samplers.py 26.8 KB
Newer Older
1
from .k_diffusion import sampling as k_diffusion_sampling
2
from .extra_samplers import uni_pc
comfyanonymous's avatar
comfyanonymous committed
3
import torch
4
import enum
5
from comfy import model_management
comfyanonymous's avatar
comfyanonymous committed
6
import math
7
from comfy import model_base
8
import comfy.utils
9
import comfy.conds
10

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
def get_area_and_mult(conds, x_in, timestep_in):
    area = (x_in.shape[2], x_in.shape[3], 0, 0)
    strength = 1.0

    if 'timestep_start' in conds:
        timestep_start = conds['timestep_start']
        if timestep_in[0] > timestep_start:
            return None
    if 'timestep_end' in conds:
        timestep_end = conds['timestep_end']
        if timestep_in[0] < timestep_end:
            return None
    if 'area' in conds:
        area = conds['area']
    if 'strength' in conds:
        strength = conds['strength']

    input_x = x_in[:,:,area[2]:area[0] + area[2],area[3]:area[1] + area[3]]
    if 'mask' in conds:
        # Scale the mask to the size of the input
        # The mask should have been resized as we began the sampling process
        mask_strength = 1.0
        if "mask_strength" in conds:
            mask_strength = conds["mask_strength"]
        mask = conds['mask']
        assert(mask.shape[1] == x_in.shape[2])
        assert(mask.shape[2] == x_in.shape[3])
        mask = mask[:,area[2]:area[0] + area[2],area[3]:area[1] + area[3]] * mask_strength
        mask = mask.unsqueeze(1).repeat(input_x.shape[0] // mask.shape[0], input_x.shape[1], 1, 1)
    else:
        mask = torch.ones_like(input_x)
    mult = mask * strength

    if 'mask' not in conds:
        rr = 8
        if area[2] != 0:
            for t in range(rr):
                mult[:,:,t:1+t,:] *= ((1.0/rr) * (t + 1))
        if (area[0] + area[2]) < x_in.shape[2]:
            for t in range(rr):
                mult[:,:,area[0] - 1 - t:area[0] - t,:] *= ((1.0/rr) * (t + 1))
        if area[3] != 0:
            for t in range(rr):
                mult[:,:,:,t:1+t] *= ((1.0/rr) * (t + 1))
        if (area[1] + area[3]) < x_in.shape[3]:
            for t in range(rr):
                mult[:,:,:,area[1] - 1 - t:area[1] - t] *= ((1.0/rr) * (t + 1))

    conditioning = {}
    model_conds = conds["model_conds"]
    for c in model_conds:
        conditioning[c] = model_conds[c].process_cond(batch_size=x_in.shape[0], device=x_in.device, area=area)

    control = None
    if 'control' in conds:
        control = conds['control']

    patches = None
    if 'gligen' in conds:
        gligen = conds['gligen']
        patches = {}
        gligen_type = gligen[0]
        gligen_model = gligen[1]
        if gligen_type == "position":
            gligen_patch = gligen_model.model.set_position(input_x.shape, gligen[2], input_x.device)
        else:
            gligen_patch = gligen_model.model.set_empty(input_x.shape, input_x.device)

        patches['middle_patch'] = [gligen_patch]

    return (input_x, mult, conditioning, area, control, patches)

def cond_equal_size(c1, c2):
    if c1 is c2:
        return True
    if c1.keys() != c2.keys():
        return False
    for k in c1:
        if not c1[k].can_concat(c2[k]):
            return False
    return True

def can_concat_cond(c1, c2):
    if c1[0].shape != c2[0].shape:
        return False

    #control
    if (c1[4] is None) != (c2[4] is None):
        return False
    if c1[4] is not None:
        if c1[4] is not c2[4]:
            return False

    #patches
    if (c1[5] is None) != (c2[5] is None):
        return False
    if (c1[5] is not None):
        if c1[5] is not c2[5]:
            return False

    return cond_equal_size(c1[2], c2[2])

def cond_cat(c_list):
    c_crossattn = []
    c_concat = []
    c_adm = []
    crossattn_max_len = 0

    temp = {}
    for x in c_list:
        for k in x:
            cur = temp.get(k, [])
            cur.append(x[k])
            temp[k] = cur

    out = {}
    for k in temp:
        conds = temp[k]
        out[k] = conds[0].concat(conds[1:])

    return out

def calc_cond_uncond_batch(model, cond, uncond, x_in, timestep, model_options):
    out_cond = torch.zeros_like(x_in)
    out_count = torch.ones_like(x_in) * 1e-37

    out_uncond = torch.zeros_like(x_in)
    out_uncond_count = torch.ones_like(x_in) * 1e-37

