server_args.py 144 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
Lianmin Zheng's avatar
Lianmin Zheng committed
14
15
"""The arguments of the server."""

Lianmin Zheng's avatar
Lianmin Zheng committed
16
17
import argparse
import dataclasses
18
import json
19
import logging
20
import os
21
import random
22
import tempfile
23
from typing import Dict, List, Literal, Optional, Union
Lianmin Zheng's avatar
Lianmin Zheng committed
24

25
26
import orjson

27
from sglang.srt.connector import ConnectorType
28
from sglang.srt.function_call.function_call_parser import FunctionCallParser
29
from sglang.srt.lora.lora_registry import LoRARef
30
from sglang.srt.parser.reasoning_parser import ReasoningParser
31
from sglang.srt.utils import (
32
33
    LORA_TARGET_ALL_MODULES,
    SUPPORTED_LORA_TARGET_MODULES,
Vincent's avatar
Vincent committed
34
    configure_ipv6,
35
    get_device,
Lianmin Zheng's avatar
Lianmin Zheng committed
36
    get_device_memory_capacity,
37
    is_cuda,
38
    is_flashinfer_available,
HAI's avatar
HAI committed
39
    is_hip,
40
    is_npu,
41
    is_port_available,
42
    is_remote_url,
43
44
    is_sm90_supported,
    is_sm100_supported,
45
    is_triton_kernels_available,
46
    is_valid_ipv6_address,
47
    json_list_type,
bjmsong's avatar
bjmsong committed
48
    nullable_str,
49
    parse_connector_type,
50
)
51
from sglang.srt.utils.hf_transformers_utils import check_gguf_file, get_config
52
from sglang.utils import is_in_ci
53

54
55
logger = logging.getLogger(__name__)

56

57
58
59
60
61
62
63
64
65
66
67
68
# Define constants
LOAD_FORMAT_CHOICES = [
    "auto",
    "pt",
    "safetensors",
    "npcache",
    "dummy",
    "sharded_state",
    "gguf",
    "bitsandbytes",
    "layered",
    "remote",
69
    "remote_instance",
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
]

QUANTIZATION_CHOICES = [
    "awq",
    "fp8",
    "gptq",
    "marlin",
    "gptq_marlin",
    "awq_marlin",
    "bitsandbytes",
    "gguf",
    "modelopt",
    "modelopt_fp4",
    "petit_nvfp4",
    "w8a8_int8",
    "w8a8_fp8",
    "moe_wna16",
    "qoq",
    "w4afp8",
    "mxfp4",
]

ATTENTION_BACKEND_CHOICES = [
    # Common
    "triton",
    "torch_native",
96
    "flex_attention",
fzyzcjy's avatar
fzyzcjy committed
97
    "nsa",
98
99
100
    # NVIDIA specific
    "cutlass_mla",
    "fa3",
101
    "fa4",
102
103
104
105
106
107
108
109
110
111
112
113
114
    "flashinfer",
    "flashmla",
    "trtllm_mla",
    "trtllm_mha",
    "dual_chunk_flash_attn",
    # AMD specific
    "aiter",
    "wave",
    # Other platforms
    "intel_amx",
    "ascend",
]

115
116
LORA_BACKEND_CHOICES = ["triton", "csgmv"]

117
118
DISAGG_TRANSFER_BACKEND_CHOICES = ["mooncake", "nixl", "ascend", "fake"]

119
120
GRAMMAR_BACKEND_CHOICES = ["xgrammar", "outlines", "llguidance", "none"]

121
DETERMINISTIC_ATTENTION_BACKEND_CHOICES = ["flashinfer", "fa3", "triton"]
122

fzyzcjy's avatar
fzyzcjy committed
123
124
NSA_CHOICES = ["flashmla_prefill", "flashmla_decode", "fa3", "tilelang", "aiter"]

125
126
RADIX_EVICTION_POLICY_CHOICES = ["lru", "lfu"]

127
128
129
130
131
132
133
134
135
136
137
MOE_RUNNER_BACKEND_CHOICES = [
    "auto",
    "deep_gemm",
    "triton",
    "triton_kernel",
    "flashinfer_trtllm",
    "flashinfer_cutlass",
    "flashinfer_mxfp4",
    "flashinfer_cutedsl",
]

138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155

# Allow external code to add more choices
def add_load_format_choices(choices):
    LOAD_FORMAT_CHOICES.extend(choices)


def add_quantization_method_choices(choices):
    QUANTIZATION_CHOICES.extend(choices)


def add_attention_backend_choices(choices):
    ATTENTION_BACKEND_CHOICES.extend(choices)


def add_disagg_transfer_backend_choices(choices):
    DISAGG_TRANSFER_BACKEND_CHOICES.extend(choices)


156
157
158
159
def add_grammar_backend_choices(choices):
    GRAMMAR_BACKEND_CHOICES.extend(choices)


160
161
162
163
def add_moe_runner_backend_choices(choices):
    MOE_RUNNER_BACKEND_CHOICES.extend(choices)


164
165
166
167
168
169
170
171
def add_deterministic_attention_backend_choices(choices):
    DETERMINISTIC_ATTENTION_BACKEND_CHOICES.extend(choices)


def add_radix_eviction_policy_choices(choices):
    RADIX_EVICTION_POLICY_CHOICES.extend(choices)


Lianmin Zheng's avatar
Lianmin Zheng committed
172
173
@dataclasses.dataclass
class ServerArgs:
Lianmin Zheng's avatar
Lianmin Zheng committed
174
    # Model and tokenizer
Lianmin Zheng's avatar
Lianmin Zheng committed
175
176
177
    model_path: str
    tokenizer_path: Optional[str] = None
    tokenizer_mode: str = "auto"
178
    tokenizer_worker_num: int = 1
179
    skip_tokenizer_init: bool = False
Lianmin Zheng's avatar
Lianmin Zheng committed
180
    load_format: str = "auto"
181
    model_loader_extra_config: str = "{}"
182
    trust_remote_code: bool = False
183
    modelopt_quant: Optional[Union[str, Dict]] = None
184
185
    modelopt_checkpoint_restore_path: Optional[str] = None
    modelopt_checkpoint_save_path: Optional[str] = None
186
    context_length: Optional[int] = None
187
    is_embedding: bool = False
188
    enable_multimodal: Optional[bool] = None
189
    revision: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
190
    model_impl: str = "auto"
Lianmin Zheng's avatar
Lianmin Zheng committed
191

Lianmin Zheng's avatar
Lianmin Zheng committed
192
    # HTTP server
Lianmin Zheng's avatar
Lianmin Zheng committed
193
194
    host: str = "127.0.0.1"
    port: int = 30000
Lianmin Zheng's avatar
Lianmin Zheng committed
195
196
    skip_server_warmup: bool = False
    warmups: Optional[str] = None
197
    nccl_port: Optional[int] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
198

Lianmin Zheng's avatar
Lianmin Zheng committed
199
200
201
202
203
    # Quantization and data type
    dtype: str = "auto"
    quantization: Optional[str] = None
    quantization_param_path: Optional[str] = None
    kv_cache_dtype: str = "auto"
204
    enable_fp32_lm_head: bool = False
Lianmin Zheng's avatar
Lianmin Zheng committed
205

Lianmin Zheng's avatar
Lianmin Zheng committed
206
    # Memory and scheduling
Lianmin Zheng's avatar
Lianmin Zheng committed
207
    mem_fraction_static: Optional[float] = None
208
    max_running_requests: Optional[int] = None
209
    max_queued_requests: Optional[int] = None
210
    max_total_tokens: Optional[int] = None
211
    chunked_prefill_size: Optional[int] = None
212
    max_prefill_tokens: int = 16384
213
    schedule_policy: str = "fcfs"
214
215
216
    enable_priority_scheduling: bool = False
    schedule_low_priority_values_first: bool = False
    priority_scheduling_preemption_threshold: int = 10
217
    schedule_conservativeness: float = 1.0
218
    page_size: Optional[int] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
219
220
221
    hybrid_kvcache_ratio: Optional[float] = None
    swa_full_tokens_ratio: float = 0.8
    disable_hybrid_swa_memory: bool = False
222
    radix_eviction_policy: str = "lru"
Lianmin Zheng's avatar
Lianmin Zheng committed
223

Lianmin Zheng's avatar
Lianmin Zheng committed
224
225
    # Runtime options
    device: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
226
    tp_size: int = 1
227
    pp_size: int = 1
228
    pp_max_micro_batch_size: Optional[int] = None
229
    stream_interval: int = 1
230
    stream_output: bool = False
231
    random_seed: Optional[int] = None
232
    constrained_json_whitespace_pattern: Optional[str] = None
233
    constrained_json_disable_any_whitespace: bool = False
234
    watchdog_timeout: float = 300
235
    dist_timeout: Optional[int] = None  # timeout for torch.distributed
236
    download_dir: Optional[str] = None
237
    base_gpu_id: int = 0
238
    gpu_id_step: int = 1
239
    sleep_on_idle: bool = False
Lianmin Zheng's avatar
Lianmin Zheng committed
240
241
242

    # Logging
    log_level: str = "info"
243
    log_level_http: Optional[str] = None
244
    log_requests: bool = False
245
    log_requests_level: int = 2
246
    crash_dump_folder: Optional[str] = None
247
    crash_on_nan: bool = False
Liangsheng Yin's avatar
Liangsheng Yin committed
248
    show_time_cost: bool = False
249
    enable_metrics: bool = False
250
    enable_metrics_for_all_schedulers: bool = False
251
252
    tokenizer_metrics_custom_labels_header: str = "x-custom-labels"
    tokenizer_metrics_allowed_custom_labels: Optional[List[str]] = None
253
254
    bucket_time_to_first_token: Optional[List[float]] = None
    bucket_inter_token_latency: Optional[List[float]] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
255
    bucket_e2e_request_latency: Optional[List[float]] = None
256
    collect_tokens_histogram: bool = False
257
258
    prompt_tokens_buckets: Optional[List[str]] = None
    generation_tokens_buckets: Optional[List[str]] = None
259
    decode_log_interval: int = 40
260
    enable_request_time_stats_logging: bool = False
261
    kv_events_config: Optional[str] = None
262
    gc_warning_threshold_secs: float = 0.0
263
264
    enable_trace: bool = False
    oltp_traces_endpoint: str = "localhost:4317"
Liangsheng Yin's avatar
Liangsheng Yin committed
265

266
    # API related
267
    api_key: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
268
    served_model_name: Optional[str] = None
269
    weight_version: str = "default"
Lianmin Zheng's avatar
Lianmin Zheng committed
270
271
    chat_template: Optional[str] = None
    completion_template: Optional[str] = None
272
    file_storage_path: str = "sglang_storage"
273
    enable_cache_report: bool = False
Xihuai Wang's avatar
Xihuai Wang committed
274
    reasoning_parser: Optional[str] = None
275
    tool_call_parser: Optional[str] = None
276
    tool_server: Optional[str] = None
277
    sampling_defaults: str = "model"
Lianmin Zheng's avatar
Lianmin Zheng committed
278

279
280
281
    # Data parallelism
    dp_size: int = 1
    load_balance_method: str = "round_robin"
282
    load_watch_interval: float = 0.1
283
284
    # FIXME: remove this after dp rank scheduling is fully supported with PD-Disaggregation
    prefill_round_robin_balance: bool = False
285

286
    # Multi-node distributed serving
287
    dist_init_addr: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
288
    nnodes: int = 1
289
    node_rank: int = 0
Lianmin Zheng's avatar
Lianmin Zheng committed
290
291
292

    # Model override args in JSON
    json_model_override_args: str = "{}"
293
    preferred_sampling_params: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
294

295
    # LoRA
296
    enable_lora: Optional[bool] = None
297
    max_lora_rank: Optional[int] = None
298
    lora_target_modules: Optional[Union[set[str], List[str]]] = None
299
300
301
    lora_paths: Optional[
        Union[dict[str, str], List[dict[str, str]], List[str], List[LoRARef]]
    ] = None
302
    max_loaded_loras: Optional[int] = None
303
    max_loras_per_batch: int = 8
304
    lora_backend: str = "triton"
305
    max_lora_chunk_size: Optional[int] = 16
306
307

    # Kernel backend
308
    attention_backend: Optional[str] = None
309
310
    decode_attention_backend: Optional[str] = None
    prefill_attention_backend: Optional[str] = None
311
    sampling_backend: Optional[str] = None
312
    grammar_backend: Optional[str] = None
313
    mm_attention_backend: Optional[str] = None
fzyzcjy's avatar
fzyzcjy committed
314
315
    nsa_prefill: str = "flashmla_prefill"
    nsa_decode: str = "fa3"
316

317
    # Speculative decoding
318
    enable_beta_spec: bool = False
319
    speculative_algorithm: Optional[str] = None
320
    speculative_draft_model_path: Optional[str] = None
321
    speculative_draft_model_revision: Optional[str] = None
322
323
324
    speculative_num_steps: Optional[int] = None
    speculative_eagle_topk: Optional[int] = None
    speculative_num_draft_tokens: Optional[int] = None
325
326
    speculative_accept_threshold_single: float = 1.0
    speculative_accept_threshold_acc: float = 1.0
327
    speculative_token_map: Optional[str] = None
328
    speculative_attention_mode: str = "prefill"
329
330
331
332
333
334
335
336
    # For ngram only
    speculative_ngram_min_match_window_size: int = 1
    speculative_ngram_max_match_window_size: int = 12
    speculative_ngram_min_bfs_breadth: int = 1
    speculative_ngram_max_bfs_breadth: int = 10
    speculative_ngram_match_type: Literal["BFS", "PROB"] = "BFS"
    speculative_ngram_branch_length: int = 18
    speculative_ngram_capacity: int = 10 * 1000 * 1000
337

338
339
    # Expert parallelism
    ep_size: int = 1
340
    moe_a2a_backend: Literal["none", "deepep"] = "none"
341
    moe_runner_backend: str = "auto"
342
    flashinfer_mxfp4_moe_precision: Literal["default", "bf16"] = "default"
343
    enable_flashinfer_allreduce_fusion: bool = False
344
    deepep_mode: Literal["auto", "normal", "low_latency"] = "auto"
345
346
347
348
349
350
351
    ep_num_redundant_experts: int = 0
    ep_dispatch_algorithm: Optional[Literal["static", "dynamic", "fake"]] = None
    init_expert_location: str = "trivial"
    enable_eplb: bool = False
    eplb_algorithm: str = "auto"
    eplb_rebalance_num_iterations: int = 1000
    eplb_rebalance_layers_per_chunk: Optional[int] = None
352
    eplb_min_rebalancing_utilization_threshold: float = 1.0
353
354
355
356
357
358
359
360
    expert_distribution_recorder_mode: Optional[
        Literal["stat", "stat_approx", "per_pass", "per_token"]
    ] = None
    expert_distribution_recorder_buffer_size: Optional[int] = None
    enable_expert_distribution_metrics: bool = False
    deepep_config: Optional[str] = None
    moe_dense_tp_size: Optional[int] = None

Lianmin Zheng's avatar
Lianmin Zheng committed
361
362
363
364
    # Mamba cache
    max_mamba_cache_size: Optional[int] = None
    mamba_ssm_dtype: str = "float32"

Lianmin Zheng's avatar
Lianmin Zheng committed
365
366
367
368
    # Hierarchical cache
    enable_hierarchical_cache: bool = False
    hicache_ratio: float = 2.0
    hicache_size: int = 0
369
    hicache_write_policy: str = "write_through"
370
371
    hicache_io_backend: str = "kernel"
    hicache_mem_layout: str = "layer_first"
Lianmin Zheng's avatar
Lianmin Zheng committed
372
    hicache_storage_backend: Optional[str] = None
pansicheng's avatar
pansicheng committed
373
    hicache_storage_prefetch_policy: str = "best_effort"
374
    hicache_storage_backend_extra_config: Optional[str] = None
375
376
    # LMCache
    enable_lmcache: bool = False
Lianmin Zheng's avatar
Lianmin Zheng committed
377

378
379
    # Double Sparsity
    enable_double_sparsity: bool = False
Vincent's avatar
Vincent committed
380
    ds_channel_config_path: Optional[str] = None
381
382
383
384
385
    ds_heavy_channel_num: int = 32
    ds_heavy_token_num: int = 256
    ds_heavy_channel_type: str = "qk"
    ds_sparse_decode_threshold: int = 4096

fzyzcjy's avatar
fzyzcjy committed
386
387
388
389
390
391
392
    # Offloading
    cpu_offload_gb: int = 0
    offload_group_size: int = -1
    offload_num_in_group: int = 1
    offload_prefetch_step: int = 1
    offload_mode: str = "cpu"

393
394
395
396
397
398
    # Scoring configuration
    # Delimiter token ID used to combine Query and Items into a single sequence for multi-item scoring.
    # Format: Query<delimiter>Item1<delimiter>Item2<delimiter>...
    # This enables efficient batch processing of multiple items against a single query.
    multi_item_scoring_delimiter: Optional[Union[int]] = None

399
    # Optimization/debug options
Lianmin Zheng's avatar
Lianmin Zheng committed
400
    disable_radix_cache: bool = False
401
402
    cuda_graph_max_bs: Optional[int] = None
    cuda_graph_bs: Optional[List[int]] = None
403
    disable_cuda_graph: bool = False
404
    disable_cuda_graph_padding: bool = False
405
    enable_profile_cuda_graph: bool = False
406
    enable_cudagraph_gc: bool = False
407
    enable_nccl_nvls: bool = False
408
    enable_symm_mem: bool = False
409
    disable_flashinfer_cutlass_moe_fp4_allgather: bool = False
410
    enable_tokenizer_batch_encode: bool = False
411
    disable_outlines_disk_cache: bool = False
412
    disable_custom_all_reduce: bool = False
413
    enable_mscclpp: bool = False
414
    enable_torch_symm_mem: bool = False
415
    disable_overlap_schedule: bool = False
416
    enable_mixed_chunk: bool = False
Ke Bao's avatar
Ke Bao committed
417
    enable_dp_attention: bool = False
418
    enable_dp_lm_head: bool = False
419
    enable_two_batch_overlap: bool = False
420
    enable_single_batch_overlap: bool = False
421
    tbo_token_distribution_threshold: float = 0.48
422
    enable_torch_compile: bool = False
423
    enable_piecewise_cuda_graph: bool = False
424
    torch_compile_max_bs: int = 32
425
426
    piecewise_cuda_graph_max_tokens: int = 4096
    piecewise_cuda_graph_tokens: Optional[List[int]] = None
427
    torchao_config: str = ""
428
    enable_nan_detection: bool = False
429
    enable_p2p_check: bool = False
430
    triton_attention_reduce_in_fp32: bool = False
431
    triton_attention_num_kv_splits: int = 8
432
    triton_attention_split_tile_size: Optional[int] = None
433
    num_continuous_decode_steps: int = 1
434
    delete_ckpt_after_loading: bool = False
435
    enable_memory_saver: bool = False
436
    enable_weights_cpu_backup: bool = False
437
    allow_auto_truncate: bool = False
438
    enable_custom_logit_processor: bool = False
439
    flashinfer_mla_disable_ragged: bool = False
440
    disable_shared_experts_fusion: bool = False
441
    disable_chunked_prefix_cache: bool = False
Lianmin Zheng's avatar
Lianmin Zheng committed
442
    disable_fast_image_processor: bool = False
443
    keep_mm_feature_on_device: bool = False
444
    enable_return_hidden_states: bool = False
445
    scheduler_recv_interval: int = 1
446
    numa_node: Optional[List[int]] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
447
    enable_deterministic_inference: bool = False
448

