samplers.py 27.1 KB
Newer Older
1
from .k_diffusion import sampling as k_diffusion_sampling
2
from .extra_samplers import uni_pc
comfyanonymous's avatar
comfyanonymous committed
3
import torch
comfyanonymous's avatar
comfyanonymous committed
4
import collections
5
from comfy import model_management
comfyanonymous's avatar
comfyanonymous committed
6
import math
7

8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
def get_area_and_mult(conds, x_in, timestep_in):
    area = (x_in.shape[2], x_in.shape[3], 0, 0)
    strength = 1.0

    if 'timestep_start' in conds:
        timestep_start = conds['timestep_start']
        if timestep_in[0] > timestep_start:
            return None
    if 'timestep_end' in conds:
        timestep_end = conds['timestep_end']
        if timestep_in[0] < timestep_end:
            return None
    if 'area' in conds:
        area = conds['area']
    if 'strength' in conds:
        strength = conds['strength']

    input_x = x_in[:,:,area[2]:area[0] + area[2],area[3]:area[1] + area[3]]
    if 'mask' in conds:
        # Scale the mask to the size of the input
        # The mask should have been resized as we began the sampling process
        mask_strength = 1.0
        if "mask_strength" in conds:
            mask_strength = conds["mask_strength"]
        mask = conds['mask']
        assert(mask.shape[1] == x_in.shape[2])
        assert(mask.shape[2] == x_in.shape[3])
        mask = mask[:,area[2]:area[0] + area[2],area[3]:area[1] + area[3]] * mask_strength
        mask = mask.unsqueeze(1).repeat(input_x.shape[0] // mask.shape[0], input_x.shape[1], 1, 1)
    else:
        mask = torch.ones_like(input_x)
    mult = mask * strength

    if 'mask' not in conds:
        rr = 8
        if area[2] != 0:
            for t in range(rr):
                mult[:,:,t:1+t,:] *= ((1.0/rr) * (t + 1))
        if (area[0] + area[2]) < x_in.shape[2]:
            for t in range(rr):
                mult[:,:,area[0] - 1 - t:area[0] - t,:] *= ((1.0/rr) * (t + 1))
        if area[3] != 0:
            for t in range(rr):
                mult[:,:,:,t:1+t] *= ((1.0/rr) * (t + 1))
        if (area[1] + area[3]) < x_in.shape[3]:
            for t in range(rr):
                mult[:,:,:,area[1] - 1 - t:area[1] - t] *= ((1.0/rr) * (t + 1))

    conditioning = {}
    model_conds = conds["model_conds"]
    for c in model_conds:
        conditioning[c] = model_conds[c].process_cond(batch_size=x_in.shape[0], device=x_in.device, area=area)

comfyanonymous's avatar
comfyanonymous committed
61
    control = conds.get('control', None)
62
63
64
65
66
67
68
69
70
71
72
73
74
75

    patches = None
    if 'gligen' in conds:
        gligen = conds['gligen']
        patches = {}
        gligen_type = gligen[0]
        gligen_model = gligen[1]
        if gligen_type == "position":
            gligen_patch = gligen_model.model.set_position(input_x.shape, gligen[2], input_x.device)
        else:
            gligen_patch = gligen_model.model.set_empty(input_x.shape, input_x.device)

        patches['middle_patch'] = [gligen_patch]

comfyanonymous's avatar
comfyanonymous committed
76
77
    cond_obj = collections.namedtuple('cond_obj', ['input_x', 'mult', 'conditioning', 'area', 'control', 'patches'])
    return cond_obj(input_x, mult, conditioning, area, control, patches)
78
79
80
81
82
83
84
85
86
87
88
89

def cond_equal_size(c1, c2):
    if c1 is c2:
        return True
    if c1.keys() != c2.keys():
        return False
    for k in c1:
        if not c1[k].can_concat(c2[k]):
            return False
    return True

def can_concat_cond(c1, c2):
comfyanonymous's avatar
comfyanonymous committed
90
    if c1.input_x.shape != c2.input_x.shape:
91
92
        return False

comfyanonymous's avatar
comfyanonymous committed
93
94
    def objects_concatable(obj1, obj2):
        if (obj1 is None) != (obj2 is None):
95
            return False
comfyanonymous's avatar
comfyanonymous committed
96
97
98
99
        if obj1 is not None:
            if obj1 is not obj2:
                return False
        return True
100

comfyanonymous's avatar
comfyanonymous committed
101
102
103
104
    if not objects_concatable(c1.control, c2.control):
        return False

    if not objects_concatable(c1.patches, c2.patches):
105
106
        return False

comfyanonymous's avatar
comfyanonymous committed
107
    return cond_equal_size(c1.conditioning, c2.conditioning)
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182

