatar
comfyanonymous committed
162
163
164
        def can_concat_cond(c1, c2):
            if c1[0].shape != c2[0].shape:
                return False
165
166

            #control
comfyanonymous's avatar
comfyanonymous committed
167
168
169
170
171
172
            if (c1[4] is None) != (c2[4] is None):
                return False
            if c1[4] is not None:
                if c1[4] is not c2[4]:
                    return False

173
174
175
176
177
178
179
            #patches
            if (c1[5] is None) != (c2[5] is None):
                return False
            if (c1[5] is not None):
                if c1[5] is not c2[5]:
                    return False

comfyanonymous's avatar
comfyanonymous committed
180
181
            return cond_equal_size(c1[2], c2[2])

comfyanonymous's avatar
comfyanonymous committed
182
183
184
        def cond_cat(c_list):
            c_crossattn = []
            c_concat = []
185
            c_adm = []
comfyanonymous's avatar
comfyanonymous committed
186
            crossattn_max_len = 0
187
188

            temp = {}
comfyanonymous's avatar
comfyanonymous committed
189
            for x in c_list:
190
191
192
193
194
                for k in x:
                    cur = temp.get(k, [])
                    cur.append(x[k])
                    temp[k] = cur

comfyanonymous's avatar
comfyanonymous committed
195
            out = {}
196
197
198
199
            for k in temp:
                conds = temp[k]
                out[k] = conds[0].concat(conds[1:])

comfyanonymous's avatar
comfyanonymous committed
200
201
            return out

202
        def calc_cond_uncond_batch(model_function, cond, uncond, x_in, timestep, max_total_area, model_options):
comfyanonymous's avatar
comfyanonymous committed
203
204
            out_cond = torch.zeros_like(x_in)
            out_count = torch.ones_like(x_in)/100000.0
205
206
207
208
209
210

            out_uncond = torch.zeros_like(x_in)
            out_uncond_count = torch.ones_like(x_in)/100000.0

            COND = 0
            UNCOND = 1
comfyanonymous's avatar
comfyanonymous committed
211

212
            to_run = []
comfyanonymous's avatar
comfyanonymous committed
213
            for x in cond:
214
                p = get_area_and_mult(x, x_in, timestep)
215
                if p is None:
comfyanonymous's avatar
comfyanonymous committed
216
                    continue
217
218

                to_run += [(p, COND)]
219
220
            if uncond is not None:
                for x in uncond:
221
                    p = get_area_and_mult(x, x_in, timestep)
222
223
                    if p is None:
                        continue
224

225
                    to_run += [(p, UNCOND)]
226
227
228
229

            while len(to_run) > 0:
                first = to_run[0]
                first_shape = first[0][0].shape
230
                to_batch_temp = []
231
                for x in range(len(to_run)):
comfyanonymous's avatar
comfyanonymous committed
232
233
                    if can_concat_cond(to_run[x][0], first[0]):
                        to_batch_temp += [x]
234
235
236
237
238
239
240
241
242

                to_batch_temp.reverse()
                to_batch = to_batch_temp[:1]

                for i in range(1, len(to_batch_temp) + 1):
                    batch_amount = to_batch_temp[:len(to_batch_temp)//i]
                    if (len(batch_amount) * first_shape[0] * first_shape[2] * first_shape[3] < max_total_area):
                        to_batch = batch_amount
                        break
243
244
245
246
247
248

                input_x = []
                mult = []
                c = []
                cond_or_uncond = []
                area = []
comfyanonymous's avatar
comfyanonymous committed
249
                control = None
250
                patches = None
251
252
253
254
255
256
257
258
                for x in to_batch:
                    o = to_run.pop(x)
                    p = o[0]
                    input_x += [p[0]]
                    mult += [p[1]]
                    c += [p[2]]
                    area += [p[3]]
                    cond_or_uncond += [o[1]]
comfyanonymous's avatar
comfyanonymous committed
259
                    control = p[4]
260
                    patches = p[5]
261
262
263

                batch_chunks = len(cond_or_uncond)
                input_x = torch.cat(input_x)
comfyanonymous's avatar
comfyanonymous committed
264
                c = cond_cat(c)
comfyanonymous's avatar
comfyanonymous committed
265
                timestep_ = torch.cat([timestep] * batch_chunks)
266

comfyanonymous's avatar
comfyanonymous committed
267
                if control is not None:
268
                    c['control'] = control.get_control(input_x, timestep_, c, len(cond_or_uncond))
comfyanonymous's avatar
comfyanonymous committed
269