449
450
451
452
453
    # Dynamic batch tokenizer
    enable_dynamic_batch_tokenizer: bool = False
    dynamic_batch_tokenizer_batch_size: int = 32
    dynamic_batch_tokenizer_batch_timeout: float = 0.002

454
455
456
457
    # Debug tensor dumps
    debug_tensor_dump_output_folder: Optional[str] = None
    debug_tensor_dump_input_file: Optional[str] = None
    debug_tensor_dump_inject: bool = False
458
    debug_tensor_dump_prefill_only: bool = False
459

Lianmin Zheng's avatar
Lianmin Zheng committed
460
    # PD disaggregation: can be "null" (not disaggregated), "prefill" (prefill-only), or "decode" (decode-only)
461
    disaggregation_mode: Literal["null", "prefill", "decode"] = "null"
462
    disaggregation_transfer_backend: str = "mooncake"
463
    disaggregation_bootstrap_port: int = 8998
Byron Hsu's avatar
Byron Hsu committed
464
465
466
    disaggregation_decode_tp: Optional[int] = None
    disaggregation_decode_dp: Optional[int] = None
    disaggregation_prefill_pp: Optional[int] = 1
467
    disaggregation_ib_device: Optional[str] = None
468
    disaggregation_decode_enable_offload_kvcache: bool = False
469
    num_reserved_decode_tokens: int = 512  # used for decode kv cache offload in PD
470
471
472
    # FIXME: hack to reduce ITL when decode bs is small
    disaggregation_decode_polling_interval: int = 1

Lianmin Zheng's avatar
Lianmin Zheng committed
473
    # For model weight update and weight loading
474
    custom_weight_loader: Optional[List[str]] = None
475
    weight_loader_disable_mmap: bool = False
476
477
478
479
    remote_instance_weight_loader_seed_instance_ip: Optional[str] = None
    remote_instance_weight_loader_seed_instance_service_port: Optional[int] = None
    remote_instance_weight_loader_send_weights_group_ports: Optional[List[int]] = None

480
481
    # For PD-Multiplexing
    enable_pdmux: bool = False
482
483
    pdmux_config_path: Optional[str] = None
    sm_group_num: int = 8
484

485
486
487
488
489
490
491
492
493
494
495
496
497
    def get_attention_backends(server_args):
        prefill_attention_backend_str = (
            server_args.prefill_attention_backend
            if server_args.prefill_attention_backend
            else server_args.attention_backend
        )
        decode_attention_backend_str = (
            server_args.decode_attention_backend
            if server_args.decode_attention_backend
            else server_args.attention_backend
        )
        return prefill_attention_backend_str, decode_attention_backend_str

Lianmin Zheng's avatar
Lianmin Zheng committed
498
499
500
501
502
503
    def __post_init__(self):
        """
        Orchestrates the handling of various server arguments, ensuring proper configuration and validation.
        """
        # Handle deprecated arguments.
        self._handle_deprecated_args()
Yi Zhang's avatar
Yi Zhang committed
504

Lianmin Zheng's avatar
Lianmin Zheng committed
505
506
507
508
509
510
        # Set missing default values.
        self._handle_missing_default_values()

        # Get GPU memory capacity, which is a common dependency for several configuration steps.
        gpu_mem = get_device_memory_capacity(self.device)

511
512
        # Handle memory-related, chunked prefill, and CUDA graph batch size configurations.
        self._handle_gpu_memory_settings(gpu_mem)
Lianmin Zheng's avatar
Lianmin Zheng committed
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562

        # Handle device-specific backends.
        self._handle_hpu_backends()
        self._handle_cpu_backends()

        # Apply model-specific adjustments.
        self._handle_model_specific_adjustments()

        # Set kernel backends.
        self._handle_sampling_backend()
        self._handle_attention_backend_compatibility()
        self._handle_page_size()
        self._handle_amd_specifics()
        self._handle_grammar_backend()

        # Handle data parallelism.
        self._handle_data_parallelism()

        # Handle MoE configurations.
        self._handle_moe_kernel_config()
        self._handle_deepep_moe()
        self._handle_eplb_and_dispatch()
        self._handle_expert_distribution_metrics()

        # Handle pipeline parallelism.
        self._handle_pipeline_parallelism()

        # Handle Hicache settings.
        self._handle_hicache()

        # Handle speculative decoding logic.
        self._handle_speculative_decoding()

        # Handle model loading format.
        self._handle_load_format()

        # Handle PD disaggregation.
        self._handle_disaggregation()

        # Validate tokenizer settings.
        self._handle_tokenizer_batching()

        # Propagate environment variables.
        self._handle_environment_variables()

        # Validate cache settings.
        self._handle_cache_compatibility()

        # Validate metrics labels.
        self._handle_metrics_labels()
563

Lianmin Zheng's avatar
Lianmin Zheng committed
564
565
566
567
568
        # Handle deterministic inference.
        self._handle_deterministic_inference()

        # Handle any other necessary validations.
        self._handle_other_validations()
569

570
    def _handle_deprecated_args(self):
571
572
573
574
575
576
577
        # handle deprecated tool call parsers
        deprecated_tool_call_parsers = {"qwen25": "qwen", "glm45": "glm"}
        if self.tool_call_parser in deprecated_tool_call_parsers:
            logger.warning(
                f"The tool_call_parser '{self.tool_call_parser}' is deprecated. Please use '{deprecated_tool_call_parsers[self.tool_call_parser]}' instead."
            )
            self.tool_call_parser = deprecated_tool_call_parsers[self.tool_call_parser]
578

579
    def _handle_missing_default_values(self):
Lianmin Zheng's avatar
Lianmin Zheng committed
580
581
        if self.tokenizer_path is None:
            self.tokenizer_path = self.model_path
582
583
        if self.served_model_name is None:
            self.served_model_name = self.model_path
584
585
        if self.device is None:
            self.device = get_device()
586
587
588
        if self.random_seed is None:
            self.random_seed = random.randint(0, 1 << 30)

589
590
    def _handle_gpu_memory_settings(self, gpu_mem):
        """
591
592
        Configure GPU memory-dependent settings including
        chunked_prefill_size, cuda_graph_max_bs, and mem_fraction_static.
593

594
595
596
597
598
        Here are our heuristics:
        - Set chunked_prefill_size and cuda_graph_max_bs based on the GPU memory capacity.
          This is because GPUs with more memory are generally more powerful, we need to use a larger
          chunked_prefill_size and a larger cuda_graph_max_bs to fully utilize the GPU.
        - Then set mem_fraction_static based on chunked_prefill_size and cuda_graph_max_bs.
599

600
          GPU memory capacity = model weights + KV cache pool + activations + cuda graph buffers
601

602
603
          The argument mem_fraction_static is defined as (model weights + KV cache pool) / GPU memory capacity,
          or equivalently, mem_fraction_static = (GPU memory capacity - activations - cuda graph buffers) / GPU memory capacity.
Lianmin Zheng's avatar
Lianmin Zheng committed
604

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
          In order to compute mem_fraction_static, we need to estimate the size of activations and cuda graph buffers.
          The activation memory is proportional to the chunked_prefill_size.
          The cuda graph memory is proportional to the cuda_graph_max_bs.
          We use reserved_mem = chunked_prefill_size * 1.5 + cuda_graph_max_bs * 2 to estimate the size of activations and cuda graph buffers in GB.
          and set mem_fraction_static = (GPU memory capacity - reserved_mem) / GPU memory capacity.

          The coefficient 1.5 is a heuristic value, in the future, we can do better estimation by looking at the model types, hidden sizes or even do a dummy run.
        """
        if gpu_mem is not None:
            if gpu_mem < 20 * 1024:
                # T4, 4080
                # (chunked_prefill_size 2k, cuda_graph_max_bs 8)
                if self.chunked_prefill_size is None:
                    self.chunked_prefill_size = 2048
                if self.cuda_graph_max_bs is None:
620
                    self.cuda_graph_max_bs = 8
621
622
623
624
625
626
627
            elif gpu_mem < 35 * 1024:
                # A10, 4090, 5090
                # (chunked_prefill_size 2k, cuda_graph_max_bs 16 if tp < 4 else 80)
                if self.chunked_prefill_size is None:
                    self.chunked_prefill_size = 2048
                if self.cuda_graph_max_bs is None:
                    # Based on detailed statistics, when serving TP1/TP2 models on lower-end GPUs with HBM < 35GB, you can either disable cuda graph or set `cuda_graph_max_bs` to a very small value to reduce the memory overhead of creating cuda graphs, with almost no impact on performance.
628
629
630
631
632
633
                    # However, when serving models with TP4 or TP8, we need to enable cuda graph to maintain high performance. In this case, we can set `cuda_graph_max_bs` to 80 (half of the default value 160) to reduce the memory overhead of creating cuda graphs. Looking at the logs
                    # from TP4 serving of qwen2-72b, a value of 80 is sufficient and can reduce the memory overhead of creating cuda graphs on lower-end GPUs compared to the original 160, avoiding OOM issues.
                    if self.tp_size < 4:
                        self.cuda_graph_max_bs = 16
                    else:
                        self.cuda_graph_max_bs = 80
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
            elif gpu_mem < 60 * 1024:
                # A100 (40GB), L40,
                # (chunked_prefill_size 4k, cuda_graph_max_bs 32 if tp < 4 else 160)
                if self.chunked_prefill_size is None:
                    self.chunked_prefill_size = 4096
                if self.cuda_graph_max_bs is None:
                    if self.tp_size < 4:
                        self.cuda_graph_max_bs = 32
                    else:
                        self.cuda_graph_max_bs = 160
            elif gpu_mem < 90 * 1024:
                # H100, A100
                # (chunked_prefill_size 8k, cuda_graph_max_bs 256 if tp < 4 else 512)
                if self.chunked_prefill_size is None:
                    self.chunked_prefill_size = 8192
                if self.cuda_graph_max_bs is None:
                    if self.tp_size < 4:
                        self.cuda_graph_max_bs = 256
                    else:
                        self.cuda_graph_max_bs = 512
            elif gpu_mem < 160 * 1024:
                # H20, H200
                # (chunked_prefill_size 8k, cuda_graph_max_bs 256 if tp < 4 else 512)
                if self.chunked_prefill_size is None:
                    self.chunked_prefill_size = 8192
                if self.cuda_graph_max_bs is None:
660
661
662
663
664
                    if self.tp_size < 4:
                        self.cuda_graph_max_bs = 256
                    else:
                        self.cuda_graph_max_bs = 512
            else:
665
666
667
668
669
670
671
672
673
674
675
                # B200, MI300
                # (chunked_prefill_size 16k, cuda_graph_max_bs 512)
                if self.chunked_prefill_size is None:
                    self.chunked_prefill_size = 16384
                if self.cuda_graph_max_bs is None:
                    self.cuda_graph_max_bs = 512
        else:
            # Fallback defaults when gpu_mem is None
            if self.chunked_prefill_size is None:
                self.chunked_prefill_size = 4096
            if self.cuda_graph_max_bs is None:
676
677
                self.cuda_graph_max_bs = 160

678
        # Set cuda graph batch sizes
679
680
        if self.cuda_graph_bs is None:
            self.cuda_graph_bs = self._generate_cuda_graph_batch_sizes()
681
682
683
        else:
            self.cuda_graph_max_bs = max(self.cuda_graph_bs)

684
685
686
687
688
        if self.piecewise_cuda_graph_tokens is None:
            self.piecewise_cuda_graph_tokens = (
                self._generate_piecewise_cuda_graph_tokens()
            )

689
690
        if self.mem_fraction_static is None:
            # Constant meta data (e.g., from attention backend)
691
            reserved_mem = 512
692
693
694
695
696
697
698
699
            # For activation during large prefill
            if self.chunked_prefill_size > 0:
                reserved_mem += max(self.chunked_prefill_size, 2048) * 1.5
            else:
                reserved_mem += max(self.max_prefill_tokens, 2048) * 1.5
            # For cuda graphs
            reserved_mem += self.cuda_graph_max_bs * 2
            # Some adjustments for large parallel size
700
            reserved_mem += self.tp_size * self.pp_size / 8 * 1024
701
702
703
704
705
706
707
708
709
710
711

            if self.enable_dp_attention:
                # DP attention needs more padding for some operations
                reserved_mem += self.cuda_graph_max_bs * self.dp_size * 3

                # DP attention uses much more memory for large cuda graph max bs,
                # likely due to some inefficiencies in torch allocator or our implementation.
                # So we need to reserve more memory.
                if self.cuda_graph_max_bs > 300:
                    reserved_mem += self.cuda_graph_max_bs * self.dp_size * 1.5

712
            if gpu_mem is not None and gpu_mem > 60 * 1024:
713
714
715
716
717
718
719
720
721
722
                reserved_mem = max(reserved_mem, 10 * 1024)

            if self.speculative_algorithm is not None:
                if self.speculative_algorithm == "STANDALONE":
                    # standalonedraft model and cuda graphs
                    reserved_mem += 6 * 1024
                elif self.speculative_algorithm != "NGRAM":
                    # eagle draft models and cuda graphs
                    reserved_mem += 2 * 1024

723
724
725
726
727
            self.mem_fraction_static = (
                round((gpu_mem - reserved_mem) / gpu_mem, 3)
                if gpu_mem is not None
                else 0.88
            )
728
729
730
731
732
733
734
735

            # Lazy init to avoid circular import
            # Multimodal models need more memory for the image processor
            from sglang.srt.configs.model_config import ModelConfig

            model_config = ModelConfig.from_server_args(self)
            if model_config.is_multimodal:
                self.adjust_mem_fraction_for_vlm(model_config)
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750

    def _generate_cuda_graph_batch_sizes(self):
        """
        Generate the list of batch sizes for CUDA graph capture based on cuda_graph_max_bs.
        This integrates the logic from cuda_graph_runner.py.
        """
        # Handle disable_cuda_graph_padding as the first condition for both spec and non-spec
        if self.disable_cuda_graph_padding:
            capture_bs = list(range(1, self.cuda_graph_max_bs + 1))
        elif self.speculative_algorithm is None:
            # Normal case: [1, 2, 4, 8, 12] + list(range(16, 257, 8)) + list(range(272, 512, 16)) + list(range(512, cuda_graph_max_bs + 1))
            capture_bs = (
                [1, 2, 4, 8, 12]
                + list(range(16, 257, 8))
                + list(range(272, 512, 16))
751
                + list(range(512, self.cuda_graph_max_bs + 1, 32))
752
753
754
755
756
757
758
759
760
761
762
763
764
765
            )
        else:
            # Spec decoding case: list(range(1, 9, 1)) + list(range(10, 33, 2)) + list(range(40, 64, 4)) + list(range(72, 257, 8))
            capture_bs = (
                list(range(1, 9, 1))
                + list(range(10, 33, 2))
                + list(range(40, 64, 4))
                + list(range(72, 257, 8))
                + list(range(272, self.cuda_graph_max_bs + 1, 16))
            )

        capture_bs = [bs for bs in capture_bs if bs <= self.cuda_graph_max_bs]

        return capture_bs
766

767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
    def _generate_piecewise_cuda_graph_tokens(self):
        """
        Generate the list of batch sizes for piecewise CUDA graph capture
        based on piecewise_cuda_graph_max_tokens.
        """
        capture_sizes = (
            list(range(4, 33, 4))
            + list(range(48, 257, 16))
            + list(range(288, 513, 32))
            + list(range(640, 4096 + 1, 128))
            + list(range(4352, self.piecewise_cuda_graph_max_tokens + 1, 256))
        )

        capture_sizes = [
            s for s in capture_sizes if s <= self.piecewise_cuda_graph_max_tokens
        ]

        return capture_sizes

786
    def _handle_hpu_backends(self):
787
788
789
790
        if self.device == "hpu":
            self.attention_backend = "torch_native"
            self.sampling_backend = "pytorch"

791
    def _handle_cpu_backends(self):
792
793
794
795
796
        if self.device == "cpu":
            if self.attention_backend is None:
                self.attention_backend = "intel_amx"
            self.sampling_backend = "pytorch"

Lianmin Zheng's avatar
Lianmin Zheng committed
797
    def _handle_model_specific_adjustments(self):
fzyzcjy's avatar
fzyzcjy committed
798
799
        from sglang.srt.configs.model_config import is_deepseek_nsa

Lianmin Zheng's avatar
Lianmin Zheng committed
800
801
802
803
804
805
        if parse_connector_type(self.model_path) == ConnectorType.INSTANCE:
            return

        hf_config = self.get_hf_config()
        model_arch = hf_config.architectures[0]
        if model_arch in ["GptOssForCausalLM"]:
806
807
808
809
810
            if (
                self.attention_backend is None
                and self.prefill_attention_backend is None
                and self.decode_attention_backend is None
            ):
Lianmin Zheng's avatar
Lianmin Zheng committed
811
812
813
814
815
816
                if is_cuda() and is_sm100_supported():
                    self.attention_backend = "trtllm_mha"
                elif is_cuda() and is_sm90_supported():
                    self.attention_backend = "fa3"
                else:
                    self.attention_backend = "triton"
817
818
819

            supported_backends = ["triton", "trtllm_mha", "fa3", "fa4"]
            prefill_attn_backend, decode_attn_backend = self.get_attention_backends()
Lianmin Zheng's avatar
Lianmin Zheng committed
820
            assert (
821
822
823
824
825
826
827
                prefill_attn_backend in supported_backends
                and decode_attn_backend in supported_backends
            ), (
                f"GptOssForCausalLM requires one of {supported_backends} attention backend, but got the following backends\n"
                f"- Prefill: {prefill_attn_backend}\n"
                f"- Decode: {decode_attn_backend}\n"
            )
Lianmin Zheng's avatar
Lianmin Zheng committed
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884

            if is_sm100_supported():
                if not self.enable_dp_attention:
                    self.enable_flashinfer_allreduce_fusion = True
                    logger.info(
                        "Enable FlashInfer AllReduce Fusion on sm100 for GptOssForCausalLM"
                    )
            quantization_config = getattr(hf_config, "quantization_config", None)
            is_mxfp4_quant_format = (
                quantization_config is not None
                and quantization_config.get("quant_method") == "mxfp4"
            )

            if is_sm100_supported() and is_mxfp4_quant_format:
                self.moe_runner_backend = "flashinfer_mxfp4"
                logger.warning(
                    "Detected SM100 and MXFP4 quantization format for GPT-OSS model, enabling FlashInfer MXFP4 MOE kernel."
                )
            else:
                if self.moe_runner_backend == "triton_kernel":
                    assert (
                        self.ep_size == 1
                    ), "Triton kernel MoE is only supported when ep_size == 1"
                if (
                    self.moe_runner_backend == "auto"
                    and self.ep_size == 1
                    and is_triton_kernels_available()
                ):
                    self.moe_runner_backend = "triton_kernel"
                    logger.warning(
                        "Detected GPT-OSS model, enabling triton_kernels MOE kernel."
                    )
            self.disable_hybrid_swa_memory = True
            if is_mxfp4_quant_format:
                # use bf16 for mxfp4 triton kernels
                self.dtype = "bfloat16"

        elif "Llama4" in model_arch and self.device != "cpu":
            assert self.attention_backend in {
                "fa3",
                "aiter",
                "triton",
            }, "fa3, aiter, or triton is required for Llama4 model"
        elif model_arch in [
            "Gemma2ForCausalLM",
            "Gemma3ForCausalLM",
            "Gemma3ForConditionalGeneration",
            "Gemma3nForCausalLM",
            "Gemma3nForConditionalGeneration",
        ]:
            # FIXME: https://github.com/sgl-project/sglang/pull/7367 is not compatible with gemma2 model.
            # It failed at this test: https://github.com/sgl-project/sglang/actions/runs/16255155597/job/45890331952#step:4:736
            logger.warning(
                f"Disable hybrid SWA memory for {model_arch} as it is not yet supported."
            )
            self.disable_hybrid_swa_memory = True

fzyzcjy's avatar
fzyzcjy committed
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
        if is_deepseek_nsa(hf_config):
            if (
                self.attention_backend is None
                and self.prefill_attention_backend is None
                and self.decode_attention_backend is None
            ):
                self.attention_backend = "nsa"
                logger.warning("Set nsa attention backend for DeepSeek NSA.")

            if not is_npu():
                self.enable_dp_attention = True
                self.dp_size = self.tp_size
                logger.warning("DP attention is enabled for DeepSeek NSA.")

                self.page_size = 64
                logger.warning("Setting page size to 64 for DeepSeek NSA.")

