"PyTorch/NLP/FastPitch/fastpitch/attention.py" did not exist on "0e04b692e6f879d1641a890cb3b32913d9e341c8"
samplers.py 32.8 KB
Newer Older
1
2
from .k_diffusion import sampling as k_diffusion_sampling
from .k_diffusion import external as k_diffusion_external
3
from .extra_samplers import uni_pc
comfyanonymous's avatar
comfyanonymous committed
4
import torch
5
from comfy import model_management
comfyanonymous's avatar
comfyanonymous committed
6
7
from .ldm.models.diffusion.ddim import DDIMSampler
from .ldm.modules.diffusionmodules.util import make_ddim_timesteps
comfyanonymous's avatar
comfyanonymous committed
8
import math
9
from comfy import model_base
10
import comfy.utils
comfyanonymous's avatar
comfyanonymous committed
11
12
13

def lcm(a, b): #TODO: eventually replace by math.lcm (added in python3.9)
    return abs(a*b) // math.gcd(a, b)
comfyanonymous's avatar
comfyanonymous committed
14

comfyanonymous's avatar
comfyanonymous committed
15
16
#The main sampling function shared by all the samplers
#Returns predicted noise
17
def sampling_function(model_function, x, timestep, uncond, cond, cond_scale, cond_concat=None, model_options={}, seed=None):
comfyanonymous's avatar
comfyanonymous committed
18
        def get_area_and_mult(cond, x_in, cond_concat_in, timestep_in):
19
20
            area = (x_in.shape[2], x_in.shape[3], 0, 0)
            strength = 1.0
21
22
            if 'timestep_start' in cond[1]:
                timestep_start = cond[1]['timestep_start']
23
                if timestep_in[0] > timestep_start:
24
25
26
                    return None
            if 'timestep_end' in cond[1]:
                timestep_end = cond[1]['timestep_end']
27
                if timestep_in[0] < timestep_end:
28
                    return None
29
30
31
32
            if 'area' in cond[1]:
                area = cond[1]['area']
            if 'strength' in cond[1]:
                strength = cond[1]['strength']
33

34
            adm_cond = None
35
36
            if 'adm_encoded' in cond[1]:
                adm_cond = cond[1]['adm_encoded']
37

38
            input_x = x_in[:,:,area[2]:area[0] + area[2],area[3]:area[1] + area[3]]
Jacob Segal's avatar
Jacob Segal committed
39
40
41
            if 'mask' in cond[1]:
                # Scale the mask to the size of the input
                # The mask should have been resized as we began the sampling process
42
43
44
                mask_strength = 1.0
                if "mask_strength" in cond[1]:
                    mask_strength = cond[1]["mask_strength"]
Jacob Segal's avatar
Jacob Segal committed
45
46
47
                mask = cond[1]['mask']
                assert(mask.shape[1] == x_in.shape[2])
                assert(mask.shape[2] == x_in.shape[3])
48
                mask = mask[:,area[2]:area[0] + area[2],area[3]:area[1] + area[3]] * mask_strength
Jacob Segal's avatar
Jacob Segal committed
49
                mask = mask.unsqueeze(1).repeat(input_x.shape[0] // mask.shape[0], input_x.shape[1], 1, 1)
Jacob Segal's avatar
Jacob Segal committed
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
            else:
                mask = torch.ones_like(input_x)
            mult = mask * strength

            if 'mask' not in cond[1]:
                rr = 8
                if area[2] != 0:
                    for t in range(rr):
                        mult[:,:,t:1+t,:] *= ((1.0/rr) * (t + 1))
                if (area[0] + area[2]) < x_in.shape[2]:
                    for t in range(rr):
                        mult[:,:,area[0] - 1 - t:area[0] - t,:] *= ((1.0/rr) * (t + 1))
                if area[3] != 0:
                    for t in range(rr):
                        mult[:,:,:,t:1+t] *= ((1.0/rr) * (t + 1))
                if (area[1] + area[3]) < x_in.shape[3]:
                    for t in range(rr):
                        mult[:,:,:,area[1] - 1 - t:area[1] - t] *= ((1.0/rr) * (t + 1))

comfyanonymous's avatar
comfyanonymous committed
69
70
71
72
73
74
75
76
            conditionning = {}
            conditionning['c_crossattn'] = cond[0]
            if cond_concat_in is not None and len(cond_concat_in) > 0:
                cropped = []
                for x in cond_concat_in:
                    cr = x[:,:,area[2]:area[0] + area[2],area[3]:area[1] + area[3]]
                    cropped.append(cr)
                conditionning['c_concat'] = torch.cat(cropped, dim=1)
comfyanonymous's avatar
comfyanonymous committed
77

