"...source/git@developer.sourcefind.cn:Wenxuan/LightX2V.git" did not exist on "9a53e8e37676645cf7540b0d29901e04b4a47041"
server_args.py 98.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
Lianmin Zheng's avatar
Lianmin Zheng committed
14
15
"""The arguments of the server."""

Lianmin Zheng's avatar
Lianmin Zheng committed
16
17
import argparse
import dataclasses
18
import json
19
import logging
20
import os
21
import random
22
import sys
23
import tempfile
24
from typing import List, Literal, Optional, Union
Lianmin Zheng's avatar
Lianmin Zheng committed
25

26
from sglang.srt.function_call.function_call_parser import FunctionCallParser
27
from sglang.srt.hf_transformers_utils import check_gguf_file, get_config
28
from sglang.srt.layers.utils import is_sm90_supported, is_sm100_supported
29
from sglang.srt.lora.lora_registry import LoRARef
Xihuai Wang's avatar
Xihuai Wang committed
30
from sglang.srt.reasoning_parser import ReasoningParser
31
from sglang.srt.utils import (
32
33
    LORA_TARGET_ALL_MODULES,
    SUPPORTED_LORA_TARGET_MODULES,
Vincent's avatar
Vincent committed
34
    configure_ipv6,
35
    get_device,
Lianmin Zheng's avatar
Lianmin Zheng committed
36
    get_device_memory_capacity,
37
    is_cuda,
38
    is_flashinfer_available,
HAI's avatar
HAI committed
39
    is_hip,
40
    is_port_available,
41
    is_remote_url,
42
    is_triton_kernels_available,
43
    is_valid_ipv6_address,
bjmsong's avatar
bjmsong committed
44
    nullable_str,
45
)
46

47
48
logger = logging.getLogger(__name__)

Lianmin Zheng's avatar
Lianmin Zheng committed
49
50
51

@dataclasses.dataclass
class ServerArgs:
Lianmin Zheng's avatar
Lianmin Zheng committed
52
    # Model and tokenizer
Lianmin Zheng's avatar
Lianmin Zheng committed
53
54
55
    model_path: str
    tokenizer_path: Optional[str] = None
    tokenizer_mode: str = "auto"
56
    skip_tokenizer_init: bool = False
Lianmin Zheng's avatar
Lianmin Zheng committed
57
    load_format: str = "auto"
58
    model_loader_extra_config: str = "{}"
59
    trust_remote_code: bool = False
60
    context_length: Optional[int] = None
61
    is_embedding: bool = False
62
    enable_multimodal: Optional[bool] = None
63
    revision: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
64
    model_impl: str = "auto"
Lianmin Zheng's avatar
Lianmin Zheng committed
65

Lianmin Zheng's avatar
Lianmin Zheng committed
66
    # HTTP server
Lianmin Zheng's avatar
Lianmin Zheng committed
67
68
    host: str = "127.0.0.1"
    port: int = 30000
Lianmin Zheng's avatar
Lianmin Zheng committed
69
70
    skip_server_warmup: bool = False
    warmups: Optional[str] = None
71
    nccl_port: Optional[int] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
72

Lianmin Zheng's avatar
Lianmin Zheng committed
73
74
75
76
77
78
    # Quantization and data type
    dtype: str = "auto"
    quantization: Optional[str] = None
    quantization_param_path: Optional[str] = None
    kv_cache_dtype: str = "auto"

Lianmin Zheng's avatar
Lianmin Zheng committed
79
    # Memory and scheduling
Lianmin Zheng's avatar
Lianmin Zheng committed
80
    mem_fraction_static: Optional[float] = None
81
    max_running_requests: Optional[int] = None
82
    max_queued_requests: Optional[int] = sys.maxsize
83
    max_total_tokens: Optional[int] = None
84
    chunked_prefill_size: Optional[int] = None
85
    max_prefill_tokens: int = 16384
86
    schedule_policy: str = "fcfs"
87
    schedule_conservativeness: float = 1.0
88
    cpu_offload_gb: int = 0
89
    page_size: Optional[int] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
90
91
92
    hybrid_kvcache_ratio: Optional[float] = None
    swa_full_tokens_ratio: float = 0.8
    disable_hybrid_swa_memory: bool = False
Lianmin Zheng's avatar
Lianmin Zheng committed
93

Lianmin Zheng's avatar
Lianmin Zheng committed
94
95
    # Runtime options
    device: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
96
    tp_size: int = 1
97
98
    pp_size: int = 1
    max_micro_batch_size: Optional[int] = None
99
    stream_interval: int = 1
100
    stream_output: bool = False
101
    random_seed: Optional[int] = None
102
    constrained_json_whitespace_pattern: Optional[str] = None
103
    watchdog_timeout: float = 300
104
    dist_timeout: Optional[int] = None  # timeout for torch.distributed
105
    download_dir: Optional[str] = None
106
    base_gpu_id: int = 0
107
    gpu_id_step: int = 1
108
    sleep_on_idle: bool = False
Lianmin Zheng's avatar
Lianmin Zheng committed
109
110
111

    # Logging
    log_level: str = "info"
112
    log_level_http: Optional[str] = None
113
    log_requests: bool = False
114
    log_requests_level: int = 2
115
    crash_dump_folder: Optional[str] = None
Liangsheng Yin's avatar
Liangsheng Yin committed
116
    show_time_cost: bool = False
117
    enable_metrics: bool = False
118
    enable_metrics_for_all_schedulers: bool = False
119
120
    bucket_time_to_first_token: Optional[List[float]] = None
    bucket_inter_token_latency: Optional[List[float]] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
121
    bucket_e2e_request_latency: Optional[List[float]] = None
122
    collect_tokens_histogram: bool = False
123
    decode_log_interval: int = 40
124
    enable_request_time_stats_logging: bool = False
125
    kv_events_config: Optional[str] = None
126
    gc_warning_threshold_secs: float = 0.0
Liangsheng Yin's avatar
Liangsheng Yin committed
127

128
    # API related
129
    api_key: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
130
    served_model_name: Optional[str] = None
131
    weight_version: str = "default"
Lianmin Zheng's avatar
Lianmin Zheng committed
132
133
    chat_template: Optional[str] = None
    completion_template: Optional[str] = None
134
    file_storage_path: str = "sglang_storage"
135
    enable_cache_report: bool = False
Xihuai Wang's avatar
Xihuai Wang committed
136
    reasoning_parser: Optional[str] = None
137
    tool_call_parser: Optional[str] = None
138
    tool_server: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
139

140
141
142
    # Data parallelism
    dp_size: int = 1
    load_balance_method: str = "round_robin"
143

144
    # Multi-node distributed serving
145
    dist_init_addr: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
146
    nnodes: int = 1
147
    node_rank: int = 0
Lianmin Zheng's avatar
Lianmin Zheng committed
148
149
150

    # Model override args in JSON
    json_model_override_args: str = "{}"
151
    preferred_sampling_params: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
152

153
    # LoRA
154
    enable_lora: Optional[bool] = None
155
    max_lora_rank: Optional[int] = None
156
    lora_target_modules: Optional[Union[set[str], List[str]]] = None
157
158
159
    lora_paths: Optional[
        Union[dict[str, str], List[dict[str, str]], List[str], List[LoRARef]]
    ] = None
160
    max_loaded_loras: Optional[int] = None
161
    max_loras_per_batch: int = 8
162
    lora_backend: str = "triton"
163
164

    # Kernel backend
165
    attention_backend: Optional[str] = None
166
167
    decode_attention_backend: Optional[str] = None
    prefill_attention_backend: Optional[str] = None
168
    sampling_backend: Optional[str] = None
169
    grammar_backend: Optional[str] = None
170
    mm_attention_backend: Optional[str] = None
171

172
173
    # Speculative decoding
    speculative_algorithm: Optional[str] = None
174
    speculative_draft_model_path: Optional[str] = None
175
176
177
    speculative_num_steps: Optional[int] = None
    speculative_eagle_topk: Optional[int] = None
    speculative_num_draft_tokens: Optional[int] = None
178
179
    speculative_accept_threshold_single: float = 1.0
    speculative_accept_threshold_acc: float = 1.0
180
    speculative_token_map: Optional[str] = None
181

182
183
    # Expert parallelism
    ep_size: int = 1
184
185
186
187
188
189
190
191
192
    moe_a2a_backend: Literal["none", "deepep"] = "none"
    moe_runner_backend: Literal[
        "auto",
        "triton",
        "triton_kernel",
        "flashinfer_trtllm",
        "flashinfer_cutlass",
        "flashinfer_mxfp4",
    ] = "auto"
193
    enable_flashinfer_allreduce_fusion: bool = False
194
    deepep_mode: Literal["auto", "normal", "low_latency"] = "auto"
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
    ep_num_redundant_experts: int = 0
    ep_dispatch_algorithm: Optional[Literal["static", "dynamic", "fake"]] = None
    init_expert_location: str = "trivial"
    enable_eplb: bool = False
    eplb_algorithm: str = "auto"
    eplb_rebalance_num_iterations: int = 1000
    eplb_rebalance_layers_per_chunk: Optional[int] = None
    expert_distribution_recorder_mode: Optional[
        Literal["stat", "stat_approx", "per_pass", "per_token"]
    ] = None
    expert_distribution_recorder_buffer_size: Optional[int] = None
    enable_expert_distribution_metrics: bool = False
    deepep_config: Optional[str] = None
    moe_dense_tp_size: Optional[int] = None

Lianmin Zheng's avatar
Lianmin Zheng committed
210
211
212
213
214
    # Hierarchical cache
    enable_hierarchical_cache: bool = False
    hicache_ratio: float = 2.0
    hicache_size: int = 0
    hicache_write_policy: str = "write_through_selective"
215
216
    hicache_io_backend: str = "kernel"
    hicache_mem_layout: str = "layer_first"
Lianmin Zheng's avatar
Lianmin Zheng committed
217
    hicache_storage_backend: Optional[str] = None
pansicheng's avatar
pansicheng committed
218
    hicache_storage_prefetch_policy: str = "best_effort"
Lianmin Zheng's avatar
Lianmin Zheng committed
219

220
221
    # Double Sparsity
    enable_double_sparsity: bool = False
Vincent's avatar
Vincent committed
222
    ds_channel_config_path: Optional[str] = None
223
224
225
226
227
    ds_heavy_channel_num: int = 32
    ds_heavy_token_num: int = 256
    ds_heavy_channel_type: str = "qk"
    ds_sparse_decode_threshold: int = 4096

228
    # Optimization/debug options
Lianmin Zheng's avatar
Lianmin Zheng committed
229
    disable_radix_cache: bool = False
230
231
    cuda_graph_max_bs: Optional[int] = None
    cuda_graph_bs: Optional[List[int]] = None
232
    disable_cuda_graph: bool = False
233
    disable_cuda_graph_padding: bool = False
234
    enable_profile_cuda_graph: bool = False
235
    enable_cudagraph_gc: bool = False
236
    enable_nccl_nvls: bool = False
237
    enable_symm_mem: bool = False
238
    disable_flashinfer_cutlass_moe_fp4_allgather: bool = False
239
    enable_tokenizer_batch_encode: bool = False
240
    disable_outlines_disk_cache: bool = False
241
    disable_custom_all_reduce: bool = False
242
    enable_mscclpp: bool = False
243
    disable_overlap_schedule: bool = False
244
    enable_mixed_chunk: bool = False
Ke Bao's avatar
Ke Bao committed
245
    enable_dp_attention: bool = False
246
    enable_dp_lm_head: bool = False
247
    enable_two_batch_overlap: bool = False
248
    tbo_token_distribution_threshold: float = 0.48
249
    enable_torch_compile: bool = False
250
    torch_compile_max_bs: int = 32
251
    torchao_config: str = ""
252
    enable_nan_detection: bool = False
253
    enable_p2p_check: bool = False
254
    triton_attention_reduce_in_fp32: bool = False
255
    triton_attention_num_kv_splits: int = 8
256
    num_continuous_decode_steps: int = 1
257
    delete_ckpt_after_loading: bool = False
258
    enable_memory_saver: bool = False
259
    allow_auto_truncate: bool = False
260
    enable_custom_logit_processor: bool = False
261
    flashinfer_mla_disable_ragged: bool = False
262
    disable_shared_experts_fusion: bool = False
263
    disable_chunked_prefix_cache: bool = False
Lianmin Zheng's avatar
Lianmin Zheng committed
264
    disable_fast_image_processor: bool = False
265
    enable_return_hidden_states: bool = False
266
    scheduler_recv_interval: int = 1
267
268
269
270
271

    # Debug tensor dumps
    debug_tensor_dump_output_folder: Optional[str] = None
    debug_tensor_dump_input_file: Optional[str] = None
    debug_tensor_dump_inject: bool = False
272
    debug_tensor_dump_prefill_only: bool = False
273

Lianmin Zheng's avatar
Lianmin Zheng committed
274
    # PD disaggregation: can be "null" (not disaggregated), "prefill" (prefill-only), or "decode" (decode-only)
Byron Hsu's avatar
Byron Hsu committed
275
    disaggregation_mode: str = "null"
276
    disaggregation_transfer_backend: str = "mooncake"
277
    disaggregation_bootstrap_port: int = 8998
Byron Hsu's avatar
Byron Hsu committed
278
279
280
    disaggregation_decode_tp: Optional[int] = None
    disaggregation_decode_dp: Optional[int] = None
    disaggregation_prefill_pp: Optional[int] = 1
281
    disaggregation_ib_device: Optional[str] = None
282
    num_reserved_decode_tokens: int = 512  # used for decode kv cache offload in PD
283
    pdlb_url: Optional[str] = None
Byron Hsu's avatar
Byron Hsu committed
284