                # For Hopper, we support both bf16 and fp8 kv cache; for Blackwell, we support fp8 only currently
                import torch

                major, _ = torch.cuda.get_device_capability()
                if major >= 10:
                    self.kv_cache_dtype = "fp8_e4m3"
                    logger.warning("Setting KV cache dtype to fp8.")

                if self.kv_cache_dtype == "fp8_e4m3":
                    self.nsa_prefill = "flashmla_decode"
                    self.nsa_decode = "flashmla_decode"
                    logger.warning(
                        "Setting NSA backend to flashmla_decode for FP8 KV Cache."
                    )

                # Logging env vars for NSA
                from sglang.srt.layers.attention.nsa.utils import (
                    print_nsa_bool_env_vars,
                )

                print_nsa_bool_env_vars()

924
    def _handle_sampling_backend(self):
925
        if self.sampling_backend is None:
926
927
928
929
            self.sampling_backend = (
                "flashinfer" if is_flashinfer_available() else "pytorch"
            )

930
    def _handle_attention_backend_compatibility(self):
931
        if self.attention_backend == "torch_native":
932
            logger.warning(
933
934
935
                "Cuda graph is disabled because of using torch native attention backend"
            )
            self.disable_cuda_graph = True
936

937
938
939
940
941
942
943
944
945
        if self.attention_backend == "flex_attention":
            logger.warning(
                "Cuda graph is disabled because of using torch Flex Attention backend"
            )
            self.disable_cuda_graph = True
            assert (
                self.speculative_algorithm is None
            ), "Speculative decoding is currently not supported with Flex Attention backend"

946
        if is_npu() and self.attention_backend in ["ascend"]:
947
948
949
950
951
            logger.warning(
                "At this moment Ascend attention backend only supports a page_size of 128, change page_size to 128."
            )
            self.page_size = 128

952
953
954
955
        if (
            self.attention_backend == "flashmla"
            or self.decode_attention_backend == "flashmla"
        ):
Lianmin Zheng's avatar
Lianmin Zheng committed
956
957
958
959
960
            logger.warning(
                "FlashMLA only supports a page_size of 64, change page_size to 64."
            )
            self.page_size = 64

961
962
963
964
        if (
            self.attention_backend == "cutlass_mla"
            or self.decode_attention_backend == "cutlass_mla"
        ):
Lianmin Zheng's avatar
Lianmin Zheng committed
965
966
967
968
969
            logger.warning(
                "Cutlass MLA only supports a page_size of 128, change page_size to 128."
            )
            self.page_size = 128

Faraz's avatar
Faraz committed
970
971
972
973
        if (
            self.attention_backend == "trtllm_mla"
            or self.decode_attention_backend == "trtllm_mla"
        ):
974
975
976
977
978
979
980
981
982
983
            if not is_sm100_supported():
                raise ValueError(
                    "TRTLLM MLA backend is only supported on Blackwell GPUs (SM100). Please use a different backend."
                )

            if self.page_size not in [32, 64]:
                logger.warning(
                    f"TensorRT-LLM MLA only supports page_size of 32 or 64, changing page_size from {self.page_size} to 64."
                )
                self.page_size = 64
Faraz's avatar
Faraz committed
984
985
986
987
988

            if self.kv_cache_dtype not in ["fp8_e4m3", "auto"]:
                raise ValueError(
                    "TensorRT-LLM MLA backend only supports kv-cache-dtype of fp8_e4m3 or auto."
                )
989

990
991
992
993
994
        if (
            self.attention_backend == "trtllm_mha"
            or self.decode_attention_backend == "trtllm_mha"
            or self.prefill_attention_backend == "trtllm_mha"
        ):
995
996
997
998
999
1000
1001
1002
1003
1004
1005
            if not is_sm100_supported():
                raise ValueError(
                    "TRTLLM MHA backend is only supported on Blackwell GPUs (SM100). Please use a different backend."
                )

            if self.page_size not in [16, 32, 64]:
                logger.warning(
                    f"TensorRT-LLM MHA only supports page_size of 16, 32 or 64, changing page_size from {self.page_size} to 64."
                )
                self.page_size = 64

1006
1007
        if self.attention_backend == "dual_chunk_flash_attn":
            logger.warning(
1008
                "Mixed chunk and radix cache are disabled when using dual-chunk flash attention backend"
1009
1010
1011
1012
            )
            self.enable_mixed_chunk = False
            self.disable_radix_cache = True

1013
    def _handle_page_size(self):
1014
1015
1016
        if self.page_size is None:
            self.page_size = 1

1017
    def _handle_amd_specifics(self):
1018
1019
1020
        if is_hip():
            self.triton_attention_num_kv_splits = 16

1021
    def _handle_grammar_backend(self):
1022
1023
        if self.grammar_backend is None:
            self.grammar_backend = "xgrammar"
1024

1025
    def _handle_data_parallelism(self):
1026
1027
        if self.dp_size == 1:
            self.enable_dp_attention = False
1028
            self.enable_dp_lm_head = False
1029

Ke Bao's avatar
Ke Bao committed
1030
        if self.enable_dp_attention:
1031
            self.schedule_conservativeness = self.schedule_conservativeness * 0.3
Lianmin Zheng's avatar
Lianmin Zheng committed
1032
1033
            assert self.tp_size % self.dp_size == 0
            self.chunked_prefill_size = self.chunked_prefill_size // self.dp_size
1034
            logger.warning(
1035
                f"DP attention is enabled. The chunked prefill size is adjusted to {self.chunked_prefill_size} to avoid MoE kernel issues. "
1036
            )
1037

1038
1039
1040
        if self.enable_dp_lm_head:
            assert (
                self.enable_dp_attention
1041
            ), "Please enable dp attention when setting enable_dp_lm_head. "
1042

1043
    def _handle_moe_kernel_config(self):
1044
        if self.moe_runner_backend == "flashinfer_cutlass":
1045
1046
1047
            assert (
                self.quantization == "modelopt_fp4"
            ), "modelopt_fp4 quantization is required for Flashinfer MOE"
1048
1049
1050
1051
            assert self.ep_size in [
                1,
                self.tp_size,
            ], "The expert parallel size must be 1 or the same as the tensor parallel size"
1052

1053
        if self.moe_runner_backend == "flashinfer_trtllm":
1054
1055
            assert (
                self.quantization == "modelopt_fp4" or self.quantization == "fp8"
1056
            ), "modelopt_fp4 or fp8 quantization is required for Flashinfer TRTLLM MoE"
1057
1058
1059
1060
            self.disable_shared_experts_fusion = True
            logger.warning(
                "FlashInfer TRTLLM MoE is enabled. --disable-shared-experts-fusion is automatically set."
            )
1061

1062
    def _handle_deepep_moe(self):
1063
        if self.moe_a2a_backend == "deepep":
1064
1065
1066
            if self.deepep_mode == "normal":
                logger.warning("Cuda graph is disabled because deepep_mode=`normal`")
                self.disable_cuda_graph = True
1067
            self.ep_size = self.tp_size
Lianmin Zheng's avatar
Lianmin Zheng committed
1068
            logger.warning(
1069
1070
                f"DeepEP MoE is enabled. The expert parallel size is adjusted to be the same as the tensor parallel size[{self.tp_size}]."
            )
1071

1072
    def _handle_eplb_and_dispatch(self):
1073
1074
        if self.enable_eplb and (self.expert_distribution_recorder_mode is None):
            self.expert_distribution_recorder_mode = "stat"
1075
            logger.warning(
1076
                "EPLB is enabled. The expert_distribution_recorder_mode is automatically set."
1077
1078
1079
1080
1081
1082
1083
            )

        if (self.enable_eplb or (self.init_expert_location is not None)) and (
            self.ep_dispatch_algorithm is None
        ):
            self.ep_dispatch_algorithm = "static"

1084
        if self.enable_eplb:
1085
            assert self.ep_size > 1
1086

1087
    def _handle_expert_distribution_metrics(self):
1088
1089
1090
1091
1092
        if self.enable_expert_distribution_metrics and (
            self.expert_distribution_recorder_mode is None
        ):
            self.expert_distribution_recorder_mode = "stat"

1093
        if self.expert_distribution_recorder_buffer_size is None:
1094
1095
            if (x := self.eplb_rebalance_num_iterations) is not None:
                self.expert_distribution_recorder_buffer_size = x
1096
1097
1098
            elif self.expert_distribution_recorder_mode is not None:
                self.expert_distribution_recorder_buffer_size = 1000

1099
    def _handle_pipeline_parallelism(self):
Lianmin Zheng's avatar
Lianmin Zheng committed
1100
1101
1102
1103
1104
1105
        if self.pp_size > 1:
            self.disable_overlap_schedule = True
            logger.warning(
                "Pipeline parallelism is incompatible with overlap schedule."
            )

1106
    def _handle_hicache(self):
1107
        if self.hicache_storage_backend == "mooncake":
1108
1109
1110
1111
1112
1113
1114
1115
1116
            if self.hicache_mem_layout == "layer_first":
                if self.hicache_io_backend == "direct":
                    self.hicache_mem_layout = "page_first_direct"
                elif self.hicache_io_backend == "kernel":
                    self.hicache_mem_layout = "page_first"
                logger.warning(
                    f"Mooncake storage backend does not support layer_first layout, "
                    f"switching to {self.hicache_mem_layout} layout for {self.hicache_io_backend} io backend"
                )
1117

1118
1119
1120
1121
1122
1123
1124
        if self.hicache_mem_layout == "page_first_direct":
            if self.hicache_io_backend != "direct":
                self.hicache_io_backend = "direct"
                logger.warning(
                    "Page first direct layout only support direct io backend"
                )

1125
    def _handle_speculative_decoding(self):
1126
1127
1128
        if self.speculative_algorithm == "NEXTN":
            self.speculative_algorithm = "EAGLE"

1129
        if self.speculative_algorithm in ("EAGLE", "EAGLE3", "STANDALONE"):
1130
            if self.speculative_algorithm == "STANDALONE" and self.enable_dp_attention:
1131
                # TODO: support dp attention for standalone speculative decoding
1132
1133
1134
                raise ValueError(
                    "Currently standalone speculative decoding does not support dp attention."
                )
1135
            if self.max_running_requests is None:
1136
                self.max_running_requests = 48
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149

            if self.speculative_algorithm == "EAGLE" and self.enable_beta_spec:
                self.disable_overlap_schedule = False
                logger.warning(
                    "Beta spec is enabled for eagle speculative decoding and overlap schedule is turned on."
                )

            if not self.enable_beta_spec:
                self.disable_overlap_schedule = True
                logger.warning(
                    "Overlap scheduler is disabled because of using eagle3 and standalone speculative decoding."
                )

1150
1151
1152
1153
1154
1155
            if self.enable_mixed_chunk:
                self.enable_mixed_chunk = False
                logger.warning(
                    "Mixed chunked prefill is disabled because of using "
                    "eagle speculative decoding."
                )
1156

Lianmin Zheng's avatar
Lianmin Zheng committed
1157
            model_arch = self.get_hf_config().architectures[0]
strgrb's avatar
strgrb committed
1158
            if model_arch in [
fzyzcjy's avatar
fzyzcjy committed
1159
                "DeepseekV32ForCausalLM",
strgrb's avatar
strgrb committed
1160
1161
                "DeepseekV3ForCausalLM",
                "Glm4MoeForCausalLM",
Yuan Luo's avatar
Yuan Luo committed
1162
                "BailingMoeForCausalLM",
strgrb's avatar
strgrb committed
1163
1164
                "BailingMoeV2ForCausalLM",
            ]:
1165
1166
1167
1168
1169
1170
                if self.speculative_draft_model_path is None:
                    self.speculative_draft_model_path = self.model_path
                else:
                    logger.warning(
                        "DeepSeek MTP does not require setting speculative_draft_model_path."
                    )
1171

1172
1173
1174
1175
1176
1177
1178
1179
1180
            if self.speculative_num_steps is None:
                assert (
                    self.speculative_eagle_topk is None
                    and self.speculative_num_draft_tokens is None
                )
                (
                    self.speculative_num_steps,
                    self.speculative_eagle_topk,
                    self.speculative_num_draft_tokens,
1181
                ) = auto_choose_speculative_params(self)
1182

1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
            if (
                self.attention_backend == "trtllm_mha"
                or self.decode_attention_backend == "trtllm_mha"
                or self.prefill_attention_backend == "trtllm_mha"
            ):
                if self.speculative_eagle_topk > 1:
                    raise ValueError(
                        "trtllm_mha backend only supports topk = 1 for speculative decoding."
                    )

1193
1194
1195
1196
            if (
                self.speculative_eagle_topk == 1
                and self.speculative_num_draft_tokens != self.speculative_num_steps + 1
            ):
Lianmin Zheng's avatar
Lianmin Zheng committed
1197
                logger.warning(
1198
1199
1200
                    "speculative_num_draft_tokens is adjusted to speculative_num_steps + 1 when speculative_eagle_topk == 1"
                )
                self.speculative_num_draft_tokens = self.speculative_num_steps + 1
1201

1202
1203
1204
1205
1206
1207
1208
1209
1210
            if (
                self.speculative_eagle_topk > 1
                and self.page_size > 1
                and self.attention_backend != "flashinfer"
            ):
                raise ValueError(
                    "speculative_eagle_topk > 1 with page_size > 1 is unstable and produces incorrect results for paged attention backends. This combination is only supported for the 'flashinfer' backend."
                )

1211
        if self.speculative_algorithm == "NGRAM":
1212
1213
            if not self.device.startswith("cuda"):
                raise ValueError(
1214
                    "Ngram speculative decoding only supports CUDA device."
1215
1216
1217
1218
1219
                )
            if self.max_running_requests is None:
                self.max_running_requests = 48
            self.disable_overlap_schedule = True
            self.enable_mixed_chunk = False
1220
            self.speculative_eagle_topk = self.speculative_ngram_max_bfs_breadth
1221
1222
            if self.speculative_num_draft_tokens is None:
                self.speculative_num_draft_tokens = (
1223
                    self.speculative_ngram_max_match_window_size
1224
1225
1226
                )
            logger.warning(
                "The overlap scheduler and mixed chunked prefill are disabled because of "
1227
                "using ngram speculative decoding."
1228
            )
1229

1230
1231
1232
1233
1234
1235
            if (
                self.speculative_eagle_topk > 1
                and self.page_size > 1
                and self.attention_backend != "flashinfer"
            ):
                raise ValueError(
1236
1237
1238
1239
                    f"speculative_eagle_topk({self.speculative_eagle_topk}) > 1 "
                    f"with page_size({self.page_size}) > 1 is unstable "
                    "and produces incorrect results for paged attention backends. "
                    "This combination is only supported for the 'flashinfer' backend."
1240
1241
                )
            if self.enable_dp_attention:
1242
                # TODO: support dp attention for ngram speculative decoding
1243
                raise ValueError(
1244
                    "Currently ngram speculative decoding does not support dp attention."
1245
                )
1246
1247

    def _handle_load_format(self):
1248
1249
1250
1251
1252
        if (
            self.load_format == "auto" or self.load_format == "gguf"
        ) and check_gguf_file(self.model_path):
            self.quantization = self.load_format = "gguf"

1253
1254
        if is_remote_url(self.model_path):
            self.load_format = "remote"
1255

1256
1257
        if self.custom_weight_loader is None:
            self.custom_weight_loader = []
1258

1259
1260
1261
1262
1263
1264
1265
1266
        if self.load_format == "remote_instance":
            if (
                self.remote_instance_weight_loader_seed_instance_ip is None
                or self.remote_instance_weight_loader_seed_instance_service_port is None
                or self.remote_instance_weight_loader_send_weights_group_ports is None
            ):
                self.load_format = "auto"

1267
    def _handle_disaggregation(self):
Byron Hsu's avatar
Byron Hsu committed
1268
1269
1270
1271
1272
1273
1274
1275
        if self.disaggregation_mode == "decode":
            assert (
                self.disaggregation_decode_tp is None
            ), "Cannot set --disaggregation-decode-tp for the decode engine."
            assert (
                self.disaggregation_decode_dp is None
            ), "Cannot set --disaggregation-decode-dp for the decode engine."