270
                transformer_options = {}
271
                if 'transformer_options' in model_options:
272
273
274
                    transformer_options = model_options['transformer_options'].copy()

                if patches is not None:
275
276
277
278
279
280
281
282
283
                    if "patches" in transformer_options:
                        cur_patches = transformer_options["patches"].copy()
                        for p in patches:
                            if p in cur_patches:
                                cur_patches[p] = cur_patches[p] + patches[p]
                            else:
                                cur_patches[p] = patches[p]
                    else:
                        transformer_options["patches"] = patches
284

285
                transformer_options["cond_or_uncond"] = cond_or_uncond[:]
286
                c['transformer_options'] = transformer_options
287

288
289
290
291
                if 'model_function_wrapper' in model_options:
                    output = model_options['model_function_wrapper'](model_function, {"input": input_x, "timestep": timestep_, "c": c, "cond_or_uncond": cond_or_uncond}).chunk(batch_chunks)
                else:
                    output = model_function(input_x, timestep_, **c).chunk(batch_chunks)
comfyanonymous's avatar
comfyanonymous committed
292
                del input_x
293
294
295
296
297
298
299
300

                for o in range(batch_chunks):
                    if cond_or_uncond[o] == COND:
                        out_cond[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += output[o] * mult[o]
                        out_count[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += mult[o]
                    else:
                        out_uncond[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += output[o] * mult[o]
                        out_uncond_count[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += mult[o]
comfyanonymous's avatar
comfyanonymous committed
301
302
303
304
                del mult

            out_cond /= out_count
            del out_count
305
306
307
308
            out_uncond /= out_uncond_count
            del out_uncond_count

            return out_cond, out_uncond
comfyanonymous's avatar
comfyanonymous committed
309
310


311
        max_total_area = model_management.maximum_batch_area()
312
313
314
        if math.isclose(cond_scale, 1.0):
            uncond = None

315
        cond, uncond = calc_cond_uncond_batch(model_function, cond, uncond, x, timestep, max_total_area, model_options)
316
        if "sampler_cfg_function" in model_options:
317
318
            args = {"cond": cond, "uncond": uncond, "cond_scale": cond_scale, "timestep": timestep}
            return model_options["sampler_cfg_function"](args)
319
320
        else:
            return uncond + (cond - uncond) * cond_scale
comfyanonymous's avatar
comfyanonymous committed
321

comfyanonymous's avatar
comfyanonymous committed
322
323
324
325
326
327
328
329
330
331
332
333
334
335

class CompVisVDenoiser(k_diffusion_external.DiscreteVDDPMDenoiser):
    def __init__(self, model, quantize=False, device='cpu'):
        super().__init__(model, model.alphas_cumprod, quantize=quantize)

    def get_v(self, x, t, cond, **kwargs):
        return self.inner_model.apply_model(x, t, cond, **kwargs)


class CFGNoisePredictor(torch.nn.Module):
    def __init__(self, model):
        super().__init__()
        self.inner_model = model
        self.alphas_cumprod = model.alphas_cumprod
336
337
    def apply_model(self, x, timestep, cond, uncond, cond_scale, model_options={}, seed=None):
        out = sampling_function(self.inner_model.apply_model, x, timestep, uncond, cond, cond_scale, model_options=model_options, seed=seed)
comfyanonymous's avatar
comfyanonymous committed
338
339
340
341
        return out


class KSamplerX0Inpaint(torch.nn.Module):
342
343
344
    def __init__(self, model):
        super().__init__()
        self.inner_model = model
345
    def forward(self, x, sigma, uncond, cond, cond_scale, denoise_mask, model_options={}, seed=None):
346
347
        if denoise_mask is not None:
            latent_mask = 1. - denoise_mask
348
            x = x * denoise_mask + (self.latent_image + self.noise * sigma.reshape([sigma.shape[0]] + [1] * (len(self.noise.shape) - 1))) * latent_mask
349
        out = self.inner_model(x, sigma, cond=cond, uncond=uncond, cond_scale=cond_scale, model_options=model_options, seed=seed)
350
351
352
353
354
355
        if denoise_mask is not None:
            out *= denoise_mask