78
79
80
            if adm_cond is not None:
                conditionning['c_adm'] = adm_cond

comfyanonymous's avatar
comfyanonymous committed
81
82
83
            control = None
            if 'control' in cond[1]:
                control = cond[1]['control']
84
85
86
87
88
89
90
91

            patches = None
            if 'gligen' in cond[1]:
                gligen = cond[1]['gligen']
                patches = {}
                gligen_type = gligen[0]
                gligen_model = gligen[1]
                if gligen_type == "position":
comfyanonymous's avatar
comfyanonymous committed
92
                    gligen_patch = gligen_model.model.set_position(input_x.shape, gligen[2], input_x.device)
93
                else:
comfyanonymous's avatar
comfyanonymous committed
94
                    gligen_patch = gligen_model.model.set_empty(input_x.shape, input_x.device)
95
96
97
98

                patches['middle_patch'] = [gligen_patch]

            return (input_x, mult, conditionning, area, control, patches)
comfyanonymous's avatar
comfyanonymous committed
99
100

        def cond_equal_size(c1, c2):
comfyanonymous's avatar
comfyanonymous committed
101
102
            if c1 is c2:
                return True
comfyanonymous's avatar
comfyanonymous committed
103
104
105
            if c1.keys() != c2.keys():
                return False
            if 'c_crossattn' in c1:
comfyanonymous's avatar
comfyanonymous committed
106
107
108
109
110
111
112
113
114
115
                s1 = c1['c_crossattn'].shape
                s2 = c2['c_crossattn'].shape
                if s1 != s2:
                    if s1[0] != s2[0] or s1[2] != s2[2]: #these 2 cases should not happen
                        return False

                    mult_min = lcm(s1[1], s2[1])
                    diff = mult_min // min(s1[1], s2[1])
                    if diff > 4: #arbitrary limit on the padding because it's probably going to impact performance negatively if it's too much
                        return False
comfyanonymous's avatar
comfyanonymous committed
116
117
118
            if 'c_concat' in c1:
                if c1['c_concat'].shape != c2['c_concat'].shape:
                    return False
119
120
121
            if 'c_adm' in c1:
                if c1['c_adm'].shape != c2['c_adm'].shape:
                    return False
comfyanonymous's avatar
comfyanonymous committed
122
123
            return True

comfyanonymous's avatar
comfyanonymous committed
124
125
126
        def can_concat_cond(c1, c2):
            if c1[0].shape != c2[0].shape:
                return False
127
128

            #control
comfyanonymous's avatar
comfyanonymous committed
129
130
131
132
133
134
            if (c1[4] is None) != (c2[4] is None):
                return False
            if c1[4] is not None:
                if c1[4] is not c2[4]:
                    return False

135
136
137
138
139
140
141
            #patches
            if (c1[5] is None) != (c2[5] is None):
                return False
            if (c1[5] is not None):
                if c1[5] is not c2[5]:
                    return False

comfyanonymous's avatar
comfyanonymous committed
142
143
            return cond_equal_size(c1[2], c2[2])

comfyanonymous's avatar
comfyanonymous committed
144
145
146
        def cond_cat(c_list):
            c_crossattn = []
            c_concat = []
147
            c_adm = []
comfyanonymous's avatar
comfyanonymous committed
148
            crossattn_max_len = 0
comfyanonymous's avatar
comfyanonymous committed
149
150
            for x in c_list:
                if 'c_crossattn' in x:
comfyanonymous's avatar
comfyanonymous committed
151
152
153
154
155
156
                    c = x['c_crossattn']
                    if crossattn_max_len == 0:
                        crossattn_max_len = c.shape[1]
                    else:
                        crossattn_max_len = lcm(crossattn_max_len, c.shape[1])
                    c_crossattn.append(c)
comfyanonymous's avatar
comfyanonymous committed
157
158
                if 'c_concat' in x:
                    c_concat.append(x['c_concat'])
159
160
                if 'c_adm' in x:
                    c_adm.append(x['c_adm'])
comfyanonymous's avatar
comfyanonymous committed
161
            out = {}
comfyanonymous's avatar
comfyanonymous committed
162
163
164
165
166
167
168
            c_crossattn_out = []
            for c in c_crossattn:
                if c.shape[1] < crossattn_max_len:
                    c = c.repeat(1, crossattn_max_len // c.shape[1], 1) #padding with repeat doesn't change result
                c_crossattn_out.append(c)

            if len(c_crossattn_out) > 0:
169
                out['c_crossattn'] = torch.cat(c_crossattn_out)
comfyanonymous's avatar
comfyanonymous committed
170
            if len(c_concat) > 0:
171
                out['c_concat'] = torch.cat(c_concat)
172
173
            if len(c_adm) > 0:
                out['c_adm'] = torch.cat(c_adm)
comfyanonymous's avatar
comfyanonymous committed
174
175
            return out

176
        def calc_cond_uncond_batch(model_function, cond, uncond, x_in, timestep, max_total_area, cond_concat_in, model_options):
comfyanonymous's avatar
comfyanonymous committed
177
178
            out_cond = torch.zeros_like(x_in)
            out_count = torch.ones_like(x_in)/100000.0
179
180
181
182
183
184

            out_uncond = torch.zeros_like(x_in)
            out_uncond_count = torch.ones_like(x_in)/100000.0

            COND = 0
            UNCOND = 1
comfyanonymous's avatar
comfyanonymous committed
185

186
            to_run = []
comfyanonymous's avatar
comfyanonymous committed
187
            for x in cond:
comfyanonymous's avatar
comfyanonymous committed
188
                p = get_area_and_mult(x, x_in, cond_concat_in, timestep)
189
                if p is None:
comfyanonymous's avatar
comfyanonymous committed
190
                    continue
191
192

                to_run += [(p, COND)]
193
194
195
196
197
            if uncond is not None:
                for x in uncond:
                    p = get_area_and_mult(x, x_in, cond_concat_in, timestep)
                    if p is None:
                        continue
198