Byron Hsu's avatar
Byron Hsu committed
1276
            self.disable_radix_cache = True
1277
            logger.warning("KV cache is forced as chunk cache for decode server")
1278
1279
1280
1281
1282
1283
1284

            if self.dp_size > 1 and not is_in_ci():
                assert self.prefill_round_robin_balance, (
                    "Prefill round robin balance is required when dp size > 1. "
                    "Please make sure that the prefill instance is launched with `--load-balance-method round_robin`"
                    " and `--prefill-round-robin-balance` is set for decode server."
                )
Byron Hsu's avatar
Byron Hsu committed
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
        elif self.disaggregation_mode == "prefill":
            if self.disaggregation_decode_tp is None:
                self.disaggregation_decode_tp = self.tp_size
            if self.disaggregation_decode_dp is None:
                self.disaggregation_decode_dp = self.dp_size

            self.disaggregation_prefill_pp = self.pp_size
            self.validate_disagg_tp_size(self.tp_size, self.disaggregation_decode_tp)
            self.disable_cuda_graph = True
            logger.warning("Cuda graph is disabled for prefill server")
Byron Hsu's avatar
Byron Hsu committed
1295

1296
    def _handle_tokenizer_batching(self):
1297
1298
1299
1300
1301
1302
        if self.enable_tokenizer_batch_encode and self.enable_dynamic_batch_tokenizer:
            raise ValueError(
                "Cannot enable both --enable-tokenizer-batch-encode and --enable-dynamic-batch-tokenizer. "
                "Please choose one tokenizer batching approach."
            )

1303
    def _handle_environment_variables(self):
1304
1305
1306
        os.environ["SGLANG_ENABLE_TORCH_COMPILE"] = (
            "1" if self.enable_torch_compile else "0"
        )
Yi Zhang's avatar
Yi Zhang committed
1307
        os.environ["SGLANG_MAMBA_SSM_DTYPE"] = self.mamba_ssm_dtype
1308
1309
1310
        os.environ["SGLANG_DISABLE_OUTLINES_DISK_CACHE"] = (
            "1" if self.disable_outlines_disk_cache else "0"
        )
1311
1312
1313
        os.environ["SGLANG_ENABLE_DETERMINISTIC_INFERENCE"] = (
            "1" if self.enable_deterministic_inference else "0"
        )
1314

1315
    def _handle_cache_compatibility(self):
1316
1317
1318
1319
1320
1321
        if self.enable_hierarchical_cache and self.disable_radix_cache:
            raise ValueError(
                "The arguments enable-hierarchical-cache and disable-radix-cache are mutually exclusive "
                "and cannot be used at the same time. Please use only one of them."
            )

1322
1323
1324
1325
1326
1327
1328
1329
        if (
            self.disaggregation_decode_enable_offload_kvcache
            and self.disaggregation_mode != "decode"
        ):
            raise ValueError(
                "The argument disaggregation-decode-enable-offload-kvcache is only supported for decode side."
            )

1330
    def _handle_metrics_labels(self):
1331
1332
        if (
            not self.tokenizer_metrics_custom_labels_header
1333
            and self.tokenizer_metrics_allowed_custom_labels
1334
1335
        ):
            raise ValueError(
1336
                "Please set --tokenizer-metrics-custom-labels-header when setting --tokenizer-metrics-allowed-custom-labels."
1337
1338
            )

1339
    def _handle_deterministic_inference(self):
1340
        if self.enable_deterministic_inference:
1341
            # Check sampling backend
1342
1343
1344
1345
            self.sampling_backend = "pytorch"
            logger.warning(
                "Sampling backend is set to pytorch for deterministic inference."
            )
1346
1347
1348
1349
1350
1351
1352

            # Check attention backend
            if self.attention_backend not in DETERMINISTIC_ATTENTION_BACKEND_CHOICES:
                raise ValueError(
                    f"Currently only {DETERMINISTIC_ATTENTION_BACKEND_CHOICES} attention backends are supported for deterministic inference."
                )

1353
            # Currently, only FA3 supports radix cache. Support for other backends is in progress
1354
1355
1356
            if self.attention_backend != "fa3":
                self.disable_radix_cache = True
                logger.warning(
1357
                    f"Currently radix cache is not compatible with {self.attention_backend} attention backend for deterministic inference. It will be supported in the future."
1358
                )
1359
1360
1361

            # Check TP size
            if self.tp_size > 1:
1362
1363
1364
1365
                os.environ["NCCL_ALGO"] = "allreduce:tree"
                self.disable_custom_all_reduce = True
                logger.warning(
                    "NCCL_ALGO is set to 'allreduce:tree' and custom all reduce is disabled for deterministic inference when TP size > 1."
1366
1367
                )

1368
    def _handle_other_validations(self):
fzyzcjy's avatar
fzyzcjy committed
1369
        pass
1370

Lianmin Zheng's avatar
Lianmin Zheng committed
1371
1372
    @staticmethod
    def add_cli_args(parser: argparse.ArgumentParser):
Lianmin Zheng's avatar
Lianmin Zheng committed
1373
        # Model and tokenizer
Lianmin Zheng's avatar
Lianmin Zheng committed
1374
1375
        parser.add_argument(
            "--model-path",
1376
            "--model",
Lianmin Zheng's avatar
Lianmin Zheng committed
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
            type=str,
            help="The path of the model weights. This can be a local folder or a Hugging Face repo ID.",
            required=True,
        )
        parser.add_argument(
            "--tokenizer-path",
            type=str,
            default=ServerArgs.tokenizer_path,
            help="The path of the tokenizer.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1387
1388
1389
1390
1391
1392
1393
1394
1395
        parser.add_argument(
            "--tokenizer-mode",
            type=str,
            default=ServerArgs.tokenizer_mode,
            choices=["auto", "slow"],
            help="Tokenizer mode. 'auto' will use the fast "
            "tokenizer if available, and 'slow' will "
            "always use the slow tokenizer.",
        )
1396
1397
1398
1399
1400
1401
        parser.add_argument(
            "--tokenizer-worker-num",
            type=int,
            default=ServerArgs.tokenizer_worker_num,
            help="The worker num of the tokenizer manager.",
        )
1402
1403
1404
        parser.add_argument(
            "--skip-tokenizer-init",
            action="store_true",
1405
            help="If set, skip init tokenizer and pass input_ids in generate request.",
1406
        )
1407
        parser.add_argument(
Lianmin Zheng's avatar
Lianmin Zheng committed
1408
1409
1410
            "--load-format",
            type=str,
            default=ServerArgs.load_format,
1411
            choices=LOAD_FORMAT_CHOICES,
Lianmin Zheng's avatar
Lianmin Zheng committed
1412
1413
1414
1415
1416
1417
1418
1419
1420
            help="The format of the model weights to load. "
            '"auto" will try to load the weights in the safetensors format '
            "and fall back to the pytorch bin format if safetensors format "
            "is not available. "
            '"pt" will load the weights in the pytorch bin format. '
            '"safetensors" will load the weights in the safetensors format. '
            '"npcache" will load the weights in pytorch format and store '
            "a numpy cache to speed up the loading. "
            '"dummy" will initialize the weights with random values, '
1421
            "which is mainly for profiling."
1422
1423
            '"gguf" will load the weights in the gguf format. '
            '"bitsandbytes" will load the weights using bitsandbytes '
1424
1425
1426
1427
            "quantization."
            '"layered" loads weights layer by layer so that one can quantize a '
            "layer before loading another to make the peak memory envelope "
            "smaller.",
Lianmin Zheng's avatar
Lianmin Zheng committed
1428
        )
1429
1430
1431
1432
1433
1434
1435
        parser.add_argument(
            "--model-loader-extra-config",
            type=str,
            help="Extra config for model loader. "
            "This will be passed to the model loader corresponding to the chosen load_format.",
            default=ServerArgs.model_loader_extra_config,
        )
1436
1437
1438
1439
1440
        parser.add_argument(
            "--trust-remote-code",
            action="store_true",
            help="Whether or not to allow for custom models defined on the Hub in their own modeling files.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
        parser.add_argument(
            "--context-length",
            type=int,
            default=ServerArgs.context_length,
            help="The model's maximum context length. Defaults to None (will use the value from the model's config.json instead).",
        )
        parser.add_argument(
            "--is-embedding",
            action="store_true",
            help="Whether to use a CausalLM as an embedding model.",
        )
        parser.add_argument(
            "--enable-multimodal",
            default=ServerArgs.enable_multimodal,
            action="store_true",
            help="Enable the multimodal functionality for the served model. If the model being served is not multimodal, nothing will happen",
        )
        parser.add_argument(
            "--revision",
            type=str,
            default=None,
            help="The specific model version to use. It can be a branch "
            "name, a tag name, or a commit id. If unspecified, will use "
            "the default version.",
        )
        parser.add_argument(
            "--model-impl",
            type=str,
            default=ServerArgs.model_impl,
            help="Which implementation of the model to use.\n\n"
            '* "auto" will try to use the SGLang implementation if it exists '
            "and fall back to the Transformers implementation if no SGLang "
            "implementation is available.\n"
            '* "sglang" will use the SGLang model implementation.\n'
            '* "transformers" will use the Transformers model '
            "implementation.\n",
        )

        # HTTP server
        parser.add_argument(
            "--host",
            type=str,
            default=ServerArgs.host,
            help="The host of the HTTP server.",
        )
        parser.add_argument(
            "--port",
            type=int,
            default=ServerArgs.port,
            help="The port of the HTTP server.",
        )
        parser.add_argument(
            "--skip-server-warmup",
            action="store_true",
            help="If set, skip warmup.",
        )
        parser.add_argument(
            "--warmups",
            type=str,
            required=False,
            help="Specify custom warmup functions (csv) to run before server starts eg. --warmups=warmup_name1,warmup_name2 "
            "will run the functions `warmup_name1` and `warmup_name2` specified in warmup.py before the server starts listening for requests",
        )
        parser.add_argument(
            "--nccl-port",
            type=int,
            default=ServerArgs.nccl_port,
            help="The port for NCCL distributed environment setup. Defaults to a random port.",
        )

        # Quantization and data type
Lianmin Zheng's avatar
Lianmin Zheng committed
1512
        parser.add_argument(
Lianmin Zheng's avatar
Lianmin Zheng committed
1513
            "--dtype",
Cody Yu's avatar
Cody Yu committed
1514
            type=str,
Lianmin Zheng's avatar
Lianmin Zheng committed
1515
            default=ServerArgs.dtype,
Ying Sheng's avatar
Ying Sheng committed
1516
1517
            choices=["auto", "half", "float16", "bfloat16", "float", "float32"],
            help="Data type for model weights and activations.\n\n"
Lianmin Zheng's avatar
Lianmin Zheng committed
1518
            '* "auto" will use FP16 precision for FP32 and FP16 models, and '
Ying Sheng's avatar
Ying Sheng committed
1519
            "BF16 precision for BF16 models.\n"
Lianmin Zheng's avatar
Lianmin Zheng committed
1520
1521
1522
1523
            '* "half" for FP16. Recommended for AWQ quantization.\n'
            '* "float16" is the same as "half".\n'
            '* "bfloat16" for a balance between precision and range.\n'
            '* "float" is shorthand for FP32 precision.\n'
Ying Sheng's avatar
Ying Sheng committed
1524
1525
            '* "float32" for FP32 precision.',
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1526
1527
1528
1529
        parser.add_argument(
            "--quantization",
            type=str,
            default=ServerArgs.quantization,
1530
            choices=QUANTIZATION_CHOICES,
Lianmin Zheng's avatar
Lianmin Zheng committed
1531
1532
            help="The quantization method.",
        )
1533
1534
1535
1536
1537
1538
1539
1540
1541
        parser.add_argument(
            "--quantization-param-path",
            type=nullable_str,
            default=None,
            help="Path to the JSON file containing the KV cache "
            "scaling factors. This should generally be supplied, when "
            "KV cache dtype is FP8. Otherwise, KV cache scaling factors "
            "default to 1.0, which may cause accuracy issues. ",
        )
1542
1543
1544
1545
1546
1547
1548
1549
        parser.add_argument(
            "--modelopt-quant",
            type=str,
            default=ServerArgs.modelopt_quant,
            help="The ModelOpt quantization configuration. "
            "Supported values: 'fp8', 'int4_awq', 'w4a8_awq', 'nvfp4', 'nvfp4_awq'. "
            "This requires the NVIDIA Model Optimizer library to be installed: pip install nvidia-modelopt",
        )
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
        parser.add_argument(
            "--modelopt-checkpoint-restore-path",
            type=str,
            default=ServerArgs.modelopt_checkpoint_restore_path,
            help="Path to restore a previously saved ModelOpt quantized checkpoint. "
            "If provided, the quantization process will be skipped and the model "
            "will be loaded from this checkpoint.",
        )
        parser.add_argument(
            "--modelopt-checkpoint-save-path",
            type=str,
            default=ServerArgs.modelopt_checkpoint_save_path,
            help="Path to save the ModelOpt quantized checkpoint after quantization. "
            "This allows reusing the quantized model in future runs.",
        )
1565
        parser.add_argument(
Lianmin Zheng's avatar
Lianmin Zheng committed
1566
            "--kv-cache-dtype",
1567
            type=str,
Lianmin Zheng's avatar
Lianmin Zheng committed
1568
1569
1570
            default=ServerArgs.kv_cache_dtype,
            choices=["auto", "fp8_e5m2", "fp8_e4m3"],
            help='Data type for kv cache storage. "auto" will use model data type. "fp8_e5m2" and "fp8_e4m3" is supported for CUDA 11.8+.',
1571
        )
1572
1573
1574
1575
1576
        parser.add_argument(
            "--enable-fp32-lm-head",
            action="store_true",
            help="If set, the LM head outputs (logits) are in FP32.",
        )
1577

1578
        # Memory and scheduling
Lianmin Zheng's avatar
Lianmin Zheng committed
1579
1580
1581
1582
        parser.add_argument(
            "--mem-fraction-static",
            type=float,
            default=ServerArgs.mem_fraction_static,
1583
            help="The fraction of the memory used for static allocation (model weights and KV cache memory pool). Use a smaller value if you see out-of-memory errors.",
Lianmin Zheng's avatar
Lianmin Zheng committed
1584
        )
1585
1586
1587
1588
1589
1590
        parser.add_argument(
            "--max-running-requests",
            type=int,
            default=ServerArgs.max_running_requests,
            help="The maximum number of running requests.",
        )
1591
1592
1593
1594
1595
1596
        parser.add_argument(
            "--max-queued-requests",
            type=int,
            default=ServerArgs.max_queued_requests,
            help="The maximum number of queued requests. This option is ignored when using disaggregation-mode.",
        )
1597
1598
1599
1600
        parser.add_argument(
            "--max-total-tokens",
            type=int,
            default=ServerArgs.max_total_tokens,
1601
1602
            help="The maximum number of tokens in the memory pool. If not specified, it will be automatically calculated based on the memory usage fraction. "
            "This option is typically used for development and debugging purposes.",
1603
        )
1604
1605
1606
1607
        parser.add_argument(
            "--chunked-prefill-size",
            type=int,
            default=ServerArgs.chunked_prefill_size,
1608
            help="The maximum number of tokens in a chunk for the chunked prefill. Setting this to -1 means disabling chunked prefill.",
1609
1610
1611
1612
1613
1614
1615
        )
        parser.add_argument(
            "--max-prefill-tokens",
            type=int,
            default=ServerArgs.max_prefill_tokens,
            help="The maximum number of tokens in a prefill batch. The real bound will be the maximum of this value and the model's maximum context length.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1616
        parser.add_argument(
1617
            "--schedule-policy",
Lianmin Zheng's avatar
Lianmin Zheng committed
1618
            type=str,
1619
            default=ServerArgs.schedule_policy,
1620
            choices=["lpm", "random", "fcfs", "dfs-weight", "lof", "priority"],
1621
            help="The scheduling policy of the requests.",
Lianmin Zheng's avatar
Lianmin Zheng committed
1622
        )
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
        parser.add_argument(
            "--enable-priority-scheduling",
            action="store_true",
            default=ServerArgs.enable_priority_scheduling,
            help="Enable priority scheduling. Requests with higher priority integer values will be scheduled first by default.",
        )
        parser.add_argument(
            "--schedule-low-priority-values-first",
            action="store_true",
            default=ServerArgs.schedule_low_priority_values_first,
            help="If specified with --enable-priority-scheduling, the scheduler will schedule requests with lower priority integer values first.",
        )
        parser.add_argument(
            "--priority-scheduling-preemption-threshold",
            type=int,
            default=ServerArgs.priority_scheduling_preemption_threshold,
            help="Minimum difference in priorities for an incoming request to have to preempt running request(s).",
        )
1641
1642
1643
1644
        parser.add_argument(
            "--schedule-conservativeness",
            type=float,
            default=ServerArgs.schedule_conservativeness,
1645
            help="How conservative the schedule policy is. A larger value means more conservative scheduling. Use a larger value if you see requests being retracted frequently.",
1646
        )
1647
1648
1649
1650
1651
1652
        parser.add_argument(
            "--page-size",
            type=int,
            default=ServerArgs.page_size,
            help="The number of tokens in a page.",
        )
tarinkk's avatar
tarinkk committed
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
        parser.add_argument(
            "--hybrid-kvcache-ratio",
            nargs="?",
            const=0.5,
            type=float,
            default=ServerArgs.hybrid_kvcache_ratio,
            help=(
                "Mix ratio in [0,1] between uniform and hybrid kv buffers "
                "(0.0 = pure uniform: swa_size / full_size = 1)"
                "(1.0 = pure hybrid: swa_size / full_size = local_attention_size / context_length)"
            ),
        )
Hanming Lu's avatar
Hanming Lu committed
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
        parser.add_argument(
            "--swa-full-tokens-ratio",
            type=float,
            default=ServerArgs.swa_full_tokens_ratio,
            help="The ratio of SWA layer KV tokens / full layer KV tokens, regardless of the number of swa:full layers. It should be between 0 and 1. "
            "E.g. 0.5 means if each swa layer has 50 tokens, then each full layer has 100 tokens.",
        )
        parser.add_argument(
            "--disable-hybrid-swa-memory",
            action="store_true",
            help="Disable the hybrid SWA memory.",
        )
1677

Lianmin Zheng's avatar
Lianmin Zheng committed
1678
1679
1680
1681
1682
1683
1684
        # Runtime options
        parser.add_argument(
            "--device",
            type=str,
            default=ServerArgs.device,
            help="The device to use ('cuda', 'xpu', 'hpu', 'npu', 'cpu'). Defaults to auto-detection if not specified.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1685
        parser.add_argument(
1686
            "--tensor-parallel-size",
Lianmin Zheng's avatar
Lianmin Zheng committed
1687
            "--tp-size",
Lianmin Zheng's avatar
Lianmin Zheng committed
1688
            type=int,
Lianmin Zheng's avatar
Lianmin Zheng committed
1689
            default=ServerArgs.tp_size,
1690
            help="The tensor parallelism size.",
1691
        )
1692
1693
1694
1695
1696
1697
1698
1699
        parser.add_argument(
            "--pipeline-parallel-size",
            "--pp-size",
            type=int,
            default=ServerArgs.pp_size,
            help="The pipeline parallelism size.",
        )
        parser.add_argument(
1700
            "--pp-max-micro-batch-size",
1701
            type=int,
1702
            default=ServerArgs.pp_max_micro_batch_size,
1703
1704
            help="The maximum micro batch size in pipeline parallelism.",
        )
1705
1706
1707
        parser.add_argument(
            "--stream-interval",
            type=int,
Lianmin Zheng's avatar
Lianmin Zheng committed
1708
            default=ServerArgs.stream_interval,
1709
            help="The interval (or buffer size) for streaming in terms of the token length. A smaller value makes streaming smoother, while a larger value makes the throughput higher",
1710
        )
1711
1712
1713
1714
1715
        parser.add_argument(
            "--stream-output",
            action="store_true",
            help="Whether to output as a sequence of disjoint segments.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1716
1717
1718
1719
        parser.add_argument(
            "--random-seed",
            type=int,
            default=ServerArgs.random_seed,
1720
            help="The random seed.",
Lianmin Zheng's avatar
Lianmin Zheng committed
1721
        )
1722
1723
1724
1725
        parser.add_argument(
            "--constrained-json-whitespace-pattern",
            type=str,
            default=ServerArgs.constrained_json_whitespace_pattern,
1726
1727
1728
1729
1730
1731
            help="(outlines and llguidance backends only) Regex pattern for syntactic whitespaces allowed in JSON constrained output. For example, to allow the model generate consecutive whitespaces, set the pattern to [\n\t ]*",
        )
        parser.add_argument(
            "--constrained-json-disable-any-whitespace",
            action="store_true",
            help="(xgrammar and llguidance backends only) Enforce compact representation in JSON constrained output.",
1732
        )
1733
1734
1735
1736
1737
1738
        parser.add_argument(
            "--watchdog-timeout",
            type=float,
            default=ServerArgs.watchdog_timeout,
            help="Set watchdog timeout in seconds. If a forward batch takes longer than this, the server will crash to prevent hanging.",
        )
1739
1740
1741
1742
1743
1744
        parser.add_argument(
            "--dist-timeout",
            type=int,
            default=ServerArgs.dist_timeout,
            help="Set timeout for torch.distributed initialization.",
        )
1745
1746
1747
1748
        parser.add_argument(
            "--download-dir",
            type=str,
            default=ServerArgs.download_dir,
1749
            help="Model download directory for huggingface.",
1750
        )
1751
1752
1753
1754
1755
1756
        parser.add_argument(
            "--base-gpu-id",
            type=int,
            default=ServerArgs.base_gpu_id,
            help="The base GPU ID to start allocating GPUs from. Useful when running multiple instances on the same machine.",
        )
1757
1758
1759
1760
1761
1762
        parser.add_argument(
            "--gpu-id-step",
            type=int,
            default=ServerArgs.gpu_id_step,
            help="The delta between consecutive GPU IDs that are used. For example, setting it to 2 will use GPU 0,2,4,...",
        )
1763
1764
1765
1766
1767
        parser.add_argument(
            "--sleep-on-idle",
            action="store_true",
            help="Reduce CPU usage when sglang is idle.",
        )
1768
1769