        if denoise_mask is not None:
            out += self.latent_image * latent_mask
        return out
356

comfyanonymous's avatar
comfyanonymous committed
357
358
359
360
361
362
363
364
def simple_scheduler(model, steps):
    sigs = []
    ss = len(model.sigmas) / steps
    for x in range(steps):
        sigs += [float(model.sigmas[-(1 + int(x * ss))])]
    sigs += [0.0]
    return torch.FloatTensor(sigs)

comfyanonymous's avatar
comfyanonymous committed
365
366
367
368
def ddim_scheduler(model, steps):
    sigs = []
    ddim_timesteps = make_ddim_timesteps(ddim_discr_method="uniform", num_ddim_timesteps=steps, num_ddpm_timesteps=model.inner_model.inner_model.num_timesteps, verbose=False)
    for x in range(len(ddim_timesteps) - 1, -1, -1):
369
370
371
372
        ts = ddim_timesteps[x]
        if ts > 999:
            ts = 999
        sigs.append(model.t_to_sigma(torch.tensor(ts)))
comfyanonymous's avatar
comfyanonymous committed
373
374
375
    sigs += [0.0]
    return torch.FloatTensor(sigs)

376
377
378
379
380
381
382
383
384
385
386
def sgm_scheduler(model, steps):
    sigs = []
    timesteps = torch.linspace(model.inner_model.inner_model.num_timesteps - 1, 0, steps + 1)[:-1].type(torch.int)
    for x in range(len(timesteps)):
        ts = timesteps[x]
        if ts > 999:
            ts = 999
        sigs.append(model.t_to_sigma(torch.tensor(ts)))
    sigs += [0.0]
    return torch.FloatTensor(sigs)

Jacob Segal's avatar
Jacob Segal committed
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
def get_mask_aabb(masks):
    if masks.numel() == 0:
        return torch.zeros((0, 4), device=masks.device, dtype=torch.int)

    b = masks.shape[0]

    bounding_boxes = torch.zeros((b, 4), device=masks.device, dtype=torch.int)
    is_empty = torch.zeros((b), device=masks.device, dtype=torch.bool)
    for i in range(b):
        mask = masks[i]
        if mask.numel() == 0:
            continue
        if torch.max(mask != 0) == False:
            is_empty[i] = True
            continue
        y, x = torch.where(mask)
        bounding_boxes[i, 0] = torch.min(x)
        bounding_boxes[i, 1] = torch.min(y)
        bounding_boxes[i, 2] = torch.max(x)
        bounding_boxes[i, 3] = torch.max(y)

    return bounding_boxes, is_empty

410
def resolve_areas_and_cond_masks(conditions, h, w, device):
Jacob Segal's avatar
Jacob Segal committed
411
412
413
414
    # We need to decide on an area outside the sampling loop in order to properly generate opposite areas of equal sizes.
    # While we're doing this, we can also resolve the mask device and scaling for performance reasons
    for i in range(len(conditions)):
        c = conditions[i]
415
416
417
418
419
420
421
422
423
        if 'area' in c[1]:
            area = c[1]['area']
            if area[0] == "percentage":
                modified = c[1].copy()
                area = (max(1, round(area[1] * h)), max(1, round(area[2] * w)), round(area[3] * h), round(area[4] * w))
                modified['area'] = area
                c = [c[0], modified]
                conditions[i] = c

Jacob Segal's avatar
Jacob Segal committed
424
425
426
427
428
429
        if 'mask' in c[1]:
            mask = c[1]['mask']
            mask = mask.to(device=device)
            modified = c[1].copy()
            if len(mask.shape) == 2:
                mask = mask.unsqueeze(0)
mara's avatar
mara committed
430
            if mask.shape[1] != h or mask.shape[2] != w:
Jacob Segal's avatar
Jacob Segal committed
431
432
                mask = torch.nn.functional.interpolate(mask.unsqueeze(1), size=(h, w), mode='bilinear', align_corners=False).squeeze(1)