    COND = 0
    UNCOND = 1

    to_run = []
    for x in cond:
        p = get_area_and_mult(x, x_in, timestep)
        if p is None:
            continue

        to_run += [(p, COND)]
    if uncond is not None:
        for x in uncond:
            p = get_area_and_mult(x, x_in, timestep)
            if p is None:
                continue

            to_run += [(p, UNCOND)]

    while len(to_run) > 0:
        first = to_run[0]
        first_shape = first[0][0].shape
        to_batch_temp = []
        for x in range(len(to_run)):
            if can_concat_cond(to_run[x][0], first[0]):
                to_batch_temp += [x]

        to_batch_temp.reverse()
        to_batch = to_batch_temp[:1]

        free_memory = model_management.get_free_memory(x_in.device)
        for i in range(1, len(to_batch_temp) + 1):
            batch_amount = to_batch_temp[:len(to_batch_temp)//i]
            input_shape = [len(batch_amount) * first_shape[0]] + list(first_shape)[1:]
            if model.memory_required(input_shape) < free_memory:
                to_batch = batch_amount
                break

        input_x = []
        mult = []
        c = []
        cond_or_uncond = []
        area = []
        control = None
        patches = None
        for x in to_batch:
            o = to_run.pop(x)
            p = o[0]
            input_x += [p[0]]
            mult += [p[1]]
            c += [p[2]]
            area += [p[3]]
            cond_or_uncond += [o[1]]
            control = p[4]
            patches = p[5]

        batch_chunks = len(cond_or_uncond)
        input_x = torch.cat(input_x)
        c = cond_cat(c)
        timestep_ = torch.cat([timestep] * batch_chunks)

        if control is not None:
            c['control'] = control.get_control(input_x, timestep_, c, len(cond_or_uncond))

        transformer_options = {}
        if 'transformer_options' in model_options:
            transformer_options = model_options['transformer_options'].copy()

        if patches is not None:
            if "patches" in transformer_options:
                cur_patches = transformer_options["patches"].copy()
                for p in patches:
                    if p in cur_patches:
                        cur_patches[p] = cur_patches[p] + patches[p]
213
                    else:
214
215
216
                        cur_patches[p] = patches[p]
            else:
                transformer_options["patches"] = patches
217

218
219
        transformer_options["cond_or_uncond"] = cond_or_uncond[:]
        transformer_options["sigmas"] = timestep
220

221
        c['transformer_options'] = transformer_options
222

223
224
225
226
227
        if 'model_function_wrapper' in model_options:
            output = model_options['model_function_wrapper'](model.apply_model, {"input": input_x, "timestep": timestep_, "c": c, "cond_or_uncond": cond_or_uncond}).chunk(batch_chunks)
        else:
            output = model.apply_model(input_x, timestep_, **c).chunk(batch_chunks)
        del input_x
comfyanonymous's avatar
comfyanonymous committed
228

229
230
231
232
233
234
235
236
        for o in range(batch_chunks):
            if cond_or_uncond[o] == COND:
                out_cond[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += output[o] * mult[o]
                out_count[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += mult[o]
            else:
                out_uncond[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += output[o] * mult[o]
                out_uncond_count[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += mult[o]
        del mult
comfyanonymous's avatar
comfyanonymous committed
237

238
239
240
241
242
    out_cond /= out_count
    del out_count
    out_uncond /= out_uncond_count
    del out_uncond_count
    return out_cond, out_uncond
comfyanonymous's avatar
comfyanonymous committed
243

244
245
246
247
248
249
250
#The main sampling function shared by all the samplers
#Returns denoised
def sampling_function(model, x, timestep, uncond, cond, cond_scale, model_options={}, seed=None):
        if math.isclose(cond_scale, 1.0):
            uncond_ = None
        else:
            uncond_ = uncond
251

252
        cond_pred, uncond_pred = calc_cond_uncond_batch(model, cond, uncond_, x, timestep, model_options)
253
        if "sampler_cfg_function" in model_options:
254
255
            args = {"cond": x - cond_pred, "uncond": x - uncond_pred, "cond_scale": cond_scale, "timestep": timestep, "input": x, "sigma": timestep}
            cfg_result = x - model_options["sampler_cfg_function"](args)
256
257
        else:
            cfg_result = uncond_pred + (cond_pred - uncond_pred) * cond_scale
258