285
286
    # For model weight update
    custom_weight_loader: Optional[List[str]] = None
287
    weight_loader_disable_mmap: bool = False
288

289
290
291
292
    # For PD-Multiplexing
    enable_pdmux: bool = False
    sm_group_num: int = 3

293
294
295
    # Deprecated arguments
    enable_ep_moe: bool = False
    enable_deepep_moe: bool = False
296
297
298
    enable_flashinfer_cutlass_moe: bool = False
    enable_flashinfer_trtllm_moe: bool = False
    enable_triton_kernel_moe: bool = False
299
    enable_flashinfer_mxfp4_moe: bool = False
300

Lianmin Zheng's avatar
Lianmin Zheng committed
301
    def __post_init__(self):
302
303
304
305
306
307
308
309
310
311
312
        # Check deprecated arguments
        if self.enable_ep_moe:
            self.ep_size = self.tp_size
            print_deprecated_warning(
                "NOTE: --enable-ep-moe is deprecated. Please set `--ep-size` to the same value as `--tp-size` instead."
            )
        if self.enable_deepep_moe:
            self.moe_a2a_backend = "deepep"
            print_deprecated_warning(
                "NOTE: --enable-deepep-moe is deprecated. Please set `--moe-a2a-backend` to 'deepep' instead."
            )
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
        if self.enable_triton_kernel_moe:
            self.moe_runner_backend = "triton_kernel"
            print_deprecated_warning(
                "NOTE: --enable-triton-kernel-moe is deprecated. Please set `--moe-runner-backend` to 'triton_kernel' instead."
            )
        if self.enable_flashinfer_cutlass_moe:
            self.moe_runner_backend = "flashinfer_cutlass"
            print_deprecated_warning(
                "NOTE: --enable-flashinfer-cutlass-moe is deprecated. Please set `--moe-runner-backend` to 'flashinfer_cutlass' instead."
            )
        if self.enable_flashinfer_trtllm_moe:
            self.moe_runner_backend = "flashinfer_trtllm"
            print_deprecated_warning(
                "NOTE: --enable-flashinfer-trtllm-moe is deprecated. Please set `--moe-runner-backend` to 'flashinfer_trtllm' instead."
            )
328
329
330
331
332
        if self.enable_flashinfer_mxfp4_moe:
            self.moe_runner_backend = "flashinfer_mxfp4"
            print_deprecated_warning(
                "NOTE: --enable-flashinfer-mxfp4-moe is deprecated. Please set `--moe-runner-backend` to 'flashinfer_mxfp4' instead."
            )
333

334
        # Set missing default values
Lianmin Zheng's avatar
Lianmin Zheng committed
335
336
        if self.tokenizer_path is None:
            self.tokenizer_path = self.model_path
337
338
        if self.served_model_name is None:
            self.served_model_name = self.model_path
339
340
        if self.device is None:
            self.device = get_device()
341
342
343
        if self.random_seed is None:
            self.random_seed = random.randint(0, 1 << 30)

Lianmin Zheng's avatar
Lianmin Zheng committed
344
        gpu_mem = get_device_memory_capacity(self.device)
345

346
        # Set mem fraction static
Lianmin Zheng's avatar
Lianmin Zheng committed
347
        if self.mem_fraction_static is None:
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
            if gpu_mem is not None:
                # GPU memory capacity = model weights + KV cache pool + activations + cuda graph buffers
                # mem_fraction_static = (model weights + KV cache pool) / GPU memory capacity.

                # We want mem_fraction_static to be as large as possible but still has enough room
                # for activations and cuda graph buffers. We use the following heuristic to
                # compute the needed size for activations and cuda graph buffers:
                # - The size of the activation depends on the chunked_prefill_size and model size.
                # - The size of cuda graph buffers depends on the cuda graph capture range and model size.
                # For GPUs with more memory, we use a larger chunked_prefill_size and
                # capture more cuda graphs, so they need to reserve more memory.
                parallel_size = self.tp_size * self.pp_size

                if gpu_mem < 20 * 1024:
                    # T4, 4080. (chunked_prefill_size 2k, cuda_graph_max_bs 8)
                    reserved_mem = (2.8 + parallel_size / 10) * 1024
                elif gpu_mem < 35 * 1024:
                    # A10, L40, 4090, 5090. (chunked_prefill_size 2k, cuda_graph_max_bs 8)
                    reserved_mem = (2.8 + parallel_size / 10) * 1024
                elif gpu_mem < 90 * 1024:
                    # H100, A100. (chunked_prefill_size 8k, cuda_graph_max_bs 160)
                    reserved_mem = (9.5 + parallel_size / 2) * 1024
                elif gpu_mem < 100 * 1024:
                    # H20. (chunked_prefill_size 8k, cuda_graph_max_bs 256)
                    reserved_mem = (12 + parallel_size / 2) * 1024
                elif gpu_mem < 160 * 1024:
                    # H200. (chunked_prefill_size 8k, cuda_graph_max_bs 256)
                    reserved_mem = (12 + parallel_size / 2) * 1024
376
                else:
377
378
379
                    # B200, MI300. (chunked_prefill_size 16k, cuda_graph_max_bs 512)
                    reserved_mem = 32 * 1024

380
                if self.speculative_algorithm is not None:
381
382
383
384
385
386
                    # draft model and larger cuda graph buffers
                    reserved_mem += 2 * 1024
                if self.enable_dp_attention:
                    reserved_mem += 4 * 1024

                self.mem_fraction_static = round((gpu_mem - reserved_mem) / gpu_mem, 3)
387
            else:
388
                self.mem_fraction_static = 0.88
389

390
            # Lazy init to avoid circular import
Lianmin Zheng's avatar
Lianmin Zheng committed
391
            # Multimodal models need more memory for the image processor
392
393
394
            from sglang.srt.configs.model_config import ModelConfig

            model_config = ModelConfig.from_server_args(self)
Lianmin Zheng's avatar
Lianmin Zheng committed
395
396
            if model_config.is_multimodal:
                self.adjust_mem_fraction_for_vlm(model_config)
397

398
399
        # Set chunked prefill size, which depends on the gpu memory capacity
        if self.chunked_prefill_size is None:
400
401
402
403
404
405
406
            if gpu_mem is not None:
                if gpu_mem < 35 * 1024:  # A10, L40, 4090
                    self.chunked_prefill_size = 2048
                elif gpu_mem < 160 * 1024:  # H100, H200, A100, H20
                    self.chunked_prefill_size = 8192
                else:  # B200, MI300
                    self.chunked_prefill_size = 16384
407
            else:
408
                self.chunked_prefill_size = 4096
Lianmin Zheng's avatar
Lianmin Zheng committed
409

410
411
412
413
414
415
416
417
418
        # Set cuda graph max batch size
        if self.cuda_graph_max_bs is None:
            # Based on detailed statistics, when serving TP1/TP2 models on lower-end GPUs with HBM<25G, you can either disable cuda graph or set `cuda_graph_max_bs` to a very small value to reduce the memory overhead of creating cuda graphs, with almost no impact on performance. However, when serving models with TP4 or TP8, we need to enable cuda graph to maintain high performance. In this case, we can set `cuda_graph_max_bs` to 80 (half of the default value 160) to reduce the memory overhead of creating cuda graphs. Looking at the logs from TP4 serving of qwen2-72b, a value of 80 is sufficient and can reduce the memory overhead of creating cuda graphs on lower-end GPUs compared to the original 160, avoiding OOM issues.
            if gpu_mem is not None and gpu_mem < 35 * 1024:
                if self.tp_size < 4:
                    self.cuda_graph_max_bs = 8
                else:
                    self.cuda_graph_max_bs = 80

419
        # Set kernel backends for hpu device
420
421
422
423
        if self.device == "hpu":
            self.attention_backend = "torch_native"
            self.sampling_backend = "pytorch"

424
425
426
        # Model-specific adjustments
        self.model_specific_adjustments()

Lianmin Zheng's avatar
Lianmin Zheng committed
427
        # Set kernel backends
428
429
430
431
432
        if self.device == "cpu":
            if self.attention_backend is None:
                self.attention_backend = "intel_amx"
            self.sampling_backend = "pytorch"

433
        if self.sampling_backend is None:
434
435
436
437
438
            self.sampling_backend = (
                "flashinfer" if is_flashinfer_available() else "pytorch"
            )

        if self.attention_backend == "torch_native":
439
            logger.warning(
440
441
442
                "Cuda graph is disabled because of using torch native attention backend"
            )
            self.disable_cuda_graph = True
443

444
445
446
447
448
449
        if self.attention_backend == "ascend":
            logger.warning(
                "At this moment Ascend attention backend only supports a page_size of 128, change page_size to 128."
            )
            self.page_size = 128

450
451
452
453
        if (
            self.attention_backend == "flashmla"
            or self.decode_attention_backend == "flashmla"
        ):
Lianmin Zheng's avatar
Lianmin Zheng committed
454
455
456
457
458
            logger.warning(
                "FlashMLA only supports a page_size of 64, change page_size to 64."
            )
            self.page_size = 64

459
460
461
462
        if (
            self.attention_backend == "cutlass_mla"
            or self.decode_attention_backend == "cutlass_mla"
        ):
Lianmin Zheng's avatar
Lianmin Zheng committed
463
464
465
466
467
            logger.warning(
                "Cutlass MLA only supports a page_size of 128, change page_size to 128."
            )
            self.page_size = 128

Faraz's avatar
Faraz committed
468
469
470
471
        if (
            self.attention_backend == "trtllm_mla"
            or self.decode_attention_backend == "trtllm_mla"
        ):
472
473
474
475
476
477
478
479
480
481
            if not is_sm100_supported():
                raise ValueError(
                    "TRTLLM MLA backend is only supported on Blackwell GPUs (SM100). Please use a different backend."
                )

            if self.page_size not in [32, 64]:
                logger.warning(
                    f"TensorRT-LLM MLA only supports page_size of 32 or 64, changing page_size from {self.page_size} to 64."
                )
                self.page_size = 64
Faraz's avatar
Faraz committed
482
483
484
485
486

            if self.kv_cache_dtype not in ["fp8_e4m3", "auto"]:
                raise ValueError(
                    "TensorRT-LLM MLA backend only supports kv-cache-dtype of fp8_e4m3 or auto."
                )
487

488
489
490
491
492
        if (
            self.attention_backend == "trtllm_mha"
            or self.decode_attention_backend == "trtllm_mha"
            or self.prefill_attention_backend == "trtllm_mha"
        ):
493
494
495
496
497
498
499
500
501
502
503
            if not is_sm100_supported():
                raise ValueError(
                    "TRTLLM MHA backend is only supported on Blackwell GPUs (SM100). Please use a different backend."
                )

            if self.page_size not in [16, 32, 64]:
                logger.warning(
                    f"TensorRT-LLM MHA only supports page_size of 16, 32 or 64, changing page_size from {self.page_size} to 64."
                )
                self.page_size = 64

504
505
        if self.attention_backend == "dual_chunk_flash_attn":
            logger.warning(
506
                "Mixed chunk, radix cache, and cuda graphs are disabled because of using dual chunk flash attention backend"
507
508
509
510
511
            )
            self.enable_mixed_chunk = False
            self.disable_cuda_graph = True
            self.disable_radix_cache = True

512
513
514
515
516
517
518
519
        # Set page size
        if self.page_size is None:
            self.page_size = 1

        # AMD-specific Triton attention KV splits default number
        if is_hip():
            self.triton_attention_num_kv_splits = 16

520
521
522
        # Choose grammar backend
        if self.grammar_backend is None:
            self.grammar_backend = "xgrammar"
523

524
        # Data parallelism attention
Ke Bao's avatar
Ke Bao committed
525
        if self.enable_dp_attention:
526
            self.schedule_conservativeness = self.schedule_conservativeness * 0.3
Lianmin Zheng's avatar
Lianmin Zheng committed
527
528
529
530
531
            assert (
                self.dp_size > 1
            ), "Please set a dp-size > 1. You can use 1 < dp-size <= tp-size "
            assert self.tp_size % self.dp_size == 0
            self.chunked_prefill_size = self.chunked_prefill_size // self.dp_size
532
            logger.warning(
533
                f"DP attention is enabled. The chunked prefill size is adjusted to {self.chunked_prefill_size} to avoid MoE kernel issues. "
534
            )
535

536
537
538
        if self.enable_dp_lm_head:
            assert (
                self.enable_dp_attention
539
            ), "Please enable dp attention when setting enable_dp_lm_head. "
540

541
        # MoE kernel
542
        if self.moe_runner_backend == "flashinfer_cutlass":
543
544
545
            assert (
                self.quantization == "modelopt_fp4"
            ), "modelopt_fp4 quantization is required for Flashinfer MOE"
546
547
548
549
            assert self.ep_size in [
                1,
                self.tp_size,
            ], "The expert parallel size must be 1 or the same as the tensor parallel size"
550

551
        if self.moe_runner_backend == "flashinfer_trtllm":
552
553
554
555
556
557
            if not self.disable_shared_experts_fusion:
                self.disable_shared_experts_fusion = True
                logger.warning(
                    "FlashInfer TRTLLM MoE is enabled. --disable-shared-experts-fusion is automatically set."
                )