def cond_cat(c_list):
    c_crossattn = []
    c_concat = []
    c_adm = []
    crossattn_max_len = 0

    temp = {}
    for x in c_list:
        for k in x:
            cur = temp.get(k, [])
            cur.append(x[k])
            temp[k] = cur

    out = {}
    for k in temp:
        conds = temp[k]
        out[k] = conds[0].concat(conds[1:])

    return out

def calc_cond_uncond_batch(model, cond, uncond, x_in, timestep, model_options):
    out_cond = torch.zeros_like(x_in)
    out_count = torch.ones_like(x_in) * 1e-37

    out_uncond = torch.zeros_like(x_in)
    out_uncond_count = torch.ones_like(x_in) * 1e-37

    COND = 0
    UNCOND = 1

    to_run = []
    for x in cond:
        p = get_area_and_mult(x, x_in, timestep)
        if p is None:
            continue

        to_run += [(p, COND)]
    if uncond is not None:
        for x in uncond:
            p = get_area_and_mult(x, x_in, timestep)
            if p is None:
                continue

            to_run += [(p, UNCOND)]

    while len(to_run) > 0:
        first = to_run[0]
        first_shape = first[0][0].shape
        to_batch_temp = []
        for x in range(len(to_run)):
            if can_concat_cond(to_run[x][0], first[0]):
                to_batch_temp += [x]

        to_batch_temp.reverse()
        to_batch = to_batch_temp[:1]

        free_memory = model_management.get_free_memory(x_in.device)
        for i in range(1, len(to_batch_temp) + 1):
            batch_amount = to_batch_temp[:len(to_batch_temp)//i]
            input_shape = [len(batch_amount) * first_shape[0]] + list(first_shape)[1:]
            if model.memory_required(input_shape) < free_memory:
                to_batch = batch_amount
                break

        input_x = []
        mult = []
        c = []
        cond_or_uncond = []
        area = []
        control = None
        patches = None
        for x in to_batch:
            o = to_run.pop(x)
            p = o[0]
comfyanonymous's avatar
comfyanonymous committed
183
184
185
186
187
188
189
            input_x.append(p.input_x)
            mult.append(p.mult)
            c.append(p.conditioning)
            area.append(p.area)
            cond_or_uncond.append(o[1])
            control = p.control
            patches = p.patches
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208

        batch_chunks = len(cond_or_uncond)
        input_x = torch.cat(input_x)
        c = cond_cat(c)
        timestep_ = torch.cat([timestep] * batch_chunks)

        if control is not None:
            c['control'] = control.get_control(input_x, timestep_, c, len(cond_or_uncond))

        transformer_options = {}
        if 'transformer_options' in model_options:
            transformer_options = model_options['transformer_options'].copy()

        if patches is not None:
            if "patches" in transformer_options:
                cur_patches = transformer_options["patches"].copy()
                for p in patches:
                    if p in cur_patches:
                        cur_patches[p] = cur_patches[p] + patches[p]
209
                    else:
210
211
212
                        cur_patches[p] = patches[p]
            else:
                transformer_options["patches"] = patches
213

214
215
        transformer_options["cond_or_uncond"] = cond_or_uncond[:]
        transformer_options["sigmas"] = timestep
216

217
        c['transformer_options'] = transformer_options
218

219
220
221
222
223
        if 'model_function_wrapper' in model_options:
            output = model_options['model_function_wrapper'](model.apply_model, {"input": input_x, "timestep": timestep_, "c": c, "cond_or_uncond": cond_or_uncond}).chunk(batch_chunks)
        else:
            output = model.apply_model(input_x, timestep_, **c).chunk(batch_chunks)
        del input_x
comfyanonymous's avatar
comfyanonymous committed
224

225
226
227
228
229
230
231
232
        for o in range(batch_chunks):
            if cond_or_uncond[o] == COND:
                out_cond[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += output[o] * mult[o]
                out_count[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += mult[o]
            else:
                out_uncond[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += output[o] * mult[o]
                out_uncond_count[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += mult[o]
        del mult
comfyanonymous's avatar
comfyanonymous committed
233

234
235
236
237
238
    out_cond /= out_count
    del out_count
    out_uncond /= out_uncond_count
    del out_uncond_count
    return out_cond, out_uncond
comfyanonymous's avatar
comfyanonymous committed
239

240
241
242
#The main sampling function shared by all the samplers
#Returns denoised
def sampling_function(model, x, timestep, uncond, cond, cond_scale, model_options={}, seed=None):
243
        if math.isclose(cond_scale, 1.0) and model_options.get("disable_cfg1_optimization", False) == False:
244
245
246
            uncond_ = None
        else:
            uncond_ = uncond
247