199
                    to_run += [(p, UNCOND)]
200
201
202
203

            while len(to_run) > 0:
                first = to_run[0]
                first_shape = first[0][0].shape
204
                to_batch_temp = []
205
                for x in range(len(to_run)):
comfyanonymous's avatar
comfyanonymous committed
206
207
                    if can_concat_cond(to_run[x][0], first[0]):
                        to_batch_temp += [x]
208
209
210
211
212
213
214
215
216

                to_batch_temp.reverse()
                to_batch = to_batch_temp[:1]

                for i in range(1, len(to_batch_temp) + 1):
                    batch_amount = to_batch_temp[:len(to_batch_temp)//i]
                    if (len(batch_amount) * first_shape[0] * first_shape[2] * first_shape[3] < max_total_area):
                        to_batch = batch_amount
                        break
217
218
219
220
221
222

                input_x = []
                mult = []
                c = []
                cond_or_uncond = []
                area = []
comfyanonymous's avatar
comfyanonymous committed
223
                control = None
224
                patches = None
225
226
227
228
229
230
231
232
                for x in to_batch:
                    o = to_run.pop(x)
                    p = o[0]
                    input_x += [p[0]]
                    mult += [p[1]]
                    c += [p[2]]
                    area += [p[3]]
                    cond_or_uncond += [o[1]]
comfyanonymous's avatar
comfyanonymous committed
233
                    control = p[4]
234
                    patches = p[5]
235
236
237

                batch_chunks = len(cond_or_uncond)
                input_x = torch.cat(input_x)
comfyanonymous's avatar
comfyanonymous committed
238
                c = cond_cat(c)
comfyanonymous's avatar
comfyanonymous committed
239
                timestep_ = torch.cat([timestep] * batch_chunks)
240

comfyanonymous's avatar
comfyanonymous committed
241
                if control is not None:
242
                    c['control'] = control.get_control(input_x, timestep_, c, len(cond_or_uncond))
comfyanonymous's avatar
comfyanonymous committed
243

244
                transformer_options = {}
245
                if 'transformer_options' in model_options:
246
247
248
                    transformer_options = model_options['transformer_options'].copy()

                if patches is not None:
249
250
251
252
253
254
255
256
257
                    if "patches" in transformer_options:
                        cur_patches = transformer_options["patches"].copy()
                        for p in patches:
                            if p in cur_patches:
                                cur_patches[p] = cur_patches[p] + patches[p]
                            else:
                                cur_patches[p] = patches[p]
                    else:
                        transformer_options["patches"] = patches
258

259
                transformer_options["cond_or_uncond"] = cond_or_uncond[:]
260
                c['transformer_options'] = transformer_options
261

262
263
264
265
                if 'model_function_wrapper' in model_options:
                    output = model_options['model_function_wrapper'](model_function, {"input": input_x, "timestep": timestep_, "c": c, "cond_or_uncond": cond_or_uncond}).chunk(batch_chunks)
                else:
                    output = model_function(input_x, timestep_, **c).chunk(batch_chunks)
comfyanonymous's avatar
comfyanonymous committed
266
                del input_x
267
268
269
270
271
272
273
274

                for o in range(batch_chunks):
                    if cond_or_uncond[o] == COND:
                        out_cond[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += output[o] * mult[o]
                        out_count[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += mult[o]
                    else:
                        out_uncond[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += output[o] * mult[o]
                        out_uncond_count[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += mult[o]
comfyanonymous's avatar
comfyanonymous committed
275
276
277
278
                del mult

            out_cond /= out_count
            del out_count
279
280
281
282
            out_uncond /= out_uncond_count
            del out_uncond_count

            return out_cond, out_uncond
comfyanonymous's avatar
comfyanonymous committed
283
284


285
        max_total_area = model_management.maximum_batch_area()
286
287
288
        if math.isclose(cond_scale, 1.0):
            uncond = None

289
        cond, uncond = calc_cond_uncond_batch(model_function, cond, uncond, x, timestep, max_total_area, cond_concat, model_options)
290
        if "sampler_cfg_function" in model_options:
291
292
            args = {"cond": cond, "uncond": uncond, "cond_scale": cond_scale, "timestep": timestep}
            return model_options["sampler_cfg_function"](args)
293
294
        else:
            return uncond + (cond - uncond) * cond_scale
comfyanonymous's avatar
comfyanonymous committed
295

comfyanonymous's avatar
comfyanonymous committed
296
297
298
299
300
301
302
303
304
305
306
307
308
309

class CompVisVDenoiser(k_diffusion_external.DiscreteVDDPMDenoiser):
    def __init__(self, model, quantize=False, device='cpu'):
        super().__init__(model, model.alphas_cumprod, quantize=quantize)

    def get_v(self, x, t, cond, **kwargs):
        return self.inner_model.apply_model(x, t, cond, **kwargs)