259
260
261
262
        for fn in model_options.get("sampler_post_cfg_function", []):
            args = {"denoised": cfg_result, "cond": cond, "uncond": uncond, "model": model, "uncond_denoised": uncond_pred, "cond_denoised": cond_pred,
                    "sigma": timestep, "model_options": model_options, "input": x}
            cfg_result = fn(args)
263

264
        return cfg_result
comfyanonymous's avatar
comfyanonymous committed
265

comfyanonymous's avatar
comfyanonymous committed
266
267
268
269
class CFGNoisePredictor(torch.nn.Module):
    def __init__(self, model):
        super().__init__()
        self.inner_model = model
270
    def apply_model(self, x, timestep, cond, uncond, cond_scale, model_options={}, seed=None):
271
        out = sampling_function(self.inner_model, x, timestep, uncond, cond, cond_scale, model_options=model_options, seed=seed)
comfyanonymous's avatar
comfyanonymous committed
272
        return out
comfyanonymous's avatar
comfyanonymous committed
273
274
    def forward(self, *args, **kwargs):
        return self.apply_model(*args, **kwargs)
comfyanonymous's avatar
comfyanonymous committed
275
276

class KSamplerX0Inpaint(torch.nn.Module):
277
278
279
    def __init__(self, model):
        super().__init__()
        self.inner_model = model
280
    def forward(self, x, sigma, uncond, cond, cond_scale, denoise_mask, model_options={}, seed=None):
281
282
        if denoise_mask is not None:
            latent_mask = 1. - denoise_mask
283
            x = x * denoise_mask + (self.latent_image + self.noise * sigma.reshape([sigma.shape[0]] + [1] * (len(self.noise.shape) - 1))) * latent_mask
284
        out = self.inner_model(x, sigma, cond=cond, uncond=uncond, cond_scale=cond_scale, model_options=model_options, seed=seed)
285
        if denoise_mask is not None:
comfyanonymous's avatar
comfyanonymous committed
286
            out = out * denoise_mask + self.latent_image * latent_mask
287
        return out
288

comfyanonymous's avatar
comfyanonymous committed
289
def simple_scheduler(model, steps):
comfyanonymous's avatar
comfyanonymous committed
290
    s = model.model_sampling
comfyanonymous's avatar
comfyanonymous committed
291
    sigs = []
comfyanonymous's avatar
comfyanonymous committed
292
    ss = len(s.sigmas) / steps
comfyanonymous's avatar
comfyanonymous committed
293
    for x in range(steps):
comfyanonymous's avatar
comfyanonymous committed
294
        sigs += [float(s.sigmas[-(1 + int(x * ss))])]
comfyanonymous's avatar
comfyanonymous committed
295
296
297
    sigs += [0.0]
    return torch.FloatTensor(sigs)

comfyanonymous's avatar
comfyanonymous committed
298
def ddim_scheduler(model, steps):
comfyanonymous's avatar
comfyanonymous committed
299
    s = model.model_sampling
comfyanonymous's avatar
comfyanonymous committed
300
    sigs = []
comfyanonymous's avatar
comfyanonymous committed
301
302
303
304
305
306
    ss = len(s.sigmas) // steps
    x = 1
    while x < len(s.sigmas):
        sigs += [float(s.sigmas[x])]
        x += ss
    sigs = sigs[::-1]
comfyanonymous's avatar
comfyanonymous committed
307
308
309
    sigs += [0.0]
    return torch.FloatTensor(sigs)

comfyanonymous's avatar
comfyanonymous committed
310
311
312
313
314
315
316
317
318
319
def normal_scheduler(model, steps, sgm=False, floor=False):
    s = model.model_sampling
    start = s.timestep(s.sigma_max)
    end = s.timestep(s.sigma_min)

    if sgm:
        timesteps = torch.linspace(start, end, steps + 1)[:-1]
    else:
        timesteps = torch.linspace(start, end, steps)

320
321
322
    sigs = []
    for x in range(len(timesteps)):
        ts = timesteps[x]
comfyanonymous's avatar
comfyanonymous committed
323
        sigs.append(s.sigma(ts))
324
325
326
    sigs += [0.0]
    return torch.FloatTensor(sigs)