558
        # DeepEP MoE
559
        if self.moe_a2a_backend == "deepep":
560
561
562
            if self.deepep_mode == "normal":
                logger.warning("Cuda graph is disabled because deepep_mode=`normal`")
                self.disable_cuda_graph = True
563
            self.ep_size = self.tp_size
Lianmin Zheng's avatar
Lianmin Zheng committed
564
            logger.warning(
565
566
                f"DeepEP MoE is enabled. The expert parallel size is adjusted to be the same as the tensor parallel size[{self.tp_size}]."
            )
567

568
569
        if self.enable_eplb and (self.expert_distribution_recorder_mode is None):
            self.expert_distribution_recorder_mode = "stat"
570
            logger.warning(
571
                "EPLB is enabled. The expert_distribution_recorder_mode is automatically set."
572
573
574
575
576
577
578
            )

        if (self.enable_eplb or (self.init_expert_location is not None)) and (
            self.ep_dispatch_algorithm is None
        ):
            self.ep_dispatch_algorithm = "static"

579
        if self.enable_eplb:
580
            assert self.ep_size > 1
581

582
583
584
585
586
        if self.enable_expert_distribution_metrics and (
            self.expert_distribution_recorder_mode is None
        ):
            self.expert_distribution_recorder_mode = "stat"

587
        if self.expert_distribution_recorder_buffer_size is None:
588
589
            if (x := self.eplb_rebalance_num_iterations) is not None:
                self.expert_distribution_recorder_buffer_size = x
590
591
592
            elif self.expert_distribution_recorder_mode is not None:
                self.expert_distribution_recorder_buffer_size = 1000

Lianmin Zheng's avatar
Lianmin Zheng committed
593
594
595
596
597
598
599
        # Pipeline parallelism
        if self.pp_size > 1:
            self.disable_overlap_schedule = True
            logger.warning(
                "Pipeline parallelism is incompatible with overlap schedule."
            )

Lianmin Zheng's avatar
Lianmin Zheng committed
600
        # Hicache
601
602
603
604
605
        if self.hicache_storage_backend == "mooncake":
            # to use mooncake storage backend, the following conditions must be met:
            self.hicache_io_backend = "kernel"
            self.hicache_mem_layout = "page_first"

606
        # Speculative Decoding
607
608
609
610
        if self.speculative_algorithm == "NEXTN":
            # NEXTN shares the same implementation of EAGLE
            self.speculative_algorithm = "EAGLE"

Lianmin Zheng's avatar
Lianmin Zheng committed
611
        if self.speculative_algorithm in ("EAGLE", "EAGLE3"):
612
            if self.max_running_requests is None:
613
                self.max_running_requests = 48
614
            self.disable_overlap_schedule = True
Lianmin Zheng's avatar
Lianmin Zheng committed
615
            logger.warning(
616
                "Overlap scheduler is disabled because of using "
617
                "eagle speculative decoding."
618
            )
619
620
621
622
623
624
            if self.enable_mixed_chunk:
                self.enable_mixed_chunk = False
                logger.warning(
                    "Mixed chunked prefill is disabled because of using "
                    "eagle speculative decoding."
                )
625

Lianmin Zheng's avatar
Lianmin Zheng committed
626
            model_arch = self.get_hf_config().architectures[0]
Yuxuan Zhang's avatar
Yuxuan Zhang committed
627
            if model_arch in ["DeepseekV3ForCausalLM", "Glm4MoeForCausalLM"]:
Hanming Lu's avatar
Hanming Lu committed
628
                # Auto set draft_model_path DeepSeek-V3/R1
629
630
631
632
633
634
                if self.speculative_draft_model_path is None:
                    self.speculative_draft_model_path = self.model_path
                else:
                    logger.warning(
                        "DeepSeek MTP does not require setting speculative_draft_model_path."
                    )
635
636
637
638
                if self.page_size != 1 and self.attention_backend == "flashinfer":
                    raise ValueError(
                        "Speculative decoding with page_size != 1 is not supported. Please set page_size to 1."
                    )
639

640
641
642
643
644
645
646
647
648
649
            # Auto choose parameters
            if self.speculative_num_steps is None:
                assert (
                    self.speculative_eagle_topk is None
                    and self.speculative_num_draft_tokens is None
                )
                (
                    self.speculative_num_steps,
                    self.speculative_eagle_topk,
                    self.speculative_num_draft_tokens,
650
                ) = auto_choose_speculative_params(self)
651

652
653
654
655
656
657
658
659
660
661
            if (
                self.attention_backend == "trtllm_mha"
                or self.decode_attention_backend == "trtllm_mha"
                or self.prefill_attention_backend == "trtllm_mha"
            ):
                if self.speculative_eagle_topk > 1:
                    raise ValueError(
                        "trtllm_mha backend only supports topk = 1 for speculative decoding."
                    )

662
663
664
665
            if (
                self.speculative_eagle_topk == 1
                and self.speculative_num_draft_tokens != self.speculative_num_steps + 1
            ):
Lianmin Zheng's avatar
Lianmin Zheng committed
666
                logger.warning(
667
668
669
                    "speculative_num_draft_tokens is adjusted to speculative_num_steps + 1 when speculative_eagle_topk == 1"
                )
                self.speculative_num_draft_tokens = self.speculative_num_steps + 1
670

671
            # The token generated from the verify step is counted.
672
            # If sepculative_num_steps >= speculative_num_draft_tokens, the additional tokens will definitely be discarded.
673
            # assert self.speculative_num_steps < self.speculative_num_draft_tokens
674

675
676
677
678
679
680
        # GGUF
        if (
            self.load_format == "auto" or self.load_format == "gguf"
        ) and check_gguf_file(self.model_path):
            self.quantization = self.load_format = "gguf"

681
        # Model loading
682
683
        if is_remote_url(self.model_path):
            self.load_format = "remote"
684
685
        if self.custom_weight_loader is None:
            self.custom_weight_loader = []
686

Byron Hsu's avatar
Byron Hsu committed
687
        # PD disaggregation
Byron Hsu's avatar
Byron Hsu committed
688
689
690
691
692
693
694
695
        if self.disaggregation_mode == "decode":
            assert (
                self.disaggregation_decode_tp is None
            ), "Cannot set --disaggregation-decode-tp for the decode engine."
            assert (
                self.disaggregation_decode_dp is None
            ), "Cannot set --disaggregation-decode-dp for the decode engine."

Byron Hsu's avatar
Byron Hsu committed
696
            self.disable_radix_cache = True
697
            logger.warning("KV cache is forced as chunk cache for decode server")
Byron Hsu's avatar
Byron Hsu committed
698
699
700
701
702
703
704
705
706
707
708
        elif self.disaggregation_mode == "prefill":
            if self.disaggregation_decode_tp is None:
                self.disaggregation_decode_tp = self.tp_size
            if self.disaggregation_decode_dp is None:
                self.disaggregation_decode_dp = self.dp_size

            self.disaggregation_prefill_pp = self.pp_size
            self.validate_disagg_tp_size(self.tp_size, self.disaggregation_decode_tp)

            self.disable_cuda_graph = True
            logger.warning("Cuda graph is disabled for prefill server")
Byron Hsu's avatar
Byron Hsu committed
709

710
        # Propagate env vars
711
712
713
        os.environ["SGLANG_ENABLE_TORCH_COMPILE"] = (
            "1" if self.enable_torch_compile else "0"
        )
714
715
716
717
        # Set env var before grammar backends init
        os.environ["SGLANG_DISABLE_OUTLINES_DISK_CACHE"] = (
            "1" if self.disable_outlines_disk_cache else "0"
        )
718

719
720
721
722
723
724
        if self.enable_hierarchical_cache and self.disable_radix_cache:
            raise ValueError(
                "The arguments enable-hierarchical-cache and disable-radix-cache are mutually exclusive "
                "and cannot be used at the same time. Please use only one of them."
            )

Lianmin Zheng's avatar
Lianmin Zheng committed
725
726
    @staticmethod
    def add_cli_args(parser: argparse.ArgumentParser):
Lianmin Zheng's avatar
Lianmin Zheng committed
727
        # Model and tokenizer
Lianmin Zheng's avatar
Lianmin Zheng committed
728
729
        parser.add_argument(
            "--model-path",
730
            "--model",
Lianmin Zheng's avatar
Lianmin Zheng committed
731
732
733
734
735
736
737
738
739
740
            type=str,
            help="The path of the model weights. This can be a local folder or a Hugging Face repo ID.",
            required=True,
        )
        parser.add_argument(
            "--tokenizer-path",
            type=str,
            default=ServerArgs.tokenizer_path,
            help="The path of the tokenizer.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
741
742
743
744
745
746
747
748
749
        parser.add_argument(
            "--tokenizer-mode",
            type=str,
            default=ServerArgs.tokenizer_mode,
            choices=["auto", "slow"],
            help="Tokenizer mode. 'auto' will use the fast "
            "tokenizer if available, and 'slow' will "
            "always use the slow tokenizer.",
        )
750
751
752
        parser.add_argument(
            "--skip-tokenizer-init",
            action="store_true",
753
            help="If set, skip init tokenizer and pass input_ids in generate request.",
754
        )
755
        parser.add_argument(
Lianmin Zheng's avatar
Lianmin Zheng committed
756
757
758
            "--load-format",
            type=str,
            default=ServerArgs.load_format,
759
760
761
762
763
764
            choices=[
                "auto",
                "pt",
                "safetensors",
                "npcache",
                "dummy",
765
                "sharded_state",
766
767
                "gguf",
                "bitsandbytes",
768
                "layered",
769
                "remote",
770
            ],
Lianmin Zheng's avatar
Lianmin Zheng committed
771
772
773
774
775
776
777
778
779
            help="The format of the model weights to load. "
            '"auto" will try to load the weights in the safetensors format '
            "and fall back to the pytorch bin format if safetensors format "
            "is not available. "
            '"pt" will load the weights in the pytorch bin format. '
            '"safetensors" will load the weights in the safetensors format. '
            '"npcache" will load the weights in pytorch format and store '
            "a numpy cache to speed up the loading. "
            '"dummy" will initialize the weights with random values, '
780
            "which is mainly for profiling."
781
782
            '"gguf" will load the weights in the gguf format. '
            '"bitsandbytes" will load the weights using bitsandbytes '
783
784
785
786
            "quantization."
            '"layered" loads weights layer by layer so that one can quantize a '
            "layer before loading another to make the peak memory envelope "
            "smaller.",
Lianmin Zheng's avatar
Lianmin Zheng committed
787
        )
788
789
790
791
792
793
794
        parser.add_argument(
            "--model-loader-extra-config",
            type=str,
            help="Extra config for model loader. "
            "This will be passed to the model loader corresponding to the chosen load_format.",
            default=ServerArgs.model_loader_extra_config,
        )
795
796
797
798
799
        parser.add_argument(
            "--trust-remote-code",
            action="store_true",
            help="Whether or not to allow for custom models defined on the Hub in their own modeling files.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
        parser.add_argument(
            "--context-length",
            type=int,
            default=ServerArgs.context_length,
            help="The model's maximum context length. Defaults to None (will use the value from the model's config.json instead).",
        )
        parser.add_argument(
            "--is-embedding",
            action="store_true",
            help="Whether to use a CausalLM as an embedding model.",
        )
        parser.add_argument(
            "--enable-multimodal",
            default=ServerArgs.enable_multimodal,
            action="store_true",
            help="Enable the multimodal functionality for the served model. If the model being served is not multimodal, nothing will happen",
        )
        parser.add_argument(
            "--revision",
            type=str,
            default=None,
            help="The specific model version to use. It can be a branch "
            "name, a tag name, or a commit id. If unspecified, will use "
            "the default version.",
        )
        parser.add_argument(
            "--model-impl",
            type=str,
            default=ServerArgs.model_impl,
            help="Which implementation of the model to use.\n\n"
            '* "auto" will try to use the SGLang implementation if it exists '
            "and fall back to the Transformers implementation if no SGLang "
            "implementation is available.\n"
            '* "sglang" will use the SGLang model implementation.\n'
            '* "transformers" will use the Transformers model '
            "implementation.\n",
        )

        # HTTP server
        parser.add_argument(
            "--host",
            type=str,
            default=ServerArgs.host,
            help="The host of the HTTP server.",
        )
        parser.add_argument(
            "--port",
            type=int,
            default=ServerArgs.port,
            help="The port of the HTTP server.",
        )
        parser.add_argument(
            "--skip-server-warmup",
            action="store_true",
            help="If set, skip warmup.",
        )
        parser.add_argument(
            "--warmups",
            type=str,
            required=False,
            help="Specify custom warmup functions (csv) to run before server starts eg. --warmups=warmup_name1,warmup_name2 "
            "will run the functions `warmup_name1` and `warmup_name2` specified in warmup.py before the server starts listening for requests",
        )
        parser.add_argument(
            "--nccl-port",
            type=int,
            default=ServerArgs.nccl_port,
            help="The port for NCCL distributed environment setup. Defaults to a random port.",
        )