Jacob Segal's avatar
Jacob Segal committed
433
            if modified.get("set_area_to_bounds", False):
Jacob Segal's avatar
Jacob Segal committed
434
                bounds = torch.max(torch.abs(mask),dim=0).values.unsqueeze(0)
Jacob Segal's avatar
Jacob Segal committed
435
436
437
438
                boxes, is_empty = get_mask_aabb(bounds)
                if is_empty[0]:
                    # Use the minimum possible size for efficiency reasons. (Since the mask is all-0, this becomes a noop anyway)
                    modified['area'] = (8, 8, 0, 0)
Jacob Segal's avatar
Jacob Segal committed
439
                else:
Jacob Segal's avatar
Jacob Segal committed
440
                    box = boxes[0]
Jacob Segal's avatar
Jacob Segal committed
441
                    H, W, Y, X = (box[3] - box[1] + 1, box[2] - box[0] + 1, box[1], box[0])
442
443
                    H = max(8, H)
                    W = max(8, W)
Jacob Segal's avatar
Jacob Segal committed
444
445
                    area = (int(H), int(W), int(Y), int(X))
                    modified['area'] = area
Jacob Segal's avatar
Jacob Segal committed
446
447
448
449

            modified['mask'] = mask
            conditions[i] = [c[0], modified]

comfyanonymous's avatar
comfyanonymous committed
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
def create_cond_with_same_area_if_none(conds, c):
    if 'area' not in c[1]:
        return

    c_area = c[1]['area']
    smallest = None
    for x in conds:
        if 'area' in x[1]:
            a = x[1]['area']
            if c_area[2] >= a[2] and c_area[3] >= a[3]:
                if a[0] + a[2] >= c_area[0] + c_area[2]:
                    if a[1] + a[3] >= c_area[1] + c_area[3]:
                        if smallest is None:
                            smallest = x
                        elif 'area' not in smallest[1]:
                            smallest = x
                        else:
                            if smallest[1]['area'][0] * smallest[1]['area'][1] > a[0] * a[1]:
                                smallest = x
        else:
            if smallest is None:
                smallest = x
    if smallest is None:
        return
    if 'area' in smallest[1]:
        if smallest[1]['area'] == c_area:
            return
    n = c[1].copy()
    conds += [[smallest[0], n]]
comfyanonymous's avatar
comfyanonymous committed
479

480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
def calculate_start_end_timesteps(model, conds):
    for t in range(len(conds)):
        x = conds[t]

        timestep_start = None
        timestep_end = None
        if 'start_percent' in x[1]:
            timestep_start = model.sigma_to_t(model.t_to_sigma(torch.tensor(x[1]['start_percent'] * 999.0)))
        if 'end_percent' in x[1]:
            timestep_end = model.sigma_to_t(model.t_to_sigma(torch.tensor(x[1]['end_percent'] * 999.0)))

        if (timestep_start is not None) or (timestep_end is not None):
            n = x[1].copy()
            if (timestep_start is not None):
                n['timestep_start'] = timestep_start
            if (timestep_end is not None):
                n['timestep_end'] = timestep_end
            conds[t] = [x[0], n]

499
500
501
502
503
504
505
506
def pre_run_control(model, conds):
    for t in range(len(conds)):
        x = conds[t]

        timestep_start = None
        timestep_end = None
        percent_to_timestep_function = lambda a: model.sigma_to_t(model.t_to_sigma(torch.tensor(a) * 999.0))
        if 'control' in x[1]:
comfyanonymous's avatar
comfyanonymous committed
507
            x[1]['control'].pre_run(model.inner_model.inner_model, percent_to_timestep_function)
508