248
        cond_pred, uncond_pred = calc_cond_uncond_batch(model, cond, uncond_, x, timestep, model_options)
249
        if "sampler_cfg_function" in model_options:
Hari's avatar
Hari committed
250
251
            args = {"cond": x - cond_pred, "uncond": x - uncond_pred, "cond_scale": cond_scale, "timestep": timestep, "input": x, "sigma": timestep,
                    "cond_denoised": cond_pred, "uncond_denoised": uncond_pred, "model": model, "model_options": model_options}
252
            cfg_result = x - model_options["sampler_cfg_function"](args)
253
254
        else:
            cfg_result = uncond_pred + (cond_pred - uncond_pred) * cond_scale
255

256
257
258
259
        for fn in model_options.get("sampler_post_cfg_function", []):
            args = {"denoised": cfg_result, "cond": cond, "uncond": uncond, "model": model, "uncond_denoised": uncond_pred, "cond_denoised": cond_pred,
                    "sigma": timestep, "model_options": model_options, "input": x}
            cfg_result = fn(args)
260

261
        return cfg_result
comfyanonymous's avatar
comfyanonymous committed
262

comfyanonymous's avatar
comfyanonymous committed
263
264
265
266
class CFGNoisePredictor(torch.nn.Module):
    def __init__(self, model):
        super().__init__()
        self.inner_model = model
267
    def apply_model(self, x, timestep, cond, uncond, cond_scale, model_options={}, seed=None):
268
        out = sampling_function(self.inner_model, x, timestep, uncond, cond, cond_scale, model_options=model_options, seed=seed)
comfyanonymous's avatar
comfyanonymous committed
269
        return out
comfyanonymous's avatar
comfyanonymous committed
270
271
    def forward(self, *args, **kwargs):
        return self.apply_model(*args, **kwargs)
comfyanonymous's avatar
comfyanonymous committed
272
273

class KSamplerX0Inpaint(torch.nn.Module):
274
275
276
    def __init__(self, model):
        super().__init__()
        self.inner_model = model
277
    def forward(self, x, sigma, uncond, cond, cond_scale, denoise_mask, model_options={}, seed=None):
278
279
        if denoise_mask is not None:
            latent_mask = 1. - denoise_mask
280
            x = x * denoise_mask + (self.latent_image + self.noise * sigma.reshape([sigma.shape[0]] + [1] * (len(self.noise.shape) - 1))) * latent_mask
281
        out = self.inner_model(x, sigma, cond=cond, uncond=uncond, cond_scale=cond_scale, model_options=model_options, seed=seed)
282
        if denoise_mask is not None:
comfyanonymous's avatar
comfyanonymous committed
283
            out = out * denoise_mask + self.latent_image * latent_mask
284
        return out
285

comfyanonymous's avatar
comfyanonymous committed
286
def simple_scheduler(model, steps):
comfyanonymous's avatar
comfyanonymous committed
287
    s = model.model_sampling
comfyanonymous's avatar
comfyanonymous committed
288
    sigs = []
comfyanonymous's avatar
comfyanonymous committed
289
    ss = len(s.sigmas) / steps
comfyanonymous's avatar
comfyanonymous committed
290
    for x in range(steps):
comfyanonymous's avatar
comfyanonymous committed
291
        sigs += [float(s.sigmas[-(1 + int(x * ss))])]
comfyanonymous's avatar
comfyanonymous committed
292
293
294
    sigs += [0.0]
    return torch.FloatTensor(sigs)

comfyanonymous's avatar
comfyanonymous committed
295
def ddim_scheduler(model, steps):
comfyanonymous's avatar
comfyanonymous committed
296
    s = model.model_sampling
comfyanonymous's avatar
comfyanonymous committed
297
    sigs = []
comfyanonymous's avatar
comfyanonymous committed
298
299
300
301
302
303
    ss = len(s.sigmas) // steps
    x = 1
    while x < len(s.sigmas):
        sigs += [float(s.sigmas[x])]
        x += ss
    sigs = sigs[::-1]
comfyanonymous's avatar
comfyanonymous committed
304
305
306
    sigs += [0.0]
    return torch.FloatTensor(sigs)

comfyanonymous's avatar
comfyanonymous committed
307
308
309
310
311
312
313
314
315
316
def normal_scheduler(model, steps, sgm=False, floor=False):
    s = model.model_sampling
    start = s.timestep(s.sigma_max)
    end = s.timestep(s.sigma_min)

    if sgm:
        timesteps = torch.linspace(start, end, steps + 1)[:-1]
    else:
        timesteps = torch.linspace(start, end, steps)