Jacob Segal's avatar
Jacob Segal committed
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
def get_mask_aabb(masks):
    if masks.numel() == 0:
        return torch.zeros((0, 4), device=masks.device, dtype=torch.int)

    b = masks.shape[0]

    bounding_boxes = torch.zeros((b, 4), device=masks.device, dtype=torch.int)
    is_empty = torch.zeros((b), device=masks.device, dtype=torch.bool)
    for i in range(b):
        mask = masks[i]
        if mask.numel() == 0:
            continue
        if torch.max(mask != 0) == False:
            is_empty[i] = True
            continue
        y, x = torch.where(mask)
        bounding_boxes[i, 0] = torch.min(x)
        bounding_boxes[i, 1] = torch.min(y)
        bounding_boxes[i, 2] = torch.max(x)
        bounding_boxes[i, 3] = torch.max(y)

    return bounding_boxes, is_empty

350
def resolve_areas_and_cond_masks(conditions, h, w, device):
Jacob Segal's avatar
Jacob Segal committed
351
352
353
354
    # We need to decide on an area outside the sampling loop in order to properly generate opposite areas of equal sizes.
    # While we're doing this, we can also resolve the mask device and scaling for performance reasons
    for i in range(len(conditions)):
        c = conditions[i]
355
356
        if 'area' in c:
            area = c['area']
357
            if area[0] == "percentage":
358
                modified = c.copy()
359
360
                area = (max(1, round(area[1] * h)), max(1, round(area[2] * w)), round(area[3] * h), round(area[4] * w))
                modified['area'] = area
361
                c = modified
362
363
                conditions[i] = c

364
365
        if 'mask' in c:
            mask = c['mask']
Jacob Segal's avatar
Jacob Segal committed
366
            mask = mask.to(device=device)
367
            modified = c.copy()
Jacob Segal's avatar
Jacob Segal committed
368
369
            if len(mask.shape) == 2:
                mask = mask.unsqueeze(0)
mara's avatar
mara committed
370
            if mask.shape[1] != h or mask.shape[2] != w:
Jacob Segal's avatar
Jacob Segal committed
371
372
                mask = torch.nn.functional.interpolate(mask.unsqueeze(1), size=(h, w), mode='bilinear', align_corners=False).squeeze(1)

Jacob Segal's avatar
Jacob Segal committed
373
            if modified.get("set_area_to_bounds", False):
Jacob Segal's avatar
Jacob Segal committed
374
                bounds = torch.max(torch.abs(mask),dim=0).values.unsqueeze(0)
Jacob Segal's avatar
Jacob Segal committed
375
376
377
378
                boxes, is_empty = get_mask_aabb(bounds)
                if is_empty[0]:
                    # Use the minimum possible size for efficiency reasons. (Since the mask is all-0, this becomes a noop anyway)
                    modified['area'] = (8, 8, 0, 0)
Jacob Segal's avatar
Jacob Segal committed
379
                else:
Jacob Segal's avatar
Jacob Segal committed
380
                    box = boxes[0]
Jacob Segal's avatar
Jacob Segal committed
381
                    H, W, Y, X = (box[3] - box[1] + 1, box[2] - box[0] + 1, box[1], box[0])
382
383
                    H = max(8, H)
                    W = max(8, W)
Jacob Segal's avatar
Jacob Segal committed
384
385
                    area = (int(H), int(W), int(Y), int(X))
                    modified['area'] = area
Jacob Segal's avatar
Jacob Segal committed
386
387

            modified['mask'] = mask
388
            conditions[i] = modified
Jacob Segal's avatar
Jacob Segal committed
389

comfyanonymous's avatar
comfyanonymous committed
390
def create_cond_with_same_area_if_none(conds, c):
391
    if 'area' not in c:
comfyanonymous's avatar
comfyanonymous committed
392
393
        return

394
    c_area = c['area']
comfyanonymous's avatar
comfyanonymous committed
395
396
    smallest = None
    for x in conds:
397
398
        if 'area' in x:
            a = x['area']
comfyanonymous's avatar
comfyanonymous committed
399
400
401
402
403
            if c_area[2] >= a[2] and c_area[3] >= a[3]:
                if a[0] + a[2] >= c_area[0] + c_area[2]:
                    if a[1] + a[3] >= c_area[1] + c_area[3]:
                        if smallest is None:
                            smallest = x
404
                        elif 'area' not in smallest:
comfyanonymous's avatar
comfyanonymous committed
405
406
                            smallest = x
                        else:
407
                            if smallest['area'][0] * smallest['area'][1] > a[0] * a[1]:
comfyanonymous's avatar
comfyanonymous committed
408
409
410
411
412
413
                                smallest = x
        else:
            if smallest is None:
                smallest = x
    if smallest is None:
        return
414
415
    if 'area' in smallest:
        if smallest['area'] == c_area:
comfyanonymous's avatar
comfyanonymous committed
416
            return
417
418
419
420

    out = c.copy()
    out['model_conds'] = smallest['model_conds'].copy() #TODO: which fields should be copied?
    conds += [out]
comfyanonymous's avatar
comfyanonymous committed
421