        # Logging
Lianmin Zheng's avatar
Lianmin Zheng committed
1770
1771
1772
1773
        parser.add_argument(
            "--log-level",
            type=str,
            default=ServerArgs.log_level,
1774
            help="The logging level of all loggers.",
Lianmin Zheng's avatar
Lianmin Zheng committed
1775
        )
1776
        parser.add_argument(
1777
1778
1779
1780
            "--log-level-http",
            type=str,
            default=ServerArgs.log_level_http,
            help="The logging level of HTTP server. If not set, reuse --log-level by default.",
1781
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1782
        parser.add_argument(
1783
            "--log-requests",
Lianmin Zheng's avatar
Lianmin Zheng committed
1784
            action="store_true",
1785
1786
1787
1788
1789
            help="Log metadata, inputs, outputs of all requests. The verbosity is decided by --log-requests-level",
        )
        parser.add_argument(
            "--log-requests-level",
            type=int,
1790
            default=ServerArgs.log_requests_level,
1791
1792
1793
1794
1795
1796
1797
1798
            help="0: Log metadata (no sampling parameters). 1: Log metadata and sampling parameters. 2: Log metadata, sampling parameters and partial input/output. 3: Log every input/output.",
            choices=[0, 1, 2, 3],
        )
        parser.add_argument(
            "--crash-dump-folder",
            type=str,
            default=ServerArgs.crash_dump_folder,
            help="Folder path to dump requests from the last 5 min before a crash (if any). If not specified, crash dumping is disabled.",
Lianmin Zheng's avatar
Lianmin Zheng committed
1799
        )
1800
1801
1802
1803
1804
1805
        parser.add_argument(
            "--crash-on-nan",
            type=str,
            default=ServerArgs.crash_on_nan,
            help="Crash the server on nan logprobs.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1806
1807
1808
        parser.add_argument(
            "--show-time-cost",
            action="store_true",
Ying Sheng's avatar
Ying Sheng committed
1809
            help="Show time cost of custom marks.",
Lianmin Zheng's avatar
Lianmin Zheng committed
1810
        )
1811
1812
1813
1814
1815
        parser.add_argument(
            "--enable-metrics",
            action="store_true",
            help="Enable log prometheus metrics.",
        )
1816
1817
1818
1819
1820
1821
1822
        parser.add_argument(
            "--enable-metrics-for-all-schedulers",
            action="store_true",
            help="Enable --enable-metrics-for-all-schedulers when you want schedulers on all TP ranks (not just TP 0) "
            "to record request metrics separately. This is especially useful when dp_attention is enabled, as "
            "otherwise all metrics appear to come from TP 0.",
        )
1823
1824
1825
1826
        parser.add_argument(
            "--tokenizer-metrics-custom-labels-header",
            type=str,
            default=ServerArgs.tokenizer_metrics_custom_labels_header,
1827
            help="Specify the HTTP header for passing custom labels for tokenizer metrics.",
1828
1829
        )
        parser.add_argument(
1830
            "--tokenizer-metrics-allowed-custom-labels",
1831
1832
            type=str,
            nargs="+",
1833
1834
            default=ServerArgs.tokenizer_metrics_allowed_custom_labels,
            help="The custom labels allowed for tokenizer metrics. The labels are specified via a dict in "
1835
            "'--tokenizer-metrics-custom-labels-header' field in HTTP requests, e.g., {'label1': 'value1', 'label2': "
1836
            "'value2'} is allowed if '--tokenizer-metrics-allowed-custom-labels label1 label2' is set.",
1837
        )
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
        parser.add_argument(
            "--bucket-time-to-first-token",
            type=float,
            nargs="+",
            default=ServerArgs.bucket_time_to_first_token,
            help="The buckets of time to first token, specified as a list of floats.",
        )
        parser.add_argument(
            "--bucket-inter-token-latency",
            type=float,
            nargs="+",
            default=ServerArgs.bucket_inter_token_latency,
            help="The buckets of inter-token latency, specified as a list of floats.",
        )
        parser.add_argument(
            "--bucket-e2e-request-latency",
            type=float,
            nargs="+",
            default=ServerArgs.bucket_e2e_request_latency,
            help="The buckets of end-to-end request latency, specified as a list of floats.",
        )
        parser.add_argument(
            "--collect-tokens-histogram",
            action="store_true",
            default=ServerArgs.collect_tokens_histogram,
            help="Collect prompt/generation tokens histogram.",
        )
1865
1866
1867
        bucket_rule = (
            "Supports 3 rule types: 'default' uses predefined buckets; 'tse <middle> <base> <count>' "
            "generates two sides exponential distributed buckets (e.g., 'tse 1000 2 8' generates buckets "
1868
1869
            "[984.0, 992.0, 996.0, 998.0, 1000.0, 1002.0, 1004.0, 1008.0, 1016.0]).); 'custom <value1> "
            "<value2> ...' uses custom bucket values (e.g., 'custom 10 50 100 500')."
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
        )
        parser.add_argument(
            "--prompt-tokens-buckets",
            type=str,
            nargs="+",
            default=ServerArgs.prompt_tokens_buckets,
            help=f"The buckets rule of prompt tokens. {bucket_rule}",
        )
        parser.add_argument(
            "--generation-tokens-buckets",
            type=str,
            nargs="+",
            default=ServerArgs.generation_tokens_buckets,
            help=f"The buckets rule for generation tokens histogram. {bucket_rule}",
        )
1885
1886
1887
1888
1889
1890
        parser.add_argument(
            "--gc-warning-threshold-secs",
            type=float,
            default=ServerArgs.gc_warning_threshold_secs,
            help="The threshold for long GC warning. If a GC takes longer than this, a warning will be logged. Set to 0 to disable.",
        )
1891
1892
1893
1894
        parser.add_argument(
            "--decode-log-interval",
            type=int,
            default=ServerArgs.decode_log_interval,
1895
            help="The log interval of decode batch.",
1896
        )
1897
1898
1899
1900
1901
1902
        parser.add_argument(
            "--enable-request-time-stats-logging",
            action="store_true",
            default=ServerArgs.enable_request_time_stats_logging,
            help="Enable per request time stats logging",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1903
1904
1905
1906
1907
        parser.add_argument(
            "--kv-events-config",
            type=str,
            default=None,
            help="Config in json format for NVIDIA dynamo KV event publishing. Publishing will be enabled if this flag is used.",
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
        )
        parser.add_argument(
            "--enable-trace",
            action="store_true",
            help="Enable opentelemetry trace",
        )
        parser.add_argument(
            "--oltp-traces-endpoint",
            type=str,
            default="localhost:4317",
            help="Config opentelemetry collector endpoint if --enable-trace is set. format: <ip>:<port>",
Lianmin Zheng's avatar
Lianmin Zheng committed
1919
        )
1920

1921
        # API related
Liangsheng Yin's avatar
Liangsheng Yin committed
1922
1923
1924
1925
        parser.add_argument(
            "--api-key",
            type=str,
            default=ServerArgs.api_key,
1926
            help="Set API key of the server. It is also used in the OpenAI API compatible server.",
Liangsheng Yin's avatar
Liangsheng Yin committed
1927
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1928
1929
1930
1931
1932
1933
        parser.add_argument(
            "--served-model-name",
            type=str,
            default=ServerArgs.served_model_name,
            help="Override the model name returned by the v1/models endpoint in OpenAI API server.",
        )
1934
1935
1936
1937
1938
1939
        parser.add_argument(
            "--weight-version",
            type=str,
            default=ServerArgs.weight_version,
            help="Version identifier for the model weights. Defaults to 'default' if not specified.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
        parser.add_argument(
            "--chat-template",
            type=str,
            default=ServerArgs.chat_template,
            help="The buliltin chat template name or the path of the chat template file. This is only used for OpenAI-compatible API server.",
        )
        parser.add_argument(
            "--completion-template",
            type=str,
            default=ServerArgs.completion_template,
            help="The buliltin completion template name or the path of the completion template file. This is only used for OpenAI-compatible API server. only for code completion currently.",
        )
1952
        parser.add_argument(
1953
            "--file-storage-path",
1954
            type=str,
1955
            default=ServerArgs.file_storage_path,
1956
1957
            help="The path of the file storage in backend.",
        )
1958
1959
1960
1961
1962
        parser.add_argument(
            "--enable-cache-report",
            action="store_true",
            help="Return number of cached tokens in usage.prompt_tokens_details for each openai request.",
        )
Xihuai Wang's avatar
Xihuai Wang committed
1963
1964
1965
1966
1967
1968
1969
        parser.add_argument(
            "--reasoning-parser",
            type=str,
            choices=list(ReasoningParser.DetectorMap.keys()),
            default=ServerArgs.reasoning_parser,
            help=f"Specify the parser for reasoning models, supported parsers are: {list(ReasoningParser.DetectorMap.keys())}.",
        )
1970
        tool_call_parser_choices = list(FunctionCallParser.ToolCallParserEnum.keys())
1971
1972
1973
        parser.add_argument(
            "--tool-call-parser",
            type=str,
1974
            choices=tool_call_parser_choices,
1975
            default=ServerArgs.tool_call_parser,
1976
            help=f"Specify the parser for handling tool-call interactions. Options include: {tool_call_parser_choices}.",
1977
        )
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
        parser.add_argument(
            "--sampling-defaults",
            type=str,
            choices=["openai", "model"],
            default=ServerArgs.sampling_defaults,
            help="Where to get default sampling parameters. "
            "'openai' uses SGLang/OpenAI defaults (temperature=1.0, top_p=1.0, etc.). "
            "'model' uses the model's generation_config.json to get the recommended "
            "sampling parameters if available. Default is 'model'.",
        )
1988
1989
1990
1991
1992
1993
        parser.add_argument(
            "--tool-server",
            type=str,
            default=None,
            help="Either 'demo' or a comma-separated list of tool server urls to use for the model. If not specified, no tool server will be used.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1994

1995
1996
        # Data parallelism
        parser.add_argument(
1997
            "--data-parallel-size",
1998
1999
2000
            "--dp-size",
            type=int,
            default=ServerArgs.dp_size,
2001
            help="The data parallelism size.",
2002
2003
2004
2005
2006
        )
        parser.add_argument(
            "--load-balance-method",
            type=str,
            default=ServerArgs.load_balance_method,
2007
            help="The load balancing strategy for data parallelism.",
2008
2009
2010
            choices=[
                "round_robin",
                "shortest_queue",
2011
                "minimum_tokens",
2012
2013
            ],
        )
2014
2015
2016
2017
2018
2019
        parser.add_argument(
            "--load-watch-interval",
            type=float,
            default=ServerArgs.load_watch_interval,
            help="The interval of load watching in seconds.",
        )
2020
2021
2022
2023
2024
2025
        parser.add_argument(
            "--prefill-round-robin-balance",
            default=ServerArgs.prefill_round_robin_balance,
            action="store_true",
            help="Prefill is round robin balanced. This is used to promise decode server can get the correct dp rank.",
        )
2026

2027
        # Multi-node distributed serving
2028
        parser.add_argument(
2029
            "--dist-init-addr",
2030
            "--nccl-init-addr",  # For backward compatibility. This will be removed in the future.
2031
            type=str,
2032
            help="The host address for initializing distributed backend (e.g., `192.168.0.2:25000`).",
2033
2034
        )
        parser.add_argument(
Liangsheng Yin's avatar
Liangsheng Yin committed
2035
            "--nnodes", type=int, default=ServerArgs.nnodes, help="The number of nodes."
2036
        )
2037
2038
2039
        parser.add_argument(
            "--node-rank", type=int, default=ServerArgs.node_rank, help="The node rank."
        )
2040

Lianmin Zheng's avatar
Lianmin Zheng committed
2041
2042
2043
2044
2045
2046
2047
        # Model override args
        parser.add_argument(
            "--json-model-override-args",
            type=str,
            help="A dictionary in JSON string format used to override default model configurations.",
            default=ServerArgs.json_model_override_args,
        )
2048
2049
2050
2051
2052
        parser.add_argument(
            "--preferred-sampling-params",
            type=str,
            help="json-formatted sampling settings that will be returned in /get_model_info",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
2053

2054
        # LoRA
2055
2056
2057
2058
2059
2060
        parser.add_argument(
            "--enable-lora",
            default=ServerArgs.enable_lora,
            action="store_true",
            help="Enable LoRA support for the model. This argument is automatically set to True if `--lora-paths` is provided for backward compatibility.",
        )
2061
2062
2063
2064
2065
2066
2067
2068
2069
        parser.add_argument(
            "--max-lora-rank",
            default=ServerArgs.max_lora_rank,
            type=int,
            help="The maximum rank of LoRA adapters. If not specified, it will be automatically inferred from the adapters provided in --lora-paths.",
        )
        parser.add_argument(
            "--lora-target-modules",
            type=str,
2070
            choices=SUPPORTED_LORA_TARGET_MODULES + [LORA_TARGET_ALL_MODULES],
2071
2072
            nargs="*",
            default=None,
2073
2074
2075
            help="The union set of all target modules where LoRA should be applied. If not specified, "
            "it will be automatically inferred from the adapters provided in --lora-paths. If 'all' is specified, "
            "all supported modules will be targeted.",
2076
        )
2077
2078
2079
2080
2081
2082
        parser.add_argument(
            "--lora-paths",
            type=str,
            nargs="*",
            default=None,
            action=LoRAPathAction,
2083
            help='The list of LoRA adapters to load. Each adapter must be specified in one of the following formats: <PATH> | <NAME>=<PATH> | JSON with schema {"lora_name":str,"lora_path":str,"pinned":bool}',
2084
2085
2086
2087
2088
        )
        parser.add_argument(
            "--max-loras-per-batch",
            type=int,
            default=8,
2089
2090
            help="Maximum number of adapters for a running batch, include base-only request.",
        )
2091
2092
2093
2094
2095
2096
        parser.add_argument(
            "--max-loaded-loras",
            type=int,
            default=ServerArgs.max_loaded_loras,
            help="If specified, it limits the maximum number of LoRA adapters loaded in CPU memory at a time. The value must be greater than or equal to `--max-loras-per-batch`.",
        )
2097
2098
2099
        parser.add_argument(
            "--lora-backend",
            type=str,
2100
2101
            choices=LORA_BACKEND_CHOICES,
            default=ServerArgs.lora_backend,
2102
            help="Choose the kernel backend for multi-LoRA serving.",
2103
        )
2104
2105
2106
2107
2108
2109
2110
        parser.add_argument(
            "--max-lora-chunk-size",
            type=int,
            default=ServerArgs.max_lora_chunk_size,
            choices=[16, 32, 64, 128],
            help="Maximum chunk size for the ChunkedSGMV LoRA backend. Only used when --lora-backend is 'csgmv'. Choosing a larger value might improve performance.",
        )
2111
2112

        # Kernel backend
2113
2114
2115
        parser.add_argument(
            "--attention-backend",
            type=str,
2116
            choices=ATTENTION_BACKEND_CHOICES,
2117
2118
2119
            default=ServerArgs.attention_backend,
            help="Choose the kernels for attention layers.",
        )
2120
2121
2122
        parser.add_argument(
            "--prefill-attention-backend",
            type=str,
2123
            choices=ATTENTION_BACKEND_CHOICES,
2124
2125
2126
            default=ServerArgs.prefill_attention_backend,
            help="Choose the kernels for prefill attention layers (have priority over --attention-backend).",
        )
2127
2128
2129
        parser.add_argument(
            "--decode-attention-backend",
            type=str,
2130
            choices=ATTENTION_BACKEND_CHOICES,
2131
2132
2133
            default=ServerArgs.decode_attention_backend,
            help="Choose the kernels for decode attention layers (have priority over --attention-backend).",
        )
2134
2135
2136
2137
2138
2139
2140
        parser.add_argument(
            "--sampling-backend",
            type=str,
            choices=["flashinfer", "pytorch"],
            default=ServerArgs.sampling_backend,
            help="Choose the kernels for sampling layers.",
        )
2141
2142
2143
        parser.add_argument(
            "--grammar-backend",
            type=str,
2144
            choices=GRAMMAR_BACKEND_CHOICES,
2145
            default=ServerArgs.grammar_backend,
Lianmin Zheng's avatar
Lianmin Zheng committed
2146
            help="Choose the backend for grammar-guided decoding.",
2147
        )
2148
2149
2150
        parser.add_argument(
            "--mm-attention-backend",
            type=str,
2151
            choices=["sdpa", "fa3", "triton_attn", "ascend_attn"],
2152
2153
2154
            default=ServerArgs.mm_attention_backend,
            help="Set multimodal attention backend.",
        )
fzyzcjy's avatar
fzyzcjy committed
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
        parser.add_argument(
            "--nsa-prefill",
            default=ServerArgs.nsa_prefill,
            type=str,
            choices=NSA_CHOICES,
        )
        parser.add_argument(
            "--nsa-decode",
            default=ServerArgs.nsa_decode,
            type=str,
            choices=NSA_CHOICES,
        )
2167