317
318
319
    sigs = []
    for x in range(len(timesteps)):
        ts = timesteps[x]
comfyanonymous's avatar
comfyanonymous committed
320
        sigs.append(s.sigma(ts))
321
322
323
    sigs += [0.0]
    return torch.FloatTensor(sigs)

Jacob Segal's avatar
Jacob Segal committed
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
def get_mask_aabb(masks):
    if masks.numel() == 0:
        return torch.zeros((0, 4), device=masks.device, dtype=torch.int)

    b = masks.shape[0]

    bounding_boxes = torch.zeros((b, 4), device=masks.device, dtype=torch.int)
    is_empty = torch.zeros((b), device=masks.device, dtype=torch.bool)
    for i in range(b):
        mask = masks[i]
        if mask.numel() == 0:
            continue
        if torch.max(mask != 0) == False:
            is_empty[i] = True
            continue
        y, x = torch.where(mask)
        bounding_boxes[i, 0] = torch.min(x)
        bounding_boxes[i, 1] = torch.min(y)
        bounding_boxes[i, 2] = torch.max(x)
        bounding_boxes[i, 3] = torch.max(y)

    return bounding_boxes, is_empty

347
def resolve_areas_and_cond_masks(conditions, h, w, device):
Jacob Segal's avatar
Jacob Segal committed
348
349
350
351
    # We need to decide on an area outside the sampling loop in order to properly generate opposite areas of equal sizes.
    # While we're doing this, we can also resolve the mask device and scaling for performance reasons
    for i in range(len(conditions)):
        c = conditions[i]
352
353
        if 'area' in c:
            area = c['area']
354
            if area[0] == "percentage":
355
                modified = c.copy()
356
357
                area = (max(1, round(area[1] * h)), max(1, round(area[2] * w)), round(area[3] * h), round(area[4] * w))
                modified['area'] = area
358
                c = modified
359
360
                conditions[i] = c

361
362
        if 'mask' in c:
            mask = c['mask']
Jacob Segal's avatar
Jacob Segal committed
363
            mask = mask.to(device=device)
364
            modified = c.copy()
Jacob Segal's avatar
Jacob Segal committed
365
366
            if len(mask.shape) == 2:
                mask = mask.unsqueeze(0)
mara's avatar
mara committed
367
            if mask.shape[1] != h or mask.shape[2] != w:
Jacob Segal's avatar
Jacob Segal committed
368
369
                mask = torch.nn.functional.interpolate(mask.unsqueeze(1), size=(h, w), mode='bilinear', align_corners=False).squeeze(1)

Jacob Segal's avatar
Jacob Segal committed
370
            if modified.get("set_area_to_bounds", False):
Jacob Segal's avatar
Jacob Segal committed
371
                bounds = torch.max(torch.abs(mask),dim=0).values.unsqueeze(0)
Jacob Segal's avatar
Jacob Segal committed
372
373
374
375
                boxes, is_empty = get_mask_aabb(bounds)
                if is_empty[0]:
                    # Use the minimum possible size for efficiency reasons. (Since the mask is all-0, this becomes a noop anyway)
                    modified['area'] = (8, 8, 0, 0)
Jacob Segal's avatar
Jacob Segal committed
376
                else:
Jacob Segal's avatar
Jacob Segal committed
377
                    box = boxes[0]
Jacob Segal's avatar
Jacob Segal committed
378
                    H, W, Y, X = (box[3] - box[1] + 1, box[2] - box[0] + 1, box[1], box[0])
379
380
                    H = max(8, H)
                    W = max(8, W)
Jacob Segal's avatar
Jacob Segal committed
381
382
                    area = (int(H), int(W), int(Y), int(X))
                    modified['area'] = area
Jacob Segal's avatar
Jacob Segal committed
383
384

            modified['mask'] = mask
385
            conditions[i] = modified
Jacob Segal's avatar
Jacob Segal committed
386

comfyanonymous's avatar
comfyanonymous committed
387
def create_cond_with_same_area_if_none(conds, c):
388
    if 'area' not in c:
comfyanonymous's avatar
comfyanonymous committed
389
390
        return

