samplers.py 30.5 KB
Newer Older
1
from .k_diffusion import sampling as k_diffusion_sampling
2
from .extra_samplers import uni_pc
comfyanonymous's avatar
comfyanonymous committed
3
import torch
comfyanonymous's avatar
comfyanonymous committed
4
import collections
5
from comfy import model_management
comfyanonymous's avatar
comfyanonymous committed
6
import math
7
import logging
8
import comfy.sampler_helpers
9

10
def get_area_and_mult(conds, x_in, timestep_in):
11
12
    dims = tuple(x_in.shape[2:])
    area = None
13
14
15
16
17
18
19
20
21
22
23
    strength = 1.0

    if 'timestep_start' in conds:
        timestep_start = conds['timestep_start']
        if timestep_in[0] > timestep_start:
            return None
    if 'timestep_end' in conds:
        timestep_end = conds['timestep_end']
        if timestep_in[0] < timestep_end:
            return None
    if 'area' in conds:
24
        area = list(conds['area'])
25
26
27
    if 'strength' in conds:
        strength = conds['strength']

28
29
30
31
32
33
    input_x = x_in
    if area is not None:
        for i in range(len(dims)):
            area[i] = min(input_x.shape[i + 2] - area[len(dims) + i], area[i])
            input_x = input_x.narrow(i + 2, area[len(dims) + i], area[i])

34
35
36
37
38
39
40
    if 'mask' in conds:
        # Scale the mask to the size of the input
        # The mask should have been resized as we began the sampling process
        mask_strength = 1.0
        if "mask_strength" in conds:
            mask_strength = conds["mask_strength"]
        mask = conds['mask']
41
42
43
44
45
46
47
48
        assert(mask.shape[1:] == x_in.shape[2:])

        mask = mask[:input_x.shape[0]]
        if area is not None:
            for i in range(len(dims)):
                mask = mask.narrow(i + 1, area[len(dims) + i], area[i])

        mask = mask * mask_strength
49
50
51
52
53
        mask = mask.unsqueeze(1).repeat(input_x.shape[0] // mask.shape[0], input_x.shape[1], 1, 1)
    else:
        mask = torch.ones_like(input_x)
    mult = mask * strength

54
    if 'mask' not in conds and area is not None:
55
        rr = 8
56
57
58
59
60
61
62
63
64
        for i in range(len(dims)):
            if area[len(dims) + i] != 0:
                for t in range(rr):
                    m = mult.narrow(i + 2, t, 1)
                    m *= ((1.0/rr) * (t + 1))
            if (area[i] + area[len(dims) + i]) < x_in.shape[i + 2]:
                for t in range(rr):
                    m = mult.narrow(i + 2, area[i] - 1 - t, 1)
                    m *= ((1.0/rr) * (t + 1))
65
66
67
68
69
70

    conditioning = {}
    model_conds = conds["model_conds"]
    for c in model_conds:
        conditioning[c] = model_conds[c].process_cond(batch_size=x_in.shape[0], device=x_in.device, area=area)

comfyanonymous's avatar
comfyanonymous committed
71
    control = conds.get('control', None)
72
73
74
75
76
77
78
79
80
81
82
83
84
85

    patches = None
    if 'gligen' in conds:
        gligen = conds['gligen']
        patches = {}
        gligen_type = gligen[0]
        gligen_model = gligen[1]
        if gligen_type == "position":
            gligen_patch = gligen_model.model.set_position(input_x.shape, gligen[2], input_x.device)
        else:
            gligen_patch = gligen_model.model.set_empty(input_x.shape, input_x.device)

        patches['middle_patch'] = [gligen_patch]

comfyanonymous's avatar
comfyanonymous committed
86
87
    cond_obj = collections.namedtuple('cond_obj', ['input_x', 'mult', 'conditioning', 'area', 'control', 'patches'])
    return cond_obj(input_x, mult, conditioning, area, control, patches)
88
89
90
91
92
93
94
95
96
97
98
99

def cond_equal_size(c1, c2):
    if c1 is c2:
        return True
    if c1.keys() != c2.keys():
        return False
    for k in c1:
        if not c1[k].can_concat(c2[k]):
            return False
    return True

def can_concat_cond(c1, c2):
comfyanonymous's avatar
comfyanonymous committed
100
    if c1.input_x.shape != c2.input_x.shape:
101
102
        return False

comfyanonymous's avatar
comfyanonymous committed
103
104
    def objects_concatable(obj1, obj2):
        if (obj1 is None) != (obj2 is None):
105
            return False
comfyanonymous's avatar
comfyanonymous committed
106
107
108
109
        if obj1 is not None:
            if obj1 is not obj2:
                return False
        return True
110

comfyanonymous's avatar
comfyanonymous committed
111
112
113
114
    if not objects_concatable(c1.control, c2.control):
        return False

    if not objects_concatable(c1.patches, c2.patches):
115
116
        return False

comfyanonymous's avatar
comfyanonymous committed
117
    return cond_equal_size(c1.conditioning, c2.conditioning)
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138

def cond_cat(c_list):
    c_crossattn = []
    c_concat = []
    c_adm = []
    crossattn_max_len = 0

    temp = {}
    for x in c_list:
        for k in x:
            cur = temp.get(k, [])
            cur.append(x[k])
            temp[k] = cur

    out = {}
    for k in temp:
        conds = temp[k]
        out[k] = conds[0].concat(conds[1:])

    return out

139
140
141
def calc_cond_batch(model, conds, x_in, timestep, model_options):
    out_conds = []
    out_counts = []
142
143
    to_run = []