2168
        # Speculative decoding
2169
        parser.add_argument("--enable-beta-spec", action="store_true")
2170
2171
2172
        parser.add_argument(
            "--speculative-algorithm",
            type=str,
2173
            choices=["EAGLE", "EAGLE3", "NEXTN", "STANDALONE", "NGRAM"],
2174
2175
2176
2177
            help="Speculative algorithm.",
        )
        parser.add_argument(
            "--speculative-draft-model-path",
2178
            "--speculative-draft-model",
2179
2180
2181
            type=str,
            help="The path of the draft model weights. This can be a local folder or a Hugging Face repo ID.",
        )
2182
2183
2184
2185
2186
2187
2188
2189
        parser.add_argument(
            "--speculative-draft-model-revision",
            type=str,
            default=None,
            help="The specific draft model version to use. It can be a branch "
            "name, a tag name, or a commit id. If unspecified, will use "
            "the default version.",
        )
2190
2191
2192
2193
2194
2195
2196
2197
2198
        parser.add_argument(
            "--speculative-num-steps",
            type=int,
            help="The number of steps sampled from draft model in Speculative Decoding.",
            default=ServerArgs.speculative_num_steps,
        )
        parser.add_argument(
            "--speculative-eagle-topk",
            type=int,
2199
            help="The number of tokens sampled from the draft model in eagle2 each step.",
2200
2201
            default=ServerArgs.speculative_eagle_topk,
        )
2202
2203
2204
        parser.add_argument(
            "--speculative-num-draft-tokens",
            type=int,
2205
            help="The number of tokens sampled from the draft model in Speculative Decoding.",
2206
2207
            default=ServerArgs.speculative_num_draft_tokens,
        )
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
        parser.add_argument(
            "--speculative-accept-threshold-single",
            type=float,
            help="Accept a draft token if its probability in the target model is greater than this threshold.",
            default=ServerArgs.speculative_accept_threshold_single,
        )
        parser.add_argument(
            "--speculative-accept-threshold-acc",
            type=float,
            help="The accept probability of a draft token is raised from its target probability p to min(1, p / threshold_acc).",
            default=ServerArgs.speculative_accept_threshold_acc,
        )
2220
2221
2222
2223
2224
2225
        parser.add_argument(
            "--speculative-token-map",
            type=str,
            help="The path of the draft model's small vocab table.",
            default=ServerArgs.speculative_token_map,
        )
2226
        parser.add_argument(
2227
            "--speculative-attention-mode",
2228
2229
            type=str,
            choices=["prefill", "decode"],
2230
2231
            help="Attention backend for speculative decoding operations (both target verify and draft extend). Can be one of 'prefill' (default) or 'decode'.",
            default=ServerArgs.speculative_attention_mode,
2232
        )
2233
        # Ngram speculative decoding
2234
        parser.add_argument(
2235
            "--speculative-ngram-min-match-window-size",
2236
            type=int,
2237
2238
            default=ServerArgs.speculative_ngram_min_match_window_size,
            help="The minimum window size for pattern matching in ngram speculative decoding.",
2239
2240
        )
        parser.add_argument(
2241
            "--speculative-ngram-max-match-window-size",
2242
            type=int,
2243
2244
            default=ServerArgs.speculative_ngram_max_match_window_size,
            help="The maximum window size for pattern matching in ngram speculative decoding.",
2245
2246
        )
        parser.add_argument(
2247
            "--speculative-ngram-min-bfs-breadth",
2248
            type=int,
2249
2250
            default=ServerArgs.speculative_ngram_min_bfs_breadth,
            help="The minimum breadth for BFS (Breadth-First Search) in ngram speculative decoding.",
2251
2252
        )
        parser.add_argument(
2253
            "--speculative-ngram-max-bfs-breadth",
2254
            type=int,
2255
2256
            default=ServerArgs.speculative_ngram_max_bfs_breadth,
            help="The maximum breadth for BFS (Breadth-First Search) in ngram speculative decoding.",
2257
2258
        )
        parser.add_argument(
2259
            "--speculative-ngram-match-type",
2260
2261
            type=str,
            choices=["BFS", "PROB"],
2262
            default=ServerArgs.speculative_ngram_match_type,
2263
2264
2265
            help="The match type for cache tree.",
        )
        parser.add_argument(
2266
            "--speculative-ngram-branch-length",
2267
            type=int,
2268
2269
            default=ServerArgs.speculative_ngram_branch_length,
            help="The branch length for ngram speculative decoding.",
2270
2271
        )
        parser.add_argument(
2272
            "--speculative-ngram-capacity",
2273
            type=int,
2274
2275
            default=ServerArgs.speculative_ngram_capacity,
            help="The cache capacity for ngram speculative decoding.",
2276
        )
2277
2278
2279
2280
2281

        # Expert parallelism
        parser.add_argument(
            "--expert-parallel-size",
            "--ep-size",
Cheng Wan's avatar
Cheng Wan committed
2282
            "--ep",
2283
2284
2285
2286
2287
            type=int,
            default=ServerArgs.ep_size,
            help="The expert parallelism size.",
        )
        parser.add_argument(
2288
2289
            "--moe-a2a-backend",
            type=str,
2290
            choices=["none", "deepep"],
2291
2292
            default=ServerArgs.moe_a2a_backend,
            help="Choose the backend for MoE A2A.",
2293
        )
2294
        parser.add_argument(
2295
2296
            "--moe-runner-backend",
            type=str,
2297
            choices=MOE_RUNNER_BACKEND_CHOICES,
2298
2299
            default=ServerArgs.moe_runner_backend,
            help="Choose the runner backend for MoE.",
2300
2301
        )
        parser.add_argument(
2302
2303
            "--flashinfer-mxfp4-moe-precision",
            type=str,
2304
            choices=["default", "bf16"],
2305
2306
2307
2308
            default=ServerArgs.flashinfer_mxfp4_moe_precision,
            help="Choose the computation precision of flashinfer mxfp4 moe",
        )
        parser.add_argument(
2309
2310
            "--enable-flashinfer-allreduce-fusion",
            action="store_true",
2311
            help="Enable FlashInfer allreduce fusion with Residual RMSNorm.",
2312
        )
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
        parser.add_argument(
            "--deepep-mode",
            type=str,
            choices=["normal", "low_latency", "auto"],
            default="auto",
            help="Select the mode when enable DeepEP MoE, could be `normal`, `low_latency` or `auto`. Default is `auto`, which means `low_latency` for decode batch and `normal` for prefill batch.",
        )
        parser.add_argument(
            "--ep-num-redundant-experts",
            type=int,
            default=ServerArgs.ep_num_redundant_experts,
            help="Allocate this number of redundant experts in expert parallel.",
        )
        parser.add_argument(
            "--ep-dispatch-algorithm",
            type=str,
            default=ServerArgs.ep_dispatch_algorithm,
            help="The algorithm to choose ranks for redundant experts in expert parallel.",
        )
        parser.add_argument(
            "--init-expert-location",
            type=str,
            default=ServerArgs.init_expert_location,
            help="Initial location of EP experts.",
        )
        parser.add_argument(
            "--enable-eplb",
            action="store_true",
            help="Enable EPLB algorithm",
        )
        parser.add_argument(
            "--eplb-algorithm",
            type=str,
            default=ServerArgs.eplb_algorithm,
            help="Chosen EPLB algorithm",
        )
        parser.add_argument(
            "--eplb-rebalance-num-iterations",
            type=int,
            default=ServerArgs.eplb_rebalance_num_iterations,
            help="Number of iterations to automatically trigger a EPLB re-balance.",
        )
        parser.add_argument(
            "--eplb-rebalance-layers-per-chunk",
            type=int,
            default=ServerArgs.eplb_rebalance_layers_per_chunk,
            help="Number of layers to rebalance per forward pass.",
        )
2361
2362
2363
2364
2365
2366
        parser.add_argument(
            "--eplb-min-rebalancing-utilization-threshold",
            type=float,
            default=ServerArgs.eplb_min_rebalancing_utilization_threshold,
            help="Minimum threshold for GPU average utilization to trigger EPLB rebalancing. Must be in the range [0.0, 1.0].",
        )
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
        parser.add_argument(
            "--expert-distribution-recorder-mode",
            type=str,
            default=ServerArgs.expert_distribution_recorder_mode,
            help="Mode of expert distribution recorder.",
        )
        parser.add_argument(
            "--expert-distribution-recorder-buffer-size",
            type=int,
            default=ServerArgs.expert_distribution_recorder_buffer_size,
            help="Circular buffer size of expert distribution recorder. Set to -1 to denote infinite buffer.",
        )
        parser.add_argument(
            "--enable-expert-distribution-metrics",
            action="store_true",
            help="Enable logging metrics for expert balancedness",
        )
        parser.add_argument(
            "--deepep-config",
            type=str,
            default=ServerArgs.deepep_config,
            help="Tuned DeepEP config suitable for your own cluster. It can be either a string with JSON content or a file path.",
        )
        parser.add_argument(
            "--moe-dense-tp-size",
            type=int,
            default=ServerArgs.moe_dense_tp_size,
            help="TP size for MoE dense MLP layers. This flag is useful when, with large TP size, there are errors caused by weights in MLP layers having dimension smaller than the min dimension GEMM supports.",
        )
2396

Yi Zhang's avatar
Yi Zhang committed
2397
2398
2399
2400
2401
        # Mamba Cache
        parser.add_argument(
            "--max-mamba-cache-size",
            type=int,
            default=ServerArgs.max_mamba_cache_size,
2402
            help="The maximum size of the mamba cache.",
Yi Zhang's avatar
Yi Zhang committed
2403
2404
2405
2406
2407
2408
        )
        parser.add_argument(
            "--mamba-ssm-dtype",
            type=str,
            default=ServerArgs.mamba_ssm_dtype,
            choices=["float32", "bfloat16"],
2409
            help="The data type of the SSM states in mamba cache.",
Yi Zhang's avatar
Yi Zhang committed
2410
        )
2411
2412
2413
2414
2415
2416
2417
        # Args for multi-item-scoring
        parser.add_argument(
            "--multi-item-scoring-delimiter",
            type=int,
            default=ServerArgs.multi_item_scoring_delimiter,
            help="Delimiter token ID for multi-item scoring. Used to combine Query and Items into a single sequence: Query<delimiter>Item1<delimiter>Item2<delimiter>... This enables efficient batch processing of multiple items against a single query.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
        # Hierarchical cache
        parser.add_argument(
            "--enable-hierarchical-cache",
            action="store_true",
            help="Enable hierarchical cache",
        )
        parser.add_argument(
            "--hicache-ratio",
            type=float,
            default=ServerArgs.hicache_ratio,
            help="The ratio of the size of host KV cache memory pool to the size of device pool.",
        )
        parser.add_argument(
            "--hicache-size",
            type=int,
            default=ServerArgs.hicache_size,
            help="The size of host KV cache memory pool in gigabytes, which will override the hicache_ratio if set.",
        )
        parser.add_argument(
            "--hicache-write-policy",
            type=str,
            choices=["write_back", "write_through", "write_through_selective"],
            default=ServerArgs.hicache_write_policy,
            help="The write policy of hierarchical cache.",
        )
2443
2444
2445
        parser.add_argument(
            "--radix-eviction-policy",
            type=str,
2446
            choices=RADIX_EVICTION_POLICY_CHOICES,
2447
2448
2449
            default=ServerArgs.radix_eviction_policy,
            help="The eviction policy of radix trees. 'lru' stands for Least Recently Used, 'lfu' stands for Least Frequently Used.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
2450
2451
2452
2453
2454
2455
2456
        parser.add_argument(
            "--hicache-io-backend",
            type=str,
            choices=["direct", "kernel"],
            default=ServerArgs.hicache_io_backend,
            help="The IO backend for KV cache transfer between CPU and GPU",
        )
2457
2458
2459
        parser.add_argument(
            "--hicache-mem-layout",
            type=str,
2460
            choices=["layer_first", "page_first", "page_first_direct"],
2461
2462
2463
            default=ServerArgs.hicache_mem_layout,
            help="The layout of host memory pool for hierarchical cache.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
2464
2465
2466
        parser.add_argument(
            "--hicache-storage-backend",
            type=str,
2467
            choices=["file", "mooncake", "hf3fs", "nixl", "aibrix", "dynamic", "eic"],
Lianmin Zheng's avatar
Lianmin Zheng committed
2468
            default=ServerArgs.hicache_storage_backend,
2469
2470
2471
2472
            help="The storage backend for hierarchical KV cache. "
            "Built-in backends: file, mooncake, hf3fs, nixl, aibrix. "
            "For dynamic backend, use --hicache-storage-backend-extra-config to specify: "
            "backend_name (custom name), module_path (Python module path), class_name (backend class name).",
Lianmin Zheng's avatar
Lianmin Zheng committed
2473
        )
pansicheng's avatar
pansicheng committed
2474
2475
2476
2477
2478
2479
2480
        parser.add_argument(
            "--hicache-storage-prefetch-policy",
            type=str,
            choices=["best_effort", "wait_complete", "timeout"],
            default=ServerArgs.hicache_storage_prefetch_policy,
            help="Control when prefetching from the storage backend should stop.",
        )
2481
2482
2483
2484
2485
2486
        parser.add_argument(
            "--hicache-storage-backend-extra-config",
            type=str,
            default=ServerArgs.hicache_storage_backend_extra_config,
            help="A dictionary in JSON string format containing extra configuration for the storage backend.",
        )
2487
2488
2489
2490
2491
2492
        # LMCache
        parser.add_argument(
            "--enable-lmcache",
            action="store_true",
            help="Using LMCache as an alternative hierarchical cache solution",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
2493

2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
        # Double Sparsity
        parser.add_argument(
            "--enable-double-sparsity",
            action="store_true",
            help="Enable double sparsity attention",
        )
        parser.add_argument(
            "--ds-channel-config-path",
            type=str,
            default=ServerArgs.ds_channel_config_path,
            help="The path of the double sparsity channel config",
        )
        parser.add_argument(
            "--ds-heavy-channel-num",
            type=int,
            default=ServerArgs.ds_heavy_channel_num,
            help="The number of heavy channels in double sparsity attention",
        )
        parser.add_argument(
            "--ds-heavy-token-num",
            type=int,
            default=ServerArgs.ds_heavy_token_num,
            help="The number of heavy tokens in double sparsity attention",
        )
        parser.add_argument(
            "--ds-heavy-channel-type",
            type=str,
            default=ServerArgs.ds_heavy_channel_type,
            help="The type of heavy channels in double sparsity attention",
        )
        parser.add_argument(
            "--ds-sparse-decode-threshold",
            type=int,
            default=ServerArgs.ds_sparse_decode_threshold,
            help="The type of heavy channels in double sparsity attention",
        )

fzyzcjy's avatar
fzyzcjy committed
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
        # Offloading
        parser.add_argument(
            "--cpu-offload-gb",
            type=int,
            default=ServerArgs.cpu_offload_gb,
            help="How many GBs of RAM to reserve for CPU offloading.",
        )
        parser.add_argument(
            "--offload-group-size",
            type=int,
            default=ServerArgs.offload_group_size,
            help="Number of layers per group in offloading.",
        )
        parser.add_argument(
            "--offload-num-in-group",
            type=int,
            default=ServerArgs.offload_num_in_group,
            help="Number of layers to be offloaded within a group.",
        )
        parser.add_argument(
            "--offload-prefetch-step",
            type=int,
            default=ServerArgs.offload_prefetch_step,
            help="Steps to prefetch in offloading.",
        )
        parser.add_argument(
            "--offload-mode",
            type=str,
            default=ServerArgs.offload_mode,
            help="Mode of offloading.",
        )