391
    c_area = c['area']
comfyanonymous's avatar
comfyanonymous committed
392
393
    smallest = None
    for x in conds:
394
395
        if 'area' in x:
            a = x['area']
comfyanonymous's avatar
comfyanonymous committed
396
397
398
399
400
            if c_area[2] >= a[2] and c_area[3] >= a[3]:
                if a[0] + a[2] >= c_area[0] + c_area[2]:
                    if a[1] + a[3] >= c_area[1] + c_area[3]:
                        if smallest is None:
                            smallest = x
401
                        elif 'area' not in smallest:
comfyanonymous's avatar
comfyanonymous committed
402
403
                            smallest = x
                        else:
404
                            if smallest['area'][0] * smallest['area'][1] > a[0] * a[1]:
comfyanonymous's avatar
comfyanonymous committed
405
406
407
408
409
410
                                smallest = x
        else:
            if smallest is None:
                smallest = x
    if smallest is None:
        return
411
412
    if 'area' in smallest:
        if smallest['area'] == c_area:
comfyanonymous's avatar
comfyanonymous committed
413
            return
414
415
416
417

    out = c.copy()
    out['model_conds'] = smallest['model_conds'].copy() #TODO: which fields should be copied?
    conds += [out]
comfyanonymous's avatar
comfyanonymous committed
418

419
def calculate_start_end_timesteps(model, conds):
420
    s = model.model_sampling
421
422
423
424
425
    for t in range(len(conds)):
        x = conds[t]

        timestep_start = None
        timestep_end = None
426
        if 'start_percent' in x:
427
            timestep_start = s.percent_to_sigma(x['start_percent'])
428
        if 'end_percent' in x:
429
            timestep_end = s.percent_to_sigma(x['end_percent'])
430
431

        if (timestep_start is not None) or (timestep_end is not None):
432
            n = x.copy()
433
434
435
436
            if (timestep_start is not None):
                n['timestep_start'] = timestep_start
            if (timestep_end is not None):
                n['timestep_end'] = timestep_end
437
            conds[t] = n
438

439
def pre_run_control(model, conds):
440
    s = model.model_sampling
441
442
443
444
445
    for t in range(len(conds)):
        x = conds[t]

        timestep_start = None
        timestep_end = None
446
        percent_to_timestep_function = lambda a: s.percent_to_sigma(a)
447
        if 'control' in x:
448
            x['control'].pre_run(model, percent_to_timestep_function)
449

450
def apply_empty_x_to_equal_area(conds, uncond, name, uncond_fill_func):
comfyanonymous's avatar
comfyanonymous committed
451
452
453
454
455
456
    cond_cnets = []
    cond_other = []
    uncond_cnets = []
    uncond_other = []
    for t in range(len(conds)):
        x = conds[t]
457
458
459
        if 'area' not in x:
            if name in x and x[name] is not None:
                cond_cnets.append(x[name])
comfyanonymous's avatar
comfyanonymous committed
460
461
462
463
            else:
                cond_other.append((x, t))
    for t in range(len(uncond)):
        x = uncond[t]
464
465
466
        if 'area' not in x:
            if name in x and x[name] is not None:
                uncond_cnets.append(x[name])
comfyanonymous's avatar
comfyanonymous committed
467
468
469
470
471
472
473
474
475
            else:
                uncond_other.append((x, t))

    if len(uncond_cnets) > 0:
        return

    for x in range(len(cond_cnets)):
        temp = uncond_other[x % len(uncond_other)]
        o = temp[0]
476
477
        if name in o and o[name] is not None:
            n = o.copy()
478
            n[name] = uncond_fill_func(cond_cnets, x)
479
            uncond += [n]
comfyanonymous's avatar
comfyanonymous committed
480
        else:
481
            n = o.copy()
482
            n[name] = uncond_fill_func(cond_cnets, x)
483
            uncond[temp[1]] = n
484

485
def encode_model_conds(model_function, conds, noise, device, prompt_type, **kwargs):
486
487
    for t in range(len(conds)):
        x = conds[t]
488
        params = x.copy()
489
        params["device"] = device
490
491
492
493
        params["noise"] = noise
        params["width"] = params.get("width", noise.shape[3] * 8)
        params["height"] = params.get("height", noise.shape[2] * 8)
        params["prompt_type"] = params.get("prompt_type", prompt_type)
494
495
496
497
498
        for k in kwargs:
            if k not in params:
                params[k] = kwargs[k]

        out = model_function(**params)
499
500
501
502
503
504
        x = x.copy()
        model_conds = x['model_conds'].copy()
        for k in out:
            model_conds[k] = out[k]
        x['model_conds'] = model_conds
        conds[t] = x
505
    return conds
506

comfyanonymous's avatar
comfyanonymous committed
507
508
509
510
511
class Sampler:
    def sample(self):
        pass

    def max_denoise(self, model_wrap, sigmas):
comfyanonymous's avatar
comfyanonymous committed
512
513
514
        max_sigma = float(model_wrap.inner_model.model_sampling.sigma_max)
        sigma = float(sigmas[0])
        return math.isclose(max_sigma, sigma, rel_tol=1e-05) or sigma > max_sigma
comfyanonymous's avatar
comfyanonymous committed
515
516
517