509
def apply_empty_x_to_equal_area(conds, uncond, name, uncond_fill_func):
comfyanonymous's avatar
comfyanonymous committed
510
511
512
513
514
515
516
    cond_cnets = []
    cond_other = []
    uncond_cnets = []
    uncond_other = []
    for t in range(len(conds)):
        x = conds[t]
        if 'area' not in x[1]:
517
518
            if name in x[1] and x[1][name] is not None:
                cond_cnets.append(x[1][name])
comfyanonymous's avatar
comfyanonymous committed
519
520
521
522
523
            else:
                cond_other.append((x, t))
    for t in range(len(uncond)):
        x = uncond[t]
        if 'area' not in x[1]:
524
525
            if name in x[1] and x[1][name] is not None:
                uncond_cnets.append(x[1][name])
comfyanonymous's avatar
comfyanonymous committed
526
527
528
529
530
531
532
533
534
            else:
                uncond_other.append((x, t))

    if len(uncond_cnets) > 0:
        return

    for x in range(len(cond_cnets)):
        temp = uncond_other[x % len(uncond_other)]
        o = temp[0]
535
        if name in o[1] and o[1][name] is not None:
comfyanonymous's avatar
comfyanonymous committed
536
            n = o[1].copy()
537
            n[name] = uncond_fill_func(cond_cnets, x)
comfyanonymous's avatar
comfyanonymous committed
538
539
540
            uncond += [[o[0], n]]
        else:
            n = o[1].copy()
541
            n[name] = uncond_fill_func(cond_cnets, x)
comfyanonymous's avatar
comfyanonymous committed
542
543
            uncond[temp[1]] = [o[0], n]

544
def encode_adm(model, conds, batch_size, width, height, device, prompt_type):
545
546
    for t in range(len(conds)):
        x = conds[t]
comfyanonymous's avatar
comfyanonymous committed
547
        adm_out = None
548
549
        if 'adm' in x[1]:
            adm_out = x[1]["adm"]
550
        else:
551
            params = x[1].copy()
552
553
554
            params["width"] = params.get("width", width * 8)
            params["height"] = params.get("height", height * 8)
            params["prompt_type"] = params.get("prompt_type", prompt_type)
555
            adm_out = model.encode_adm(device=device, **params)
556

comfyanonymous's avatar
comfyanonymous committed
557
558
        if adm_out is not None:
            x[1] = x[1].copy()
559
            x[1]["adm_encoded"] = comfy.utils.repeat_to_batch_size(adm_out, batch_size).to(device)
560
561
562

    return conds

563
def encode_cond(model_function, key, conds, device, **kwargs):
564
565
566
    for t in range(len(conds)):
        x = conds[t]
        params = x[1].copy()
567
        params["device"] = device
568
569
570
571
572
573
574
575
576
        for k in kwargs:
            if k not in params:
                params[k] = kwargs[k]

        out = model_function(**params)
        if out is not None:
            x[1] = x[1].copy()
            x[1][key] = out
    return conds
577

comfyanonymous's avatar
comfyanonymous committed
578
579
580
581
582
class Sampler:
    def sample(self):
        pass

    def max_denoise(self, model_wrap, sigmas):
comfyanonymous's avatar
comfyanonymous committed
583
        return math.isclose(float(model_wrap.sigma_max), float(sigmas[0]), rel_tol=1e-05)
comfyanonymous's avatar
comfyanonymous committed
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631

class DDIM(Sampler):
    def sample(self, model_wrap, sigmas, extra_args, callback, noise, latent_image=None, denoise_mask=None, disable_pbar=False):
        timesteps = []
        for s in range(sigmas.shape[0]):
            timesteps.insert(0, model_wrap.sigma_to_discrete_timestep(sigmas[s]))
        noise_mask = None
        if denoise_mask is not None:
            noise_mask = 1.0 - denoise_mask

        ddim_callback = None
        if callback is not None:
            total_steps = len(timesteps) - 1
            ddim_callback = lambda pred_x0, i: callback(i, pred_x0, None, total_steps)

        max_denoise = self.max_denoise(model_wrap, sigmas)

        ddim_sampler = DDIMSampler(model_wrap.inner_model.inner_model, device=noise.device)
        ddim_sampler.make_schedule_timesteps(ddim_timesteps=timesteps, verbose=False)
        z_enc = ddim_sampler.stochastic_encode(latent_image, torch.tensor([len(timesteps) - 1] * noise.shape[0]).to(noise.device), noise=noise, max_denoise=max_denoise)
        samples, _ = ddim_sampler.sample_custom(ddim_timesteps=timesteps,
                                                batch_size=noise.shape[0],
                                                shape=noise.shape[1:],
                                                verbose=False,
                                                eta=0.0,
                                                x_T=z_enc,
                                                x0=latent_image,
                                                img_callback=ddim_callback,
                                                denoise_function=model_wrap.predict_eps_discrete_timestep,
                                                extra_args=extra_args,
                                                mask=noise_mask,
                                                to_zero=sigmas[-1]==0,
                                                end_step=sigmas.shape[0] - 1,
                                                disable_pbar=disable_pbar)
        return samples