2563
        # Optimization/debug options
Liangsheng Yin's avatar
Liangsheng Yin committed
2564
        parser.add_argument(
Lianmin Zheng's avatar
Lianmin Zheng committed
2565
            "--disable-radix-cache",
Liangsheng Yin's avatar
Liangsheng Yin committed
2566
            action="store_true",
Ying Sheng's avatar
Ying Sheng committed
2567
            help="Disable RadixAttention for prefix caching.",
Liangsheng Yin's avatar
Liangsheng Yin committed
2568
        )
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
        parser.add_argument(
            "--cuda-graph-max-bs",
            type=int,
            default=ServerArgs.cuda_graph_max_bs,
            help="Set the maximum batch size for cuda graph. It will extend the cuda graph capture batch size to this value.",
        )
        parser.add_argument(
            "--cuda-graph-bs",
            type=int,
            nargs="+",
            help="Set the list of batch sizes for cuda graph.",
        )
2581
2582
2583
        parser.add_argument(
            "--disable-cuda-graph",
            action="store_true",
2584
            help="Disable cuda graph.",
2585
        )
2586
        parser.add_argument(
2587
2588
            "--disable-cuda-graph-padding",
            action="store_true",
2589
            help="Disable cuda graph when padding is needed. Still uses cuda graph when padding is not needed.",
2590
        )
2591
2592
2593
2594
2595
        parser.add_argument(
            "--enable-profile-cuda-graph",
            action="store_true",
            help="Enable profiling of cuda graph capture.",
        )
2596
2597
2598
2599
2600
        parser.add_argument(
            "--enable-cudagraph-gc",
            action="store_true",
            help="Enable garbage collection during CUDA graph capture. If disabled (default), GC is frozen during capture to speed up the process.",
        )
2601
2602
2603
2604
2605
        parser.add_argument(
            "--enable-nccl-nvls",
            action="store_true",
            help="Enable NCCL NVLS for prefill heavy requests when available.",
        )
2606
2607
2608
2609
2610
        parser.add_argument(
            "--enable-symm-mem",
            action="store_true",
            help="Enable NCCL symmetric memory for fast collectives.",
        )
2611
2612
2613
2614
2615
        parser.add_argument(
            "--disable-flashinfer-cutlass-moe-fp4-allgather",
            action="store_true",
            help="Disables quantize before all-gather for flashinfer cutlass moe.",
        )
2616
2617
2618
2619
2620
        parser.add_argument(
            "--enable-tokenizer-batch-encode",
            action="store_true",
            help="Enable batch tokenization for improved performance when processing multiple text inputs. Do not use with image inputs, pre-tokenized input_ids, or input_embeds.",
        )
2621
        parser.add_argument(
2622
            "--disable-outlines-disk-cache",
2623
            action="store_true",
2624
            help="Disable disk cache of outlines to avoid possible crashes related to file system or high concurrency.",
2625
        )
2626
2627
2628
2629
2630
        parser.add_argument(
            "--disable-custom-all-reduce",
            action="store_true",
            help="Disable the custom all-reduce kernel and fall back to NCCL.",
        )
2631
2632
2633
2634
2635
        parser.add_argument(
            "--enable-mscclpp",
            action="store_true",
            help="Enable using mscclpp for small messages for all-reduce kernel and fall back to NCCL.",
        )
2636
2637
2638
2639
2640
        parser.add_argument(
            "--enable-torch-symm-mem",
            action="store_true",
            help="Enable using torch symm mem for all-reduce kernel and fall back to NCCL. Only supports CUDA device SM90 and above. SM90 supports world size 4, 6, 8. SM10 supports world size 6, 8.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
2641
        parser.add_argument(
2642
            "--disable-overlap-schedule",
Lianmin Zheng's avatar
Lianmin Zheng committed
2643
            action="store_true",
2644
            help="Disable the overlap scheduler, which overlaps the CPU scheduler with GPU model worker.",
Lianmin Zheng's avatar
Lianmin Zheng committed
2645
        )
2646
2647
2648
        parser.add_argument(
            "--enable-mixed-chunk",
            action="store_true",
2649
            help="Enabling mixing prefill and decode in a batch when using chunked prefill.",
2650
        )
Ke Bao's avatar
Ke Bao committed
2651
2652
2653
        parser.add_argument(
            "--enable-dp-attention",
            action="store_true",
2654
            help="Enabling data parallelism for attention and tensor parallelism for FFN. The dp size should be equal to the tp size. Currently DeepSeek-V2 and Qwen 2/3 MoE models are supported.",
Ke Bao's avatar
Ke Bao committed
2655
        )
2656
2657
2658
2659
2660
        parser.add_argument(
            "--enable-dp-lm-head",
            action="store_true",
            help="Enable vocabulary parallel across the attention TP group to avoid all-gather across DP groups, optimizing performance under DP attention.",
        )
2661
2662
2663
2664
2665
        parser.add_argument(
            "--enable-two-batch-overlap",
            action="store_true",
            help="Enabling two micro batches to overlap.",
        )
2666
2667
2668
2669
2670
        parser.add_argument(
            "--enable-single-batch-overlap",
            action="store_true",
            help="Let computation and communication overlap within one micro batch.",
        )
2671
2672
2673
2674
2675
2676
        parser.add_argument(
            "--tbo-token-distribution-threshold",
            type=float,
            default=ServerArgs.tbo_token_distribution_threshold,
            help="The threshold of token distribution between two batches in micro-batch-overlap, determines whether to two-batch-overlap or two-chunk-overlap. Set to 0 denote disable two-chunk-overlap.",
        )
2677
2678
2679
        parser.add_argument(
            "--enable-torch-compile",
            action="store_true",
2680
2681
            help="Optimize the model with torch.compile. Experimental feature.",
        )
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
        parser.add_argument(
            "--enable-piecewise-cuda-graph",
            action="store_true",
            help="Optimize the model with piecewise cuda graph for extend/prefill only. Experimental feature.",
        )
        parser.add_argument(
            "--piecewise-cuda-graph-tokens",
            type=json_list_type,
            default=ServerArgs.piecewise_cuda_graph_tokens,
            help="Set the list of tokens when using piecewise cuda graph.",
        )
2693
        parser.add_argument(
2694
            "--torch-compile-max-bs",
2695
            type=int,
2696
            default=ServerArgs.torch_compile_max_bs,
2697
2698
            help="Set the maximum batch size when using torch compile.",
        )
2699
2700
2701
2702
2703
2704
        parser.add_argument(
            "--piecewise-cuda-graph-max-tokens",
            type=int,
            default=ServerArgs.piecewise_cuda_graph_max_tokens,
            help="Set the maximum tokens when using piecewise cuda graph.",
        )
2705
2706
2707
2708
        parser.add_argument(
            "--torchao-config",
            type=str,
            default=ServerArgs.torchao_config,
2709
            help="Optimize the model with torchao. Experimental feature. Current choices are: int8dq, int8wo, int4wo-<group_size>, fp8wo, fp8dq-per_tensor, fp8dq-per_row",
2710
        )
2711
2712
2713
2714
2715
        parser.add_argument(
            "--enable-nan-detection",
            action="store_true",
            help="Enable the NaN detection for debugging purposes.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
2716
        parser.add_argument(
2717
            "--enable-p2p-check",
Lianmin Zheng's avatar
Lianmin Zheng committed
2718
            action="store_true",
2719
            help="Enable P2P check for GPU access, otherwise the p2p access is allowed by default.",
Lianmin Zheng's avatar
Lianmin Zheng committed
2720
        )
2721
        parser.add_argument(
2722
            "--triton-attention-reduce-in-fp32",
2723
            action="store_true",
2724
            help="Cast the intermediate attention results to fp32 to avoid possible crashes related to fp16."
2725
            "This only affects Triton attention kernels.",
2726
        )
2727
2728
2729
2730
2731
2732
        parser.add_argument(
            "--triton-attention-num-kv-splits",
            type=int,
            default=ServerArgs.triton_attention_num_kv_splits,
            help="The number of KV splits in flash decoding Triton kernel. Larger value is better in longer context scenarios. The default value is 8.",
        )
2733
2734
2735
2736
2737
2738
        parser.add_argument(
            "--triton-attention-split-tile-size",
            type=int,
            default=ServerArgs.triton_attention_split_tile_size,
            help="The size of split KV tile in flash decoding Triton kernel. Used for deterministic inference.",
        )
2739
2740
2741
2742
2743
2744
2745
2746
        parser.add_argument(
            "--num-continuous-decode-steps",
            type=int,
            default=ServerArgs.num_continuous_decode_steps,
            help="Run multiple continuous decoding steps to reduce scheduling overhead. "
            "This can potentially increase throughput but may also increase time-to-first-token latency. "
            "The default value is 1, meaning only run one decoding step at a time.",
        )
2747
2748
2749
2750
2751
        parser.add_argument(
            "--delete-ckpt-after-loading",
            action="store_true",
            help="Delete the model checkpoint after loading the model.",
        )
2752
2753
2754
2755
2756
        parser.add_argument(
            "--enable-memory-saver",
            action="store_true",
            help="Allow saving memory using release_memory_occupation and resume_memory_occupation",
        )
2757
2758
2759
2760
2761
        parser.add_argument(
            "--enable-weights-cpu-backup",
            action="store_true",
            help="Save model weights to CPU memory during release_weights_occupation and resume_weights_occupation",
        )
2762
2763
2764
2765
2766
        parser.add_argument(
            "--allow-auto-truncate",
            action="store_true",
            help="Allow automatically truncating requests that exceed the maximum input length instead of returning an error.",
        )
2767
2768
2769
2770
2771
        parser.add_argument(
            "--enable-custom-logit-processor",
            action="store_true",
            help="Enable users to pass custom logit processors to the server (disabled by default for security)",
        )
2772
        parser.add_argument(
2773
            "--flashinfer-mla-disable-ragged",
2774
            action="store_true",
2775
            help="Not using ragged prefill wrapper when running flashinfer mla",
2776
        )
2777
        parser.add_argument(
2778
2779
2780
            "--disable-shared-experts-fusion",
            action="store_true",
            help="Disable shared experts fusion optimization for deepseek v3/r1.",
2781
        )
2782
2783
2784
2785
2786
        parser.add_argument(
            "--disable-chunked-prefix-cache",
            action="store_true",
            help="Disable chunked prefix cache feature for deepseek, which should save overhead for short sequences.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
2787
2788
2789
2790
2791
        parser.add_argument(
            "--disable-fast-image-processor",
            action="store_true",
            help="Adopt base image processor instead of fast image processor.",
        )
2792
2793
2794
2795
2796
        parser.add_argument(
            "--keep-mm-feature-on-device",
            action="store_true",
            help="Keep multimodal feature tensors on device after processing to save D2H copy.",
        )
2797
2798
2799
2800
2801
        parser.add_argument(
            "--enable-return-hidden-states",
            action="store_true",
            help="Enable returning hidden states with responses.",
        )
2802
2803
2804
2805
2806
2807
        parser.add_argument(
            "--scheduler-recv-interval",
            type=int,
            default=ServerArgs.scheduler_recv_interval,
            help="The interval to poll requests in scheduler. Can be set to >1 to reduce the overhead of this.",
        )
2808
2809
2810
2811
2812
2813
        parser.add_argument(
            "--numa-node",
            type=int,
            nargs="+",
            help="Sets the numa node for the subprocesses. i-th element corresponds to i-th subprocess.",
        )
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833

        # Debug tensor dumps
        parser.add_argument(
            "--debug-tensor-dump-output-folder",
            type=str,
            default=ServerArgs.debug_tensor_dump_output_folder,
            help="The output folder for dumping tensors.",
        )
        parser.add_argument(
            "--debug-tensor-dump-input-file",
            type=str,
            default=ServerArgs.debug_tensor_dump_input_file,
            help="The input filename for dumping tensors",
        )
        parser.add_argument(
            "--debug-tensor-dump-inject",
            type=str,
            default=ServerArgs.debug_tensor_dump_inject,
            help="Inject the outputs from jax as the input of every layer.",
        )
2834
2835
2836
2837
2838
        parser.add_argument(
            "--debug-tensor-dump-prefill-only",
            action="store_true",
            help="Only dump the tensors for prefill requests (i.e. batch size > 1).",
        )
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
        parser.add_argument(
            "--enable-dynamic-batch-tokenizer",
            action="store_true",
            help="Enable async dynamic batch tokenizer for improved performance when multiple requests arrive concurrently.",
        )
        parser.add_argument(
            "--dynamic-batch-tokenizer-batch-size",
            type=int,
            default=ServerArgs.dynamic_batch_tokenizer_batch_size,
            help="[Only used if --enable-dynamic-batch-tokenizer is set] Maximum batch size for dynamic batch tokenizer.",
        )
        parser.add_argument(
            "--dynamic-batch-tokenizer-batch-timeout",
            type=float,
            default=ServerArgs.dynamic_batch_tokenizer_batch_timeout,
            help="[Only used if --enable-dynamic-batch-tokenizer is set] Timeout in seconds for batching tokenization requests.",
        )
2856

Lianmin Zheng's avatar
Lianmin Zheng committed
2857
        # PD disaggregation
Byron Hsu's avatar
Byron Hsu committed
2858
2859
2860
        parser.add_argument(
            "--disaggregation-mode",
            type=str,
2861
            default=ServerArgs.disaggregation_mode,
Byron Hsu's avatar
Byron Hsu committed
2862
2863
2864
            choices=["null", "prefill", "decode"],
            help='Only used for PD disaggregation. "prefill" for prefill-only server, and "decode" for decode-only server. If not specified, it is not PD disaggregated',
        )
2865
2866
2867
2868
        parser.add_argument(
            "--disaggregation-transfer-backend",
            type=str,
            default=ServerArgs.disaggregation_transfer_backend,
2869
            choices=DISAGG_TRANSFER_BACKEND_CHOICES,
2870
2871
            help="The backend for disaggregation transfer. Default is mooncake.",
        )
2872
2873
2874
2875
2876
2877
        parser.add_argument(
            "--disaggregation-bootstrap-port",
            type=int,
            default=ServerArgs.disaggregation_bootstrap_port,
            help="Bootstrap server port on the prefill server. Default is 8998.",
        )
Byron Hsu's avatar
Byron Hsu committed
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
        parser.add_argument(
            "--disaggregation-decode-tp",
            type=int,
            default=ServerArgs.disaggregation_decode_tp,
            help="Decode tp size. If not set, it matches the tp size of the current engine. This is only set on the prefill server.",
        )
        parser.add_argument(
            "--disaggregation-decode-dp",
            type=int,
            default=ServerArgs.disaggregation_decode_dp,
            help="Decode dp size. If not set, it matches the dp size of the current engine. This is only set on the prefill server.",
        )
        parser.add_argument(
            "--disaggregation-prefill-pp",
            type=int,
            default=ServerArgs.disaggregation_prefill_pp,
            help="Prefill pp size. If not set, it is default to 1. This is only set on the decode server.",
        )
2896
2897
2898
2899
        parser.add_argument(
            "--disaggregation-ib-device",
            type=str,
            default=ServerArgs.disaggregation_ib_device,
2900
2901
2902
            help="The InfiniBand devices for disaggregation transfer, accepts single device (e.g., --disaggregation-ib-device mlx5_0) "
            "or multiple comma-separated devices (e.g., --disaggregation-ib-device mlx5_0,mlx5_1). "
            "Default is None, which triggers automatic device detection when mooncake backend is enabled.",
2903
        )
2904
2905
2906
2907
2908
        parser.add_argument(
            "--disaggregation-decode-enable-offload-kvcache",
            action="store_true",
            help="Enable async KV cache offloading on decode server (PD mode).",
        )
2909
2910
2911
2912
2913
2914
        parser.add_argument(
            "--num-reserved-decode-tokens",
            type=int,
            default=ServerArgs.num_reserved_decode_tokens,
            help="Number of decode tokens that will have memory reserved when adding new request to the running batch.",
        )
2915
2916
2917
2918
2919
2920
        parser.add_argument(
            "--disaggregation-decode-polling-interval",
            type=int,
            default=ServerArgs.disaggregation_decode_polling_interval,
            help="The interval to poll requests in decode server. Can be set to >1 to reduce the overhead of this.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
2921
2922

        # Custom weight loader
2923
2924
2925
2926
2927
2928
2929
        parser.add_argument(
            "--custom-weight-loader",
            type=str,
            nargs="*",
            default=None,
            help="The custom dataloader which used to update the model. Should be set with a valid import path, such as my_package.weight_load_func",
        )
2930
2931
2932
2933
2934
        parser.add_argument(
            "--weight-loader-disable-mmap",
            action="store_true",
            help="Disable mmap while loading weight using safetensors.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
        parser.add_argument(
            "--remote-instance-weight-loader-seed-instance-ip",
            type=str,
            default=ServerArgs.remote_instance_weight_loader_seed_instance_ip,
            help="The ip of the seed instance for loading weights from remote instance.",
        )
        parser.add_argument(
            "--remote-instance-weight-loader-seed-instance-service-port",
            type=int,
            default=ServerArgs.remote_instance_weight_loader_seed_instance_service_port,
            help="The service port of the seed instance for loading weights from remote instance.",
        )
        parser.add_argument(
            "--remote-instance-weight-loader-send-weights-group-ports",
            type=json_list_type,
            default=ServerArgs.remote_instance_weight_loader_send_weights_group_ports,
            help="The communication group ports for loading weights from remote instance.",
        )
2953
2954

        # For PD-Multiplexing
2955
2956
2957
2958
2959
        parser.add_argument(
            "--enable-pdmux",
            action="store_true",
            help="Enable PD-Multiplexing, PD running on greenctx stream.",
        )
2960
2961
2962
2963
2964
2965
        parser.add_argument(
            "--pdmux-config-path",
            type=str,
            default=None,
            help="The path of the PD-Multiplexing config file.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
2966

2967
2968
2969
2970
2971
2972
        parser.add_argument(
            "--sm-group-num",
            type=int,
            default=ServerArgs.sm_group_num,
            help="Number of sm partition groups.",
        )
Byron Hsu's avatar
Byron Hsu committed
2973

2974
2975
2976
2977
2978
2979
2980
        # For deterministic inference
        parser.add_argument(
            "--enable-deterministic-inference",
            action="store_true",
            help="Enable deterministic inference mode with batch invariant ops.",
        )

2981
2982
2983
        # Deprecated arguments
        parser.add_argument(
            "--enable-ep-moe",
Lianmin Zheng's avatar
Lianmin Zheng committed
2984
2985
            action=DeprecatedAction,
            help="NOTE: --enable-ep-moe is deprecated. Please set `--ep-size` to the same value as `--tp-size` instead.",
2986
2987
2988
        )
        parser.add_argument(
            "--enable-deepep-moe",
Lianmin Zheng's avatar
Lianmin Zheng committed
2989
2990
            action=DeprecatedAction,
            help="NOTE: --enable-deepep-moe is deprecated. Please set `--moe-a2a-backend` to 'deepep' instead.",
2991
        )
2992
2993
        parser.add_argument(
            "--enable-flashinfer-cutlass-moe",
Lianmin Zheng's avatar
Lianmin Zheng committed
2994
2995
            action=DeprecatedAction,
            help="NOTE: --enable-flashinfer-cutlass-moe is deprecated. Please set `--moe-runner-backend` to 'flashinfer_cutlass' instead.",
2996
        )
2997
2998
        parser.add_argument(
            "--enable-flashinfer-cutedsl-moe",
Lianmin Zheng's avatar
Lianmin Zheng committed
2999
3000
            action=DeprecatedAction,
            help="NOTE: --enable-flashinfer-cutedsl-moe is deprecated. Please set `--moe-runner-backend` to 'flashinfer_cutedsl' instead.",
3001
        )
3002
3003
        parser.add_argument(
            "--enable-flashinfer-trtllm-moe",
Lianmin Zheng's avatar
Lianmin Zheng committed
3004
3005
            action=DeprecatedAction,
            help="NOTE: --enable-flashinfer-trtllm-moe is deprecated. Please set `--moe-runner-backend` to 'flashinfer_trtllm' instead.",
3006
3007
3008
        )
        parser.add_argument(
            "--enable-triton-kernel-moe",
Lianmin Zheng's avatar
Lianmin Zheng committed
3009
3010
            action=DeprecatedAction,
            help="NOTE: --enable-triton-kernel-moe is deprecated. Please set `--moe-runner-backend` to 'triton_kernel' instead.",
3011
        )
3012
3013
        parser.add_argument(
            "--enable-flashinfer-mxfp4-moe",
Lianmin Zheng's avatar
Lianmin Zheng committed
3014
3015
            action=DeprecatedAction,
            help="NOTE: --enable-flashinfer-mxfp4-moe is deprecated. Please set `--moe-runner-backend` to 'flashinfer_mxfp4' instead.",
3016
        )
3017

3018
3019
3020
3021
3022
3023
3024
        # Configuration file support
        parser.add_argument(
            "--config",
            type=str,
            help="Read CLI options from a config file. Must be a YAML file with configuration options.",
        )

Lianmin Zheng's avatar
Lianmin Zheng committed
3025
3026
    @classmethod
    def from_cli_args(cls, args: argparse.Namespace):
3027
        args.tp_size = args.tensor_parallel_size
3028
        args.pp_size = args.pipeline_parallel_size
3029
        args.dp_size = args.data_parallel_size
xiaobochen's avatar
xiaobochen committed
3030
        args.ep_size = args.expert_parallel_size
3031

Lianmin Zheng's avatar
Lianmin Zheng committed
3032
3033
3034
3035
        attrs = [attr.name for attr in dataclasses.fields(cls)]
        return cls(**{attr: getattr(args, attr) for attr in attrs})

    def url(self):
3036
        if is_valid_ipv6_address(self.host):
3037
3038
3039
            return f"http://[{self.host}]:{self.port}"
        else:
            return f"http://{self.host}:{self.port}"
Lianmin Zheng's avatar
Lianmin Zheng committed
3040

Lianmin Zheng's avatar
Lianmin Zheng committed
3041
3042
3043
3044
3045
3046
    def get_hf_config(self):
        kwargs = {}
        hf_config = get_config(
            self.model_path,
            trust_remote_code=self.trust_remote_code,
            revision=self.revision,
3047
            model_override_args=orjson.loads(self.json_model_override_args),
Lianmin Zheng's avatar
Lianmin Zheng committed
3048
3049
3050
3051
            **kwargs,
        )
        return hf_config

3052
    def check_server_args(self):
3053
        # Check parallel size constraints
3054
        assert (
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
            self.tp_size * self.pp_size
        ) % self.nnodes == 0, "tp_size must be divisible by number of nodes"

        if self.pp_size > 1:
            assert (
                self.disable_overlap_schedule
                and self.speculative_algorithm is None
                and not self.enable_mixed_chunk
            ), "Pipeline parallelism is not compatible with overlap schedule, speculative decoding, mixed chunked prefill."

3065
        assert not (
3066
3067
            self.dp_size > 1 and self.nnodes != 1 and not self.enable_dp_attention
        ), "multi-node data parallel is not supported unless dp attention!"
3068

3069
        assert self.base_gpu_id >= 0, "base_gpu_id must be non-negative"
3070
        assert self.gpu_id_step >= 1, "gpu_id_step must be positive"
3071

Lianmin Zheng's avatar
Lianmin Zheng committed
3072
3073
3074
3075
3076
        assert self.moe_dense_tp_size in {
            1,
            None,
        }, "moe_dense_tp_size only support 1 and None currently"

3077
        # Check LoRA
3078
3079
        self.check_lora_server_args()

3080
3081
3082
3083
3084
3085
3086
        # Check speculative decoding
        if self.speculative_algorithm is not None:
            assert (
                not self.enable_mixed_chunk
            ), "enable_mixed_chunk is required for speculative decoding"

        # Check chunked prefill
3087
        # Skip validation if chunked prefill is disabled (i.e., size <= 0).
3088
3089
        # Skip validation if disaggregation mode is decode.
        if self.chunked_prefill_size > 0 and self.disaggregation_mode != "decode":
3090
3091
3092
            assert (
                self.chunked_prefill_size % self.page_size == 0
            ), "chunked_prefill_size must be divisible by page_size"
3093

3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
        # Check pdmux
        if self.enable_pdmux:
            assert (
                self.pp_size == 1
            ), "PD-Multiplexing is only supported with pipeline parallelism disabled (pp_size=1)."
            assert (
                self.chunked_prefill_size == -1
            ), "PD-Multiplexing is not compatible with chunked prefill."
            assert (
                self.disaggregation_mode == "null"
            ), "PD-Multiplexing is not compatible with disaggregation mode."
            assert (
                self.disable_overlap_schedule
            ), "PD-Multiplexing is not compatible with overlap schedule."