144
145
146
    for i in range(len(conds)):
        out_conds.append(torch.zeros_like(x_in))
        out_counts.append(torch.ones_like(x_in) * 1e-37)
147

148
149
150
151
152
153
154
155
        cond = conds[i]
        if cond is not None:
            for x in cond:
                p = get_area_and_mult(x, x_in, timestep)
                if p is None:
                    continue

                to_run += [(p, i)]
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185

    while len(to_run) > 0:
        first = to_run[0]
        first_shape = first[0][0].shape
        to_batch_temp = []
        for x in range(len(to_run)):
            if can_concat_cond(to_run[x][0], first[0]):
                to_batch_temp += [x]

        to_batch_temp.reverse()
        to_batch = to_batch_temp[:1]

        free_memory = model_management.get_free_memory(x_in.device)
        for i in range(1, len(to_batch_temp) + 1):
            batch_amount = to_batch_temp[:len(to_batch_temp)//i]
            input_shape = [len(batch_amount) * first_shape[0]] + list(first_shape)[1:]
            if model.memory_required(input_shape) < free_memory:
                to_batch = batch_amount
                break

        input_x = []
        mult = []
        c = []
        cond_or_uncond = []
        area = []
        control = None
        patches = None
        for x in to_batch:
            o = to_run.pop(x)
            p = o[0]
comfyanonymous's avatar
comfyanonymous committed
186
187
188
189
190
191
192
            input_x.append(p.input_x)
            mult.append(p.mult)
            c.append(p.conditioning)
            area.append(p.area)
            cond_or_uncond.append(o[1])
            control = p.control
            patches = p.patches
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211

        batch_chunks = len(cond_or_uncond)
        input_x = torch.cat(input_x)
        c = cond_cat(c)
        timestep_ = torch.cat([timestep] * batch_chunks)

        if control is not None:
            c['control'] = control.get_control(input_x, timestep_, c, len(cond_or_uncond))

        transformer_options = {}
        if 'transformer_options' in model_options:
            transformer_options = model_options['transformer_options'].copy()

        if patches is not None:
            if "patches" in transformer_options:
                cur_patches = transformer_options["patches"].copy()
                for p in patches:
                    if p in cur_patches:
                        cur_patches[p] = cur_patches[p] + patches[p]
212
                    else:
213
                        cur_patches[p] = patches[p]
214
                transformer_options["patches"] = cur_patches
215
216
            else:
                transformer_options["patches"] = patches
217

218
219
        transformer_options["cond_or_uncond"] = cond_or_uncond[:]
        transformer_options["sigmas"] = timestep
220

221
        c['transformer_options'] = transformer_options
222

223
224
225
226
        if 'model_function_wrapper' in model_options:
            output = model_options['model_function_wrapper'](model.apply_model, {"input": input_x, "timestep": timestep_, "c": c, "cond_or_uncond": cond_or_uncond}).chunk(batch_chunks)
        else:
            output = model.apply_model(input_x, timestep_, **c).chunk(batch_chunks)
comfyanonymous's avatar
comfyanonymous committed
227

228
        for o in range(batch_chunks):
229
            cond_index = cond_or_uncond[o]
230
231
232
233
234
235
236
237
238
239
240
241
242
            a = area[o]
            if a is None:
                out_conds[cond_index] += output[o] * mult[o]
                out_counts[cond_index] += mult[o]
            else:
                out_c = out_conds[cond_index]
                out_cts = out_counts[cond_index]
                dims = len(a) // 2
                for i in range(dims):
                    out_c = out_c.narrow(i + 2, a[i + dims], a[i])
                    out_cts = out_cts.narrow(i + 2, a[i + dims], a[i])
                out_c += output[o] * mult[o]
                out_cts += mult[o]
comfyanonymous's avatar
comfyanonymous committed
243

244
245
246
247
248
249
250
251
    for i in range(len(out_conds)):
        out_conds[i] /= out_counts[i]

    return out_conds

def calc_cond_uncond_batch(model, cond, uncond, x_in, timestep, model_options): #TODO: remove
    logging.warning("WARNING: The comfy.samplers.calc_cond_uncond_batch function is deprecated please use the calc_cond_batch one instead.")
    return tuple(calc_cond_batch(model, [cond, uncond], x_in, timestep, model_options))
comfyanonymous's avatar
comfyanonymous committed
252