        # Quantization and data type
Lianmin Zheng's avatar
Lianmin Zheng committed
871
        parser.add_argument(
Lianmin Zheng's avatar
Lianmin Zheng committed
872
            "--dtype",
Cody Yu's avatar
Cody Yu committed
873
            type=str,
Lianmin Zheng's avatar
Lianmin Zheng committed
874
            default=ServerArgs.dtype,
Ying Sheng's avatar
Ying Sheng committed
875
876
            choices=["auto", "half", "float16", "bfloat16", "float", "float32"],
            help="Data type for model weights and activations.\n\n"
Lianmin Zheng's avatar
Lianmin Zheng committed
877
            '* "auto" will use FP16 precision for FP32 and FP16 models, and '
Ying Sheng's avatar
Ying Sheng committed
878
            "BF16 precision for BF16 models.\n"
Lianmin Zheng's avatar
Lianmin Zheng committed
879
880
881
882
            '* "half" for FP16. Recommended for AWQ quantization.\n'
            '* "float16" is the same as "half".\n'
            '* "bfloat16" for a balance between precision and range.\n'
            '* "float" is shorthand for FP32 precision.\n'
Ying Sheng's avatar
Ying Sheng committed
883
884
            '* "float32" for FP32 precision.',
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
885
886
887
888
        parser.add_argument(
            "--quantization",
            type=str,
            default=ServerArgs.quantization,
Ying Sheng's avatar
Ying Sheng committed
889
890
891
892
893
894
            choices=[
                "awq",
                "fp8",
                "gptq",
                "marlin",
                "gptq_marlin",
Ying Sheng's avatar
Ying Sheng committed
895
                "awq_marlin",
Ying Sheng's avatar
Ying Sheng committed
896
                "bitsandbytes",
897
                "gguf",
898
                "modelopt",
899
                "modelopt_fp4",
900
                "petit_nvfp4",
901
                "w8a8_int8",
HandH1998's avatar
HandH1998 committed
902
                "w8a8_fp8",
AniZpZ's avatar
AniZpZ committed
903
                "moe_wna16",
HandH1998's avatar
HandH1998 committed
904
                "qoq",
905
                "w4afp8",
906
                "mxfp4",
Ying Sheng's avatar
Ying Sheng committed
907
            ],
Lianmin Zheng's avatar
Lianmin Zheng committed
908
909
            help="The quantization method.",
        )
910
911
912
913
914
915
916
917
918
        parser.add_argument(
            "--quantization-param-path",
            type=nullable_str,
            default=None,
            help="Path to the JSON file containing the KV cache "
            "scaling factors. This should generally be supplied, when "
            "KV cache dtype is FP8. Otherwise, KV cache scaling factors "
            "default to 1.0, which may cause accuracy issues. ",
        )
919
        parser.add_argument(
Lianmin Zheng's avatar
Lianmin Zheng committed
920
            "--kv-cache-dtype",
921
            type=str,
Lianmin Zheng's avatar
Lianmin Zheng committed
922
923
924
            default=ServerArgs.kv_cache_dtype,
            choices=["auto", "fp8_e5m2", "fp8_e4m3"],
            help='Data type for kv cache storage. "auto" will use model data type. "fp8_e5m2" and "fp8_e4m3" is supported for CUDA 11.8+.',
925
        )
926

927
        # Memory and scheduling
Lianmin Zheng's avatar
Lianmin Zheng committed
928
929
930
931
        parser.add_argument(
            "--mem-fraction-static",
            type=float,
            default=ServerArgs.mem_fraction_static,
932
            help="The fraction of the memory used for static allocation (model weights and KV cache memory pool). Use a smaller value if you see out-of-memory errors.",
Lianmin Zheng's avatar
Lianmin Zheng committed
933
        )
934
935
936
937
938
939
        parser.add_argument(
            "--max-running-requests",
            type=int,
            default=ServerArgs.max_running_requests,
            help="The maximum number of running requests.",
        )
940
941
942
943
944
945
        parser.add_argument(
            "--max-queued-requests",
            type=int,
            default=ServerArgs.max_queued_requests,
            help="The maximum number of queued requests. This option is ignored when using disaggregation-mode.",
        )
946
947
948
949
        parser.add_argument(
            "--max-total-tokens",
            type=int,
            default=ServerArgs.max_total_tokens,
950
951
            help="The maximum number of tokens in the memory pool. If not specified, it will be automatically calculated based on the memory usage fraction. "
            "This option is typically used for development and debugging purposes.",
952
        )
953
954
955
956
        parser.add_argument(
            "--chunked-prefill-size",
            type=int,
            default=ServerArgs.chunked_prefill_size,
957
            help="The maximum number of tokens in a chunk for the chunked prefill. Setting this to -1 means disabling chunked prefill.",
958
959
960
961
962
963
964
        )
        parser.add_argument(
            "--max-prefill-tokens",
            type=int,
            default=ServerArgs.max_prefill_tokens,
            help="The maximum number of tokens in a prefill batch. The real bound will be the maximum of this value and the model's maximum context length.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
965
        parser.add_argument(
966
            "--schedule-policy",
Lianmin Zheng's avatar
Lianmin Zheng committed
967
            type=str,
968
            default=ServerArgs.schedule_policy,
969
            choices=["lpm", "random", "fcfs", "dfs-weight", "lof"],
970
            help="The scheduling policy of the requests.",
Lianmin Zheng's avatar
Lianmin Zheng committed
971
        )
972
973
974
975
        parser.add_argument(
            "--schedule-conservativeness",
            type=float,
            default=ServerArgs.schedule_conservativeness,
976
            help="How conservative the schedule policy is. A larger value means more conservative scheduling. Use a larger value if you see requests being retracted frequently.",
977
        )
978
979
980
981
        parser.add_argument(
            "--cpu-offload-gb",
            type=int,
            default=ServerArgs.cpu_offload_gb,
982
            help="How many GBs of RAM to reserve for CPU offloading.",
983
        )
984
985
986
987
988
989
        parser.add_argument(
            "--page-size",
            type=int,
            default=ServerArgs.page_size,
            help="The number of tokens in a page.",
        )
tarinkk's avatar
tarinkk committed
990
991
992
993
994
995
996
997
998
999
1000
1001
        parser.add_argument(
            "--hybrid-kvcache-ratio",
            nargs="?",
            const=0.5,
            type=float,
            default=ServerArgs.hybrid_kvcache_ratio,
            help=(
                "Mix ratio in [0,1] between uniform and hybrid kv buffers "
                "(0.0 = pure uniform: swa_size / full_size = 1)"
                "(1.0 = pure hybrid: swa_size / full_size = local_attention_size / context_length)"
            ),
        )
Hanming Lu's avatar
Hanming Lu committed
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
        parser.add_argument(
            "--swa-full-tokens-ratio",
            type=float,
            default=ServerArgs.swa_full_tokens_ratio,
            help="The ratio of SWA layer KV tokens / full layer KV tokens, regardless of the number of swa:full layers. It should be between 0 and 1. "
            "E.g. 0.5 means if each swa layer has 50 tokens, then each full layer has 100 tokens.",
        )
        parser.add_argument(
            "--disable-hybrid-swa-memory",
            action="store_true",
            help="Disable the hybrid SWA memory.",
        )
1014

Lianmin Zheng's avatar
Lianmin Zheng committed
1015
1016
1017
1018
1019
1020
1021
        # Runtime options
        parser.add_argument(
            "--device",
            type=str,
            default=ServerArgs.device,
            help="The device to use ('cuda', 'xpu', 'hpu', 'npu', 'cpu'). Defaults to auto-detection if not specified.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1022
        parser.add_argument(
1023
            "--tensor-parallel-size",
Lianmin Zheng's avatar
Lianmin Zheng committed
1024
            "--tp-size",
Lianmin Zheng's avatar
Lianmin Zheng committed
1025
            type=int,
Lianmin Zheng's avatar
Lianmin Zheng committed
1026
            default=ServerArgs.tp_size,
1027
            help="The tensor parallelism size.",
1028
        )
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
        parser.add_argument(
            "--pipeline-parallel-size",
            "--pp-size",
            type=int,
            default=ServerArgs.pp_size,
            help="The pipeline parallelism size.",
        )
        parser.add_argument(
            "--max-micro-batch-size",
            type=int,
            default=ServerArgs.max_micro_batch_size,
            help="The maximum micro batch size in pipeline parallelism.",
        )
1042
1043
1044
        parser.add_argument(
            "--stream-interval",
            type=int,
Lianmin Zheng's avatar
Lianmin Zheng committed
1045
            default=ServerArgs.stream_interval,
1046
            help="The interval (or buffer size) for streaming in terms of the token length. A smaller value makes streaming smoother, while a larger value makes the throughput higher",
1047
        )
1048
1049
1050
1051
1052
        parser.add_argument(
            "--stream-output",
            action="store_true",
            help="Whether to output as a sequence of disjoint segments.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1053
1054
1055
1056
        parser.add_argument(
            "--random-seed",
            type=int,
            default=ServerArgs.random_seed,
1057
            help="The random seed.",
Lianmin Zheng's avatar
Lianmin Zheng committed
1058
        )
1059
1060
1061
1062
        parser.add_argument(
            "--constrained-json-whitespace-pattern",
            type=str,
            default=ServerArgs.constrained_json_whitespace_pattern,
Lianmin Zheng's avatar
Lianmin Zheng committed
1063
            help="(outlines backend only) Regex pattern for syntactic whitespaces allowed in JSON constrained output. For example, to allow the model generate consecutive whitespaces, set the pattern to [\n\t ]*",
1064
        )
1065
1066
1067
1068
1069
1070
        parser.add_argument(
            "--watchdog-timeout",
            type=float,
            default=ServerArgs.watchdog_timeout,
            help="Set watchdog timeout in seconds. If a forward batch takes longer than this, the server will crash to prevent hanging.",
        )
1071
1072
1073
1074
1075
1076
        parser.add_argument(
            "--dist-timeout",
            type=int,
            default=ServerArgs.dist_timeout,
            help="Set timeout for torch.distributed initialization.",
        )
1077
1078
1079
1080
        parser.add_argument(
            "--download-dir",
            type=str,
            default=ServerArgs.download_dir,
1081
            help="Model download directory for huggingface.",
1082
        )
1083
1084
1085
1086
1087
1088
        parser.add_argument(
            "--base-gpu-id",
            type=int,
            default=ServerArgs.base_gpu_id,
            help="The base GPU ID to start allocating GPUs from. Useful when running multiple instances on the same machine.",
        )
1089
1090
1091
1092
1093
1094
        parser.add_argument(
            "--gpu-id-step",
            type=int,
            default=ServerArgs.gpu_id_step,
            help="The delta between consecutive GPU IDs that are used. For example, setting it to 2 will use GPU 0,2,4,...",
        )
1095
1096
1097
1098
1099
        parser.add_argument(
            "--sleep-on-idle",
            action="store_true",
            help="Reduce CPU usage when sglang is idle.",
        )
1100
1101

        # Logging
Lianmin Zheng's avatar
Lianmin Zheng committed
1102
1103
1104
1105
        parser.add_argument(
            "--log-level",
            type=str,
            default=ServerArgs.log_level,
1106
            help="The logging level of all loggers.",
Lianmin Zheng's avatar
Lianmin Zheng committed
1107
        )
1108
        parser.add_argument(
1109
1110
1111
1112
            "--log-level-http",
            type=str,
            default=ServerArgs.log_level_http,
            help="The logging level of HTTP server. If not set, reuse --log-level by default.",
1113
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1114
        parser.add_argument(
1115
            "--log-requests",
Lianmin Zheng's avatar
Lianmin Zheng committed
1116
            action="store_true",
1117
1118
1119
1120
1121
            help="Log metadata, inputs, outputs of all requests. The verbosity is decided by --log-requests-level",
        )
        parser.add_argument(
            "--log-requests-level",
            type=int,
1122
            default=ServerArgs.log_requests_level,
1123
1124
1125
1126
1127
1128
1129
1130
            help="0: Log metadata (no sampling parameters). 1: Log metadata and sampling parameters. 2: Log metadata, sampling parameters and partial input/output. 3: Log every input/output.",
            choices=[0, 1, 2, 3],
        )
        parser.add_argument(
            "--crash-dump-folder",
            type=str,
            default=ServerArgs.crash_dump_folder,
            help="Folder path to dump requests from the last 5 min before a crash (if any). If not specified, crash dumping is disabled.",
Lianmin Zheng's avatar
Lianmin Zheng committed
1131
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1132
1133
1134
        parser.add_argument(
            "--show-time-cost",
            action="store_true",
Ying Sheng's avatar
Ying Sheng committed
1135
            help="Show time cost of custom marks.",
Lianmin Zheng's avatar
Lianmin Zheng committed
1136
        )
1137
1138
1139
1140
1141
        parser.add_argument(
            "--enable-metrics",
            action="store_true",
            help="Enable log prometheus metrics.",
        )
1142
1143
1144
1145
1146
1147
1148
        parser.add_argument(
            "--enable-metrics-for-all-schedulers",
            action="store_true",
            help="Enable --enable-metrics-for-all-schedulers when you want schedulers on all TP ranks (not just TP 0) "
            "to record request metrics separately. This is especially useful when dp_attention is enabled, as "
            "otherwise all metrics appear to come from TP 0.",
        )
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
        parser.add_argument(
            "--bucket-time-to-first-token",
            type=float,
            nargs="+",
            default=ServerArgs.bucket_time_to_first_token,
            help="The buckets of time to first token, specified as a list of floats.",
        )
        parser.add_argument(
            "--bucket-inter-token-latency",
            type=float,
            nargs="+",
            default=ServerArgs.bucket_inter_token_latency,
            help="The buckets of inter-token latency, specified as a list of floats.",
        )
        parser.add_argument(
            "--bucket-e2e-request-latency",
            type=float,
            nargs="+",
            default=ServerArgs.bucket_e2e_request_latency,
            help="The buckets of end-to-end request latency, specified as a list of floats.",
        )
        parser.add_argument(
            "--collect-tokens-histogram",
            action="store_true",
            default=ServerArgs.collect_tokens_histogram,
            help="Collect prompt/generation tokens histogram.",
        )
1176
1177
1178
1179
1180
1181
        parser.add_argument(
            "--gc-warning-threshold-secs",
            type=float,
            default=ServerArgs.gc_warning_threshold_secs,
            help="The threshold for long GC warning. If a GC takes longer than this, a warning will be logged. Set to 0 to disable.",
        )
1182
1183
1184
1185
        parser.add_argument(
            "--decode-log-interval",
            type=int,
            default=ServerArgs.decode_log_interval,
1186
            help="The log interval of decode batch.",
1187
        )
1188
1189
1190
1191
1192
1193
        parser.add_argument(
            "--enable-request-time-stats-logging",
            action="store_true",
            default=ServerArgs.enable_request_time_stats_logging,
            help="Enable per request time stats logging",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1194
1195
1196
1197
1198
1199
        parser.add_argument(
            "--kv-events-config",
            type=str,
            default=None,
            help="Config in json format for NVIDIA dynamo KV event publishing. Publishing will be enabled if this flag is used.",
        )
1200

