server_args.py 64.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
Lianmin Zheng's avatar
Lianmin Zheng committed
14
15
"""The arguments of the server."""

Lianmin Zheng's avatar
Lianmin Zheng committed
16
17
import argparse
import dataclasses
18
import json
19
import logging
20
import os
21
import random
22
import tempfile
23
from typing import List, Literal, Optional
Lianmin Zheng's avatar
Lianmin Zheng committed
24

25
from sglang.srt.hf_transformers_utils import check_gguf_file, get_config
Xihuai Wang's avatar
Xihuai Wang committed
26
from sglang.srt.reasoning_parser import ReasoningParser
27
from sglang.srt.utils import (
Vincent's avatar
Vincent committed
28
    configure_ipv6,
29
    get_device,
Lianmin Zheng's avatar
Lianmin Zheng committed
30
    get_device_memory_capacity,
31
    is_cuda,
32
    is_flashinfer_available,
HAI's avatar
HAI committed
33
    is_hip,
34
    is_port_available,
35
    is_remote_url,
36
    is_valid_ipv6_address,
bjmsong's avatar
bjmsong committed
37
    nullable_str,
38
)
39

40
41
logger = logging.getLogger(__name__)

Lianmin Zheng's avatar
Lianmin Zheng committed
42
43
44

@dataclasses.dataclass
class ServerArgs:
Lianmin Zheng's avatar
Lianmin Zheng committed
45
    # Model and tokenizer
Lianmin Zheng's avatar
Lianmin Zheng committed
46
47
48
    model_path: str
    tokenizer_path: Optional[str] = None
    tokenizer_mode: str = "auto"
49
    skip_tokenizer_init: bool = False
Lianmin Zheng's avatar
Lianmin Zheng committed
50
    load_format: str = "auto"
51
    trust_remote_code: bool = False
Lianmin Zheng's avatar
Lianmin Zheng committed
52
    dtype: str = "auto"
53
    kv_cache_dtype: str = "auto"
Lianmin Zheng's avatar
Lianmin Zheng committed
54
    quantization: Optional[str] = None
Vincent's avatar
Vincent committed
55
    quantization_param_path: Optional[str] = None
56
    context_length: Optional[int] = None
57
    device: Optional[str] = None
58
    served_model_name: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
59
    chat_template: Optional[str] = None
60
    completion_template: Optional[str] = None
61
    is_embedding: bool = False
62
    enable_multimodal: Optional[bool] = None
63
    revision: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
64

65
    # Port for the HTTP server
Lianmin Zheng's avatar
Lianmin Zheng committed
66
67
68
69
    host: str = "127.0.0.1"
    port: int = 30000

    # Memory and scheduling
Lianmin Zheng's avatar
Lianmin Zheng committed
70
    mem_fraction_static: Optional[float] = None
71
    max_running_requests: Optional[int] = None
72
    max_total_tokens: Optional[int] = None
73
    chunked_prefill_size: Optional[int] = None
74
    max_prefill_tokens: int = 16384
75
    schedule_policy: str = "fcfs"
76
    schedule_conservativeness: float = 1.0
77
    cpu_offload_gb: int = 0
78
    page_size: int = 1
Lianmin Zheng's avatar
Lianmin Zheng committed
79
80
81

    # Other runtime options
    tp_size: int = 1
82
83
    pp_size: int = 1
    max_micro_batch_size: Optional[int] = None
84
    stream_interval: int = 1
85
    stream_output: bool = False
86
    random_seed: Optional[int] = None
87
    constrained_json_whitespace_pattern: Optional[str] = None
88
    watchdog_timeout: float = 300
89
    dist_timeout: Optional[int] = None  # timeout for torch.distributed
90
    download_dir: Optional[str] = None
91
    base_gpu_id: int = 0
92
    gpu_id_step: int = 1
Lianmin Zheng's avatar
Lianmin Zheng committed
93
94
95

    # Logging
    log_level: str = "info"
96
    log_level_http: Optional[str] = None
97
    log_requests: bool = False
98
    log_requests_level: int = 0
Liangsheng Yin's avatar
Liangsheng Yin committed
99
    show_time_cost: bool = False
100
    enable_metrics: bool = False
101
102
103
104
    bucket_time_to_first_token: Optional[List[float]] = None
    bucket_e2e_request_latency: Optional[List[float]] = None
    bucket_inter_token_latency: Optional[List[float]] = None
    collect_tokens_histogram: bool = False
105
    decode_log_interval: int = 40
106
    enable_request_time_stats_logging: bool = False
107
    kv_events_config: Optional[str] = None
Liangsheng Yin's avatar
Liangsheng Yin committed
108

109
    # API related
110
    api_key: Optional[str] = None
111
    file_storage_path: str = "sglang_storage"
112
    enable_cache_report: bool = False
Xihuai Wang's avatar
Xihuai Wang committed
113
    reasoning_parser: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
114

115
116
117
    # Data parallelism
    dp_size: int = 1
    load_balance_method: str = "round_robin"
118

xiaobochen's avatar
xiaobochen committed
119
120
    # Expert parallelism
    ep_size: int = 1
121

122
    # Multi-node distributed serving
123
    dist_init_addr: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
124
    nnodes: int = 1
125
    node_rank: int = 0
Lianmin Zheng's avatar
Lianmin Zheng committed
126
127
128