253
def cfg_function(model, cond_pred, uncond_pred, cond_scale, x, timestep, model_options={}, cond=None, uncond=None):
254
255
256
257
258
259
    if "sampler_cfg_function" in model_options:
        args = {"cond": x - cond_pred, "uncond": x - uncond_pred, "cond_scale": cond_scale, "timestep": timestep, "input": x, "sigma": timestep,
                "cond_denoised": cond_pred, "uncond_denoised": uncond_pred, "model": model, "model_options": model_options}
        cfg_result = x - model_options["sampler_cfg_function"](args)
    else:
        cfg_result = uncond_pred + (cond_pred - uncond_pred) * cond_scale
260

261
262
263
264
    for fn in model_options.get("sampler_post_cfg_function", []):
        args = {"denoised": cfg_result, "cond": cond, "uncond": uncond, "model": model, "uncond_denoised": uncond_pred, "cond_denoised": cond_pred,
                "sigma": timestep, "model_options": model_options, "input": x}
        cfg_result = fn(args)
265

266
    return cfg_result
267

268
269
270
271
272
273
274
#The main sampling function shared by all the samplers
#Returns denoised
def sampling_function(model, x, timestep, uncond, cond, cond_scale, model_options={}, seed=None):
    if math.isclose(cond_scale, 1.0) and model_options.get("disable_cfg1_optimization", False) == False:
        uncond_ = None
    else:
        uncond_ = uncond
275

276
277
    conds = [cond, uncond_]
    out = calc_cond_batch(model, conds, x, timestep, model_options)
278
279
280
281
282
283

    for fn in model_options.get("sampler_pre_cfg_function", []):
        args = {"conds":conds, "conds_out": out, "cond_scale": cond_scale, "timestep": timestep,
                "input": x, "sigma": timestep, "model": model, "model_options": model_options}
        out  = fn(args)

284
    return cfg_function(model, out[0], out[1], cond_scale, x, timestep, model_options=model_options, cond=cond, uncond=uncond_)
comfyanonymous's avatar
comfyanonymous committed
285

comfyanonymous's avatar
comfyanonymous committed
286

287
class KSamplerX0Inpaint:
288
    def __init__(self, model, sigmas):
289
        self.inner_model = model
290
        self.sigmas = sigmas
291
    def __call__(self, x, sigma, denoise_mask, model_options={}, seed=None):
292
        if denoise_mask is not None:
293
            if "denoise_mask_function" in model_options:
294
                denoise_mask = model_options["denoise_mask_function"](sigma, denoise_mask, extra_options={"model": self.inner_model, "sigmas": self.sigmas})
295
            latent_mask = 1. - denoise_mask
296
            x = x * denoise_mask + self.inner_model.inner_model.model_sampling.noise_scaling(sigma.reshape([sigma.shape[0]] + [1] * (len(self.noise.shape) - 1)), self.noise, self.latent_image) * latent_mask
297
        out = self.inner_model(x, sigma, model_options=model_options, seed=seed)
298
        if denoise_mask is not None:
comfyanonymous's avatar
comfyanonymous committed
299
            out = out * denoise_mask + self.latent_image * latent_mask
300
        return out
301

302
303
def simple_scheduler(model_sampling, steps):
    s = model_sampling
comfyanonymous's avatar
comfyanonymous committed
304
    sigs = []
comfyanonymous's avatar
comfyanonymous committed
305
    ss = len(s.sigmas) / steps
comfyanonymous's avatar
comfyanonymous committed
306
    for x in range(steps):
comfyanonymous's avatar
comfyanonymous committed
307
        sigs += [float(s.sigmas[-(1 + int(x * ss))])]
comfyanonymous's avatar
comfyanonymous committed
308
309
310
    sigs += [0.0]
    return torch.FloatTensor(sigs)

311
312
def ddim_scheduler(model_sampling, steps):
    s = model_sampling
comfyanonymous's avatar
comfyanonymous committed
313
    sigs = []
314
    ss = max(len(s.sigmas) // steps, 1)
comfyanonymous's avatar
comfyanonymous committed
315
316
317
318
319
    x = 1
    while x < len(s.sigmas):
        sigs += [float(s.sigmas[x])]
        x += ss
    sigs = sigs[::-1]
comfyanonymous's avatar
comfyanonymous committed
320
321
322
    sigs += [0.0]
    return torch.FloatTensor(sigs)

323
324
def normal_scheduler(model_sampling, steps, sgm=False, floor=False):
    s = model_sampling
comfyanonymous's avatar
comfyanonymous committed
325
326
327
328
329
330
331
332
    start = s.timestep(s.sigma_max)
    end = s.timestep(s.sigma_min)

    if sgm:
        timesteps = torch.linspace(start, end, steps + 1)[:-1]
    else:
        timesteps = torch.linspace(start, end, steps)

333
334
335
    sigs = []
    for x in range(len(timesteps)):
        ts = timesteps[x]
comfyanonymous's avatar
comfyanonymous committed
336
        sigs.append(s.sigma(ts))
337
338
339
    sigs += [0.0]
    return torch.FloatTensor(sigs)