1201
        # API related
Liangsheng Yin's avatar
Liangsheng Yin committed
1202
1203
1204
1205
        parser.add_argument(
            "--api-key",
            type=str,
            default=ServerArgs.api_key,
1206
            help="Set API key of the server. It is also used in the OpenAI API compatible server.",
Liangsheng Yin's avatar
Liangsheng Yin committed
1207
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1208
1209
1210
1211
1212
1213
        parser.add_argument(
            "--served-model-name",
            type=str,
            default=ServerArgs.served_model_name,
            help="Override the model name returned by the v1/models endpoint in OpenAI API server.",
        )
1214
1215
1216
1217
1218
1219
        parser.add_argument(
            "--weight-version",
            type=str,
            default=ServerArgs.weight_version,
            help="Version identifier for the model weights. Defaults to 'default' if not specified.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
        parser.add_argument(
            "--chat-template",
            type=str,
            default=ServerArgs.chat_template,
            help="The buliltin chat template name or the path of the chat template file. This is only used for OpenAI-compatible API server.",
        )
        parser.add_argument(
            "--completion-template",
            type=str,
            default=ServerArgs.completion_template,
            help="The buliltin completion template name or the path of the completion template file. This is only used for OpenAI-compatible API server. only for code completion currently.",
        )
1232
        parser.add_argument(
1233
            "--file-storage-path",
1234
            type=str,
1235
            default=ServerArgs.file_storage_path,
1236
1237
            help="The path of the file storage in backend.",
        )
1238
1239
1240
1241
1242
        parser.add_argument(
            "--enable-cache-report",
            action="store_true",
            help="Return number of cached tokens in usage.prompt_tokens_details for each openai request.",
        )
Xihuai Wang's avatar
Xihuai Wang committed
1243
1244
1245
1246
1247
1248
1249
        parser.add_argument(
            "--reasoning-parser",
            type=str,
            choices=list(ReasoningParser.DetectorMap.keys()),
            default=ServerArgs.reasoning_parser,
            help=f"Specify the parser for reasoning models, supported parsers are: {list(ReasoningParser.DetectorMap.keys())}.",
        )
1250
        tool_call_parser_choices = list(FunctionCallParser.ToolCallParserEnum.keys())
1251
1252
1253
        parser.add_argument(
            "--tool-call-parser",
            type=str,
1254
            choices=tool_call_parser_choices,
1255
            default=ServerArgs.tool_call_parser,
1256
            help=f"Specify the parser for handling tool-call interactions. Options include: {tool_call_parser_choices}.",
1257
        )
1258
1259
1260
1261
1262
1263
        parser.add_argument(
            "--tool-server",
            type=str,
            default=None,
            help="Either 'demo' or a comma-separated list of tool server urls to use for the model. If not specified, no tool server will be used.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1264

1265
1266
        # Data parallelism
        parser.add_argument(
1267
            "--data-parallel-size",
1268
1269
1270
            "--dp-size",
            type=int,
            default=ServerArgs.dp_size,
1271
            help="The data parallelism size.",
1272
1273
1274
1275
1276
        )
        parser.add_argument(
            "--load-balance-method",
            type=str,
            default=ServerArgs.load_balance_method,
1277
            help="The load balancing strategy for data parallelism.",
1278
1279
1280
            choices=[
                "round_robin",
                "shortest_queue",
1281
                "minimum_tokens",
1282
1283
            ],
        )
1284

1285
        # Multi-node distributed serving
1286
        parser.add_argument(
1287
            "--dist-init-addr",
1288
            "--nccl-init-addr",  # For backward compatibility. This will be removed in the future.
1289
            type=str,
1290
            help="The host address for initializing distributed backend (e.g., `192.168.0.2:25000`).",
1291
1292
        )
        parser.add_argument(
Liangsheng Yin's avatar
Liangsheng Yin committed
1293
            "--nnodes", type=int, default=ServerArgs.nnodes, help="The number of nodes."
1294
        )
1295
1296
1297
        parser.add_argument(
            "--node-rank", type=int, default=ServerArgs.node_rank, help="The node rank."
        )
1298

Lianmin Zheng's avatar
Lianmin Zheng committed
1299
1300
1301
1302
1303
1304
1305
        # Model override args
        parser.add_argument(
            "--json-model-override-args",
            type=str,
            help="A dictionary in JSON string format used to override default model configurations.",
            default=ServerArgs.json_model_override_args,
        )
1306
1307
1308
1309
1310
        parser.add_argument(
            "--preferred-sampling-params",
            type=str,
            help="json-formatted sampling settings that will be returned in /get_model_info",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1311

1312
        # LoRA
1313
1314
1315
1316
1317
1318
        parser.add_argument(
            "--enable-lora",
            default=ServerArgs.enable_lora,
            action="store_true",
            help="Enable LoRA support for the model. This argument is automatically set to True if `--lora-paths` is provided for backward compatibility.",
        )
1319
1320
1321
1322
1323
1324
1325
1326
1327
        parser.add_argument(
            "--max-lora-rank",
            default=ServerArgs.max_lora_rank,
            type=int,
            help="The maximum rank of LoRA adapters. If not specified, it will be automatically inferred from the adapters provided in --lora-paths.",
        )
        parser.add_argument(
            "--lora-target-modules",
            type=str,
1328
            choices=SUPPORTED_LORA_TARGET_MODULES + [LORA_TARGET_ALL_MODULES],
1329
1330
            nargs="*",
            default=None,
1331
1332
1333
            help="The union set of all target modules where LoRA should be applied. If not specified, "
            "it will be automatically inferred from the adapters provided in --lora-paths. If 'all' is specified, "
            "all supported modules will be targeted.",
1334
        )
1335
1336
1337
1338
1339
1340
        parser.add_argument(
            "--lora-paths",
            type=str,
            nargs="*",
            default=None,
            action=LoRAPathAction,
1341
            help='The list of LoRA adapters to load. Each adapter must be specified in one of the following formats: <PATH> | <NAME>=<PATH> | JSON with schema {"lora_name":str,"lora_path":str,"pinned":bool}',
1342
1343
1344
1345
1346
        )
        parser.add_argument(
            "--max-loras-per-batch",
            type=int,
            default=8,
1347
1348
            help="Maximum number of adapters for a running batch, include base-only request.",
        )
1349
1350
1351
1352
1353
1354
        parser.add_argument(
            "--max-loaded-loras",
            type=int,
            default=ServerArgs.max_loaded_loras,
            help="If specified, it limits the maximum number of LoRA adapters loaded in CPU memory at a time. The value must be greater than or equal to `--max-loras-per-batch`.",
        )
1355
1356
1357
1358
1359
        parser.add_argument(
            "--lora-backend",
            type=str,
            default="triton",
            help="Choose the kernel backend for multi-LoRA serving.",
1360
1361
1362
        )

        # Kernel backend
1363
        ATTN_BACKENDS = [
Lianmin Zheng's avatar
Lianmin Zheng committed
1364
1365
1366
1367
            # Common
            "triton",
            "torch_native",
            # NVIDIA specific
1368
1369
1370
1371
1372
1373
1374
            "cutlass_mla",
            "fa3",
            "flashinfer",
            "flashmla",
            "trtllm_mla",
            "trtllm_mha",
            "dual_chunk_flash_attn",
Lianmin Zheng's avatar
Lianmin Zheng committed
1375
1376
            # AMD specific
            "aiter",
1377
            "wave",
Lianmin Zheng's avatar
Lianmin Zheng committed
1378
1379
1380
            # Other platforms
            "intel_amx",
            "ascend",
1381
        ]
1382
1383
1384
        parser.add_argument(
            "--attention-backend",
            type=str,
1385
            choices=ATTN_BACKENDS,
1386
1387
1388
            default=ServerArgs.attention_backend,
            help="Choose the kernels for attention layers.",
        )
1389
1390
1391
        parser.add_argument(
            "--prefill-attention-backend",
            type=str,
1392
            choices=ATTN_BACKENDS,
1393
1394
1395
            default=ServerArgs.prefill_attention_backend,
            help="Choose the kernels for prefill attention layers (have priority over --attention-backend).",
        )
1396
1397
1398
1399
1400
1401
1402
        parser.add_argument(
            "--decode-attention-backend",
            type=str,
            choices=ATTN_BACKENDS,
            default=ServerArgs.decode_attention_backend,
            help="Choose the kernels for decode attention layers (have priority over --attention-backend).",
        )
1403
1404
1405
1406
1407
1408
1409
        parser.add_argument(
            "--sampling-backend",
            type=str,
            choices=["flashinfer", "pytorch"],
            default=ServerArgs.sampling_backend,
            help="Choose the kernels for sampling layers.",
        )
1410
1411
1412
        parser.add_argument(
            "--grammar-backend",
            type=str,
1413
            choices=["xgrammar", "outlines", "llguidance", "none"],
1414
            default=ServerArgs.grammar_backend,
Lianmin Zheng's avatar
Lianmin Zheng committed
1415
            help="Choose the backend for grammar-guided decoding.",
1416
        )
1417
1418
1419
1420
1421
1422
1423
        parser.add_argument(
            "--mm-attention-backend",
            type=str,
            choices=["sdpa", "fa3", "triton_attn"],
            default=ServerArgs.mm_attention_backend,
            help="Set multimodal attention backend.",
        )
1424

1425
1426
1427
1428
        # Speculative decoding
        parser.add_argument(
            "--speculative-algorithm",
            type=str,
James Liu's avatar
James Liu committed
1429
            choices=["EAGLE", "EAGLE3", "NEXTN"],
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
            help="Speculative algorithm.",
        )
        parser.add_argument(
            "--speculative-draft-model-path",
            type=str,
            help="The path of the draft model weights. This can be a local folder or a Hugging Face repo ID.",
        )
        parser.add_argument(
            "--speculative-num-steps",
            type=int,
            help="The number of steps sampled from draft model in Speculative Decoding.",
            default=ServerArgs.speculative_num_steps,
        )
        parser.add_argument(
            "--speculative-eagle-topk",
            type=int,
1446
            help="The number of tokens sampled from the draft model in eagle2 each step.",
1447
1448
            default=ServerArgs.speculative_eagle_topk,
        )
1449
1450
1451
        parser.add_argument(
            "--speculative-num-draft-tokens",
            type=int,
1452
            help="The number of tokens sampled from the draft model in Speculative Decoding.",
1453
1454
            default=ServerArgs.speculative_num_draft_tokens,
        )
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
        parser.add_argument(
            "--speculative-accept-threshold-single",
            type=float,
            help="Accept a draft token if its probability in the target model is greater than this threshold.",
            default=ServerArgs.speculative_accept_threshold_single,
        )
        parser.add_argument(
            "--speculative-accept-threshold-acc",
            type=float,
            help="The accept probability of a draft token is raised from its target probability p to min(1, p / threshold_acc).",
            default=ServerArgs.speculative_accept_threshold_acc,
        )
1467
1468
1469
1470
1471
1472
        parser.add_argument(
            "--speculative-token-map",
            type=str,
            help="The path of the draft model's small vocab table.",
            default=ServerArgs.speculative_token_map,
        )
1473
1474
1475
1476
1477