class UNIPC(Sampler):
    def sample(self, model_wrap, sigmas, extra_args, callback, noise, latent_image=None, denoise_mask=None, disable_pbar=False):
        return uni_pc.sample_unipc(model_wrap, noise, latent_image, sigmas, sampling_function=sampling_function, max_denoise=self.max_denoise(model_wrap, sigmas), extra_args=extra_args, noise_mask=denoise_mask, callback=callback, disable=disable_pbar)

class UNIPCBH2(Sampler):
    def sample(self, model_wrap, sigmas, extra_args, callback, noise, latent_image=None, denoise_mask=None, disable_pbar=False):
        return uni_pc.sample_unipc(model_wrap, noise, latent_image, sigmas, sampling_function=sampling_function, max_denoise=self.max_denoise(model_wrap, sigmas), extra_args=extra_args, noise_mask=denoise_mask, callback=callback, variant='bh2', disable=disable_pbar)

KSAMPLER_NAMES = ["euler", "euler_ancestral", "heun", "dpm_2", "dpm_2_ancestral",
                  "lms", "dpm_fast", "dpm_adaptive", "dpmpp_2s_ancestral", "dpmpp_sde", "dpmpp_sde_gpu",
                  "dpmpp_2m", "dpmpp_2m_sde", "dpmpp_2m_sde_gpu", "dpmpp_3m_sde", "dpmpp_3m_sde_gpu", "ddpm"]

comfyanonymous's avatar
comfyanonymous committed
632
def ksampler(sampler_name, extra_options={}):
comfyanonymous's avatar
comfyanonymous committed
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
    class KSAMPLER(Sampler):
        def sample(self, model_wrap, sigmas, extra_args, callback, noise, latent_image=None, denoise_mask=None, disable_pbar=False):
            extra_args["denoise_mask"] = denoise_mask
            model_k = KSamplerX0Inpaint(model_wrap)
            model_k.latent_image = latent_image
            model_k.noise = noise

            if self.max_denoise(model_wrap, sigmas):
                noise = noise * torch.sqrt(1.0 + sigmas[0] ** 2.0)
            else:
                noise = noise * sigmas[0]

            k_callback = None
            total_steps = len(sigmas) - 1
            if callback is not None:
                k_callback = lambda x: callback(x["i"], x["denoised"], x["x"], total_steps)

            sigma_min = sigmas[-1]
            if sigma_min == 0:
                sigma_min = sigmas[-2]

            if latent_image is not None:
                noise += latent_image
            if sampler_name == "dpm_fast":
                samples = k_diffusion_sampling.sample_dpm_fast(model_k, noise, sigma_min, sigmas[0], total_steps, extra_args=extra_args, callback=k_callback, disable=disable_pbar)
            elif sampler_name == "dpm_adaptive":
                samples = k_diffusion_sampling.sample_dpm_adaptive(model_k, noise, sigma_min, sigmas[0], extra_args=extra_args, callback=k_callback, disable=disable_pbar)
            else:
comfyanonymous's avatar
comfyanonymous committed
661
                samples = getattr(k_diffusion_sampling, "sample_{}".format(sampler_name))(model_k, noise, sigmas, extra_args=extra_args, callback=k_callback, disable=disable_pbar, **extra_options)
comfyanonymous's avatar
comfyanonymous committed
662
663
664
            return samples
    return KSAMPLER

comfyanonymous's avatar
comfyanonymous committed
665
666
667
668
669
670
671
def wrap_model(model):
    model_denoise = CFGNoisePredictor(model)
    if model.model_type == model_base.ModelType.V_PREDICTION:
        model_wrap = CompVisVDenoiser(model_denoise, quantize=True)
    else:
        model_wrap = k_diffusion_external.CompVisDenoiser(model_denoise, quantize=True)
    return model_wrap
comfyanonymous's avatar
comfyanonymous committed
672
673
674
675
676
677
678
679