Jacob Segal's avatar
Jacob Segal committed
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
def get_mask_aabb(masks):
    if masks.numel() == 0:
        return torch.zeros((0, 4), device=masks.device, dtype=torch.int)

    b = masks.shape[0]

    bounding_boxes = torch.zeros((b, 4), device=masks.device, dtype=torch.int)
    is_empty = torch.zeros((b), device=masks.device, dtype=torch.bool)
    for i in range(b):
        mask = masks[i]
        if mask.numel() == 0:
            continue
        if torch.max(mask != 0) == False:
            is_empty[i] = True
            continue
        y, x = torch.where(mask)
        bounding_boxes[i, 0] = torch.min(x)
        bounding_boxes[i, 1] = torch.min(y)
        bounding_boxes[i, 2] = torch.max(x)
        bounding_boxes[i, 3] = torch.max(y)

    return bounding_boxes, is_empty

363
def resolve_areas_and_cond_masks_multidim(conditions, dims, device):
Jacob Segal's avatar
Jacob Segal committed
364
365
366
367
    # We need to decide on an area outside the sampling loop in order to properly generate opposite areas of equal sizes.
    # While we're doing this, we can also resolve the mask device and scaling for performance reasons
    for i in range(len(conditions)):
        c = conditions[i]
368
369
        if 'area' in c:
            area = c['area']
370
            if area[0] == "percentage":
371
                modified = c.copy()
372
373
374
375
376
377
378
379
                a = area[1:]
                a_len = len(a) // 2
                area = ()
                for d in range(len(dims)):
                    area += (max(1, round(a[d] * dims[d])),)
                for d in range(len(dims)):
                    area += (round(a[d + a_len] * dims[d]),)

380
                modified['area'] = area
381
                c = modified
382
383
                conditions[i] = c

384
385
        if 'mask' in c:
            mask = c['mask']
Jacob Segal's avatar
Jacob Segal committed
386
            mask = mask.to(device=device)
387
            modified = c.copy()
388
            if len(mask.shape) == len(dims):
Jacob Segal's avatar
Jacob Segal committed
389
                mask = mask.unsqueeze(0)
390
391
            if mask.shape[1:] != dims:
                mask = torch.nn.functional.interpolate(mask.unsqueeze(1), size=dims, mode='bilinear', align_corners=False).squeeze(1)
Jacob Segal's avatar
Jacob Segal committed
392

393
            if modified.get("set_area_to_bounds", False): #TODO: handle dim != 2
Jacob Segal's avatar
Jacob Segal committed
394
                bounds = torch.max(torch.abs(mask),dim=0).values.unsqueeze(0)
Jacob Segal's avatar
Jacob Segal committed
395
396
397
398
                boxes, is_empty = get_mask_aabb(bounds)
                if is_empty[0]:
                    # Use the minimum possible size for efficiency reasons. (Since the mask is all-0, this becomes a noop anyway)
                    modified['area'] = (8, 8, 0, 0)
Jacob Segal's avatar
Jacob Segal committed
399
                else:
Jacob Segal's avatar
Jacob Segal committed
400
                    box = boxes[0]
Jacob Segal's avatar
Jacob Segal committed
401
                    H, W, Y, X = (box[3] - box[1] + 1, box[2] - box[0] + 1, box[1], box[0])
402
403
                    H = max(8, H)
                    W = max(8, W)
Jacob Segal's avatar
Jacob Segal committed
404
405
                    area = (int(H), int(W), int(Y), int(X))
                    modified['area'] = area
Jacob Segal's avatar
Jacob Segal committed
406
407

            modified['mask'] = mask
408
            conditions[i] = modified
Jacob Segal's avatar
Jacob Segal committed
409

410
411
412
413
414
def resolve_areas_and_cond_masks(conditions, h, w, device):
    logging.warning("WARNING: The comfy.samplers.resolve_areas_and_cond_masks function is deprecated please use the resolve_areas_and_cond_masks_multidim one instead.")
    return resolve_areas_and_cond_masks_multidim(conditions, [h, w], device)

def create_cond_with_same_area_if_none(conds, c): #TODO: handle dim != 2
415
    if 'area' not in c:
comfyanonymous's avatar
comfyanonymous committed
416
417
        return

418
    c_area = c['area']
comfyanonymous's avatar
comfyanonymous committed
419
420
    smallest = None
    for x in conds:
421
422
        if 'area' in x:
            a = x['area']
comfyanonymous's avatar
comfyanonymous committed
423
424
425
426
427
            if c_area[2] >= a[2] and c_area[3] >= a[3]:
                if a[0] + a[2] >= c_area[0] + c_area[2]:
                    if a[1] + a[3] >= c_area[1] + c_area[3]:
                        if smallest is None:
                            smallest = x
428
                        elif 'area' not in smallest:
comfyanonymous's avatar
comfyanonymous committed
429
430
                            smallest = x
                        else:
431
                            if smallest['area'][0] * smallest['area'][1] > a[0] * a[1]:
comfyanonymous's avatar
comfyanonymous committed
432
433
434
435
436
437
                                smallest = x
        else:
            if smallest is None:
                smallest = x
    if smallest is None:
        return
438
439
    if 'area' in smallest:
        if smallest['area'] == c_area:
comfyanonymous's avatar
comfyanonymous committed
440
            return
441
442
443
444

    out = c.copy()
    out['model_conds'] = smallest['model_conds'].copy() #TODO: which fields should be copied?
    conds += [out]
comfyanonymous's avatar
comfyanonymous committed
445

