server_args.py 4.67 KB
Newer Older
Lianmin Zheng's avatar
Lianmin Zheng committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
import argparse
import dataclasses
from typing import List, Optional


@dataclasses.dataclass
class ServerArgs:
    model_path: str
    tokenizer_path: Optional[str] = None
    host: str = "127.0.0.1"
    port: int = 30000
    load_format: str = "auto"
    tokenizer_mode: str = "auto"
    trust_remote_code: bool = True
    mem_fraction_static: float = 0.91
    tp_size: int = 1
    model_mode: List[str] = ()
    schedule_heuristic: str = "lpm"
    random_seed: int = 42
    disable_log_stats: bool = False
    log_stats_interval: int = 10
    log_level: str = "info"

    def __post_init__(self):
        if self.tokenizer_path is None:
            self.tokenizer_path = self.model_path
27
28
        if self.tp_size > 1:
            self.mem_fraction_static = 0.8
Lianmin Zheng's avatar
Lianmin Zheng committed
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

    @staticmethod
    def add_cli_args(parser: argparse.ArgumentParser):
        parser.add_argument(
            "--model-path",
            type=str,
            help="The path of the model weights. This can be a local folder or a Hugging Face repo ID.",
            required=True,
        )
        parser.add_argument(
            "--tokenizer-path",
            type=str,
            default=ServerArgs.tokenizer_path,
            help="The path of the tokenizer.",
        )
        parser.add_argument("--host", type=str, default=ServerArgs.host)
        parser.add_argument("--port", type=int, default=ServerArgs.port)
        parser.add_argument(
            "--load-format",
            type=str,
            default=ServerArgs.load_format,
            choices=["auto", "pt", "safetensors", "npcache", "dummy"],
            help="The format of the model weights to load. "
            '"auto" will try to load the weights in the safetensors format '
            "and fall back to the pytorch bin format if safetensors format "
            "is not available. "
            '"pt" will load the weights in the pytorch bin format. '
            '"safetensors" will load the weights in the safetensors format. '
            '"npcache" will load the weights in pytorch format and store '
            "a numpy cache to speed up the loading. "
            '"dummy" will initialize the weights with random values, '
            "which is mainly for profiling.",
        )
        parser.add_argument(
            "--tokenizer-mode",
            type=str,
            default=ServerArgs.tokenizer_mode,
            choices=["auto", "slow"],
            help="Tokenizer mode. 'auto' will use the fast "
            "tokenizer if available, and 'slow' will "
            "always use the slow tokenizer.",
        )
        parser.add_argument(
            "--trust-remote-code",
            action="store_true",
            help="Whether or not to allow for custom models defined on the Hub in their own modeling files.",
        )
        parser.add_argument(
            "--mem-fraction-static",
            type=float,
            default=ServerArgs.mem_fraction_static,
            help="The fraction of the memory used for static allocation (model weights and KV cache memory pool)",
        )
        parser.add_argument(
            "--tp-size",
            type=int,
            default=ServerArgs.tp_size,
            help="Tensor parallelism degree.",
        )
        parser.add_argument(
            "--model-mode",
            type=str,
            default=[],
            nargs="+",
            help="Model mode: [flashinfer, no-cache, aggressive-new-fill]",
        )
        parser.add_argument(
            "--schedule-heuristic",
            type=str,
            default=ServerArgs.schedule_heuristic,
            help="Schudule mode: [lpm, weight, random, fcfs]",
        )
        parser.add_argument(
            "--random-seed",
            type=int,
            default=ServerArgs.random_seed,
            help="Random seed.",
        )
        parser.add_argument(
            "--log-level",
            type=str,
            default=ServerArgs.log_level,
            help="Log level",
        )
        parser.add_argument(
            "--disable-log-stats",
            action="store_true",
            help="Disable logging throughput stats.",
        )
        parser.add_argument(
            "--log-stats-interval",
            type=int,
            default=ServerArgs.log_stats_interval,
            help="Log stats interval in second.",
        )

    @classmethod
    def from_cli_args(cls, args: argparse.Namespace):
        attrs = [attr.name for attr in dataclasses.fields(cls)]
        return cls(**{attr: getattr(args, attr) for attr in attrs})

    def url(self):
        return f"http://{self.host}:{self.port}"


@dataclasses.dataclass
class PortArgs:
    tokenizer_port: int
    router_port: int
    detokenizer_port: int
    nccl_port: int
    model_rpc_ports: List[int]