    # Model override args in JSON
    json_model_override_args: str = "{}"
129
    preferred_sampling_params: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
130

131
132
133
    # LoRA
    lora_paths: Optional[List[str]] = None
    max_loras_per_batch: int = 8
134
    lora_backend: str = "triton"
135
136

    # Kernel backend
137
138
    attention_backend: Optional[str] = None
    sampling_backend: Optional[str] = None
139
    grammar_backend: Optional[str] = None
140

141
142
    # Speculative decoding
    speculative_algorithm: Optional[str] = None
143
    speculative_draft_model_path: Optional[str] = None
144
145
146
    speculative_num_steps: Optional[int] = None
    speculative_eagle_topk: Optional[int] = None
    speculative_num_draft_tokens: Optional[int] = None
147
148
    speculative_accept_threshold_single: float = 1.0
    speculative_accept_threshold_acc: float = 1.0
149
    speculative_token_map: Optional[str] = None
150
151
152

    # Double Sparsity
    enable_double_sparsity: bool = False
Vincent's avatar
Vincent committed
153
    ds_channel_config_path: Optional[str] = None
154
155
156
157
158
    ds_heavy_channel_num: int = 32
    ds_heavy_token_num: int = 256
    ds_heavy_channel_type: str = "qk"
    ds_sparse_decode_threshold: int = 4096

159
    # Optimization/debug options
Lianmin Zheng's avatar
Lianmin Zheng committed
160
    disable_radix_cache: bool = False
161
    disable_cuda_graph: bool = False
162
    disable_cuda_graph_padding: bool = False
163
    enable_nccl_nvls: bool = False
164
    enable_tokenizer_batch_encode: bool = False
165
    disable_outlines_disk_cache: bool = False
166
    disable_custom_all_reduce: bool = False
167
    disable_overlap_schedule: bool = False
168
    enable_mixed_chunk: bool = False
Ke Bao's avatar
Ke Bao committed
169
    enable_dp_attention: bool = False
170
    enable_dp_lm_head: bool = False
171
    enable_two_batch_overlap: bool = False
xiaobochen's avatar
xiaobochen committed
172
    enable_ep_moe: bool = False
173
    enable_deepep_moe: bool = False
174
    deepep_mode: Optional[Literal["auto", "normal", "low_latency"]] = "auto"
175
    ep_num_redundant_experts: int = 0
176
    ep_dispatch_algorithm: Optional[Literal["static", "dynamic", "fake"]] = None
177
    init_expert_location: str = "trivial"
178
    enable_eplb: bool = False
179
    eplb_algorithm: str = "auto"
180
    eplb_rebalance_num_iterations: int = 1000
181
182
183
184
    expert_distribution_recorder_mode: Optional[
        Literal["stat", "per_pass", "per_token"]
    ] = None
    expert_distribution_recorder_buffer_size: Optional[int] = None
185
    enable_expert_distribution_metrics: bool = False
186
    deepep_config: Optional[str] = None
187
    enable_torch_compile: bool = False
188
    torch_compile_max_bs: int = 32
189
    cuda_graph_max_bs: Optional[int] = None
190
    cuda_graph_bs: Optional[List[int]] = None
191
    torchao_config: str = ""
192
    enable_nan_detection: bool = False
193
    enable_p2p_check: bool = False
194
    triton_attention_reduce_in_fp32: bool = False
195
    triton_attention_num_kv_splits: int = 8
196
    num_continuous_decode_steps: int = 1
197
    delete_ckpt_after_loading: bool = False
198
    enable_memory_saver: bool = False
199
    allow_auto_truncate: bool = False
200
    enable_custom_logit_processor: bool = False
Vincent's avatar
Vincent committed
201
    tool_call_parser: Optional[str] = None
202
    enable_hierarchical_cache: bool = False
203
    hicache_ratio: float = 2.0
Zhiqiang Xie's avatar
Zhiqiang Xie committed
204
205
    hicache_size: int = 0
    hicache_write_policy: str = "write_through_selective"
206
    flashinfer_mla_disable_ragged: bool = False
207
    warmups: Optional[str] = None
208
    moe_dense_tp_size: Optional[int] = None
209
    n_share_experts_fusion: int = 0
210
    disable_chunked_prefix_cache: bool = False
Lianmin Zheng's avatar
Lianmin Zheng committed
211
    disable_fast_image_processor: bool = False
212
    mm_attention_backend: Optional[str] = None
213
214
215
216
217

    # Debug tensor dumps
    debug_tensor_dump_output_folder: Optional[str] = None
    debug_tensor_dump_input_file: Optional[str] = None
    debug_tensor_dump_inject: bool = False
218

Byron Hsu's avatar
Byron Hsu committed
219
220
221
    # For PD disaggregation: can be "null" (not disaggregated), "prefill" (prefill-only), or "decode" (decode-only)
    disaggregation_mode: str = "null"
    disaggregation_bootstrap_port: int = 8998
222
    disaggregation_transfer_backend: str = "mooncake"
223
    disaggregation_ib_device: Optional[str] = None
224
    pdlb_url: Optional[str] = None
Byron Hsu's avatar
Byron Hsu committed
225