        # Expert parallelism
        parser.add_argument(
            "--expert-parallel-size",
            "--ep-size",
Cheng Wan's avatar
Cheng Wan committed
1478
            "--ep",
1479
1480
1481
1482
1483
            type=int,
            default=ServerArgs.ep_size,
            help="The expert parallelism size.",
        )
        parser.add_argument(
1484
1485
            "--moe-a2a-backend",
            type=str,
1486
            choices=["none", "deepep"],
1487
1488
            default=ServerArgs.moe_a2a_backend,
            help="Choose the backend for MoE A2A.",
1489
        )
1490
        parser.add_argument(
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
            "--moe-runner-backend",
            type=str,
            choices=[
                "auto",
                "triton",
                "triton_kernel",
                "flashinfer_trtllm",
                "flashinfer_cutlass",
            ],
            default=ServerArgs.moe_runner_backend,
            help="Choose the runner backend for MoE.",
1502
1503
        )
        parser.add_argument(
1504
1505
            "--enable-flashinfer-allreduce-fusion",
            action="store_true",
1506
            help="Enable FlashInfer allreduce fusion with Residual RMSNorm.",
1507
        )
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
        parser.add_argument(
            "--deepep-mode",
            type=str,
            choices=["normal", "low_latency", "auto"],
            default="auto",
            help="Select the mode when enable DeepEP MoE, could be `normal`, `low_latency` or `auto`. Default is `auto`, which means `low_latency` for decode batch and `normal` for prefill batch.",
        )
        parser.add_argument(
            "--ep-num-redundant-experts",
            type=int,
            default=ServerArgs.ep_num_redundant_experts,
            help="Allocate this number of redundant experts in expert parallel.",
        )
        parser.add_argument(
            "--ep-dispatch-algorithm",
            type=str,
            default=ServerArgs.ep_dispatch_algorithm,
            help="The algorithm to choose ranks for redundant experts in expert parallel.",
        )
        parser.add_argument(
            "--init-expert-location",
            type=str,
            default=ServerArgs.init_expert_location,
            help="Initial location of EP experts.",
        )
        parser.add_argument(
            "--enable-eplb",
            action="store_true",
            help="Enable EPLB algorithm",
        )
        parser.add_argument(
            "--eplb-algorithm",
            type=str,
            default=ServerArgs.eplb_algorithm,
            help="Chosen EPLB algorithm",
        )
        parser.add_argument(
            "--eplb-rebalance-num-iterations",
            type=int,
            default=ServerArgs.eplb_rebalance_num_iterations,
            help="Number of iterations to automatically trigger a EPLB re-balance.",
        )
        parser.add_argument(
            "--eplb-rebalance-layers-per-chunk",
            type=int,
            default=ServerArgs.eplb_rebalance_layers_per_chunk,
            help="Number of layers to rebalance per forward pass.",
        )
        parser.add_argument(
            "--expert-distribution-recorder-mode",
            type=str,
            default=ServerArgs.expert_distribution_recorder_mode,
            help="Mode of expert distribution recorder.",
        )
        parser.add_argument(
            "--expert-distribution-recorder-buffer-size",
            type=int,
            default=ServerArgs.expert_distribution_recorder_buffer_size,
            help="Circular buffer size of expert distribution recorder. Set to -1 to denote infinite buffer.",
        )
        parser.add_argument(
            "--enable-expert-distribution-metrics",
            action="store_true",
            help="Enable logging metrics for expert balancedness",
        )
        parser.add_argument(
            "--deepep-config",
            type=str,
            default=ServerArgs.deepep_config,
            help="Tuned DeepEP config suitable for your own cluster. It can be either a string with JSON content or a file path.",
        )
        parser.add_argument(
            "--moe-dense-tp-size",
            type=int,
            default=ServerArgs.moe_dense_tp_size,
            help="TP size for MoE dense MLP layers. This flag is useful when, with large TP size, there are errors caused by weights in MLP layers having dimension smaller than the min dimension GEMM supports.",
        )
1585

Lianmin Zheng's avatar
Lianmin Zheng committed
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
        # Hierarchical cache
        parser.add_argument(
            "--enable-hierarchical-cache",
            action="store_true",
            help="Enable hierarchical cache",
        )
        parser.add_argument(
            "--hicache-ratio",
            type=float,
            default=ServerArgs.hicache_ratio,
            help="The ratio of the size of host KV cache memory pool to the size of device pool.",
        )
        parser.add_argument(
            "--hicache-size",
            type=int,
            default=ServerArgs.hicache_size,
            help="The size of host KV cache memory pool in gigabytes, which will override the hicache_ratio if set.",
        )
        parser.add_argument(
            "--hicache-write-policy",
            type=str,
            choices=["write_back", "write_through", "write_through_selective"],
            default=ServerArgs.hicache_write_policy,
            help="The write policy of hierarchical cache.",
        )
        parser.add_argument(
            "--hicache-io-backend",
            type=str,
            choices=["direct", "kernel"],
            default=ServerArgs.hicache_io_backend,
            help="The IO backend for KV cache transfer between CPU and GPU",
        )
1618
1619
1620
1621
1622
1623
1624
        parser.add_argument(
            "--hicache-mem-layout",
            type=str,
            choices=["layer_first", "page_first"],
            default=ServerArgs.hicache_mem_layout,
            help="The layout of host memory pool for hierarchical cache.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1625
1626
1627
        parser.add_argument(
            "--hicache-storage-backend",
            type=str,
1628
            choices=["file", "mooncake", "hf3fs", "nixl"],
Lianmin Zheng's avatar
Lianmin Zheng committed
1629
1630
1631
            default=ServerArgs.hicache_storage_backend,
            help="The storage backend for hierarchical KV cache.",
        )
pansicheng's avatar
pansicheng committed
1632
1633
1634
1635
1636
1637
1638
        parser.add_argument(
            "--hicache-storage-prefetch-policy",
            type=str,
            choices=["best_effort", "wait_complete", "timeout"],
            default=ServerArgs.hicache_storage_prefetch_policy,
            help="Control when prefetching from the storage backend should stop.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1639

1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
        # Double Sparsity
        parser.add_argument(
            "--enable-double-sparsity",
            action="store_true",
            help="Enable double sparsity attention",
        )
        parser.add_argument(
            "--ds-channel-config-path",
            type=str,
            default=ServerArgs.ds_channel_config_path,
            help="The path of the double sparsity channel config",
        )
        parser.add_argument(
            "--ds-heavy-channel-num",
            type=int,
            default=ServerArgs.ds_heavy_channel_num,
            help="The number of heavy channels in double sparsity attention",
        )
        parser.add_argument(
            "--ds-heavy-token-num",
            type=int,
            default=ServerArgs.ds_heavy_token_num,
            help="The number of heavy tokens in double sparsity attention",
        )
        parser.add_argument(
            "--ds-heavy-channel-type",
            type=str,
            default=ServerArgs.ds_heavy_channel_type,
            help="The type of heavy channels in double sparsity attention",
        )
        parser.add_argument(
            "--ds-sparse-decode-threshold",
            type=int,
            default=ServerArgs.ds_sparse_decode_threshold,
            help="The type of heavy channels in double sparsity attention",
        )

1677
        # Optimization/debug options
Liangsheng Yin's avatar
Liangsheng Yin committed
1678
        parser.add_argument(
Lianmin Zheng's avatar
Lianmin Zheng committed
1679
            "--disable-radix-cache",
Liangsheng Yin's avatar
Liangsheng Yin committed
1680
            action="store_true",
Ying Sheng's avatar
Ying Sheng committed
1681
            help="Disable RadixAttention for prefix caching.",
Liangsheng Yin's avatar
Liangsheng Yin committed
1682
        )
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
        parser.add_argument(
            "--cuda-graph-max-bs",
            type=int,
            default=ServerArgs.cuda_graph_max_bs,
            help="Set the maximum batch size for cuda graph. It will extend the cuda graph capture batch size to this value.",
        )
        parser.add_argument(
            "--cuda-graph-bs",
            type=int,
            nargs="+",
            help="Set the list of batch sizes for cuda graph.",
        )
1695
1696
1697
        parser.add_argument(
            "--disable-cuda-graph",
            action="store_true",
1698
            help="Disable cuda graph.",
1699
        )
1700
        parser.add_argument(
1701
1702
            "--disable-cuda-graph-padding",
            action="store_true",
1703
            help="Disable cuda graph when padding is needed. Still uses cuda graph when padding is not needed.",
1704
        )
1705
1706
1707
1708
1709
        parser.add_argument(
            "--enable-profile-cuda-graph",
            action="store_true",
            help="Enable profiling of cuda graph capture.",
        )
1710
1711
1712
1713
1714
        parser.add_argument(
            "--enable-cudagraph-gc",
            action="store_true",
            help="Enable garbage collection during CUDA graph capture. If disabled (default), GC is frozen during capture to speed up the process.",
        )
1715
1716
1717
1718
1719
        parser.add_argument(
            "--enable-nccl-nvls",
            action="store_true",
            help="Enable NCCL NVLS for prefill heavy requests when available.",
        )
1720
1721
1722
1723
1724
        parser.add_argument(
            "--enable-symm-mem",
            action="store_true",
            help="Enable NCCL symmetric memory for fast collectives.",
        )
1725
1726
1727
1728
1729
        parser.add_argument(
            "--disable-flashinfer-cutlass-moe-fp4-allgather",
            action="store_true",
            help="Disables quantize before all-gather for flashinfer cutlass moe.",
        )
1730
1731
1732
1733
1734
        parser.add_argument(
            "--enable-tokenizer-batch-encode",
            action="store_true",
            help="Enable batch tokenization for improved performance when processing multiple text inputs. Do not use with image inputs, pre-tokenized input_ids, or input_embeds.",
        )
1735
        parser.add_argument(
1736
            "--disable-outlines-disk-cache",
1737
            action="store_true",
1738
            help="Disable disk cache of outlines to avoid possible crashes related to file system or high concurrency.",
1739
        )
1740
1741
1742
1743
1744
        parser.add_argument(
            "--disable-custom-all-reduce",
            action="store_true",
            help="Disable the custom all-reduce kernel and fall back to NCCL.",
        )
1745
1746
1747
1748
1749
        parser.add_argument(
            "--enable-mscclpp",
            action="store_true",
            help="Enable using mscclpp for small messages for all-reduce kernel and fall back to NCCL.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1750
        parser.add_argument(
1751
            "--disable-overlap-schedule",
Lianmin Zheng's avatar
Lianmin Zheng committed
1752
            action="store_true",
1753
            help="Disable the overlap scheduler, which overlaps the CPU scheduler with GPU model worker.",
Lianmin Zheng's avatar
Lianmin Zheng committed
1754
        )
1755
1756
1757
        parser.add_argument(
            "--enable-mixed-chunk",
            action="store_true",
1758
            help="Enabling mixing prefill and decode in a batch when using chunked prefill.",
1759
        )
Ke Bao's avatar
Ke Bao committed
1760
1761
1762
        parser.add_argument(
            "--enable-dp-attention",
            action="store_true",
1763
            help="Enabling data parallelism for attention and tensor parallelism for FFN. The dp size should be equal to the tp size. Currently DeepSeek-V2 and Qwen 2/3 MoE models are supported.",
Ke Bao's avatar
Ke Bao committed
1764
        )
1765
1766
1767
1768
1769
        parser.add_argument(
            "--enable-dp-lm-head",
            action="store_true",
            help="Enable vocabulary parallel across the attention TP group to avoid all-gather across DP groups, optimizing performance under DP attention.",
        )
1770
1771
1772
1773
1774
        parser.add_argument(
            "--enable-two-batch-overlap",
            action="store_true",
            help="Enabling two micro batches to overlap.",
        )
1775
1776
1777
1778
1779
1780
        parser.add_argument(
            "--tbo-token-distribution-threshold",
            type=float,
            default=ServerArgs.tbo_token_distribution_threshold,
            help="The threshold of token distribution between two batches in micro-batch-overlap, determines whether to two-batch-overlap or two-chunk-overlap. Set to 0 denote disable two-chunk-overlap.",
        )
1781
1782
1783
        parser.add_argument(
            "--enable-torch-compile",
            action="store_true",
1784
1785
            help="Optimize the model with torch.compile. Experimental feature.",
        )
1786
        parser.add_argument(
1787
            "--torch-compile-max-bs",
1788
            type=int,
1789
            default=ServerArgs.torch_compile_max_bs,
1790
1791
            help="Set the maximum batch size when using torch compile.",
        )
1792
1793
1794
1795
        parser.add_argument(
            "--torchao-config",
            type=str,
            default=ServerArgs.torchao_config,
1796
            help="Optimize the model with torchao. Experimental feature. Current choices are: int8dq, int8wo, int4wo-<group_size>, fp8wo, fp8dq-per_tensor, fp8dq-per_row",
1797
        )
1798
1799
1800
1801
1802
        parser.add_argument(
            "--enable-nan-detection",
            action="store_true",
            help="Enable the NaN detection for debugging purposes.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1803
        parser.add_argument(
1804
            "--enable-p2p-check",
Lianmin Zheng's avatar
Lianmin Zheng committed
1805
            action="store_true",
1806
            help="Enable P2P check for GPU access, otherwise the p2p access is allowed by default.",
Lianmin Zheng's avatar
Lianmin Zheng committed
1807
        )
1808
        parser.add_argument(
1809
            "--triton-attention-reduce-in-fp32",
1810
            action="store_true",
1811
            help="Cast the intermediate attention results to fp32 to avoid possible crashes related to fp16."
1812
            "This only affects Triton attention kernels.",
1813
        )
1814
1815
1816
1817
1818
1819
        parser.add_argument(
            "--triton-attention-num-kv-splits",
            type=int,
            default=ServerArgs.triton_attention_num_kv_splits,
            help="The number of KV splits in flash decoding Triton kernel. Larger value is better in longer context scenarios. The default value is 8.",
        )
1820
1821
1822
1823
1824
1825
1826
1827
        parser.add_argument(
            "--num-continuous-decode-steps",
            type=int,
            default=ServerArgs.num_continuous_decode_steps,
            help="Run multiple continuous decoding steps to reduce scheduling overhead. "
            "This can potentially increase throughput but may also increase time-to-first-token latency. "
            "The default value is 1, meaning only run one decoding step at a time.",
        )
1828
1829
1830
1831
1832
        parser.add_argument(
            "--delete-ckpt-after-loading",
            action="store_true",
            help="Delete the model checkpoint after loading the model.",
        )
1833
1834
1835
1836
1837
        parser.add_argument(
            "--enable-memory-saver",
            action="store_true",
            help="Allow saving memory using release_memory_occupation and resume_memory_occupation",
        )
1838
1839
1840
1841
1842
        parser.add_argument(
            "--allow-auto-truncate",
            action="store_true",
            help="Allow automatically truncating requests that exceed the maximum input length instead of returning an error.",
        )
1843
1844
1845
1846
1847
        parser.add_argument(
            "--enable-custom-logit-processor",
            action="store_true",
            help="Enable users to pass custom logit processors to the server (disabled by default for security)",
        )
1848
        parser.add_argument(
1849
            "--flashinfer-mla-disable-ragged",
1850
            action="store_true",
1851
            help="Not using ragged prefill wrapper when running flashinfer mla",
1852
        )
1853
        parser.add_argument(
1854
1855
1856
            "--disable-shared-experts-fusion",
            action="store_true",
            help="Disable shared experts fusion optimization for deepseek v3/r1.",
1857
        )
1858
1859
1860
1861
1862
        parser.add_argument(
            "--disable-chunked-prefix-cache",
            action="store_true",
            help="Disable chunked prefix cache feature for deepseek, which should save overhead for short sequences.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1863
1864
1865
1866
1867
        parser.add_argument(
            "--disable-fast-image-processor",
            action="store_true",
            help="Adopt base image processor instead of fast image processor.",
        )
1868
1869
1870
1871
1872
        parser.add_argument(
            "--enable-return-hidden-states",
            action="store_true",
            help="Enable returning hidden states with responses.",
        )
1873
1874
1875
1876
1877
1878
        parser.add_argument(
            "--scheduler-recv-interval",
            type=int,
            default=ServerArgs.scheduler_recv_interval,
            help="The interval to poll requests in scheduler. Can be set to >1 to reduce the overhead of this.",
        )
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898