class UNIPC(Sampler):
    def sample(self, model_wrap, sigmas, extra_args, callback, noise, latent_image=None, denoise_mask=None, disable_pbar=False):
518
        return uni_pc.sample_unipc(model_wrap, noise, latent_image, sigmas, max_denoise=self.max_denoise(model_wrap, sigmas), extra_args=extra_args, noise_mask=denoise_mask, callback=callback, disable=disable_pbar)
comfyanonymous's avatar
comfyanonymous committed
519
520
521

class UNIPCBH2(Sampler):
    def sample(self, model_wrap, sigmas, extra_args, callback, noise, latent_image=None, denoise_mask=None, disable_pbar=False):
522
        return uni_pc.sample_unipc(model_wrap, noise, latent_image, sigmas, max_denoise=self.max_denoise(model_wrap, sigmas), extra_args=extra_args, noise_mask=denoise_mask, callback=callback, variant='bh2', disable=disable_pbar)
comfyanonymous's avatar
comfyanonymous committed
523

comfyanonymous's avatar
comfyanonymous committed
524
KSAMPLER_NAMES = ["euler", "euler_ancestral", "heun", "heunpp2","dpm_2", "dpm_2_ancestral",
comfyanonymous's avatar
comfyanonymous committed
525
                  "lms", "dpm_fast", "dpm_adaptive", "dpmpp_2s_ancestral", "dpmpp_sde", "dpmpp_sde_gpu",
comfyanonymous's avatar
comfyanonymous committed
526
                  "dpmpp_2m", "dpmpp_2m_sde", "dpmpp_2m_sde_gpu", "dpmpp_3m_sde", "dpmpp_3m_sde_gpu", "ddpm", "lcm"]
comfyanonymous's avatar
comfyanonymous committed
527

528
529
530
531
532
class KSAMPLER(Sampler):
    def __init__(self, sampler_function, extra_options={}, inpaint_options={}):
        self.sampler_function = sampler_function
        self.extra_options = extra_options
        self.inpaint_options = inpaint_options
comfyanonymous's avatar
comfyanonymous committed
533

534
535
536
537
538
539
540
541
542
    def sample(self, model_wrap, sigmas, extra_args, callback, noise, latent_image=None, denoise_mask=None, disable_pbar=False):
        extra_args["denoise_mask"] = denoise_mask
        model_k = KSamplerX0Inpaint(model_wrap)
        model_k.latent_image = latent_image
        if self.inpaint_options.get("random", False): #TODO: Should this be the default?
            generator = torch.manual_seed(extra_args.get("seed", 41) + 1)
            model_k.noise = torch.randn(noise.shape, generator=generator, device="cpu").to(noise.dtype).to(noise.device)
        else:
            model_k.noise = noise
comfyanonymous's avatar
comfyanonymous committed
543

544
545
546
547
548
549
550
551
552
553
554
555
        if self.max_denoise(model_wrap, sigmas):
            noise = noise * torch.sqrt(1.0 + sigmas[0] ** 2.0)
        else:
            noise = noise * sigmas[0]

        k_callback = None
        total_steps = len(sigmas) - 1
        if callback is not None:
            k_callback = lambda x: callback(x["i"], x["denoised"], x["x"], total_steps)

        if latent_image is not None:
            noise += latent_image
comfyanonymous's avatar
comfyanonymous committed
556

557
558
559
560
561
562
563
        samples = self.sampler_function(model_k, noise, sigmas, extra_args=extra_args, callback=k_callback, disable=disable_pbar, **self.extra_options)
        return samples


def ksampler(sampler_name, extra_options={}, inpaint_options={}):
    if sampler_name == "dpm_fast":
        def dpm_fast_function(model, noise, sigmas, extra_args, callback, disable):
comfyanonymous's avatar
comfyanonymous committed
564
565
566
            sigma_min = sigmas[-1]
            if sigma_min == 0:
                sigma_min = sigmas[-2]
567
568
569
570
571
572
573
574
575
576
577
578
            total_steps = len(sigmas) - 1
            return k_diffusion_sampling.sample_dpm_fast(model, noise, sigma_min, sigmas[0], total_steps, extra_args=extra_args, callback=callback, disable=disable)
        sampler_function = dpm_fast_function
    elif sampler_name == "dpm_adaptive":
        def dpm_adaptive_function(model, noise, sigmas, extra_args, callback, disable):
            sigma_min = sigmas[-1]
            if sigma_min == 0:
                sigma_min = sigmas[-2]
            return k_diffusion_sampling.sample_dpm_adaptive(model, noise, sigma_min, sigmas[0], extra_args=extra_args, callback=callback, disable=disable)
        sampler_function = dpm_adaptive_function
    else:
        sampler_function = getattr(k_diffusion_sampling, "sample_{}".format(sampler_name))
comfyanonymous's avatar
comfyanonymous committed
579