Lianmin Zheng's avatar
Lianmin Zheng committed
226
    def __post_init__(self):
227
228
229
        # Expert parallelism
        if self.enable_ep_moe:
            self.ep_size = self.tp_size
Lianmin Zheng's avatar
Lianmin Zheng committed
230
            logger.warning(
231
232
233
                f"EP MoE is enabled. The expert parallel size is adjusted to be the same as the tensor parallel size[{self.tp_size}]."
            )

234
        # Set missing default values
Lianmin Zheng's avatar
Lianmin Zheng committed
235
236
        if self.tokenizer_path is None:
            self.tokenizer_path = self.model_path
237

238
239
240
        if self.device is None:
            self.device = get_device()

241
242
243
        if self.served_model_name is None:
            self.served_model_name = self.model_path

244
245
246
        if self.random_seed is None:
            self.random_seed = random.randint(0, 1 << 30)

Lianmin Zheng's avatar
Lianmin Zheng committed
247
        gpu_mem = get_device_memory_capacity(self.device)
248
249

        # Set mem fraction static, which depends on the tensor parallelism size
Lianmin Zheng's avatar
Lianmin Zheng committed
250
        if self.mem_fraction_static is None:
251
            parallel_size = self.tp_size * self.pp_size
Yi Liu's avatar
Yi Liu committed
252
            if gpu_mem is not None and gpu_mem <= 81920:
253
254
255
256
257
258
259
260
261
262
                if parallel_size >= 16:
                    self.mem_fraction_static = 0.79
                elif parallel_size >= 8:
                    self.mem_fraction_static = 0.81
                elif parallel_size >= 4:
                    self.mem_fraction_static = 0.85
                elif parallel_size >= 2:
                    self.mem_fraction_static = 0.87
                else:
                    self.mem_fraction_static = 0.88
Ying Sheng's avatar
Ying Sheng committed
263
            else:
264
                self.mem_fraction_static = 0.88
265
            if gpu_mem is not None and gpu_mem > 180 * 1000 and is_cuda():
266
267
                self.mem_fraction_static = 0.79
            elif gpu_mem is not None and gpu_mem > 96 * 1024:
268
                mem_fraction = self.mem_fraction_static
269
270
271
272
273
                # 15 GB + additional 3GB for cuda graph
                reserve_mem = 1024 * 18
                # need reserve more memory for spec cuda graph
                if self.speculative_algorithm is not None:
                    reserve_mem = 1024 * 20
274
275
                self.mem_fraction_static = min(
                    mem_fraction + 48 * 1024 * (1 - mem_fraction) / gpu_mem,
276
                    (gpu_mem - reserve_mem) / gpu_mem,
277
                )
278
279
280
            else:
                if self.speculative_algorithm is not None:
                    self.mem_fraction_static *= 0.95
281

282
283
        # Set chunked prefill size, which depends on the gpu memory capacity
        if self.chunked_prefill_size is None:
284
285
286
            if gpu_mem is not None and gpu_mem > 180_000:
                self.chunked_prefill_size = 16384
            elif gpu_mem is not None and gpu_mem < 25_000:
287
                self.chunked_prefill_size = 2048
288
289
            elif self.disaggregation_mode != "null":
                self.chunked_prefill_size = 16384
290
291
            else:
                self.chunked_prefill_size = 8192
Lianmin Zheng's avatar
Lianmin Zheng committed
292
293
        assert self.chunked_prefill_size % self.page_size == 0

294
295
296
        assert self.moe_dense_tp_size in {
            1,
            None,
Lianmin Zheng's avatar
Lianmin Zheng committed
297
        }, "moe_dense_tp_size only support 1 and None currently"
298

299
        if self.attention_backend == "flashmla":
300
301
302
303
            logger.warning(
                "FlashMLA only supports a page_size of 64, change page_size to 64."
            )
            self.page_size = 64
Lianmin Zheng's avatar
Lianmin Zheng committed
304

305
306
307
308
309
310
        if self.attention_backend == "cutlass_mla":
            logger.warning(
                "Cutlass MLA only supports a page_size of 128, change page_size to 128."
            )
            self.page_size = 128

311
        # Set cuda graph max batch size
312
        if self.cuda_graph_max_bs is None:
313
            # Based on detailed statistics, when serving TP1/TP2 models on lower-end GPUs with HBM<25G, you can either disable cuda graph or set `cuda_graph_max_bs` to a very small value to reduce the memory overhead of creating cuda graphs, with almost no impact on performance. However, when serving models with TP4 or TP8, we need to enable cuda graph to maintain high performance. In this case, we can set `cuda_graph_max_bs` to 80 (half of the default value 160) to reduce the memory overhead of creating cuda graphs. Looking at the logs from TP4 serving of qwen2-72b, a value of 80 is sufficient and can reduce the memory overhead of creating cuda graphs on lower-end GPUs compared to the original 160, avoiding OOM issues.
314
            if gpu_mem is not None and gpu_mem < 25_000:
315
316
317
318
                if self.tp_size < 4:
                    self.cuda_graph_max_bs = 8
                else:
                    self.cuda_graph_max_bs = 80
319

320
        # Set kernel backends for hpu device
321
322
323
324
        if self.device == "hpu":
            self.attention_backend = "torch_native"
            self.sampling_backend = "pytorch"