446
def calculate_start_end_timesteps(model, conds):
447
    s = model.model_sampling
448
449
450
451
452
    for t in range(len(conds)):
        x = conds[t]

        timestep_start = None
        timestep_end = None
453
        if 'start_percent' in x:
454
            timestep_start = s.percent_to_sigma(x['start_percent'])
455
        if 'end_percent' in x:
456
            timestep_end = s.percent_to_sigma(x['end_percent'])
457
458

        if (timestep_start is not None) or (timestep_end is not None):
459
            n = x.copy()
460
461
462
463
            if (timestep_start is not None):
                n['timestep_start'] = timestep_start
            if (timestep_end is not None):
                n['timestep_end'] = timestep_end
464
            conds[t] = n
465

466
def pre_run_control(model, conds):
467
    s = model.model_sampling
468
469
470
471
472
    for t in range(len(conds)):
        x = conds[t]

        timestep_start = None
        timestep_end = None
473
        percent_to_timestep_function = lambda a: s.percent_to_sigma(a)
474
        if 'control' in x:
475
            x['control'].pre_run(model, percent_to_timestep_function)
476

477
def apply_empty_x_to_equal_area(conds, uncond, name, uncond_fill_func):
comfyanonymous's avatar
comfyanonymous committed
478
479
480
481
482
483
    cond_cnets = []
    cond_other = []
    uncond_cnets = []
    uncond_other = []
    for t in range(len(conds)):
        x = conds[t]
484
485
486
        if 'area' not in x:
            if name in x and x[name] is not None:
                cond_cnets.append(x[name])
comfyanonymous's avatar
comfyanonymous committed
487
488
489
490
            else:
                cond_other.append((x, t))
    for t in range(len(uncond)):
        x = uncond[t]
491
492
493
        if 'area' not in x:
            if name in x and x[name] is not None:
                uncond_cnets.append(x[name])
comfyanonymous's avatar
comfyanonymous committed
494
495
496
497
498
499
500
501
502
            else:
                uncond_other.append((x, t))

    if len(uncond_cnets) > 0:
        return

    for x in range(len(cond_cnets)):
        temp = uncond_other[x % len(uncond_other)]
        o = temp[0]
503
504
        if name in o and o[name] is not None:
            n = o.copy()
505
            n[name] = uncond_fill_func(cond_cnets, x)
506
            uncond += [n]
comfyanonymous's avatar
comfyanonymous committed
507
        else:
508
            n = o.copy()
509
            n[name] = uncond_fill_func(cond_cnets, x)
510
            uncond[temp[1]] = n
511

512
def encode_model_conds(model_function, conds, noise, device, prompt_type, **kwargs):
513
514
    for t in range(len(conds)):
        x = conds[t]
515
        params = x.copy()
516
        params["device"] = device
517
        params["noise"] = noise
518
519
520
521
        default_width = None
        if len(noise.shape) >= 4: #TODO: 8 multiple should be set by the model
            default_width = noise.shape[3] * 8
        params["width"] = params.get("width", default_width)
522
523
        params["height"] = params.get("height", noise.shape[2] * 8)
        params["prompt_type"] = params.get("prompt_type", prompt_type)
524
525
526
527
528
        for k in kwargs:
            if k not in params:
                params[k] = kwargs[k]

        out = model_function(**params)
529
530
531
532
533
534
        x = x.copy()
        model_conds = x['model_conds'].copy()
        for k in out:
            model_conds[k] = out[k]
        x['model_conds'] = model_conds
        conds[t] = x
535
    return conds
536

comfyanonymous's avatar
comfyanonymous committed
537
538
539
540
541
class Sampler:
    def sample(self):
        pass

    def max_denoise(self, model_wrap, sigmas):
comfyanonymous's avatar
comfyanonymous committed
542
543
544
        max_sigma = float(model_wrap.inner_model.model_sampling.sigma_max)
        sigma = float(sigmas[0])
        return math.isclose(max_sigma, sigma, rel_tol=1e-05) or sigma > max_sigma
comfyanonymous's avatar
comfyanonymous committed
545

546
KSAMPLER_NAMES = ["euler", "euler_cfg_pp", "euler_ancestral", "euler_ancestral_cfg_pp", "heun", "heunpp2","dpm_2", "dpm_2_ancestral",
comfyanonymous's avatar
comfyanonymous committed
547
                  "lms", "dpm_fast", "dpm_adaptive", "dpmpp_2s_ancestral", "dpmpp_sde", "dpmpp_sde_gpu",
comfyanonymous's avatar
comfyanonymous committed
548
                  "dpmpp_2m", "dpmpp_2m_sde", "dpmpp_2m_sde_gpu", "dpmpp_3m_sde", "dpmpp_3m_sde_gpu", "ddpm", "lcm",
comfyanonymous's avatar
comfyanonymous committed
549
                  "ipndm", "ipndm_v", "deis"]
comfyanonymous's avatar
comfyanonymous committed
550