422
def calculate_start_end_timesteps(model, conds):
423
    s = model.model_sampling
424
425
426
427
428
    for t in range(len(conds)):
        x = conds[t]

        timestep_start = None
        timestep_end = None
429
        if 'start_percent' in x:
430
            timestep_start = s.percent_to_sigma(x['start_percent'])
431
        if 'end_percent' in x:
432
            timestep_end = s.percent_to_sigma(x['end_percent'])
433
434

        if (timestep_start is not None) or (timestep_end is not None):
435
            n = x.copy()
436
437
438
439
            if (timestep_start is not None):
                n['timestep_start'] = timestep_start
            if (timestep_end is not None):
                n['timestep_end'] = timestep_end
440
            conds[t] = n
441

442
def pre_run_control(model, conds):
443
    s = model.model_sampling
444
445
446
447
448
    for t in range(len(conds)):
        x = conds[t]

        timestep_start = None
        timestep_end = None
449
        percent_to_timestep_function = lambda a: s.percent_to_sigma(a)
450
        if 'control' in x:
451
            x['control'].pre_run(model, percent_to_timestep_function)
452

453
def apply_empty_x_to_equal_area(conds, uncond, name, uncond_fill_func):
comfyanonymous's avatar
comfyanonymous committed
454
455
456
457
458
459
    cond_cnets = []
    cond_other = []
    uncond_cnets = []
    uncond_other = []
    for t in range(len(conds)):
        x = conds[t]
460
461
462
        if 'area' not in x:
            if name in x and x[name] is not None:
                cond_cnets.append(x[name])
comfyanonymous's avatar
comfyanonymous committed
463
464
465
466
            else:
                cond_other.append((x, t))
    for t in range(len(uncond)):
        x = uncond[t]
467
468
469
        if 'area' not in x:
            if name in x and x[name] is not None:
                uncond_cnets.append(x[name])
comfyanonymous's avatar
comfyanonymous committed
470
471
472
473
474
475
476
477
478
            else:
                uncond_other.append((x, t))

    if len(uncond_cnets) > 0:
        return

    for x in range(len(cond_cnets)):
        temp = uncond_other[x % len(uncond_other)]
        o = temp[0]
479
480
        if name in o and o[name] is not None:
            n = o.copy()
481
            n[name] = uncond_fill_func(cond_cnets, x)
482
            uncond += [n]
comfyanonymous's avatar
comfyanonymous committed
483
        else:
484
            n = o.copy()
485
            n[name] = uncond_fill_func(cond_cnets, x)
486
            uncond[temp[1]] = n
487

488
def encode_model_conds(model_function, conds, noise, device, prompt_type, **kwargs):
489
490
    for t in range(len(conds)):
        x = conds[t]
491
        params = x.copy()
492
        params["device"] = device
493
494
495
496
        params["noise"] = noise
        params["width"] = params.get("width", noise.shape[3] * 8)
        params["height"] = params.get("height", noise.shape[2] * 8)
        params["prompt_type"] = params.get("prompt_type", prompt_type)
497
498
499
500
501
        for k in kwargs:
            if k not in params:
                params[k] = kwargs[k]

        out = model_function(**params)
502
503
504
505
506
507
        x = x.copy()
        model_conds = x['model_conds'].copy()
        for k in out:
            model_conds[k] = out[k]
        x['model_conds'] = model_conds
        conds[t] = x
508
    return conds
509

comfyanonymous's avatar
comfyanonymous committed
510
511
512
513
514
class Sampler:
    def sample(self):
        pass

    def max_denoise(self, model_wrap, sigmas):
comfyanonymous's avatar
comfyanonymous committed
515
516
517
        max_sigma = float(model_wrap.inner_model.model_sampling.sigma_max)
        sigma = float(sigmas[0])
        return math.isclose(max_sigma, sigma, rel_tol=1e-05) or sigma > max_sigma
comfyanonymous's avatar
comfyanonymous committed
518
519
520

class UNIPC(Sampler):
    def sample(self, model_wrap, sigmas, extra_args, callback, noise, latent_image=None, denoise_mask=None, disable_pbar=False):
521
        return uni_pc.sample_unipc(model_wrap, noise, latent_image, sigmas, max_denoise=self.max_denoise(model_wrap, sigmas), extra_args=extra_args, noise_mask=denoise_mask, callback=callback, disable=disable_pbar)
comfyanonymous's avatar
comfyanonymous committed
522
523
524