        # Debug tensor dumps
        parser.add_argument(
            "--debug-tensor-dump-output-folder",
            type=str,
            default=ServerArgs.debug_tensor_dump_output_folder,
            help="The output folder for dumping tensors.",
        )
        parser.add_argument(
            "--debug-tensor-dump-input-file",
            type=str,
            default=ServerArgs.debug_tensor_dump_input_file,
            help="The input filename for dumping tensors",
        )
        parser.add_argument(
            "--debug-tensor-dump-inject",
            type=str,
            default=ServerArgs.debug_tensor_dump_inject,
            help="Inject the outputs from jax as the input of every layer.",
        )
1899
1900
1901
1902
1903
        parser.add_argument(
            "--debug-tensor-dump-prefill-only",
            action="store_true",
            help="Only dump the tensors for prefill requests (i.e. batch size > 1).",
        )
1904

Lianmin Zheng's avatar
Lianmin Zheng committed
1905
        # PD disaggregation
Byron Hsu's avatar
Byron Hsu committed
1906
1907
1908
1909
1910
1911
1912
        parser.add_argument(
            "--disaggregation-mode",
            type=str,
            default="null",
            choices=["null", "prefill", "decode"],
            help='Only used for PD disaggregation. "prefill" for prefill-only server, and "decode" for decode-only server. If not specified, it is not PD disaggregated',
        )
1913
1914
1915
1916
        parser.add_argument(
            "--disaggregation-transfer-backend",
            type=str,
            default=ServerArgs.disaggregation_transfer_backend,
1917
            choices=["mooncake", "nixl", "ascend"],
1918
1919
            help="The backend for disaggregation transfer. Default is mooncake.",
        )
1920
1921
1922
1923
1924
1925
        parser.add_argument(
            "--disaggregation-bootstrap-port",
            type=int,
            default=ServerArgs.disaggregation_bootstrap_port,
            help="Bootstrap server port on the prefill server. Default is 8998.",
        )
Byron Hsu's avatar
Byron Hsu committed
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
        parser.add_argument(
            "--disaggregation-decode-tp",
            type=int,
            default=ServerArgs.disaggregation_decode_tp,
            help="Decode tp size. If not set, it matches the tp size of the current engine. This is only set on the prefill server.",
        )
        parser.add_argument(
            "--disaggregation-decode-dp",
            type=int,
            default=ServerArgs.disaggregation_decode_dp,
            help="Decode dp size. If not set, it matches the dp size of the current engine. This is only set on the prefill server.",
        )
        parser.add_argument(
            "--disaggregation-prefill-pp",
            type=int,
            default=ServerArgs.disaggregation_prefill_pp,
            help="Prefill pp size. If not set, it is default to 1. This is only set on the decode server.",
        )
1944
1945
1946
1947
        parser.add_argument(
            "--disaggregation-ib-device",
            type=str,
            default=ServerArgs.disaggregation_ib_device,
1948
1949
1950
            help="The InfiniBand devices for disaggregation transfer, accepts single device (e.g., --disaggregation-ib-device mlx5_0) "
            "or multiple comma-separated devices (e.g., --disaggregation-ib-device mlx5_0,mlx5_1). "
            "Default is None, which triggers automatic device detection when mooncake backend is enabled.",
1951
        )
1952
1953
1954
1955
1956
1957
        parser.add_argument(
            "--num-reserved-decode-tokens",
            type=int,
            default=ServerArgs.num_reserved_decode_tokens,
            help="Number of decode tokens that will have memory reserved when adding new request to the running batch.",
        )
1958
1959
1960
1961
1962
1963
        parser.add_argument(
            "--pdlb-url",
            type=str,
            default=None,
            help="The URL of the PD disaggregation load balancer. If set, the prefill/decode server will register with the load balancer.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1964
1965

        # Custom weight loader
1966
1967
1968
1969
1970
1971
1972
        parser.add_argument(
            "--custom-weight-loader",
            type=str,
            nargs="*",
            default=None,
            help="The custom dataloader which used to update the model. Should be set with a valid import path, such as my_package.weight_load_func",
        )
1973
1974
1975
1976
1977
1978
1979
        parser.add_argument(
            "--weight-loader-disable-mmap",
            action="store_true",
            help="Disable mmap while loading weight using safetensors.",
        )

        # For PD-Multiplexing
1980
1981
1982
1983
1984
        parser.add_argument(
            "--enable-pdmux",
            action="store_true",
            help="Enable PD-Multiplexing, PD running on greenctx stream.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1985

1986
1987
1988
1989
1990
1991
        parser.add_argument(
            "--sm-group-num",
            type=int,
            default=ServerArgs.sm_group_num,
            help="Number of sm partition groups.",
        )
Byron Hsu's avatar
Byron Hsu committed
1992

1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
        # Deprecated arguments
        parser.add_argument(
            "--enable-ep-moe",
            action="store_true",
            help="(Deprecated) Enabling expert parallelism for moe. The ep size is equal to the tp size.",
        )
        parser.add_argument(
            "--enable-deepep-moe",
            action="store_true",
            help="(Deprecated) Enabling DeepEP MoE implementation for EP MoE.",
        )
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
        parser.add_argument(
            "--enable-flashinfer-cutlass-moe",
            action="store_true",
            help="(Deprecated) Enable FlashInfer CUTLASS MoE backend for modelopt_fp4 quant on Blackwell. Supports MoE-EP",
        )
        parser.add_argument(
            "--enable-flashinfer-trtllm-moe",
            action="store_true",
            help="(Deprecated) Enable FlashInfer TRTLLM MoE backend on Blackwell. Supports BlockScale FP8 MoE-EP",
        )
        parser.add_argument(
            "--enable-triton-kernel-moe",
            action="store_true",
            help="(Deprecated) Use triton moe grouped gemm kernel.",
        )
2019
2020
2021
2022
2023
        parser.add_argument(
            "--enable-flashinfer-mxfp4-moe",
            action="store_true",
            help="(Deprecated) Enable FlashInfer MXFP4 MoE backend for modelopt_fp4 quant on Blackwell.",
        )
2024

Lianmin Zheng's avatar
Lianmin Zheng committed
2025
2026
    @classmethod
    def from_cli_args(cls, args: argparse.Namespace):
2027
        args.tp_size = args.tensor_parallel_size
2028
        args.pp_size = args.pipeline_parallel_size
2029
        args.dp_size = args.data_parallel_size
xiaobochen's avatar
xiaobochen committed
2030
        args.ep_size = args.expert_parallel_size
Lianmin Zheng's avatar
Lianmin Zheng committed
2031
2032
2033
2034
        attrs = [attr.name for attr in dataclasses.fields(cls)]
        return cls(**{attr: getattr(args, attr) for attr in attrs})

    def url(self):
2035
        if is_valid_ipv6_address(self.host):
2036
2037
2038
            return f"http://[{self.host}]:{self.port}"
        else:
            return f"http://{self.host}:{self.port}"
Lianmin Zheng's avatar
Lianmin Zheng committed
2039

Lianmin Zheng's avatar
Lianmin Zheng committed
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
    def get_hf_config(self):
        kwargs = {}
        hf_config = get_config(
            self.model_path,
            trust_remote_code=self.trust_remote_code,
            revision=self.revision,
            model_override_args=json.loads(self.json_model_override_args),
            **kwargs,
        )
        return hf_config

2051
    def check_server_args(self):
2052
        # Check parallel size constraints
2053
        assert (
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
            self.tp_size * self.pp_size
        ) % self.nnodes == 0, "tp_size must be divisible by number of nodes"

        if self.pp_size > 1:
            assert (
                self.disable_overlap_schedule
                and self.speculative_algorithm is None
                and not self.enable_mixed_chunk
            ), "Pipeline parallelism is not compatible with overlap schedule, speculative decoding, mixed chunked prefill."

2064
        assert not (
2065
2066
            self.dp_size > 1 and self.nnodes != 1 and not self.enable_dp_attention
        ), "multi-node data parallel is not supported unless dp attention!"
2067

2068
        assert self.base_gpu_id >= 0, "base_gpu_id must be non-negative"
2069
        assert self.gpu_id_step >= 1, "gpu_id_step must be positive"
2070

Lianmin Zheng's avatar
Lianmin Zheng committed
2071
2072
2073
2074
2075
        assert self.moe_dense_tp_size in {
            1,
            None,
        }, "moe_dense_tp_size only support 1 and None currently"

2076
        # Check LoRA
2077
2078
        self.check_lora_server_args()

2079
2080
2081
2082
2083
2084
2085
        # Check speculative decoding
        if self.speculative_algorithm is not None:
            assert (
                not self.enable_mixed_chunk
            ), "enable_mixed_chunk is required for speculative decoding"

        # Check chunked prefill
2086
2087
2088
2089
2090
        # Skip validation if chunked prefill is disabled (i.e., size <= 0).
        if self.chunked_prefill_size > 0:
            assert (
                self.chunked_prefill_size % self.page_size == 0
            ), "chunked_prefill_size must be divisible by page_size"
2091

2092
    def check_lora_server_args(self):
2093
        assert self.max_loras_per_batch > 0, "max_loras_per_batch must be positive"
2094

2095
2096
2097
2098
        # Enable LoRA if any LoRA paths are provided for backward compatibility.
        if self.lora_paths:
            if self.enable_lora is None:
                self.enable_lora = True
2099
                logger.warning(
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
                    "--enable-lora is set to True because --lora-paths is provided."
                )
            elif self.enable_lora is False:
                logger.warning(
                    "--enable-lora is set to False, any provided lora_paths will be ignored."
                )

        if self.enable_lora:
            if isinstance(self.lora_paths, list):
                lora_paths = self.lora_paths
2110
                self.lora_paths = []
2111
                for lora_path in lora_paths:
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
                    if isinstance(lora_path, str):
                        if "=" in lora_path:
                            name, path = lora_path.split("=", 1)
                            lora_ref = LoRARef(
                                lora_name=name, lora_path=path, pinned=False
                            )
                        else:
                            lora_ref = LoRARef(
                                lora_name=lora_path, lora_path=lora_path, pinned=False
                            )
                    elif isinstance(lora_path, dict):
                        assert (
                            "lora_name" in lora_path and "lora_path" in lora_path
                        ), f"When providing LoRA paths as a list of dict, each dict should contain 'lora_name' and 'lora_path' keys. Got: {lora_path}"
                        lora_ref = LoRARef(
                            lora_name=lora_path["lora_name"],
                            lora_path=lora_path["lora_path"],
                            pinned=lora_path.get("pinned", False),
2130
                        )
2131
                    else:
2132
2133
2134
                        raise ValueError(
                            f"Invalid type for item in --lora-paths list: {type(lora_path)}. "
                            "Expected a string or a dictionary."
2135
                        )
2136
                    self.lora_paths.append(lora_ref)
2137
            elif isinstance(self.lora_paths, dict):
2138
2139
                self.lora_paths = [
                    LoRARef(lora_name=k, lora_path=v, pinned=False)
2140
                    for k, v in self.lora_paths.items()
2141
                ]
2142
            elif self.lora_paths is None:
2143
                self.lora_paths = []
2144
2145
2146
2147
2148
            else:
                raise ValueError(
                    f"Invalid type for --lora-paths: {type(self.lora_paths)}. "
                    "Expected a list or a dictionary."
                )
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162

            # Expand target modules
            if self.lora_target_modules:
                self.lora_target_modules = set(self.lora_target_modules)
                if "all" in self.lora_target_modules:
                    assert (
                        len(self.lora_target_modules) == 1
                    ), "If 'all' is specified in --lora-target-modules, it should be the only module specified."
                    self.lora_target_modules = set(SUPPORTED_LORA_TARGET_MODULES)

            # Ensure sufficient information is provided for LoRA initialization.
            assert self.lora_paths or (
                self.max_lora_rank and self.lora_target_modules
            ), "When no initial --lora-paths is provided, you need to specify both --max-lora-rank and --lora-target-modules for LoRA initialization."
2163