Lianmin Zheng's avatar
Lianmin Zheng committed
325
        # Set kernel backends
326
        if self.sampling_backend is None:
327
328
329
330
331
            self.sampling_backend = (
                "flashinfer" if is_flashinfer_available() else "pytorch"
            )

        if self.attention_backend == "torch_native":
332
            logger.warning(
333
334
335
                "Cuda graph is disabled because of using torch native attention backend"
            )
            self.disable_cuda_graph = True
336

337
338
339
        # Choose grammar backend
        if self.grammar_backend is None:
            self.grammar_backend = "xgrammar"
340

341
        # Data parallelism attention
Ke Bao's avatar
Ke Bao committed
342
        if self.enable_dp_attention:
343
            self.schedule_conservativeness = self.schedule_conservativeness * 0.3
Lianmin Zheng's avatar
Lianmin Zheng committed
344
345
346
347
348
            assert (
                self.dp_size > 1
            ), "Please set a dp-size > 1. You can use 1 < dp-size <= tp-size "
            assert self.tp_size % self.dp_size == 0
            self.chunked_prefill_size = self.chunked_prefill_size // self.dp_size
349
            logger.warning(
350
                f"DP attention is enabled. The chunked prefill size is adjusted to {self.chunked_prefill_size} to avoid MoE kernel issues. "
351
            )
352

353
354
355
356
357
        if self.enable_dp_lm_head:
            assert (
                self.enable_dp_attention
            ), "Please enable dp attention when setting enable_dp_attention. "

358
        # DeepEP MoE
Lianmin Zheng's avatar
Lianmin Zheng committed
359
        self.enable_sp_layernorm = False
360
        if self.enable_deepep_moe:
361
362
363
364
            if self.deepep_mode == "auto":
                assert (
                    not self.enable_dp_attention
                ), "DeepEP MoE `auto` mode is not supported with DP Attention."
365
366
367
            if self.deepep_mode == "normal":
                logger.warning("Cuda graph is disabled because deepep_mode=`normal`")
                self.disable_cuda_graph = True
368
369
370
371
            self.ep_size = self.tp_size
            self.enable_sp_layernorm = (
                self.dp_size < self.tp_size if self.enable_dp_attention else True
            )
Lianmin Zheng's avatar
Lianmin Zheng committed
372
            logger.warning(
373
374
                f"DeepEP MoE is enabled. The expert parallel size is adjusted to be the same as the tensor parallel size[{self.tp_size}]."
            )
375

376
377
378
379
380
381
        if self.pp_size > 1:
            self.disable_overlap_schedule = True
            logger.warning(
                "Pipeline parallelism is incompatible with overlap schedule."
            )

382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
        if self.enable_eplb and (self.expert_distribution_recorder_mode is None):
            self.expert_distribution_recorder_mode = "stat"
            logger.info(
                f"EPLB is enabled. The expert_distribution_recorder_mode is automatically set."
            )

        if (self.enable_eplb or (self.init_expert_location is not None)) and (
            self.ep_dispatch_algorithm is None
        ):
            self.ep_dispatch_algorithm = "static"
            logger.info(
                f"EPLB is enabled or init_expert_location is provided. ep_dispatch_algorithm is configured."
            )

        if self.enable_expert_distribution_metrics and (
            self.expert_distribution_recorder_mode is None
        ):
            self.expert_distribution_recorder_mode = "stat"

401
        if self.expert_distribution_recorder_buffer_size is None:
402
403
            if (x := self.eplb_rebalance_num_iterations) is not None:
                self.expert_distribution_recorder_buffer_size = x
404
405
406
            elif self.expert_distribution_recorder_mode is not None:
                self.expert_distribution_recorder_buffer_size = 1000

407
        # Speculative Decoding
408
409
410
411
        if self.speculative_algorithm == "NEXTN":
            # NEXTN shares the same implementation of EAGLE
            self.speculative_algorithm = "EAGLE"

Lianmin Zheng's avatar
Lianmin Zheng committed
412
        if self.speculative_algorithm in ("EAGLE", "EAGLE3"):
413
            if self.max_running_requests is None:
414
                self.max_running_requests = 48
415
            self.disable_overlap_schedule = True
Lianmin Zheng's avatar
Lianmin Zheng committed
416
            logger.warning(
417
                "Overlap scheduler is disabled because of using "
418
                "eagle speculative decoding."
419
            )
420

421
422
423
            model_arch = get_model_arch(self)

            # Auto set draft_model_path DeepSeek-V3/R1
424
425
426
427
428
429
430
            if model_arch == "DeepseekV3ForCausalLM":
                if self.speculative_draft_model_path is None:
                    self.speculative_draft_model_path = self.model_path
                else:
                    logger.warning(
                        "DeepSeek MTP does not require setting speculative_draft_model_path."
                    )
431