551
552
553
554
555
class KSAMPLER(Sampler):
    def __init__(self, sampler_function, extra_options={}, inpaint_options={}):
        self.sampler_function = sampler_function
        self.extra_options = extra_options
        self.inpaint_options = inpaint_options
comfyanonymous's avatar
comfyanonymous committed
556

557
558
    def sample(self, model_wrap, sigmas, extra_args, callback, noise, latent_image=None, denoise_mask=None, disable_pbar=False):
        extra_args["denoise_mask"] = denoise_mask
559
        model_k = KSamplerX0Inpaint(model_wrap, sigmas)
560
561
562
563
564
565
        model_k.latent_image = latent_image
        if self.inpaint_options.get("random", False): #TODO: Should this be the default?
            generator = torch.manual_seed(extra_args.get("seed", 41) + 1)
            model_k.noise = torch.randn(noise.shape, generator=generator, device="cpu").to(noise.dtype).to(noise.device)
        else:
            model_k.noise = noise
comfyanonymous's avatar
comfyanonymous committed
566

567
        noise = model_wrap.inner_model.model_sampling.noise_scaling(sigmas[0], noise, latent_image, self.max_denoise(model_wrap, sigmas))
568
569
570
571
572
573
574

        k_callback = None
        total_steps = len(sigmas) - 1
        if callback is not None:
            k_callback = lambda x: callback(x["i"], x["denoised"], x["x"], total_steps)

        samples = self.sampler_function(model_k, noise, sigmas, extra_args=extra_args, callback=k_callback, disable=disable_pbar, **self.extra_options)
575
        samples = model_wrap.inner_model.model_sampling.inverse_noise_scaling(sigmas[-1], samples)
576
577
578
579
580
581
        return samples


def ksampler(sampler_name, extra_options={}, inpaint_options={}):
    if sampler_name == "dpm_fast":
        def dpm_fast_function(model, noise, sigmas, extra_args, callback, disable):
582
583
584
            if len(sigmas) <= 1:
                return noise

comfyanonymous's avatar
comfyanonymous committed
585
586
587
            sigma_min = sigmas[-1]
            if sigma_min == 0:
                sigma_min = sigmas[-2]
588
589
590
591
            total_steps = len(sigmas) - 1
            return k_diffusion_sampling.sample_dpm_fast(model, noise, sigma_min, sigmas[0], total_steps, extra_args=extra_args, callback=callback, disable=disable)
        sampler_function = dpm_fast_function
    elif sampler_name == "dpm_adaptive":
592
        def dpm_adaptive_function(model, noise, sigmas, extra_args, callback, disable, **extra_options):
593
594
595
            if len(sigmas) <= 1:
                return noise

596
597
598
            sigma_min = sigmas[-1]
            if sigma_min == 0:
                sigma_min = sigmas[-2]
599
            return k_diffusion_sampling.sample_dpm_adaptive(model, noise, sigma_min, sigmas[0], extra_args=extra_args, callback=callback, disable=disable, **extra_options)
600
601
602
        sampler_function = dpm_adaptive_function
    else:
        sampler_function = getattr(k_diffusion_sampling, "sample_{}".format(sampler_name))
comfyanonymous's avatar
comfyanonymous committed
603

604
    return KSAMPLER(sampler_function, extra_options, inpaint_options)
comfyanonymous's avatar
comfyanonymous committed
605
606


607
608
609
def process_conds(model, noise, conds, device, latent_image=None, denoise_mask=None, seed=None):
    for k in conds:
        conds[k] = conds[k][:]
610
        resolve_areas_and_cond_masks_multidim(conds[k], noise.shape[2:], device)
comfyanonymous's avatar
comfyanonymous committed
611

612
613
    for k in conds:
        calculate_start_end_timesteps(model, conds[k])
comfyanonymous's avatar
comfyanonymous committed
614

615
616
617
    if hasattr(model, 'extra_conds'):
        for k in conds:
            conds[k] = encode_model_conds(model.extra_conds, conds[k], noise, device, k, latent_image=latent_image, denoise_mask=denoise_mask, seed=seed)
comfyanonymous's avatar
comfyanonymous committed
618

619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
    #make sure each cond area has an opposite one with the same area
    for k in conds:
        for c in conds[k]:
            for kk in conds:
                if k != kk:
                    create_cond_with_same_area_if_none(conds[kk], c)

    for k in conds:
        pre_run_control(model, conds[k])

    if "positive" in conds:
        positive = conds["positive"]
        for k in conds:
            if k != "positive":
                apply_empty_x_to_equal_area(list(filter(lambda c: c.get('control_apply_to_uncond', False) == True, positive)), conds[k], 'control', lambda cond_cnets, x: cond_cnets[x])
                apply_empty_x_to_equal_area(positive, conds[k], 'gligen', lambda cond_cnets, x: cond_cnets[x])
comfyanonymous's avatar
comfyanonymous committed
635