580
    return KSAMPLER(sampler_function, extra_options, inpaint_options)
comfyanonymous's avatar
comfyanonymous committed
581

comfyanonymous's avatar
comfyanonymous committed
582
583
def wrap_model(model):
    model_denoise = CFGNoisePredictor(model)
comfyanonymous's avatar
comfyanonymous committed
584
    return model_denoise
comfyanonymous's avatar
comfyanonymous committed
585
586
587
588
589
590
591
592

def sample(model, noise, positive, negative, cfg, device, sampler, sigmas, model_options={}, latent_image=None, denoise_mask=None, callback=None, disable_pbar=False, seed=None):
    positive = positive[:]
    negative = negative[:]

    resolve_areas_and_cond_masks(positive, noise.shape[2], noise.shape[3], device)
    resolve_areas_and_cond_masks(negative, noise.shape[2], noise.shape[3], device)

comfyanonymous's avatar
comfyanonymous committed
593
    model_wrap = wrap_model(model)
comfyanonymous's avatar
comfyanonymous committed
594

595
596
    calculate_start_end_timesteps(model, negative)
    calculate_start_end_timesteps(model, positive)
comfyanonymous's avatar
comfyanonymous committed
597

598
599
600
    if latent_image is not None:
        latent_image = model.process_latent_in(latent_image)

601
    if hasattr(model, 'extra_conds'):
602
603
        positive = encode_model_conds(model.extra_conds, positive, noise, device, "positive", latent_image=latent_image, denoise_mask=denoise_mask, seed=seed)
        negative = encode_model_conds(model.extra_conds, negative, noise, device, "negative", latent_image=latent_image, denoise_mask=denoise_mask, seed=seed)
604

comfyanonymous's avatar
comfyanonymous committed
605
606
607
608
609
610
    #make sure each cond area has an opposite one with the same area
    for c in positive:
        create_cond_with_same_area_if_none(negative, c)
    for c in negative:
        create_cond_with_same_area_if_none(positive, c)

611
    pre_run_control(model, negative + positive)
comfyanonymous's avatar
comfyanonymous committed
612

613
    apply_empty_x_to_equal_area(list(filter(lambda c: c.get('control_apply_to_uncond', False) == True, positive)), negative, 'control', lambda cond_cnets, x: cond_cnets[x])
comfyanonymous's avatar
comfyanonymous committed
614
615
616
617
618
619
620
    apply_empty_x_to_equal_area(positive, negative, 'gligen', lambda cond_cnets, x: cond_cnets[x])

    extra_args = {"cond":positive, "uncond":negative, "cond_scale": cfg, "model_options": model_options, "seed":seed}

    samples = sampler.sample(model_wrap, sigmas, extra_args, callback, noise, latent_image, denoise_mask, disable_pbar)
    return model.process_latent_out(samples.to(torch.float32))

comfyanonymous's avatar
comfyanonymous committed
621
622
623
624
625
SCHEDULER_NAMES = ["normal", "karras", "exponential", "sgm_uniform", "simple", "ddim_uniform"]
SAMPLER_NAMES = KSAMPLER_NAMES + ["ddim", "uni_pc", "uni_pc_bh2"]

def calculate_sigmas_scheduler(model, scheduler_name, steps):
    if scheduler_name == "karras":
comfyanonymous's avatar
comfyanonymous committed
626
        sigmas = k_diffusion_sampling.get_sigmas_karras(n=steps, sigma_min=float(model.model_sampling.sigma_min), sigma_max=float(model.model_sampling.sigma_max))
comfyanonymous's avatar
comfyanonymous committed
627
    elif scheduler_name == "exponential":
comfyanonymous's avatar
comfyanonymous committed
628
        sigmas = k_diffusion_sampling.get_sigmas_exponential(n=steps, sigma_min=float(model.model_sampling.sigma_min), sigma_max=float(model.model_sampling.sigma_max))
comfyanonymous's avatar
comfyanonymous committed
629
    elif scheduler_name == "normal":
comfyanonymous's avatar
comfyanonymous committed
630
        sigmas = normal_scheduler(model, steps)
comfyanonymous's avatar
comfyanonymous committed
631
    elif scheduler_name == "simple":
comfyanonymous's avatar
comfyanonymous committed
632
        sigmas = simple_scheduler(model, steps)
comfyanonymous's avatar
comfyanonymous committed
633
    elif scheduler_name == "ddim_uniform":
comfyanonymous's avatar
comfyanonymous committed
634
        sigmas = ddim_scheduler(model, steps)
comfyanonymous's avatar
comfyanonymous committed
635
    elif scheduler_name == "sgm_uniform":
comfyanonymous's avatar
comfyanonymous committed
636
        sigmas = normal_scheduler(model, steps, sgm=True)
comfyanonymous's avatar
comfyanonymous committed
637
    else:
638
        print("error invalid scheduler", scheduler_name)
comfyanonymous's avatar
comfyanonymous committed
639
640
    return sigmas