class CFGNoisePredictor(torch.nn.Module):
    def __init__(self, model):
        super().__init__()
        self.inner_model = model
        self.alphas_cumprod = model.alphas_cumprod
310
311
    def apply_model(self, x, timestep, cond, uncond, cond_scale, cond_concat=None, model_options={}, seed=None):
        out = sampling_function(self.inner_model.apply_model, x, timestep, uncond, cond, cond_scale, cond_concat, model_options=model_options, seed=seed)
comfyanonymous's avatar
comfyanonymous committed
312
313
314
315
        return out


class KSamplerX0Inpaint(torch.nn.Module):
316
317
318
    def __init__(self, model):
        super().__init__()
        self.inner_model = model
319
    def forward(self, x, sigma, uncond, cond, cond_scale, denoise_mask, cond_concat=None, model_options={}, seed=None):
320
321
        if denoise_mask is not None:
            latent_mask = 1. - denoise_mask
322
            x = x * denoise_mask + (self.latent_image + self.noise * sigma.reshape([sigma.shape[0]] + [1] * (len(self.noise.shape) - 1))) * latent_mask
323
        out = self.inner_model(x, sigma, cond=cond, uncond=uncond, cond_scale=cond_scale, cond_concat=cond_concat, model_options=model_options, seed=seed)
324
325
326
327
328
329
        if denoise_mask is not None:
            out *= denoise_mask

        if denoise_mask is not None:
            out += self.latent_image * latent_mask
        return out
330

comfyanonymous's avatar
comfyanonymous committed
331
332
333
334
335
336
337
338
def simple_scheduler(model, steps):
    sigs = []
    ss = len(model.sigmas) / steps
    for x in range(steps):
        sigs += [float(model.sigmas[-(1 + int(x * ss))])]
    sigs += [0.0]
    return torch.FloatTensor(sigs)

comfyanonymous's avatar
comfyanonymous committed
339
340
341
342
def ddim_scheduler(model, steps):
    sigs = []
    ddim_timesteps = make_ddim_timesteps(ddim_discr_method="uniform", num_ddim_timesteps=steps, num_ddpm_timesteps=model.inner_model.inner_model.num_timesteps, verbose=False)
    for x in range(len(ddim_timesteps) - 1, -1, -1):
343
344
345
346
        ts = ddim_timesteps[x]
        if ts > 999:
            ts = 999
        sigs.append(model.t_to_sigma(torch.tensor(ts)))
comfyanonymous's avatar
comfyanonymous committed
347
348
349
    sigs += [0.0]
    return torch.FloatTensor(sigs)

350
351
352
353
354
355
356
357
358
359
360
def sgm_scheduler(model, steps):
    sigs = []
    timesteps = torch.linspace(model.inner_model.inner_model.num_timesteps - 1, 0, steps + 1)[:-1].type(torch.int)
    for x in range(len(timesteps)):
        ts = timesteps[x]
        if ts > 999:
            ts = 999
        sigs.append(model.t_to_sigma(torch.tensor(ts)))
    sigs += [0.0]
    return torch.FloatTensor(sigs)

comfyanonymous's avatar
comfyanonymous committed
361
362
363
364
365
366
367
368
369
def blank_inpaint_image_like(latent_image):
    blank_image = torch.ones_like(latent_image)
    # these are the values for "zero" in pixel space translated to latent space
    blank_image[:,0] *= 0.8223
    blank_image[:,1] *= -0.6876
    blank_image[:,2] *= 0.6364
    blank_image[:,3] *= 0.1380
    return blank_image

Jacob Segal's avatar
Jacob Segal committed
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
def get_mask_aabb(masks):
    if masks.numel() == 0:
        return torch.zeros((0, 4), device=masks.device, dtype=torch.int)

    b = masks.shape[0]

    bounding_boxes = torch.zeros((b, 4), device=masks.device, dtype=torch.int)
    is_empty = torch.zeros((b), device=masks.device, dtype=torch.bool)
    for i in range(b):
        mask = masks[i]
        if mask.numel() == 0:
            continue
        if torch.max(mask != 0) == False:
            is_empty[i] = True
            continue
        y, x = torch.where(mask)
        bounding_boxes[i, 0] = torch.min(x)
        bounding_boxes[i, 1] = torch.min(y)
        bounding_boxes[i, 2] = torch.max(x)
        bounding_boxes[i, 3] = torch.max(y)

    return bounding_boxes, is_empty

393
def resolve_areas_and_cond_masks(conditions, h, w, device):
Jacob Segal's avatar
Jacob Segal committed
394
395
396
397
    # We need to decide on an area outside the sampling loop in order to properly generate opposite areas of equal sizes.
    # While we're doing this, we can also resolve the mask device and scaling for performance reasons
    for i in range(len(conditions)):
        c = conditions[i]
398
399
400
401
402
403
404
405
406
        if 'area' in c[1]:
            area = c[1]['area']
            if area[0] == "percentage":
                modified = c[1].copy()
                area = (max(1, round(area[1] * h)), max(1, round(area[2] * w)), round(area[3] * h), round(area[4] * w))
                modified['area'] = area
                c = [c[0], modified]
                conditions[i] = c