636
637
    return conds

638
639
640
641
642
643
644
class CFGGuider:
    def __init__(self, model_patcher):
        self.model_patcher = model_patcher
        self.model_options = model_patcher.model_options
        self.original_conds = {}
        self.cfg = 1.0

comfyanonymous's avatar
comfyanonymous committed
645
646
    def set_conds(self, positive, negative):
        self.inner_set_conds({"positive": positive, "negative": negative})
647
648
649
650

    def set_cfg(self, cfg):
        self.cfg = cfg

comfyanonymous's avatar
comfyanonymous committed
651
652
653
654
    def inner_set_conds(self, conds):
        for k in conds:
            self.original_conds[k] = comfy.sampler_helpers.convert_cond(conds[k])

655
656
657
658
659
660
661
662
663
    def __call__(self, *args, **kwargs):
        return self.predict_noise(*args, **kwargs)

    def predict_noise(self, x, timestep, model_options={}, seed=None):
        return sampling_function(self.inner_model, x, timestep, self.conds.get("negative", None), self.conds.get("positive", None), self.cfg, model_options=model_options, seed=seed)

    def inner_sample(self, noise, latent_image, device, sampler, sigmas, denoise_mask, callback, disable_pbar, seed):
        if latent_image is not None and torch.count_nonzero(latent_image) > 0: #Don't shift the empty latent image.
            latent_image = self.inner_model.process_latent_in(latent_image)
664

665
666
667
668
669
670
671
672
        self.conds = process_conds(self.inner_model, noise, self.conds, device, latent_image, denoise_mask, seed)

        extra_args = {"model_options": self.model_options, "seed":seed}

        samples = sampler.sample(self, sigmas, extra_args, callback, noise, latent_image, denoise_mask, disable_pbar)
        return self.inner_model.process_latent_out(samples.to(torch.float32))

    def sample(self, noise, latent_image, sampler, sigmas, denoise_mask=None, callback=None, disable_pbar=False, seed=None):
comfyanonymous's avatar
comfyanonymous committed
673
674
675
        if sigmas.shape[-1] == 0:
            return latent_image

676
677
678
679
680
681
682
683
684
        self.conds = {}
        for k in self.original_conds:
            self.conds[k] = list(map(lambda a: a.copy(), self.original_conds[k]))

        self.inner_model, self.conds, self.loaded_models = comfy.sampler_helpers.prepare_sampling(self.model_patcher, noise.shape, self.conds)
        device = self.model_patcher.load_device

        if denoise_mask is not None:
            denoise_mask = comfy.sampler_helpers.prepare_mask(denoise_mask, noise.shape, device)
685

686
687
688
        noise = noise.to(device)
        latent_image = latent_image.to(device)
        sigmas = sigmas.to(device)
689

690
        output = self.inner_sample(noise, latent_image, device, sampler, sigmas, denoise_mask, callback, disable_pbar, seed)
comfyanonymous's avatar
comfyanonymous committed
691

692
693
694
695
696
        comfy.sampler_helpers.cleanup_models(self.conds, self.loaded_models)
        del self.inner_model
        del self.conds
        del self.loaded_models
        return output
comfyanonymous's avatar
comfyanonymous committed
697
698


699
def sample(model, noise, positive, negative, cfg, device, sampler, sigmas, model_options={}, latent_image=None, denoise_mask=None, callback=None, disable_pbar=False, seed=None):
700
    cfg_guider = CFGGuider(model)
comfyanonymous's avatar
comfyanonymous committed
701
    cfg_guider.set_conds(positive, negative)
702
703
    cfg_guider.set_cfg(cfg)
    return cfg_guider.sample(noise, latent_image, sampler, sigmas, denoise_mask, callback, disable_pbar, seed)
comfyanonymous's avatar
comfyanonymous committed
704
705


comfyanonymous's avatar
comfyanonymous committed
706
707
708
SCHEDULER_NAMES = ["normal", "karras", "exponential", "sgm_uniform", "simple", "ddim_uniform"]
SAMPLER_NAMES = KSAMPLER_NAMES + ["ddim", "uni_pc", "uni_pc_bh2"]

709
def calculate_sigmas(model_sampling, scheduler_name, steps):
comfyanonymous's avatar
comfyanonymous committed
710
    if scheduler_name == "karras":
711
        sigmas = k_diffusion_sampling.get_sigmas_karras(n=steps, sigma_min=float(model_sampling.sigma_min), sigma_max=float(model_sampling.sigma_max))
comfyanonymous's avatar
comfyanonymous committed
712
    elif scheduler_name == "exponential":
713
        sigmas = k_diffusion_sampling.get_sigmas_exponential(n=steps, sigma_min=float(model_sampling.sigma_min), sigma_max=float(model_sampling.sigma_max))
comfyanonymous's avatar
comfyanonymous committed
714
    elif scheduler_name == "normal":
715
        sigmas = normal_scheduler(model_sampling, steps)
comfyanonymous's avatar
comfyanonymous committed
716
    elif scheduler_name == "simple":
717
        sigmas = simple_scheduler(model_sampling, steps)
comfyanonymous's avatar
comfyanonymous committed
718
    elif scheduler_name == "ddim_uniform":
719
        sigmas = ddim_scheduler(model_sampling, steps)
comfyanonymous's avatar
comfyanonymous committed
720
    elif scheduler_name == "sgm_uniform":
721
        sigmas = normal_scheduler(model_sampling, steps, sgm=True)
comfyanonymous's avatar
comfyanonymous committed
722
    else:
723
        logging.error("error invalid scheduler {}".format(scheduler_name))
comfyanonymous's avatar
comfyanonymous committed
724
725
    return sigmas