class UNIPCBH2(Sampler):
    def sample(self, model_wrap, sigmas, extra_args, callback, noise, latent_image=None, denoise_mask=None, disable_pbar=False):
525
        return uni_pc.sample_unipc(model_wrap, noise, latent_image, sigmas, max_denoise=self.max_denoise(model_wrap, sigmas), extra_args=extra_args, noise_mask=denoise_mask, callback=callback, variant='bh2', disable=disable_pbar)
comfyanonymous's avatar
comfyanonymous committed
526

comfyanonymous's avatar
comfyanonymous committed
527
KSAMPLER_NAMES = ["euler", "euler_ancestral", "heun", "heunpp2","dpm_2", "dpm_2_ancestral",
comfyanonymous's avatar
comfyanonymous committed
528
                  "lms", "dpm_fast", "dpm_adaptive", "dpmpp_2s_ancestral", "dpmpp_sde", "dpmpp_sde_gpu",
comfyanonymous's avatar
comfyanonymous committed
529
                  "dpmpp_2m", "dpmpp_2m_sde", "dpmpp_2m_sde_gpu", "dpmpp_3m_sde", "dpmpp_3m_sde_gpu", "ddpm", "lcm"]
comfyanonymous's avatar
comfyanonymous committed
530

531
532
533
534
535
class KSAMPLER(Sampler):
    def __init__(self, sampler_function, extra_options={}, inpaint_options={}):
        self.sampler_function = sampler_function
        self.extra_options = extra_options
        self.inpaint_options = inpaint_options
comfyanonymous's avatar
comfyanonymous committed
536

537
538
539
540
541
542
543
544
545
    def sample(self, model_wrap, sigmas, extra_args, callback, noise, latent_image=None, denoise_mask=None, disable_pbar=False):
        extra_args["denoise_mask"] = denoise_mask
        model_k = KSamplerX0Inpaint(model_wrap)
        model_k.latent_image = latent_image
        if self.inpaint_options.get("random", False): #TODO: Should this be the default?
            generator = torch.manual_seed(extra_args.get("seed", 41) + 1)
            model_k.noise = torch.randn(noise.shape, generator=generator, device="cpu").to(noise.dtype).to(noise.device)
        else:
            model_k.noise = noise
comfyanonymous's avatar
comfyanonymous committed
546

547
548
549
550
551
552
553
554
555
556
557
558
        if self.max_denoise(model_wrap, sigmas):
            noise = noise * torch.sqrt(1.0 + sigmas[0] ** 2.0)
        else:
            noise = noise * sigmas[0]

        k_callback = None
        total_steps = len(sigmas) - 1
        if callback is not None:
            k_callback = lambda x: callback(x["i"], x["denoised"], x["x"], total_steps)

        if latent_image is not None:
            noise += latent_image
comfyanonymous's avatar
comfyanonymous committed
559

560
561
562
563
564
565
566
        samples = self.sampler_function(model_k, noise, sigmas, extra_args=extra_args, callback=k_callback, disable=disable_pbar, **self.extra_options)
        return samples


def ksampler(sampler_name, extra_options={}, inpaint_options={}):
    if sampler_name == "dpm_fast":
        def dpm_fast_function(model, noise, sigmas, extra_args, callback, disable):
comfyanonymous's avatar
comfyanonymous committed
567
568
569
            sigma_min = sigmas[-1]
            if sigma_min == 0:
                sigma_min = sigmas[-2]
570
571
572
573
574
575
576
577
578
579
580
581
            total_steps = len(sigmas) - 1
            return k_diffusion_sampling.sample_dpm_fast(model, noise, sigma_min, sigmas[0], total_steps, extra_args=extra_args, callback=callback, disable=disable)
        sampler_function = dpm_fast_function
    elif sampler_name == "dpm_adaptive":
        def dpm_adaptive_function(model, noise, sigmas, extra_args, callback, disable):
            sigma_min = sigmas[-1]
            if sigma_min == 0:
                sigma_min = sigmas[-2]
            return k_diffusion_sampling.sample_dpm_adaptive(model, noise, sigma_min, sigmas[0], extra_args=extra_args, callback=callback, disable=disable)
        sampler_function = dpm_adaptive_function
    else:
        sampler_function = getattr(k_diffusion_sampling, "sample_{}".format(sampler_name))
comfyanonymous's avatar
comfyanonymous committed
582