432
433
434
435
436
437
438
439
440
441
            # Auto choose parameters
            if self.speculative_num_steps is None:
                assert (
                    self.speculative_eagle_topk is None
                    and self.speculative_num_draft_tokens is None
                )
                (
                    self.speculative_num_steps,
                    self.speculative_eagle_topk,
                    self.speculative_num_draft_tokens,
442
                ) = auto_choose_speculative_params(model_arch)
443
444
445

            if self.page_size > 1 and self.speculative_eagle_topk > 1:
                self.speculative_eagle_topk = 1
Lianmin Zheng's avatar
Lianmin Zheng committed
446
                logger.warning(
447
448
449
450
451
452
453
                    "speculative_eagle_topk is adjusted to 1 when page_size > 1"
                )

            if (
                self.speculative_eagle_topk == 1
                and self.speculative_num_draft_tokens != self.speculative_num_steps + 1
            ):
Lianmin Zheng's avatar
Lianmin Zheng committed
454
                logger.warning(
455
456
457
                    "speculative_num_draft_tokens is adjusted to speculative_num_steps + 1 when speculative_eagle_topk == 1"
                )
                self.speculative_num_draft_tokens = self.speculative_num_steps + 1
458

459
            # The token generated from the verify step is counted.
460
            # If sepculative_num_steps >= speculative_num_draft_tokens, the additional tokens will definitely be discarded.
461
            # assert self.speculative_num_steps < self.speculative_num_draft_tokens
462

463
464
465
466
467
468
        # GGUF
        if (
            self.load_format == "auto" or self.load_format == "gguf"
        ) and check_gguf_file(self.model_path):
            self.quantization = self.load_format = "gguf"

469
470
471
        if is_remote_url(self.model_path):
            self.load_format = "remote"

472
473
474
475
        # AMD-specific Triton attention KV splits default number
        if is_hip():
            self.triton_attention_num_kv_splits = 16

Byron Hsu's avatar
Byron Hsu committed
476
477
478
        # PD disaggregation
        if self.disaggregation_mode == "prefill":
            self.disable_cuda_graph = True
479
            logger.warning("Cuda graph is disabled for prefill server")
Byron Hsu's avatar
Byron Hsu committed
480
481
        elif self.disaggregation_mode == "decode":
            self.disable_radix_cache = True
482
            logger.warning("KV cache is forced as chunk cache for decode server")
Byron Hsu's avatar
Byron Hsu committed
483

484
485
486
        os.environ["SGLANG_ENABLE_TORCH_COMPILE"] = (
            "1" if self.enable_torch_compile else "0"
        )
487
488
489
490
        # Set env var before grammar backends init
        os.environ["SGLANG_DISABLE_OUTLINES_DISK_CACHE"] = (
            "1" if self.disable_outlines_disk_cache else "0"
        )
491