Jacob Segal's avatar
Jacob Segal committed
407
408
409
410
411
412
        if 'mask' in c[1]:
            mask = c[1]['mask']
            mask = mask.to(device=device)
            modified = c[1].copy()
            if len(mask.shape) == 2:
                mask = mask.unsqueeze(0)
mara's avatar
mara committed
413
            if mask.shape[1] != h or mask.shape[2] != w:
Jacob Segal's avatar
Jacob Segal committed
414
415
                mask = torch.nn.functional.interpolate(mask.unsqueeze(1), size=(h, w), mode='bilinear', align_corners=False).squeeze(1)

Jacob Segal's avatar
Jacob Segal committed
416
            if modified.get("set_area_to_bounds", False):
Jacob Segal's avatar
Jacob Segal committed
417
                bounds = torch.max(torch.abs(mask),dim=0).values.unsqueeze(0)
Jacob Segal's avatar
Jacob Segal committed
418
419
420
421
                boxes, is_empty = get_mask_aabb(bounds)
                if is_empty[0]:
                    # Use the minimum possible size for efficiency reasons. (Since the mask is all-0, this becomes a noop anyway)
                    modified['area'] = (8, 8, 0, 0)
Jacob Segal's avatar
Jacob Segal committed
422
                else:
Jacob Segal's avatar
Jacob Segal committed
423
                    box = boxes[0]
Jacob Segal's avatar
Jacob Segal committed
424
                    H, W, Y, X = (box[3] - box[1] + 1, box[2] - box[0] + 1, box[1], box[0])
425
426
                    H = max(8, H)
                    W = max(8, W)
Jacob Segal's avatar
Jacob Segal committed
427
428
                    area = (int(H), int(W), int(Y), int(X))
                    modified['area'] = area
Jacob Segal's avatar
Jacob Segal committed
429
430
431
432

            modified['mask'] = mask
            conditions[i] = [c[0], modified]

comfyanonymous's avatar
comfyanonymous committed
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
def create_cond_with_same_area_if_none(conds, c):
    if 'area' not in c[1]:
        return

    c_area = c[1]['area']
    smallest = None
    for x in conds:
        if 'area' in x[1]:
            a = x[1]['area']
            if c_area[2] >= a[2] and c_area[3] >= a[3]:
                if a[0] + a[2] >= c_area[0] + c_area[2]:
                    if a[1] + a[3] >= c_area[1] + c_area[3]:
                        if smallest is None:
                            smallest = x
                        elif 'area' not in smallest[1]:
                            smallest = x
                        else:
                            if smallest[1]['area'][0] * smallest[1]['area'][1] > a[0] * a[1]:
                                smallest = x
        else:
            if smallest is None:
                smallest = x
    if smallest is None:
        return
    if 'area' in smallest[1]:
        if smallest[1]['area'] == c_area:
            return
    n = c[1].copy()
    conds += [[smallest[0], n]]
comfyanonymous's avatar
comfyanonymous committed
462

463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
def calculate_start_end_timesteps(model, conds):
    for t in range(len(conds)):
        x = conds[t]

        timestep_start = None
        timestep_end = None
        if 'start_percent' in x[1]:
            timestep_start = model.sigma_to_t(model.t_to_sigma(torch.tensor(x[1]['start_percent'] * 999.0)))
        if 'end_percent' in x[1]:
            timestep_end = model.sigma_to_t(model.t_to_sigma(torch.tensor(x[1]['end_percent'] * 999.0)))

        if (timestep_start is not None) or (timestep_end is not None):
            n = x[1].copy()
            if (timestep_start is not None):
                n['timestep_start'] = timestep_start
            if (timestep_end is not None):
                n['timestep_end'] = timestep_end
            conds[t] = [x[0], n]

482
483
484
485
486
487
488
489
def pre_run_control(model, conds):
    for t in range(len(conds)):
        x = conds[t]

        timestep_start = None
        timestep_end = None
        percent_to_timestep_function = lambda a: model.sigma_to_t(model.t_to_sigma(torch.tensor(a) * 999.0))
        if 'control' in x[1]:
comfyanonymous's avatar
comfyanonymous committed
490
            x[1]['control'].pre_run(model.inner_model.inner_model, percent_to_timestep_function)
491

492
def apply_empty_x_to_equal_area(conds, uncond, name, uncond_fill_func):
comfyanonymous's avatar
comfyanonymous committed
493
494
495
496
497
498
499
    cond_cnets = []
    cond_other = []
    uncond_cnets = []
    uncond_other = []
    for t in range(len(conds)):
        x = conds[t]
        if 'area' not in x[1]:
500
501
            if name in x[1] and x[1][name] is not None:
                cond_cnets.append(x[1][name])
comfyanonymous's avatar
comfyanonymous committed
502
503
504
505
506
            else:
                cond_other.append((x, t))
    for t in range(len(uncond)):
        x = uncond[t]
        if 'area' not in x[1]:
507
508
            if name in x[1] and x[1][name] is not None:
                uncond_cnets.append(x[1][name])
comfyanonymous's avatar
comfyanonymous committed
509
510
511
512
513
514
515
516
517
            else:
                uncond_other.append((x, t))

    if len(uncond_cnets) > 0:
        return

    for x in range(len(cond_cnets)):
        temp = uncond_other[x % len(uncond_other)]
        o = temp[0]
518
        if name in o[1] and o[1][name] is not None:
comfyanonymous's avatar
comfyanonymous committed
519
            n = o[1].copy()
520
            n[name] = uncond_fill_func(cond_cnets, x)
comfyanonymous's avatar
comfyanonymous committed
521
522
523
            uncond += [[o[0], n]]
        else:
            n = o[1].copy()
524
            n[name] = uncond_fill_func(cond_cnets, x)
comfyanonymous's avatar
comfyanonymous committed
525
526
            uncond[temp[1]] = [o[0], n]