583
    return KSAMPLER(sampler_function, extra_options, inpaint_options)
comfyanonymous's avatar
comfyanonymous committed
584

comfyanonymous's avatar
comfyanonymous committed
585
586
def wrap_model(model):
    model_denoise = CFGNoisePredictor(model)
comfyanonymous's avatar
comfyanonymous committed
587
    return model_denoise
comfyanonymous's avatar
comfyanonymous committed
588
589
590
591
592
593
594
595

def sample(model, noise, positive, negative, cfg, device, sampler, sigmas, model_options={}, latent_image=None, denoise_mask=None, callback=None, disable_pbar=False, seed=None):
    positive = positive[:]
    negative = negative[:]

    resolve_areas_and_cond_masks(positive, noise.shape[2], noise.shape[3], device)
    resolve_areas_and_cond_masks(negative, noise.shape[2], noise.shape[3], device)

comfyanonymous's avatar
comfyanonymous committed
596
    model_wrap = wrap_model(model)
comfyanonymous's avatar
comfyanonymous committed
597

598
599
    calculate_start_end_timesteps(model, negative)
    calculate_start_end_timesteps(model, positive)
comfyanonymous's avatar
comfyanonymous committed
600
601
602
603
604
605
606

    #make sure each cond area has an opposite one with the same area
    for c in positive:
        create_cond_with_same_area_if_none(negative, c)
    for c in negative:
        create_cond_with_same_area_if_none(positive, c)

607
    pre_run_control(model, negative + positive)
comfyanonymous's avatar
comfyanonymous committed
608

609
    apply_empty_x_to_equal_area(list(filter(lambda c: c.get('control_apply_to_uncond', False) == True, positive)), negative, 'control', lambda cond_cnets, x: cond_cnets[x])
comfyanonymous's avatar
comfyanonymous committed
610
611
    apply_empty_x_to_equal_area(positive, negative, 'gligen', lambda cond_cnets, x: cond_cnets[x])

612
613
614
    if latent_image is not None:
        latent_image = model.process_latent_in(latent_image)

615
616
617
    if hasattr(model, 'extra_conds'):
        positive = encode_model_conds(model.extra_conds, positive, noise, device, "positive", latent_image=latent_image, denoise_mask=denoise_mask)
        negative = encode_model_conds(model.extra_conds, negative, noise, device, "negative", latent_image=latent_image, denoise_mask=denoise_mask)
comfyanonymous's avatar
comfyanonymous committed
618
619
620
621
622
623

    extra_args = {"cond":positive, "uncond":negative, "cond_scale": cfg, "model_options": model_options, "seed":seed}

    samples = sampler.sample(model_wrap, sigmas, extra_args, callback, noise, latent_image, denoise_mask, disable_pbar)
    return model.process_latent_out(samples.to(torch.float32))

comfyanonymous's avatar
comfyanonymous committed
624
625
626
627
628
SCHEDULER_NAMES = ["normal", "karras", "exponential", "sgm_uniform", "simple", "ddim_uniform"]
SAMPLER_NAMES = KSAMPLER_NAMES + ["ddim", "uni_pc", "uni_pc_bh2"]

def calculate_sigmas_scheduler(model, scheduler_name, steps):
    if scheduler_name == "karras":
comfyanonymous's avatar
comfyanonymous committed
629
        sigmas = k_diffusion_sampling.get_sigmas_karras(n=steps, sigma_min=float(model.model_sampling.sigma_min), sigma_max=float(model.model_sampling.sigma_max))
comfyanonymous's avatar
comfyanonymous committed
630
    elif scheduler_name == "exponential":
comfyanonymous's avatar
comfyanonymous committed
631
        sigmas = k_diffusion_sampling.get_sigmas_exponential(n=steps, sigma_min=float(model.model_sampling.sigma_min), sigma_max=float(model.model_sampling.sigma_max))
comfyanonymous's avatar
comfyanonymous committed
632
    elif scheduler_name == "normal":
comfyanonymous's avatar
comfyanonymous committed
633
        sigmas = normal_scheduler(model, steps)
comfyanonymous's avatar
comfyanonymous committed
634
    elif scheduler_name == "simple":
comfyanonymous's avatar
comfyanonymous committed
635
        sigmas = simple_scheduler(model, steps)
comfyanonymous's avatar
comfyanonymous committed
636
    elif scheduler_name == "ddim_uniform":
comfyanonymous's avatar
comfyanonymous committed
637
        sigmas = ddim_scheduler(model, steps)
comfyanonymous's avatar
comfyanonymous committed
638
    elif scheduler_name == "sgm_uniform":
comfyanonymous's avatar
comfyanonymous committed
639
        sigmas = normal_scheduler(model, steps, sgm=True)
comfyanonymous's avatar
comfyanonymous committed
640
641
642
643
    else:
        print("error invalid scheduler", self.scheduler)
    return sigmas