            # NOTE: CUDA Green Context may encounter potential issues with CudaGraph on torch 2.7.x – 2.8.x, leading to performance degradation.
            import torch

            parts = torch.__version__.split("+", 1)[0].split(".")
            major = int(parts[0]) if len(parts) > 0 and parts[0].isdigit() else 0
            minor = int(parts[1]) if len(parts) > 1 and parts[1].isdigit() else 0
            if (major, minor) > (2, 6):
                logger.warning(
                    "WARNING: PD-Multiplexing may experience performance degradation with torch versions > 2.6.x.\n"
                    f"  Current torch version is {torch.__version__}.\n"
                    "  Please manually install torch 2.6.x."
                )

3122
3123
        # Check multi tokenizer
        assert self.tokenizer_worker_num > 0, "Tokenizer worker num must >= 1"
3124
3125
3126
3127
3128
3129
        self.validate_buckets_rule(
            "--prompt-tokens-buckets", self.prompt_tokens_buckets
        )
        self.validate_buckets_rule(
            "--generation-tokens-buckets", self.generation_tokens_buckets
        )
3130

3131
3132
3133
3134
3135
3136
3137
        # Check scheduling policy
        if self.enable_priority_scheduling:
            assert self.schedule_policy in [
                "fcfs",
                "lof",
            ], f"To use priority scheduling, schedule_policy must be 'fcfs' or 'lof'. '{self.schedule_policy}' is not supported."

3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
        # Check multi-item scoring
        if self.multi_item_scoring_delimiter is not None:
            assert self.disable_radix_cache, (
                "Multi-item scoring requires radix cache to be disabled. "
                "Please set --disable-radix-cache when using --multi-item-scoring-delimiter."
            )
            assert self.chunked_prefill_size == -1, (
                "Multi-item scoring requires chunked prefill to be disabled. "
                "Please set --chunked-prefill-size -1 when using --multi-item-scoring-delimiter."
            )

3149
    def check_lora_server_args(self):
3150
        assert self.max_loras_per_batch > 0, "max_loras_per_batch must be positive"
3151

3152
3153
3154
3155
        # Enable LoRA if any LoRA paths are provided for backward compatibility.
        if self.lora_paths:
            if self.enable_lora is None:
                self.enable_lora = True
3156
                logger.warning(
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
                    "--enable-lora is set to True because --lora-paths is provided."
                )
            elif self.enable_lora is False:
                logger.warning(
                    "--enable-lora is set to False, any provided lora_paths will be ignored."
                )

        if self.enable_lora:
            if isinstance(self.lora_paths, list):
                lora_paths = self.lora_paths
3167
                self.lora_paths = []
3168
                for lora_path in lora_paths:
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
                    if isinstance(lora_path, str):
                        if "=" in lora_path:
                            name, path = lora_path.split("=", 1)
                            lora_ref = LoRARef(
                                lora_name=name, lora_path=path, pinned=False
                            )
                        else:
                            lora_ref = LoRARef(
                                lora_name=lora_path, lora_path=lora_path, pinned=False
                            )
                    elif isinstance(lora_path, dict):
                        assert (
                            "lora_name" in lora_path and "lora_path" in lora_path
                        ), f"When providing LoRA paths as a list of dict, each dict should contain 'lora_name' and 'lora_path' keys. Got: {lora_path}"
                        lora_ref = LoRARef(
                            lora_name=lora_path["lora_name"],
                            lora_path=lora_path["lora_path"],
                            pinned=lora_path.get("pinned", False),
3187
                        )
3188
                    else:
3189
3190
3191
                        raise ValueError(
                            f"Invalid type for item in --lora-paths list: {type(lora_path)}. "
                            "Expected a string or a dictionary."
3192
                        )
3193
                    self.lora_paths.append(lora_ref)
3194
            elif isinstance(self.lora_paths, dict):
3195
3196
                self.lora_paths = [
                    LoRARef(lora_name=k, lora_path=v, pinned=False)
3197
                    for k, v in self.lora_paths.items()
3198
                ]
3199
            elif self.lora_paths is None:
3200
                self.lora_paths = []
3201
3202
3203
3204
3205
            else:
                raise ValueError(
                    f"Invalid type for --lora-paths: {type(self.lora_paths)}. "
                    "Expected a list or a dictionary."
                )
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219

            # Expand target modules
            if self.lora_target_modules:
                self.lora_target_modules = set(self.lora_target_modules)
                if "all" in self.lora_target_modules:
                    assert (
                        len(self.lora_target_modules) == 1
                    ), "If 'all' is specified in --lora-target-modules, it should be the only module specified."
                    self.lora_target_modules = set(SUPPORTED_LORA_TARGET_MODULES)

            # Ensure sufficient information is provided for LoRA initialization.
            assert self.lora_paths or (
                self.max_lora_rank and self.lora_target_modules
            ), "When no initial --lora-paths is provided, you need to specify both --max-lora-rank and --lora-target-modules for LoRA initialization."
3220

3221
3222
3223
3224
3225
3226
            # Validate max_loaded_loras
            if self.max_loaded_loras is not None:
                assert self.max_loaded_loras >= self.max_loras_per_batch, (
                    "max_loaded_loras should be greater than or equal to max_loras_per_batch. "
                    f"max_loaded_loras={self.max_loaded_loras}, max_loras_per_batch={self.max_loras_per_batch}"
                )
3227
                assert len(self.lora_paths) <= self.max_loaded_loras, (
3228
3229
3230
3231
                    "The number of LoRA paths should not exceed max_loaded_loras. "
                    f"max_loaded_loras={self.max_loaded_loras}, lora_paths={len(self.lora_paths)}"
                )

3232
3233
3234
3235
3236
3237
            if self.max_lora_chunk_size is not None:
                assert (
                    16 <= self.max_lora_chunk_size <= 128
                    and (self.max_lora_chunk_size & (self.max_lora_chunk_size - 1)) == 0
                ), "--max-lora-chunk-size must be a power of 2 between 16 and 128."

Lianmin Zheng's avatar
Lianmin Zheng committed
3238
3239
3240
3241
3242
3243
3244
3245
    def validate_disagg_tp_size(self, prefill_tp: int, decode_tp: int):
        larger_tp = max(decode_tp, prefill_tp)
        smaller_tp = min(decode_tp, prefill_tp)
        assert larger_tp % smaller_tp == 0, (
            "Different tp size is supported only when one tp is multiple of the other. "
            f"decode_tp={decode_tp}, prefill_tp={prefill_tp}"
        )

3246
3247
3248
3249
3250
3251
3252
3253
3254
    def validate_buckets_rule(self, arg_name: str, buckets_rule: List[str]):
        if not buckets_rule:
            return

        assert len(buckets_rule) > 0, f"{arg_name} cannot be empty list"
        rule = buckets_rule[0]
        assert rule in [
            "tse",
            "default",
3255
3256
            "custom",
        ], f"Unsupported {arg_name} rule type: '{rule}'. Must be one of: 'tse', 'default', 'custom'"
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278

        if rule == "tse":
            assert (
                len(buckets_rule) == 4
            ), f"{arg_name} TSE rule requires exactly 4 parameters: ['tse', middle, base, count], got {len(buckets_rule)}"
            try:
                middle = float(buckets_rule[1])
                base = float(buckets_rule[2])
                count = int(buckets_rule[3])
            except (ValueError, IndexError):
                assert (
                    False
                ), f"{arg_name} TSE rule parameters must be: ['tse', <float:middle>, <float:base>, <int:count>]"
            assert base > 1, f"{arg_name} TSE base must be larger than 1, got: {base}"
            assert count > 0, f"{arg_name} TSE count must be positive, got: {count}"
            assert middle > 0, f"{arg_name} TSE middle must be positive, got: {middle}"

        elif rule == "default":
            assert (
                len(buckets_rule) == 1
            ), f"{arg_name} default rule should only have one parameter: ['default'], got {len(buckets_rule)}"

3279
        elif rule == "custom":
3280
3281
            assert (
                len(buckets_rule) >= 2
3282
            ), f"{arg_name} custom rule requires at least one bucket value: ['custom', value1, ...]"
3283
3284
3285
            try:
                bucket_values = [float(x) for x in buckets_rule[1:]]
            except ValueError:
3286
                assert False, f"{arg_name} custom rule bucket values must be numeric"
3287
3288
            assert len(set(bucket_values)) == len(
                bucket_values
3289
            ), f"{arg_name} custom rule bucket values should not contain duplicates"
3290
3291
            assert all(
                val >= 0 for val in bucket_values
3292
            ), f"{arg_name} custom rule bucket values should be non-negative"
3293

Lianmin Zheng's avatar
Lianmin Zheng committed
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
    def adjust_mem_fraction_for_vlm(self, model_config):
        vision_config = getattr(model_config.hf_config, "vision_config", None)
        if vision_config is None:
            return

        # roughly reduce the mem_fraction_static base on params of Vit
        original_server_arg_mem_fraction = self.mem_fraction_static
        # a base mem_fraction_static factor for regular Vit
        base_mem_fraction_reduction_ratio = 0.95

        vit_num_layers = getattr(vision_config, "num_hidden_layers", 24)
        vit_hidden_size = getattr(vision_config, "hidden_size", 1024)

        # baseline ViT params (ViT-L/14)
        baseline_vit_layers = 24
        baseline_vit_hidden_size = 1024

        # weight params count
        current_complexity_score = vit_num_layers * (vit_hidden_size**2)
        baseline_complexity_score = baseline_vit_layers * (baseline_vit_hidden_size**2)
        complexity_ratio = (
            current_complexity_score / baseline_complexity_score
            if baseline_complexity_score > 0
            else 1.0
        )

        # every time the complexity grows 100%, adjust final factor for 10%
        sensitivity_scale = 0.1
        dynamic_adjustment_factor = 1.0 - sensitivity_scale * (complexity_ratio - 1.0)
        dynamic_adjustment_factor = max(0.8, min(1.05, dynamic_adjustment_factor))

        final_overall_factor = (
            base_mem_fraction_reduction_ratio * dynamic_adjustment_factor
        )
        self.mem_fraction_static = (
            original_server_arg_mem_fraction * final_overall_factor
        )

Lianmin Zheng's avatar
Lianmin Zheng committed
3332

3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
# NOTE: This is a global variable to hold the server args for scheduler.
_global_server_args: Optional[ServerArgs] = None


def set_global_server_args_for_scheduler(server_args: ServerArgs):
    global _global_server_args
    _global_server_args = server_args


def get_global_server_args() -> ServerArgs:
    if _global_server_args is None:
        raise ValueError("Global server args is not set yet!")

    return _global_server_args


Lianmin Zheng's avatar
Lianmin Zheng committed
3349
def prepare_server_args(argv: List[str]) -> ServerArgs:
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
    """
    Prepare the server arguments from the command line arguments.

    Args:
        args: The command line arguments. Typically, it should be `sys.argv[1:]`
            to ensure compatibility with `parse_args` when no arguments are passed.

    Returns:
        The server arguments.
    """
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
    # Import here to avoid circular imports
    from sglang.srt.server_args_config_parser import ConfigArgumentMerger

    # Check for config file and merge arguments if present
    if "--config" in argv:
        # Extract boolean actions from the parser to handle them correctly
        parser = argparse.ArgumentParser()
        ServerArgs.add_cli_args(parser)

        # Get boolean action destinations
        boolean_actions = []
        for action in parser._actions:
            if hasattr(action, "dest") and hasattr(action, "action"):
                if action.action in ["store_true", "store_false"]:
                    boolean_actions.append(action.dest)

        # Merge config file arguments with CLI arguments
        config_merger = ConfigArgumentMerger(boolean_actions=boolean_actions)
        argv = config_merger.merge_config_with_args(argv)

3380
3381
    parser = argparse.ArgumentParser()
    ServerArgs.add_cli_args(parser)
Lianmin Zheng's avatar
Lianmin Zheng committed
3382
    raw_args = parser.parse_args(argv)
3383
3384

    return ServerArgs.from_cli_args(raw_args)
3385
3386


3387
3388
3389
ZMQ_TCP_PORT_DELTA = 233


Lianmin Zheng's avatar
Lianmin Zheng committed
3390
3391
@dataclasses.dataclass
class PortArgs:
3392
3393
3394
3395
3396
3397
    # The ipc filename for tokenizer to receive inputs from detokenizer (zmq)
    tokenizer_ipc_name: str
    # The ipc filename for scheduler (rank 0) to receive inputs from tokenizer (zmq)
    scheduler_input_ipc_name: str
    # The ipc filename for detokenizer to receive inputs from scheduler (zmq)
    detokenizer_ipc_name: str
3398

3399
3400
    # The port for nccl initialization (torch.dist)
    nccl_port: int
3401

3402
3403
3404
    # The ipc filename for rpc call between Engine and Scheduler
    rpc_ipc_name: str

3405
3406
3407
    # The ipc filename for Scheduler to send metrics
    metrics_ipc_name: str

3408
3409
3410
    # The ipc filename for Tokenizer and worker tokenizer
    tokenizer_worker_ipc_name: Optional[str]

3411
    @staticmethod
3412
    def init_new(server_args, dp_rank: Optional[int] = None) -> "PortArgs":
3413
        if server_args.nccl_port is None:
Lianmin Zheng's avatar
Lianmin Zheng committed
3414
            nccl_port = server_args.port + random.randint(100, 1000)
3415
            while True:
Lianmin Zheng's avatar
Lianmin Zheng committed
3416
                if is_port_available(nccl_port):
3417
                    break
Lianmin Zheng's avatar
Lianmin Zheng committed
3418
3419
                if nccl_port < 60000:
                    nccl_port += 42
3420
                else:
Lianmin Zheng's avatar
Lianmin Zheng committed
3421
                    nccl_port -= 43
3422
        else:
Lianmin Zheng's avatar
Lianmin Zheng committed
3423
            nccl_port = server_args.nccl_port
3424

3425
3426
3427
3428
3429
3430
        if not server_args.enable_dp_attention:
            # Normal case, use IPC within a single node
            return PortArgs(
                tokenizer_ipc_name=f"ipc://{tempfile.NamedTemporaryFile(delete=False).name}",
                scheduler_input_ipc_name=f"ipc://{tempfile.NamedTemporaryFile(delete=False).name}",
                detokenizer_ipc_name=f"ipc://{tempfile.NamedTemporaryFile(delete=False).name}",
Lianmin Zheng's avatar
Lianmin Zheng committed
3431
                nccl_port=nccl_port,
3432
                rpc_ipc_name=f"ipc://{tempfile.NamedTemporaryFile(delete=False).name}",
3433
                metrics_ipc_name=f"ipc://{tempfile.NamedTemporaryFile(delete=False).name}",
3434
                tokenizer_worker_ipc_name=None,
3435
3436
3437
3438
3439
            )
        else:
            # DP attention. Use TCP + port to handle both single-node and multi-node.
            if server_args.nnodes == 1 and server_args.dist_init_addr is None:
                dist_init_addr = ("127.0.0.1", server_args.port + ZMQ_TCP_PORT_DELTA)
Vincent's avatar
Vincent committed
3440
3441
3442
            elif server_args.dist_init_addr.startswith("["):  # ipv6 address
                port_num, host = configure_ipv6(server_args.dist_init_addr)
                dist_init_addr = (host, str(port_num))
3443
3444
            else:
                dist_init_addr = server_args.dist_init_addr.split(":")
Vincent's avatar
Vincent committed
3445

3446
3447
3448
3449
3450
3451
            assert (
                len(dist_init_addr) == 2
            ), "please provide --dist-init-addr as host:port of head node"

            dist_init_host, dist_init_port = dist_init_addr
            port_base = int(dist_init_port) + 1
3452
3453
3454
            detokenizer_port = port_base + 1
            rpc_port = port_base + 2
            metrics_ipc_name = port_base + 3
3455
            if dp_rank is None:
3456
                # TokenizerManager to DataParallelController
3457
                scheduler_input_port = port_base + 4
3458
            else:
3459
                scheduler_input_port = port_base + 4 + 1 + dp_rank
3460
3461
3462
3463

            return PortArgs(
                tokenizer_ipc_name=f"tcp://{dist_init_host}:{port_base}",
                scheduler_input_ipc_name=f"tcp://{dist_init_host}:{scheduler_input_port}",
3464
                detokenizer_ipc_name=f"tcp://{dist_init_host}:{detokenizer_port}",
Lianmin Zheng's avatar
Lianmin Zheng committed
3465
                nccl_port=nccl_port,
3466
3467
                rpc_ipc_name=f"tcp://{dist_init_host}:{rpc_port}",
                metrics_ipc_name=f"tcp://{dist_init_host}:{metrics_ipc_name}",
3468
                tokenizer_worker_ipc_name=None,
3469
            )
3470

3471
3472
3473

class LoRAPathAction(argparse.Action):
    def __call__(self, parser, namespace, values, option_string=None):
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
        lora_paths = []
        if values:
            assert isinstance(values, list), "Expected a list of LoRA paths."
            for lora_path in values:
                lora_path = lora_path.strip()
                if lora_path.startswith("{") and lora_path.endswith("}"):
                    obj = json.loads(lora_path)
                    assert "lora_path" in obj and "lora_name" in obj, (
                        f"{repr(lora_path)} looks like a JSON str, "
                        "but it does not contain 'lora_name' and 'lora_path' keys."
                    )
                    lora_paths.append(obj)
                else:
                    lora_paths.append(lora_path)

        setattr(namespace, self.dest, lora_paths)
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499


class DeprecatedAction(argparse.Action):
    def __init__(self, option_strings, dest, nargs=0, **kwargs):
        super(DeprecatedAction, self).__init__(
            option_strings, dest, nargs=nargs, **kwargs
        )

    def __call__(self, parser, namespace, values, option_string=None):
        raise ValueError(self.help)
3500
3501


3502
3503
3504
3505
def print_deprecated_warning(message: str):
    logger.warning(f"\033[33m{message}\033[0m")


3506
def auto_choose_speculative_params(self: ServerArgs):
3507
3508
3509
3510
3511
    """
    Automatically choose the parameters for speculative decoding.

    You can tune them on your own models and prompts with scripts/playground/bench_speculative.py
    """
Lianmin Zheng's avatar
Lianmin Zheng committed
3512
    hf_config = self.get_hf_config()
3513
    arch = hf_config.architectures[0]
3514
3515
3516
    if self.speculative_algorithm == "STANDALONE":
        # The default value for standalone speculative decoding
        return (3, 1, 4)
3517
3518
3519
    if arch in ["LlamaForCausalLM"]:
        # The default value for llama
        return (5, 4, 8)
3520
    elif arch in [
fzyzcjy's avatar
fzyzcjy committed
3521
        "DeepseekV32ForCausalLM",
3522
3523
3524
        "DeepseekV3ForCausalLM",
        "DeepseekV2ForCausalLM",
        "GptOssForCausalLM",
strgrb's avatar
strgrb committed
3525
3526
        "BailingMoeForCausalLM",
        "BailingMoeV2ForCausalLM",
3527
3528
    ]:
        # The default value for deepseek and gpt-oss
3529
        return (3, 1, 4)
3530
3531
3532
3533
3534
    elif arch in ["Grok1ForCausalLM", "Grok1VForCausalLM"]:
        return (5, 4, 8)
    else:
        # The default value for all other models
        return (5, 4, 8)