527
def encode_adm(model, conds, batch_size, width, height, device, prompt_type):
528
529
    for t in range(len(conds)):
        x = conds[t]
comfyanonymous's avatar
comfyanonymous committed
530
        adm_out = None
531
532
        if 'adm' in x[1]:
            adm_out = x[1]["adm"]
533
        else:
534
            params = x[1].copy()
535
536
537
            params["width"] = params.get("width", width * 8)
            params["height"] = params.get("height", height * 8)
            params["prompt_type"] = params.get("prompt_type", prompt_type)
538
            adm_out = model.encode_adm(device=device, **params)
539

comfyanonymous's avatar
comfyanonymous committed
540
541
        if adm_out is not None:
            x[1] = x[1].copy()
542
            x[1]["adm_encoded"] = comfy.utils.repeat_to_batch_size(adm_out, batch_size).to(device)
543
544
545

    return conds

546

comfyanonymous's avatar
comfyanonymous committed
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
class Sampler:
    def sample(self):
        pass

    def max_denoise(self, model_wrap, sigmas):
        return math.isclose(float(model_wrap.sigma_max), float(sigmas[0]))

class DDIM(Sampler):
    def sample(self, model_wrap, sigmas, extra_args, callback, noise, latent_image=None, denoise_mask=None, disable_pbar=False):
        timesteps = []
        for s in range(sigmas.shape[0]):
            timesteps.insert(0, model_wrap.sigma_to_discrete_timestep(sigmas[s]))
        noise_mask = None
        if denoise_mask is not None:
            noise_mask = 1.0 - denoise_mask

        ddim_callback = None
        if callback is not None:
            total_steps = len(timesteps) - 1
            ddim_callback = lambda pred_x0, i: callback(i, pred_x0, None, total_steps)

        max_denoise = self.max_denoise(model_wrap, sigmas)

        ddim_sampler = DDIMSampler(model_wrap.inner_model.inner_model, device=noise.device)
        ddim_sampler.make_schedule_timesteps(ddim_timesteps=timesteps, verbose=False)
        z_enc = ddim_sampler.stochastic_encode(latent_image, torch.tensor([len(timesteps) - 1] * noise.shape[0]).to(noise.device), noise=noise, max_denoise=max_denoise)
        samples, _ = ddim_sampler.sample_custom(ddim_timesteps=timesteps,
                                                batch_size=noise.shape[0],
                                                shape=noise.shape[1:],
                                                verbose=False,
                                                eta=0.0,
                                                x_T=z_enc,
                                                x0=latent_image,
                                                img_callback=ddim_callback,
                                                denoise_function=model_wrap.predict_eps_discrete_timestep,
                                                extra_args=extra_args,
                                                mask=noise_mask,
                                                to_zero=sigmas[-1]==0,
                                                end_step=sigmas.shape[0] - 1,
                                                disable_pbar=disable_pbar)
        return samples

class UNIPC(Sampler):
    def sample(self, model_wrap, sigmas, extra_args, callback, noise, latent_image=None, denoise_mask=None, disable_pbar=False):
        return uni_pc.sample_unipc(model_wrap, noise, latent_image, sigmas, sampling_function=sampling_function, max_denoise=self.max_denoise(model_wrap, sigmas), extra_args=extra_args, noise_mask=denoise_mask, callback=callback, disable=disable_pbar)

class UNIPCBH2(Sampler):
    def sample(self, model_wrap, sigmas, extra_args, callback, noise, latent_image=None, denoise_mask=None, disable_pbar=False):
        return uni_pc.sample_unipc(model_wrap, noise, latent_image, sigmas, sampling_function=sampling_function, max_denoise=self.max_denoise(model_wrap, sigmas), extra_args=extra_args, noise_mask=denoise_mask, callback=callback, variant='bh2', disable=disable_pbar)

KSAMPLER_NAMES = ["euler", "euler_ancestral", "heun", "dpm_2", "dpm_2_ancestral",
                  "lms", "dpm_fast", "dpm_adaptive", "dpmpp_2s_ancestral", "dpmpp_sde", "dpmpp_sde_gpu",
                  "dpmpp_2m", "dpmpp_2m_sde", "dpmpp_2m_sde_gpu", "dpmpp_3m_sde", "dpmpp_3m_sde_gpu", "ddpm"]

def ksampler(sampler_name):
    class KSAMPLER(Sampler):
        def sample(self, model_wrap, sigmas, extra_args, callback, noise, latent_image=None, denoise_mask=None, disable_pbar=False):
            extra_args["denoise_mask"] = denoise_mask
            model_k = KSamplerX0Inpaint(model_wrap)
            model_k.latent_image = latent_image
            model_k.noise = noise