2164
2165
2166
2167
2168
2169
            # Validate max_loaded_loras
            if self.max_loaded_loras is not None:
                assert self.max_loaded_loras >= self.max_loras_per_batch, (
                    "max_loaded_loras should be greater than or equal to max_loras_per_batch. "
                    f"max_loaded_loras={self.max_loaded_loras}, max_loras_per_batch={self.max_loras_per_batch}"
                )
2170
                assert len(self.lora_paths) <= self.max_loaded_loras, (
2171
2172
2173
2174
                    "The number of LoRA paths should not exceed max_loaded_loras. "
                    f"max_loaded_loras={self.max_loaded_loras}, lora_paths={len(self.lora_paths)}"
                )

Lianmin Zheng's avatar
Lianmin Zheng committed
2175
2176
2177
2178
2179
2180
2181
2182
    def validate_disagg_tp_size(self, prefill_tp: int, decode_tp: int):
        larger_tp = max(decode_tp, prefill_tp)
        smaller_tp = min(decode_tp, prefill_tp)
        assert larger_tp % smaller_tp == 0, (
            "Different tp size is supported only when one tp is multiple of the other. "
            f"decode_tp={decode_tp}, prefill_tp={prefill_tp}"
        )

2183
2184
2185
2186
2187
    def model_specific_adjustments(self):
        hf_config = self.get_hf_config()
        model_arch = hf_config.architectures[0]
        if model_arch in ["GptOssForCausalLM"]:
            if self.attention_backend is None:
2188
                if is_cuda() and is_sm100_supported():
2189
                    self.attention_backend = "trtllm_mha"
2190
                elif is_cuda() and is_sm90_supported():
2191
2192
2193
                    self.attention_backend = "fa3"
                else:
                    self.attention_backend = "triton"
2194
            supported_backends = ["triton", "trtllm_mha", "fa3"]
2195
2196
2197
            logger.info(
                f"Use {self.attention_backend} as attention backend for GptOssForCausalLM"
            )
2198
2199
2200
            assert (
                self.attention_backend in supported_backends
            ), f"GptOssForCausalLM requires one of {supported_backends} attention backend, but got '{self.attention_backend}'"
2201
2202

            if is_sm100_supported():
2203
2204
2205
2206
2207
                if not self.enable_dp_attention:
                    self.enable_flashinfer_allreduce_fusion = True
                    logger.info(
                        "Enable FlashInfer AllReduce Fusion on sm100 for GptOssForCausalLM"
                    )
2208
2209
2210
2211
2212
2213
2214
            quantization_config = getattr(hf_config, "quantization_config", None)
            is_mxfp4_quant_format = (
                quantization_config is not None
                and quantization_config.get("quant_method") == "mxfp4"
            )

            if is_sm100_supported() and is_mxfp4_quant_format:
2215
                self.moe_runner_backend = "flashinfer_mxfp4"
2216
2217
2218
2219
                logger.warning(
                    "Detected SM100 and MXFP4 quantization format for GPT-OSS model, enabling FlashInfer MXFP4 MOE kernel."
                )
            else:
2220
                if self.moe_runner_backend == "triton_kernel":
2221
2222
2223
                    assert (
                        self.ep_size == 1
                    ), "Triton kernel MoE is only supported when ep_size == 1"
2224
2225
2226
2227
2228
2229
                if (
                    self.moe_runner_backend == "auto"
                    and self.ep_size == 1
                    and is_triton_kernels_available()
                ):
                    self.moe_runner_backend = "triton_kernel"
2230
2231
2232
2233
2234
2235
2236
2237
                    logger.warning(
                        "Detected GPT-OSS model, enabling triton_kernels MOE kernel."
                    )
            self.disable_hybrid_swa_memory = True
            if is_mxfp4_quant_format:
                # use bf16 for mxfp4 triton kernels
                self.dtype = "bfloat16"
        elif "Llama4" in model_arch:
2238
2239
2240
2241
            assert self.attention_backend in {
                "fa3",
                "aiter",
            }, "fa3 or aiter is required for Llama4 model"
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
        elif model_arch in [
            "Gemma2ForCausalLM",
            "Gemma3ForCausalLM",
            "Gemma3ForConditionalGeneration",
            "Gemma3nForCausalLM",
            "Gemma3nForConditionalGeneration",
        ]:
            # FIXME: https://github.com/sgl-project/sglang/pull/7367 is not compatible with gemma2 model.
            # It failed at this test: https://github.com/sgl-project/sglang/actions/runs/16255155597/job/45890331952#step:4:736
            logger.warning(
                f"Disable hybrid SWA memory for {model_arch} as it is not yet supported."
            )
            self.disable_hybrid_swa_memory = True

Lianmin Zheng's avatar
Lianmin Zheng committed
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
    def adjust_mem_fraction_for_vlm(self, model_config):
        vision_config = getattr(model_config.hf_config, "vision_config", None)
        if vision_config is None:
            return

        # roughly reduce the mem_fraction_static base on params of Vit
        original_server_arg_mem_fraction = self.mem_fraction_static
        # a base mem_fraction_static factor for regular Vit
        base_mem_fraction_reduction_ratio = 0.95

        vit_num_layers = getattr(vision_config, "num_hidden_layers", 24)
        vit_hidden_size = getattr(vision_config, "hidden_size", 1024)

        # baseline ViT params (ViT-L/14)
        baseline_vit_layers = 24
        baseline_vit_hidden_size = 1024

        # weight params count
        current_complexity_score = vit_num_layers * (vit_hidden_size**2)
        baseline_complexity_score = baseline_vit_layers * (baseline_vit_hidden_size**2)
        complexity_ratio = (
            current_complexity_score / baseline_complexity_score
            if baseline_complexity_score > 0
            else 1.0
        )

        # every time the complexity grows 100%, adjust final factor for 10%
        sensitivity_scale = 0.1
        dynamic_adjustment_factor = 1.0 - sensitivity_scale * (complexity_ratio - 1.0)
        dynamic_adjustment_factor = max(0.8, min(1.05, dynamic_adjustment_factor))

        final_overall_factor = (
            base_mem_fraction_reduction_ratio * dynamic_adjustment_factor
        )
        self.mem_fraction_static = (
            original_server_arg_mem_fraction * final_overall_factor
        )

Lianmin Zheng's avatar
Lianmin Zheng committed
2294

Lianmin Zheng's avatar
Lianmin Zheng committed
2295
def prepare_server_args(argv: List[str]) -> ServerArgs:
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
    """
    Prepare the server arguments from the command line arguments.

    Args:
        args: The command line arguments. Typically, it should be `sys.argv[1:]`
            to ensure compatibility with `parse_args` when no arguments are passed.

    Returns:
        The server arguments.
    """
    parser = argparse.ArgumentParser()
    ServerArgs.add_cli_args(parser)
Lianmin Zheng's avatar
Lianmin Zheng committed
2308
    raw_args = parser.parse_args(argv)
2309
2310
2311
2312
    server_args = ServerArgs.from_cli_args(raw_args)
    return server_args


2313
2314
2315
ZMQ_TCP_PORT_DELTA = 233


Lianmin Zheng's avatar
Lianmin Zheng committed
2316
2317
@dataclasses.dataclass
class PortArgs:
2318
2319
2320
2321
2322
2323
    # The ipc filename for tokenizer to receive inputs from detokenizer (zmq)
    tokenizer_ipc_name: str
    # The ipc filename for scheduler (rank 0) to receive inputs from tokenizer (zmq)
    scheduler_input_ipc_name: str
    # The ipc filename for detokenizer to receive inputs from scheduler (zmq)
    detokenizer_ipc_name: str
2324

2325
2326
    # The port for nccl initialization (torch.dist)
    nccl_port: int
2327

2328
2329
2330
    # The ipc filename for rpc call between Engine and Scheduler
    rpc_ipc_name: str

2331
2332
2333
    # The ipc filename for Scheduler to send metrics
    metrics_ipc_name: str

2334
    @staticmethod
2335
    def init_new(server_args, dp_rank: Optional[int] = None) -> "PortArgs":
2336
        if server_args.nccl_port is None:
Lianmin Zheng's avatar
Lianmin Zheng committed
2337
            nccl_port = server_args.port + random.randint(100, 1000)
2338
            while True:
Lianmin Zheng's avatar
Lianmin Zheng committed
2339
                if is_port_available(nccl_port):
2340
                    break
Lianmin Zheng's avatar
Lianmin Zheng committed
2341
2342
                if nccl_port < 60000:
                    nccl_port += 42
2343
                else:
Lianmin Zheng's avatar
Lianmin Zheng committed
2344
                    nccl_port -= 43
2345
        else:
Lianmin Zheng's avatar
Lianmin Zheng committed
2346
            nccl_port = server_args.nccl_port
2347

2348
2349
2350
2351
2352
2353
        if not server_args.enable_dp_attention:
            # Normal case, use IPC within a single node
            return PortArgs(
                tokenizer_ipc_name=f"ipc://{tempfile.NamedTemporaryFile(delete=False).name}",
                scheduler_input_ipc_name=f"ipc://{tempfile.NamedTemporaryFile(delete=False).name}",
                detokenizer_ipc_name=f"ipc://{tempfile.NamedTemporaryFile(delete=False).name}",
Lianmin Zheng's avatar
Lianmin Zheng committed
2354
                nccl_port=nccl_port,
2355
                rpc_ipc_name=f"ipc://{tempfile.NamedTemporaryFile(delete=False).name}",
2356
                metrics_ipc_name=f"ipc://{tempfile.NamedTemporaryFile(delete=False).name}",
2357
2358
2359
2360
2361
            )
        else:
            # DP attention. Use TCP + port to handle both single-node and multi-node.
            if server_args.nnodes == 1 and server_args.dist_init_addr is None:
                dist_init_addr = ("127.0.0.1", server_args.port + ZMQ_TCP_PORT_DELTA)
Vincent's avatar
Vincent committed
2362
2363
2364
            elif server_args.dist_init_addr.startswith("["):  # ipv6 address
                port_num, host = configure_ipv6(server_args.dist_init_addr)
                dist_init_addr = (host, str(port_num))
2365
2366
            else:
                dist_init_addr = server_args.dist_init_addr.split(":")
Vincent's avatar
Vincent committed
2367

2368
2369
2370
2371
2372
2373
            assert (
                len(dist_init_addr) == 2
            ), "please provide --dist-init-addr as host:port of head node"

            dist_init_host, dist_init_port = dist_init_addr
            port_base = int(dist_init_port) + 1
2374
2375
2376
            detokenizer_port = port_base + 1
            rpc_port = port_base + 2
            metrics_ipc_name = port_base + 3
2377
            if dp_rank is None:
2378
                # TokenizerManager to DataParallelController
2379
                scheduler_input_port = port_base + 4
2380
            else:
2381
                scheduler_input_port = port_base + 4 + 1 + dp_rank
2382
2383
2384
2385

            return PortArgs(
                tokenizer_ipc_name=f"tcp://{dist_init_host}:{port_base}",
                scheduler_input_ipc_name=f"tcp://{dist_init_host}:{scheduler_input_port}",
2386
                detokenizer_ipc_name=f"tcp://{dist_init_host}:{detokenizer_port}",
Lianmin Zheng's avatar
Lianmin Zheng committed
2387
                nccl_port=nccl_port,
2388
2389
                rpc_ipc_name=f"tcp://{dist_init_host}:{rpc_port}",
                metrics_ipc_name=f"tcp://{dist_init_host}:{metrics_ipc_name}",
2390
            )
2391

2392
2393
2394

class LoRAPathAction(argparse.Action):
    def __call__(self, parser, namespace, values, option_string=None):
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
        lora_paths = []
        if values:
            assert isinstance(values, list), "Expected a list of LoRA paths."
            for lora_path in values:
                lora_path = lora_path.strip()
                if lora_path.startswith("{") and lora_path.endswith("}"):
                    obj = json.loads(lora_path)
                    assert "lora_path" in obj and "lora_name" in obj, (
                        f"{repr(lora_path)} looks like a JSON str, "
                        "but it does not contain 'lora_name' and 'lora_path' keys."
                    )
                    lora_paths.append(obj)
                else:
                    lora_paths.append(lora_path)

        setattr(namespace, self.dest, lora_paths)
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420


class DeprecatedAction(argparse.Action):
    def __init__(self, option_strings, dest, nargs=0, **kwargs):
        super(DeprecatedAction, self).__init__(
            option_strings, dest, nargs=nargs, **kwargs
        )

    def __call__(self, parser, namespace, values, option_string=None):
        raise ValueError(self.help)
2421
2422


2423
2424
2425
2426
def print_deprecated_warning(message: str):
    logger.warning(f"\033[33m{message}\033[0m")


2427
def auto_choose_speculative_params(self: ServerArgs):
2428
2429
2430
2431
2432
    """
    Automatically choose the parameters for speculative decoding.

    You can tune them on your own models and prompts with scripts/playground/bench_speculative.py
    """
Lianmin Zheng's avatar
Lianmin Zheng committed
2433
    hf_config = self.get_hf_config()
2434
2435
    arch = hf_config.architectures[0]

2436
2437
2438
    if arch in ["LlamaForCausalLM"]:
        # The default value for llama
        return (5, 4, 8)
2439
2440
2441
2442
2443
2444
    elif arch in [
        "DeepseekV3ForCausalLM",
        "DeepseekV2ForCausalLM",
        "GptOssForCausalLM",
    ]:
        # The default value for deepseek and gpt-oss
2445
        return (3, 1, 4)
2446
2447
2448
2449
2450
    elif arch in ["Grok1ForCausalLM", "Grok1VForCausalLM"]:
        return (5, 4, 8)
    else:
        # The default value for all other models
        return (5, 4, 8)