def sample(model, noise, positive, negative, cfg, device, sampler, sigmas, model_options={}, latent_image=None, denoise_mask=None, callback=None, disable_pbar=False, seed=None):
    positive = positive[:]
    negative = negative[:]

    resolve_areas_and_cond_masks(positive, noise.shape[2], noise.shape[3], device)
    resolve_areas_and_cond_masks(negative, noise.shape[2], noise.shape[3], device)

comfyanonymous's avatar
comfyanonymous committed
680
    model_wrap = wrap_model(model)
comfyanonymous's avatar
comfyanonymous committed
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695

    calculate_start_end_timesteps(model_wrap, negative)
    calculate_start_end_timesteps(model_wrap, positive)

    #make sure each cond area has an opposite one with the same area
    for c in positive:
        create_cond_with_same_area_if_none(negative, c)
    for c in negative:
        create_cond_with_same_area_if_none(positive, c)

    pre_run_control(model_wrap, negative + positive)

    apply_empty_x_to_equal_area(list(filter(lambda c: c[1].get('control_apply_to_uncond', False) == True, positive)), negative, 'control', lambda cond_cnets, x: cond_cnets[x])
    apply_empty_x_to_equal_area(positive, negative, 'gligen', lambda cond_cnets, x: cond_cnets[x])

696
697
698
    if latent_image is not None:
        latent_image = model.process_latent_in(latent_image)

comfyanonymous's avatar
comfyanonymous committed
699
700
701
702
    if model.is_adm():
        positive = encode_adm(model, positive, noise.shape[0], noise.shape[3], noise.shape[2], device, "positive")
        negative = encode_adm(model, negative, noise.shape[0], noise.shape[3], noise.shape[2], device, "negative")

703
    if hasattr(model, 'cond_concat'):
704
705
        positive = encode_cond(model.cond_concat, "concat", positive, device, noise=noise, latent_image=latent_image, denoise_mask=denoise_mask)
        negative = encode_cond(model.cond_concat, "concat", negative, device, noise=noise, latent_image=latent_image, denoise_mask=denoise_mask)
comfyanonymous's avatar
comfyanonymous committed
706
707
708
709
710
711

    extra_args = {"cond":positive, "uncond":negative, "cond_scale": cfg, "model_options": model_options, "seed":seed}

    samples = sampler.sample(model_wrap, sigmas, extra_args, callback, noise, latent_image, denoise_mask, disable_pbar)
    return model.process_latent_out(samples.to(torch.float32))

comfyanonymous's avatar
comfyanonymous committed
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
SCHEDULER_NAMES = ["normal", "karras", "exponential", "sgm_uniform", "simple", "ddim_uniform"]
SAMPLER_NAMES = KSAMPLER_NAMES + ["ddim", "uni_pc", "uni_pc_bh2"]

def calculate_sigmas_scheduler(model, scheduler_name, steps):
    model_wrap = wrap_model(model)
    if scheduler_name == "karras":
        sigmas = k_diffusion_sampling.get_sigmas_karras(n=steps, sigma_min=float(model_wrap.sigma_min), sigma_max=float(model_wrap.sigma_max))
    elif scheduler_name == "exponential":
        sigmas = k_diffusion_sampling.get_sigmas_exponential(n=steps, sigma_min=float(model_wrap.sigma_min), sigma_max=float(model_wrap.sigma_max))
    elif scheduler_name == "normal":
        sigmas = model_wrap.get_sigmas(steps)
    elif scheduler_name == "simple":
        sigmas = simple_scheduler(model_wrap, steps)
    elif scheduler_name == "ddim_uniform":
        sigmas = ddim_scheduler(model_wrap, steps)
    elif scheduler_name == "sgm_uniform":
        sigmas = sgm_scheduler(model_wrap, steps)
    else:
        print("error invalid scheduler", self.scheduler)
    return sigmas