            if self.max_denoise(model_wrap, sigmas):
                noise = noise * torch.sqrt(1.0 + sigmas[0] ** 2.0)
            else:
                noise = noise * sigmas[0]

            k_callback = None
            total_steps = len(sigmas) - 1
            if callback is not None:
                k_callback = lambda x: callback(x["i"], x["denoised"], x["x"], total_steps)

            sigma_min = sigmas[-1]
            if sigma_min == 0:
                sigma_min = sigmas[-2]

            if latent_image is not None:
                noise += latent_image
            if sampler_name == "dpm_fast":
                samples = k_diffusion_sampling.sample_dpm_fast(model_k, noise, sigma_min, sigmas[0], total_steps, extra_args=extra_args, callback=k_callback, disable=disable_pbar)
            elif sampler_name == "dpm_adaptive":
                samples = k_diffusion_sampling.sample_dpm_adaptive(model_k, noise, sigma_min, sigmas[0], extra_args=extra_args, callback=k_callback, disable=disable_pbar)
            else:
                samples = getattr(k_diffusion_sampling, "sample_{}".format(sampler_name))(model_k, noise, sigmas, extra_args=extra_args, callback=k_callback, disable=disable_pbar)
            return samples
    return KSAMPLER


def sample(model, noise, positive, negative, cfg, device, sampler, sigmas, model_options={}, latent_image=None, denoise_mask=None, callback=None, disable_pbar=False, seed=None):
    positive = positive[:]
    negative = negative[:]

    resolve_areas_and_cond_masks(positive, noise.shape[2], noise.shape[3], device)
    resolve_areas_and_cond_masks(negative, noise.shape[2], noise.shape[3], device)

    model_denoise = CFGNoisePredictor(model)
    if model.model_type == model_base.ModelType.V_PREDICTION:
        model_wrap = CompVisVDenoiser(model_denoise, quantize=True)
    else:
        model_wrap = k_diffusion_external.CompVisDenoiser(model_denoise, quantize=True)

    calculate_start_end_timesteps(model_wrap, negative)
    calculate_start_end_timesteps(model_wrap, positive)

    #make sure each cond area has an opposite one with the same area
    for c in positive:
        create_cond_with_same_area_if_none(negative, c)
    for c in negative:
        create_cond_with_same_area_if_none(positive, c)

    pre_run_control(model_wrap, negative + positive)

    apply_empty_x_to_equal_area(list(filter(lambda c: c[1].get('control_apply_to_uncond', False) == True, positive)), negative, 'control', lambda cond_cnets, x: cond_cnets[x])
    apply_empty_x_to_equal_area(positive, negative, 'gligen', lambda cond_cnets, x: cond_cnets[x])

    if model.is_adm():
        positive = encode_adm(model, positive, noise.shape[0], noise.shape[3], noise.shape[2], device, "positive")
        negative = encode_adm(model, negative, noise.shape[0], noise.shape[3], noise.shape[2], device, "negative")

    if latent_image is not None:
        latent_image = model.process_latent_in(latent_image)

    extra_args = {"cond":positive, "uncond":negative, "cond_scale": cfg, "model_options": model_options, "seed":seed}

    cond_concat = None
    if hasattr(model, 'concat_keys'): #inpaint
        cond_concat = []
        for ck in model.concat_keys:
            if denoise_mask is not None:
                if ck == "mask":
                    cond_concat.append(denoise_mask[:,:1])
                elif ck == "masked_image":
                    cond_concat.append(latent_image) #NOTE: the latent_image should be masked by the mask in pixel space
            else:
                if ck == "mask":
                    cond_concat.append(torch.ones_like(noise)[:,:1])
                elif ck == "masked_image":
                    cond_concat.append(blank_inpaint_image_like(noise))
        extra_args["cond_concat"] = cond_concat

    samples = sampler.sample(model_wrap, sigmas, extra_args, callback, noise, latent_image, denoise_mask, disable_pbar)
    return model.process_latent_out(samples.to(torch.float32))

comfyanonymous's avatar
comfyanonymous committed
690
class KSampler:
691
    SCHEDULERS = ["normal", "karras", "exponential", "sgm_uniform", "simple", "ddim_uniform"]
comfyanonymous's avatar
comfyanonymous committed
692
    SAMPLERS = KSAMPLER_NAMES + ["ddim", "uni_pc", "uni_pc_bh2"]
comfyanonymous's avatar
comfyanonymous committed
693