Lianmin Zheng's avatar
Lianmin Zheng committed
492
493
    @staticmethod
    def add_cli_args(parser: argparse.ArgumentParser):
494
        # Model and port args
Lianmin Zheng's avatar
Lianmin Zheng committed
495
496
497
498
499
500
501
502
503
504
505
506
        parser.add_argument(
            "--model-path",
            type=str,
            help="The path of the model weights. This can be a local folder or a Hugging Face repo ID.",
            required=True,
        )
        parser.add_argument(
            "--tokenizer-path",
            type=str,
            default=ServerArgs.tokenizer_path,
            help="The path of the tokenizer.",
        )
Yuanhan Zhang's avatar
Yuanhan Zhang committed
507
508
509
510
511
512
        parser.add_argument(
            "--host", type=str, default=ServerArgs.host, help="The host of the server."
        )
        parser.add_argument(
            "--port", type=int, default=ServerArgs.port, help="The port of the server."
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
513
514
515
516
517
518
519
520
521
        parser.add_argument(
            "--tokenizer-mode",
            type=str,
            default=ServerArgs.tokenizer_mode,
            choices=["auto", "slow"],
            help="Tokenizer mode. 'auto' will use the fast "
            "tokenizer if available, and 'slow' will "
            "always use the slow tokenizer.",
        )
522
523
524
        parser.add_argument(
            "--skip-tokenizer-init",
            action="store_true",
525
            help="If set, skip init tokenizer and pass input_ids in generate request.",
526
        )
527
        parser.add_argument(
Lianmin Zheng's avatar
Lianmin Zheng committed
528
529
530
            "--load-format",
            type=str,
            default=ServerArgs.load_format,
531
532
533
534
535
536
            choices=[
                "auto",
                "pt",
                "safetensors",
                "npcache",
                "dummy",
537
                "sharded_state",
538
539
                "gguf",
                "bitsandbytes",
540
                "layered",
541
                "remote",
542
            ],
Lianmin Zheng's avatar
Lianmin Zheng committed
543
544
545
546
547
548
549
550
551
            help="The format of the model weights to load. "
            '"auto" will try to load the weights in the safetensors format '
            "and fall back to the pytorch bin format if safetensors format "
            "is not available. "
            '"pt" will load the weights in the pytorch bin format. '
            '"safetensors" will load the weights in the safetensors format. '
            '"npcache" will load the weights in pytorch format and store '
            "a numpy cache to speed up the loading. "
            '"dummy" will initialize the weights with random values, '
552
            "which is mainly for profiling."
553
554
            '"gguf" will load the weights in the gguf format. '
            '"bitsandbytes" will load the weights using bitsandbytes '
555
556
557
558
            "quantization."
            '"layered" loads weights layer by layer so that one can quantize a '
            "layer before loading another to make the peak memory envelope "
            "smaller.",
Lianmin Zheng's avatar
Lianmin Zheng committed
559
        )
560
561
562
563
564
        parser.add_argument(
            "--trust-remote-code",
            action="store_true",
            help="Whether or not to allow for custom models defined on the Hub in their own modeling files.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
565
        parser.add_argument(
Lianmin Zheng's avatar
Lianmin Zheng committed
566
            "--dtype",
Cody Yu's avatar
Cody Yu committed
567
            type=str,
Lianmin Zheng's avatar
Lianmin Zheng committed
568
            default=ServerArgs.dtype,
Ying Sheng's avatar
Ying Sheng committed
569
570
            choices=["auto", "half", "float16", "bfloat16", "float", "float32"],
            help="Data type for model weights and activations.\n\n"
Lianmin Zheng's avatar
Lianmin Zheng committed
571
            '* "auto" will use FP16 precision for FP32 and FP16 models, and '
Ying Sheng's avatar
Ying Sheng committed
572
            "BF16 precision for BF16 models.\n"
Lianmin Zheng's avatar
Lianmin Zheng committed
573
574
575
576
            '* "half" for FP16. Recommended for AWQ quantization.\n'
            '* "float16" is the same as "half".\n'
            '* "bfloat16" for a balance between precision and range.\n'
            '* "float" is shorthand for FP32 precision.\n'
Ying Sheng's avatar
Ying Sheng committed
577
578
            '* "float32" for FP32 precision.',
        )
579
580
581
582
        parser.add_argument(
            "--kv-cache-dtype",
            type=str,
            default=ServerArgs.kv_cache_dtype,
bjmsong's avatar
bjmsong committed
583
584
585
            choices=["auto", "fp8_e5m2", "fp8_e4m3"],
            help='Data type for kv cache storage. "auto" will use model data type. "fp8_e5m2" and "fp8_e4m3" is supported for CUDA 11.8+.',
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
586
587
588
589
        parser.add_argument(
            "--quantization",
            type=str,
            default=ServerArgs.quantization,
Ying Sheng's avatar
Ying Sheng committed
590
591
592
593
594
595
            choices=[
                "awq",
                "fp8",
                "gptq",
                "marlin",
                "gptq_marlin",
Ying Sheng's avatar
Ying Sheng committed
596
                "awq_marlin",
Ying Sheng's avatar
Ying Sheng committed
597
                "bitsandbytes",
598
                "gguf",
599
                "modelopt",
600
                "modelopt_fp4",
601
                "w8a8_int8",
HandH1998's avatar
HandH1998 committed
602
                "w8a8_fp8",
AniZpZ's avatar
AniZpZ committed
603
                "moe_wna16",
HandH1998's avatar
HandH1998 committed
604
                "qoq",
Ying Sheng's avatar
Ying Sheng committed
605
            ],
Lianmin Zheng's avatar
Lianmin Zheng committed
606
607
            help="The quantization method.",
        )
608
609
610
611
612
613
614
615
616
        parser.add_argument(
            "--quantization-param-path",
            type=nullable_str,
            default=None,
            help="Path to the JSON file containing the KV cache "
            "scaling factors. This should generally be supplied, when "
            "KV cache dtype is FP8. Otherwise, KV cache scaling factors "
            "default to 1.0, which may cause accuracy issues. ",
        )
617
618
619
620
621
622
623
624
625
        parser.add_argument(
            "--context-length",
            type=int,
            default=ServerArgs.context_length,
            help="The model's maximum context length. Defaults to None (will use the value from the model's config.json instead).",
        )
        parser.add_argument(
            "--device",
            type=str,
626
            default=ServerArgs.device,
627
            help="The device to use ('cuda', 'xpu', 'hpu', 'npu', 'cpu'). Defaults to auto-detection if not specified.",
628
        )
629
630
631
632
633
634
        parser.add_argument(
            "--served-model-name",
            type=str,
            default=ServerArgs.served_model_name,
            help="Override the model name returned by the v1/models endpoint in OpenAI API server.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
635
636
637
638
639
640
        parser.add_argument(
            "--chat-template",
            type=str,
            default=ServerArgs.chat_template,
            help="The buliltin chat template name or the path of the chat template file. This is only used for OpenAI-compatible API server.",
        )
641
642
643
644
645
646
        parser.add_argument(
            "--completion-template",
            type=str,
            default=ServerArgs.completion_template,
            help="The buliltin completion template name or the path of the completion template file. This is only used for OpenAI-compatible API server. only for code completion currently.",
        )
647
648
649
650
651
        parser.add_argument(
            "--is-embedding",
            action="store_true",
            help="Whether to use a CausalLM as an embedding model.",
        )
652
653
654
655
656
657
        parser.add_argument(
            "--enable-multimodal",
            default=ServerArgs.enable_multimodal,
            action="store_true",
            help="Enable the multimodal functionality for the served model. If the model being served is not multimodal, nothing will happen",
        )
658
659
660
661
662
663
664
665
        parser.add_argument(
            "--revision",
            type=str,
            default=None,
            help="The specific model version to use. It can be a branch "
            "name, a tag name, or a commit id. If unspecified, will use "
            "the default version.",
        )
666