641
def sampler_object(name):
642
    if name == "uni_pc":
643
        sampler = UNIPC()
644
    elif name == "uni_pc_bh2":
645
        sampler = UNIPCBH2()
646
    elif name == "ddim":
647
        sampler = ksampler("euler", inpaint_options={"random": True})
648
649
650
651
    else:
        sampler = ksampler(name)
    return sampler

comfyanonymous's avatar
comfyanonymous committed
652
class KSampler:
comfyanonymous's avatar
comfyanonymous committed
653
654
    SCHEDULERS = SCHEDULER_NAMES
    SAMPLERS = SAMPLER_NAMES
comfyanonymous's avatar
comfyanonymous committed
655

656
    def __init__(self, model, steps, device, sampler=None, scheduler=None, denoise=None, model_options={}):
comfyanonymous's avatar
comfyanonymous committed
657
658
659
660
661
662
663
664
665
        self.model = model
        self.device = device
        if scheduler not in self.SCHEDULERS:
            scheduler = self.SCHEDULERS[0]
        if sampler not in self.SAMPLERS:
            sampler = self.SAMPLERS[0]
        self.scheduler = scheduler
        self.sampler = sampler
        self.set_steps(steps, denoise)
666
        self.denoise = denoise
667
        self.model_options = model_options
comfyanonymous's avatar
comfyanonymous committed
668

comfyanonymous's avatar
comfyanonymous committed
669
670
671
672
    def calculate_sigmas(self, steps):
        sigmas = None

        discard_penultimate_sigma = False
673
        if self.sampler in ['dpm_2', 'dpm_2_ancestral', 'uni_pc', 'uni_pc_bh2']:
comfyanonymous's avatar
comfyanonymous committed
674
675
676
            steps += 1
            discard_penultimate_sigma = True

comfyanonymous's avatar
comfyanonymous committed
677
        sigmas = calculate_sigmas_scheduler(self.model, self.scheduler, steps)
comfyanonymous's avatar
comfyanonymous committed
678
679
680
681
682

        if discard_penultimate_sigma:
            sigmas = torch.cat([sigmas[:-2], sigmas[-1:]])
        return sigmas

comfyanonymous's avatar
comfyanonymous committed
683
684
    def set_steps(self, steps, denoise=None):
        self.steps = steps
685
        if denoise is None or denoise > 0.9999:
comfyanonymous's avatar
comfyanonymous committed
686
            self.sigmas = self.calculate_sigmas(steps).to(self.device)
comfyanonymous's avatar
comfyanonymous committed
687
688
        else:
            new_steps = int(steps/denoise)
comfyanonymous's avatar
comfyanonymous committed
689
            sigmas = self.calculate_sigmas(new_steps).to(self.device)
comfyanonymous's avatar
comfyanonymous committed
690
691
            self.sigmas = sigmas[-(steps + 1):]

692
    def sample(self, noise, positive, negative, cfg, latent_image=None, start_step=None, last_step=None, force_full_denoise=False, denoise_mask=None, sigmas=None, callback=None, disable_pbar=False, seed=None):
693
694
        if sigmas is None:
            sigmas = self.sigmas
comfyanonymous's avatar
comfyanonymous committed
695

comfyanonymous's avatar
comfyanonymous committed
696
        if last_step is not None and last_step < (len(sigmas) - 1):
comfyanonymous's avatar
comfyanonymous committed
697
            sigmas = sigmas[:last_step + 1]
comfyanonymous's avatar
comfyanonymous committed
698
699
700
            if force_full_denoise:
                sigmas[-1] = 0

comfyanonymous's avatar
comfyanonymous committed
701
        if start_step is not None:
comfyanonymous's avatar
comfyanonymous committed
702
703
704
705
706
707
708
            if start_step < (len(sigmas) - 1):
                sigmas = sigmas[start_step:]
            else:
                if latent_image is not None:
                    return latent_image
                else:
                    return torch.zeros_like(noise)
comfyanonymous's avatar
comfyanonymous committed
709

710
        sampler = sampler_object(self.sampler)
711

712
        return sample(self.model, noise, positive, negative, cfg, self.device, sampler, sigmas, self.model_options, latent_image=latent_image, denoise_mask=denoise_mask, callback=callback, disable_pbar=disable_pbar, seed=seed)