694
    def __init__(self, model, steps, device, sampler=None, scheduler=None, denoise=None, model_options={}):
comfyanonymous's avatar
comfyanonymous committed
695
        self.model = model
comfyanonymous's avatar
comfyanonymous committed
696
        self.model_denoise = CFGNoisePredictor(self.model)
697
        if self.model.model_type == model_base.ModelType.V_PREDICTION:
comfyanonymous's avatar
comfyanonymous committed
698
            self.model_wrap = CompVisVDenoiser(self.model_denoise, quantize=True)
comfyanonymous's avatar
comfyanonymous committed
699
        else:
comfyanonymous's avatar
comfyanonymous committed
700
            self.model_wrap = k_diffusion_external.CompVisDenoiser(self.model_denoise, quantize=True)
701

comfyanonymous's avatar
comfyanonymous committed
702
        self.model_k = KSamplerX0Inpaint(self.model_wrap)
comfyanonymous's avatar
comfyanonymous committed
703
704
705
706
707
708
709
        self.device = device
        if scheduler not in self.SCHEDULERS:
            scheduler = self.SCHEDULERS[0]
        if sampler not in self.SAMPLERS:
            sampler = self.SAMPLERS[0]
        self.scheduler = scheduler
        self.sampler = sampler
710
711
        self.sigma_min=float(self.model_wrap.sigma_min)
        self.sigma_max=float(self.model_wrap.sigma_max)
comfyanonymous's avatar
comfyanonymous committed
712
        self.set_steps(steps, denoise)
713
        self.denoise = denoise
714
        self.model_options = model_options
comfyanonymous's avatar
comfyanonymous committed
715

comfyanonymous's avatar
comfyanonymous committed
716
717
718
719
720
721
722
723
724
725
    def calculate_sigmas(self, steps):
        sigmas = None

        discard_penultimate_sigma = False
        if self.sampler in ['dpm_2', 'dpm_2_ancestral']:
            steps += 1
            discard_penultimate_sigma = True

        if self.scheduler == "karras":
            sigmas = k_diffusion_sampling.get_sigmas_karras(n=steps, sigma_min=self.sigma_min, sigma_max=self.sigma_max)
726
727
        elif self.scheduler == "exponential":
            sigmas = k_diffusion_sampling.get_sigmas_exponential(n=steps, sigma_min=self.sigma_min, sigma_max=self.sigma_max)
comfyanonymous's avatar
comfyanonymous committed
728
729
730
731
732
733
        elif self.scheduler == "normal":
            sigmas = self.model_wrap.get_sigmas(steps)
        elif self.scheduler == "simple":
            sigmas = simple_scheduler(self.model_wrap, steps)
        elif self.scheduler == "ddim_uniform":
            sigmas = ddim_scheduler(self.model_wrap, steps)
734
735
        elif self.scheduler == "sgm_uniform":
            sigmas = sgm_scheduler(self.model_wrap, steps)
comfyanonymous's avatar
comfyanonymous committed
736
737
738
739
740
741
742
        else:
            print("error invalid scheduler", self.scheduler)

        if discard_penultimate_sigma:
            sigmas = torch.cat([sigmas[:-2], sigmas[-1:]])
        return sigmas

comfyanonymous's avatar
comfyanonymous committed
743
744
    def set_steps(self, steps, denoise=None):
        self.steps = steps
745
        if denoise is None or denoise > 0.9999:
comfyanonymous's avatar
comfyanonymous committed
746
            self.sigmas = self.calculate_sigmas(steps).to(self.device)
comfyanonymous's avatar
comfyanonymous committed
747
748
        else:
            new_steps = int(steps/denoise)
comfyanonymous's avatar
comfyanonymous committed
749
            sigmas = self.calculate_sigmas(new_steps).to(self.device)
comfyanonymous's avatar
comfyanonymous committed
750
751
            self.sigmas = sigmas[-(steps + 1):]

752
    def sample(self, noise, positive, negative, cfg, latent_image=None, start_step=None, last_step=None, force_full_denoise=False, denoise_mask=None, sigmas=None, callback=None, disable_pbar=False, seed=None):
753
754
        if sigmas is None:
            sigmas = self.sigmas
comfyanonymous's avatar
comfyanonymous committed
755
756
        sigma_min = self.sigma_min

comfyanonymous's avatar
comfyanonymous committed
757
        if last_step is not None and last_step < (len(sigmas) - 1):
comfyanonymous's avatar
comfyanonymous committed
758
759
            sigma_min = sigmas[last_step]
            sigmas = sigmas[:last_step + 1]
comfyanonymous's avatar
comfyanonymous committed
760
761
762
            if force_full_denoise:
                sigmas[-1] = 0

comfyanonymous's avatar
comfyanonymous committed
763
        if start_step is not None:
comfyanonymous's avatar
comfyanonymous committed
764
765
766
767
768
769
770
            if start_step < (len(sigmas) - 1):
                sigmas = sigmas[start_step:]
            else:
                if latent_image is not None:
                    return latent_image
                else:
                    return torch.zeros_like(noise)
comfyanonymous's avatar
comfyanonymous committed
771

772
        if self.sampler == "uni_pc":
comfyanonymous's avatar
comfyanonymous committed
773
            sampler = UNIPC
774
        elif self.sampler == "uni_pc_bh2":
comfyanonymous's avatar
comfyanonymous committed
775
            sampler = UNIPCBH2
776
        elif self.sampler == "ddim":
comfyanonymous's avatar
comfyanonymous committed
777
            sampler = DDIM
778
        else:
comfyanonymous's avatar
comfyanonymous committed
779
            sampler = ksampler(self.sampler)
780

comfyanonymous's avatar
comfyanonymous committed
781
        return sample(self.model, noise, positive, negative, cfg, self.device, sampler(), sigmas, self.model_options, latent_image=latent_image, denoise_mask=denoise_mask, callback=callback, disable_pbar=disable_pbar, seed=seed)