667
        # Memory and scheduling
Lianmin Zheng's avatar
Lianmin Zheng committed
668
669
670
671
        parser.add_argument(
            "--mem-fraction-static",
            type=float,
            default=ServerArgs.mem_fraction_static,
672
            help="The fraction of the memory used for static allocation (model weights and KV cache memory pool). Use a smaller value if you see out-of-memory errors.",
Lianmin Zheng's avatar
Lianmin Zheng committed
673
        )
674
675
676
677
678
679
        parser.add_argument(
            "--max-running-requests",
            type=int,
            default=ServerArgs.max_running_requests,
            help="The maximum number of running requests.",
        )
680
681
682
683
        parser.add_argument(
            "--max-total-tokens",
            type=int,
            default=ServerArgs.max_total_tokens,
684
685
            help="The maximum number of tokens in the memory pool. If not specified, it will be automatically calculated based on the memory usage fraction. "
            "This option is typically used for development and debugging purposes.",
686
        )
687
688
689
690
        parser.add_argument(
            "--chunked-prefill-size",
            type=int,
            default=ServerArgs.chunked_prefill_size,
691
            help="The maximum number of tokens in a chunk for the chunked prefill. Setting this to -1 means disabling chunked prefill.",
692
693
694
695
696
697
698
        )
        parser.add_argument(
            "--max-prefill-tokens",
            type=int,
            default=ServerArgs.max_prefill_tokens,
            help="The maximum number of tokens in a prefill batch. The real bound will be the maximum of this value and the model's maximum context length.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
699
        parser.add_argument(
700
            "--schedule-policy",
Lianmin Zheng's avatar
Lianmin Zheng committed
701
            type=str,
702
            default=ServerArgs.schedule_policy,
Liangsheng Yin's avatar
Liangsheng Yin committed
703
            choices=["lpm", "random", "fcfs", "dfs-weight"],
704
            help="The scheduling policy of the requests.",
Lianmin Zheng's avatar
Lianmin Zheng committed
705
        )
706
707
708
709
        parser.add_argument(
            "--schedule-conservativeness",
            type=float,
            default=ServerArgs.schedule_conservativeness,
710
            help="How conservative the schedule policy is. A larger value means more conservative scheduling. Use a larger value if you see requests being retracted frequently.",
711
        )
712
713
714
715
        parser.add_argument(
            "--cpu-offload-gb",
            type=int,
            default=ServerArgs.cpu_offload_gb,
716
            help="How many GBs of RAM to reserve for CPU offloading.",
717
        )
718
719
720
721
722
723
        parser.add_argument(
            "--page-size",
            type=int,
            default=ServerArgs.page_size,
            help="The number of tokens in a page.",
        )
724

725
        # Other runtime options
Lianmin Zheng's avatar
Lianmin Zheng committed
726
        parser.add_argument(
727
            "--tensor-parallel-size",
Lianmin Zheng's avatar
Lianmin Zheng committed
728
            "--tp-size",
Lianmin Zheng's avatar
Lianmin Zheng committed
729
            type=int,
Lianmin Zheng's avatar
Lianmin Zheng committed
730
            default=ServerArgs.tp_size,
731
            help="The tensor parallelism size.",
732
        )
733
734
735
736
737
738
739
740
741
742
743
744
745
        parser.add_argument(
            "--pipeline-parallel-size",
            "--pp-size",
            type=int,
            default=ServerArgs.pp_size,
            help="The pipeline parallelism size.",
        )
        parser.add_argument(
            "--max-micro-batch-size",
            type=int,
            default=ServerArgs.max_micro_batch_size,
            help="The maximum micro batch size in pipeline parallelism.",
        )
746
747
748
        parser.add_argument(
            "--stream-interval",
            type=int,
Lianmin Zheng's avatar
Lianmin Zheng committed
749
            default=ServerArgs.stream_interval,
750
            help="The interval (or buffer size) for streaming in terms of the token length. A smaller value makes streaming smoother, while a larger value makes the throughput higher",
751
        )
752
753
754
755
756
        parser.add_argument(
            "--stream-output",
            action="store_true",
            help="Whether to output as a sequence of disjoint segments.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
757
758
759
760
        parser.add_argument(
            "--random-seed",
            type=int,
            default=ServerArgs.random_seed,
761
            help="The random seed.",
Lianmin Zheng's avatar
Lianmin Zheng committed
762
        )
763
764
765
766
767
768
        parser.add_argument(
            "--constrained-json-whitespace-pattern",
            type=str,
            default=ServerArgs.constrained_json_whitespace_pattern,
            help=r"Regex pattern for syntactic whitespaces allowed in JSON constrained output. For example, to allow the model generate consecutive whitespaces, set the pattern to [\n\t ]*",
        )
769
770
771
772
773
774
        parser.add_argument(
            "--watchdog-timeout",
            type=float,
            default=ServerArgs.watchdog_timeout,
            help="Set watchdog timeout in seconds. If a forward batch takes longer than this, the server will crash to prevent hanging.",
        )
775
776
777
778
779
780
        parser.add_argument(
            "--dist-timeout",
            type=int,
            default=ServerArgs.dist_timeout,
            help="Set timeout for torch.distributed initialization.",
        )
781
782
783
784
        parser.add_argument(
            "--download-dir",
            type=str,
            default=ServerArgs.download_dir,
785
            help="Model download directory for huggingface.",
786
        )
787
788
789
790
791
792
        parser.add_argument(
            "--base-gpu-id",
            type=int,
            default=ServerArgs.base_gpu_id,
            help="The base GPU ID to start allocating GPUs from. Useful when running multiple instances on the same machine.",
        )
793
794
795
796
797
798
        parser.add_argument(
            "--gpu-id-step",
            type=int,
            default=ServerArgs.gpu_id_step,
            help="The delta between consecutive GPU IDs that are used. For example, setting it to 2 will use GPU 0,2,4,...",
        )
799
800