733
734
735
736
737
738
739
740
741
742
743
def sampler_class(name):
    if name == "uni_pc":
        sampler = UNIPC
    elif name == "uni_pc_bh2":
        sampler = UNIPCBH2
    elif name == "ddim":
        sampler = DDIM
    else:
        sampler = ksampler(name)
    return sampler

comfyanonymous's avatar
comfyanonymous committed
744
class KSampler:
comfyanonymous's avatar
comfyanonymous committed
745
746
    SCHEDULERS = SCHEDULER_NAMES
    SAMPLERS = SAMPLER_NAMES
comfyanonymous's avatar
comfyanonymous committed
747

748
    def __init__(self, model, steps, device, sampler=None, scheduler=None, denoise=None, model_options={}):
comfyanonymous's avatar
comfyanonymous committed
749
750
751
752
753
754
755
756
757
        self.model = model
        self.device = device
        if scheduler not in self.SCHEDULERS:
            scheduler = self.SCHEDULERS[0]
        if sampler not in self.SAMPLERS:
            sampler = self.SAMPLERS[0]
        self.scheduler = scheduler
        self.sampler = sampler
        self.set_steps(steps, denoise)
758
        self.denoise = denoise
759
        self.model_options = model_options
comfyanonymous's avatar
comfyanonymous committed
760

comfyanonymous's avatar
comfyanonymous committed
761
762
763
764
    def calculate_sigmas(self, steps):
        sigmas = None

        discard_penultimate_sigma = False
765
        if self.sampler in ['dpm_2', 'dpm_2_ancestral', 'uni_pc', 'uni_pc_bh2']:
comfyanonymous's avatar
comfyanonymous committed
766
767
768
            steps += 1
            discard_penultimate_sigma = True

comfyanonymous's avatar
comfyanonymous committed
769
        sigmas = calculate_sigmas_scheduler(self.model, self.scheduler, steps)
comfyanonymous's avatar
comfyanonymous committed
770
771
772
773
774

        if discard_penultimate_sigma:
            sigmas = torch.cat([sigmas[:-2], sigmas[-1:]])
        return sigmas

comfyanonymous's avatar
comfyanonymous committed
775
776
    def set_steps(self, steps, denoise=None):
        self.steps = steps
777
        if denoise is None or denoise > 0.9999:
comfyanonymous's avatar
comfyanonymous committed
778
            self.sigmas = self.calculate_sigmas(steps).to(self.device)
comfyanonymous's avatar
comfyanonymous committed
779
780
        else:
            new_steps = int(steps/denoise)
comfyanonymous's avatar
comfyanonymous committed
781
            sigmas = self.calculate_sigmas(new_steps).to(self.device)
comfyanonymous's avatar
comfyanonymous committed
782
783
            self.sigmas = sigmas[-(steps + 1):]

784
    def sample(self, noise, positive, negative, cfg, latent_image=None, start_step=None, last_step=None, force_full_denoise=False, denoise_mask=None, sigmas=None, callback=None, disable_pbar=False, seed=None):
785
786
        if sigmas is None:
            sigmas = self.sigmas
comfyanonymous's avatar
comfyanonymous committed
787

comfyanonymous's avatar
comfyanonymous committed
788
        if last_step is not None and last_step < (len(sigmas) - 1):
comfyanonymous's avatar
comfyanonymous committed
789
            sigmas = sigmas[:last_step + 1]
comfyanonymous's avatar
comfyanonymous committed
790
791
792
            if force_full_denoise:
                sigmas[-1] = 0

comfyanonymous's avatar
comfyanonymous committed
793
        if start_step is not None:
comfyanonymous's avatar
comfyanonymous committed
794
795
796
797
798
799
800
            if start_step < (len(sigmas) - 1):
                sigmas = sigmas[start_step:]
            else:
                if latent_image is not None:
                    return latent_image
                else:
                    return torch.zeros_like(noise)
comfyanonymous's avatar
comfyanonymous committed
801

802
        sampler = sampler_class(self.sampler)
803

comfyanonymous's avatar
comfyanonymous committed
804
        return sample(self.model, noise, positive, negative, cfg, self.device, sampler(), sigmas, self.model_options, latent_image=latent_image, denoise_mask=denoise_mask, callback=callback, disable_pbar=disable_pbar, seed=seed)