644
def sampler_object(name):
645
    if name == "uni_pc":
646
        sampler = UNIPC()
647
    elif name == "uni_pc_bh2":
648
        sampler = UNIPCBH2()
649
    elif name == "ddim":
650
        sampler = ksampler("euler", inpaint_options={"random": True})
651
652
653
654
    else:
        sampler = ksampler(name)
    return sampler

comfyanonymous's avatar
comfyanonymous committed
655
class KSampler:
comfyanonymous's avatar
comfyanonymous committed
656
657
    SCHEDULERS = SCHEDULER_NAMES
    SAMPLERS = SAMPLER_NAMES
comfyanonymous's avatar
comfyanonymous committed
658

659
    def __init__(self, model, steps, device, sampler=None, scheduler=None, denoise=None, model_options={}):
comfyanonymous's avatar
comfyanonymous committed
660
661
662
663
664
665
666
667
668
        self.model = model
        self.device = device
        if scheduler not in self.SCHEDULERS:
            scheduler = self.SCHEDULERS[0]
        if sampler not in self.SAMPLERS:
            sampler = self.SAMPLERS[0]
        self.scheduler = scheduler
        self.sampler = sampler
        self.set_steps(steps, denoise)
669
        self.denoise = denoise
670
        self.model_options = model_options
comfyanonymous's avatar
comfyanonymous committed
671

comfyanonymous's avatar
comfyanonymous committed
672
673
674
675
    def calculate_sigmas(self, steps):
        sigmas = None

        discard_penultimate_sigma = False
676
        if self.sampler in ['dpm_2', 'dpm_2_ancestral', 'uni_pc', 'uni_pc_bh2']:
comfyanonymous's avatar
comfyanonymous committed
677
678
679
            steps += 1
            discard_penultimate_sigma = True

comfyanonymous's avatar
comfyanonymous committed
680
        sigmas = calculate_sigmas_scheduler(self.model, self.scheduler, steps)
comfyanonymous's avatar
comfyanonymous committed
681
682
683
684
685

        if discard_penultimate_sigma:
            sigmas = torch.cat([sigmas[:-2], sigmas[-1:]])
        return sigmas

comfyanonymous's avatar
comfyanonymous committed
686
687
    def set_steps(self, steps, denoise=None):
        self.steps = steps
688
        if denoise is None or denoise > 0.9999:
comfyanonymous's avatar
comfyanonymous committed
689
            self.sigmas = self.calculate_sigmas(steps).to(self.device)
comfyanonymous's avatar
comfyanonymous committed
690
691
        else:
            new_steps = int(steps/denoise)
comfyanonymous's avatar
comfyanonymous committed
692
            sigmas = self.calculate_sigmas(new_steps).to(self.device)
comfyanonymous's avatar
comfyanonymous committed
693
694
            self.sigmas = sigmas[-(steps + 1):]

695
    def sample(self, noise, positive, negative, cfg, latent_image=None, start_step=None, last_step=None, force_full_denoise=False, denoise_mask=None, sigmas=None, callback=None, disable_pbar=False, seed=None):
696
697
        if sigmas is None:
            sigmas = self.sigmas
comfyanonymous's avatar
comfyanonymous committed
698

comfyanonymous's avatar
comfyanonymous committed
699
        if last_step is not None and last_step < (len(sigmas) - 1):
comfyanonymous's avatar
comfyanonymous committed
700
            sigmas = sigmas[:last_step + 1]
comfyanonymous's avatar
comfyanonymous committed
701
702
703
            if force_full_denoise:
                sigmas[-1] = 0

comfyanonymous's avatar
comfyanonymous committed
704
        if start_step is not None:
comfyanonymous's avatar
comfyanonymous committed
705
706
707
708
709
710
711
            if start_step < (len(sigmas) - 1):
                sigmas = sigmas[start_step:]
            else:
                if latent_image is not None:
                    return latent_image
                else:
                    return torch.zeros_like(noise)
comfyanonymous's avatar
comfyanonymous committed
712

713
        sampler = sampler_object(self.sampler)
714

715
        return sample(self.model, noise, positive, negative, cfg, self.device, sampler, sigmas, self.model_options, latent_image=latent_image, denoise_mask=denoise_mask, callback=callback, disable_pbar=disable_pbar, seed=seed)