726
def sampler_object(name):
727
    if name == "uni_pc":
comfyanonymous's avatar
comfyanonymous committed
728
        sampler = KSAMPLER(uni_pc.sample_unipc)
729
    elif name == "uni_pc_bh2":
comfyanonymous's avatar
comfyanonymous committed
730
        sampler = KSAMPLER(uni_pc.sample_unipc_bh2)
731
    elif name == "ddim":
732
        sampler = ksampler("euler", inpaint_options={"random": True})
733
734
735
736
    else:
        sampler = ksampler(name)
    return sampler

comfyanonymous's avatar
comfyanonymous committed
737
class KSampler:
comfyanonymous's avatar
comfyanonymous committed
738
739
    SCHEDULERS = SCHEDULER_NAMES
    SAMPLERS = SAMPLER_NAMES
740
    DISCARD_PENULTIMATE_SIGMA_SAMPLERS = set(('dpm_2', 'dpm_2_ancestral', 'uni_pc', 'uni_pc_bh2'))
comfyanonymous's avatar
comfyanonymous committed
741

742
    def __init__(self, model, steps, device, sampler=None, scheduler=None, denoise=None, model_options={}):
comfyanonymous's avatar
comfyanonymous committed
743
744
745
746
747
748
749
750
751
        self.model = model
        self.device = device
        if scheduler not in self.SCHEDULERS:
            scheduler = self.SCHEDULERS[0]
        if sampler not in self.SAMPLERS:
            sampler = self.SAMPLERS[0]
        self.scheduler = scheduler
        self.sampler = sampler
        self.set_steps(steps, denoise)
752
        self.denoise = denoise
753
        self.model_options = model_options
comfyanonymous's avatar
comfyanonymous committed
754

comfyanonymous's avatar
comfyanonymous committed
755
756
757
758
    def calculate_sigmas(self, steps):
        sigmas = None

        discard_penultimate_sigma = False
759
        if self.sampler in self.DISCARD_PENULTIMATE_SIGMA_SAMPLERS:
comfyanonymous's avatar
comfyanonymous committed
760
761
762
            steps += 1
            discard_penultimate_sigma = True

763
        sigmas = calculate_sigmas(self.model.get_model_object("model_sampling"), self.scheduler, steps)
comfyanonymous's avatar
comfyanonymous committed
764
765
766
767
768

        if discard_penultimate_sigma:
            sigmas = torch.cat([sigmas[:-2], sigmas[-1:]])
        return sigmas

comfyanonymous's avatar
comfyanonymous committed
769
770
    def set_steps(self, steps, denoise=None):
        self.steps = steps
771
        if denoise is None or denoise > 0.9999:
comfyanonymous's avatar
comfyanonymous committed
772
            self.sigmas = self.calculate_sigmas(steps).to(self.device)
comfyanonymous's avatar
comfyanonymous committed
773
        else:
comfyanonymous's avatar
comfyanonymous committed
774
775
776
777
778
779
            if denoise <= 0.0:
                self.sigmas = torch.FloatTensor([])
            else:
                new_steps = int(steps/denoise)
                sigmas = self.calculate_sigmas(new_steps).to(self.device)
                self.sigmas = sigmas[-(steps + 1):]
comfyanonymous's avatar
comfyanonymous committed
780

781
    def sample(self, noise, positive, negative, cfg, latent_image=None, start_step=None, last_step=None, force_full_denoise=False, denoise_mask=None, sigmas=None, callback=None, disable_pbar=False, seed=None):
782
783
        if sigmas is None:
            sigmas = self.sigmas
comfyanonymous's avatar
comfyanonymous committed
784

comfyanonymous's avatar
comfyanonymous committed
785
        if last_step is not None and last_step < (len(sigmas) - 1):
comfyanonymous's avatar
comfyanonymous committed
786
            sigmas = sigmas[:last_step + 1]
comfyanonymous's avatar
comfyanonymous committed
787
788
789
            if force_full_denoise:
                sigmas[-1] = 0

comfyanonymous's avatar
comfyanonymous committed
790
        if start_step is not None:
comfyanonymous's avatar
comfyanonymous committed
791
792
793
794
795
796
797
            if start_step < (len(sigmas) - 1):
                sigmas = sigmas[start_step:]
            else:
                if latent_image is not None:
                    return latent_image
                else:
                    return torch.zeros_like(noise)
comfyanonymous's avatar
comfyanonymous committed
798

799
        sampler = sampler_object(self.sampler)
800

801
        return sample(self.model, noise, positive, negative, cfg, self.device, sampler, sigmas, self.model_options, latent_image=latent_image, denoise_mask=denoise_mask, callback=callback, disable_pbar=disable_pbar, seed=seed)