        # Logging
Lianmin Zheng's avatar
Lianmin Zheng committed
801
802
803
804
        parser.add_argument(
            "--log-level",
            type=str,
            default=ServerArgs.log_level,
805
            help="The logging level of all loggers.",
Lianmin Zheng's avatar
Lianmin Zheng committed
806
        )
807
        parser.add_argument(
808
809
810
811
            "--log-level-http",
            type=str,
            default=ServerArgs.log_level_http,
            help="The logging level of HTTP server. If not set, reuse --log-level by default.",
812
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
813
        parser.add_argument(
814
            "--log-requests",
Lianmin Zheng's avatar
Lianmin Zheng committed
815
            action="store_true",
816
817
818
819
820
821
822
823
            help="Log metadata, inputs, outputs of all requests. The verbosity is decided by --log-requests-level",
        )
        parser.add_argument(
            "--log-requests-level",
            type=int,
            default=0,
            help="0: Log metadata. 1. Log metadata and partial input/output. 2. Log every input/output.",
            choices=[0, 1, 2],
Lianmin Zheng's avatar
Lianmin Zheng committed
824
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
825
826
827
        parser.add_argument(
            "--show-time-cost",
            action="store_true",
Ying Sheng's avatar
Ying Sheng committed
828
            help="Show time cost of custom marks.",
Lianmin Zheng's avatar
Lianmin Zheng committed
829
        )
830
831
832
833
834
        parser.add_argument(
            "--enable-metrics",
            action="store_true",
            help="Enable log prometheus metrics.",
        )
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
        parser.add_argument(
            "--bucket-time-to-first-token",
            type=float,
            nargs="+",
            default=ServerArgs.bucket_time_to_first_token,
            help="The buckets of time to first token, specified as a list of floats.",
        )
        parser.add_argument(
            "--bucket-inter-token-latency",
            type=float,
            nargs="+",
            default=ServerArgs.bucket_inter_token_latency,
            help="The buckets of inter-token latency, specified as a list of floats.",
        )
        parser.add_argument(
            "--bucket-e2e-request-latency",
            type=float,
            nargs="+",
            default=ServerArgs.bucket_e2e_request_latency,
            help="The buckets of end-to-end request latency, specified as a list of floats.",
        )
        parser.add_argument(
            "--collect-tokens-histogram",
            action="store_true",
            default=ServerArgs.collect_tokens_histogram,
            help="Collect prompt/generation tokens histogram.",
        )
862
863
864
865
866
867
        parser.add_argument(
            "--kv-events-config",
            type=str,
            default=None,
            help="Config in json format for NVIDIA dynamo KV event publishing. Publishing will be enabled if this flag is used.",
        )
868
869
870
871
        parser.add_argument(
            "--decode-log-interval",
            type=int,
            default=ServerArgs.decode_log_interval,
872
            help="The log interval of decode batch.",
873
        )
874
875
876
877
878
879
        parser.add_argument(
            "--enable-request-time-stats-logging",
            action="store_true",
            default=ServerArgs.enable_request_time_stats_logging,
            help="Enable per request time stats logging",
        )
880

881
        # API related
Liangsheng Yin's avatar
Liangsheng Yin committed
882
883
884
885
        parser.add_argument(
            "--api-key",
            type=str,
            default=ServerArgs.api_key,
886
            help="Set API key of the server. It is also used in the OpenAI API compatible server.",
Liangsheng Yin's avatar
Liangsheng Yin committed
887
        )
888
        parser.add_argument(
889
            "--file-storage-path",
890
            type=str,
891
            default=ServerArgs.file_storage_path,
892
893
            help="The path of the file storage in backend.",
        )
894
895
896
897
898
        parser.add_argument(
            "--enable-cache-report",
            action="store_true",
            help="Return number of cached tokens in usage.prompt_tokens_details for each openai request.",
        )
Xihuai Wang's avatar
Xihuai Wang committed
899
900
901
902
903
904
905
        parser.add_argument(
            "--reasoning-parser",
            type=str,
            choices=list(ReasoningParser.DetectorMap.keys()),
            default=ServerArgs.reasoning_parser,
            help=f"Specify the parser for reasoning models, supported parsers are: {list(ReasoningParser.DetectorMap.keys())}.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
906

907
908
        # Data parallelism
        parser.add_argument(
909
            "--data-parallel-size",
910
911
912
            "--dp-size",
            type=int,
            default=ServerArgs.dp_size,
913
            help="The data parallelism size.",
914
915
916
917
918
        )
        parser.add_argument(
            "--load-balance-method",
            type=str,
            default=ServerArgs.load_balance_method,
919
            help="The load balancing strategy for data parallelism.",
920
921
922
923
924
            choices=[
                "round_robin",
                "shortest_queue",
            ],
        )
925

xiaobochen's avatar
xiaobochen committed
926
927
928
929
930
931
932
933
        # Expert parallelism
        parser.add_argument(
            "--expert-parallel-size",
            "--ep-size",
            type=int,
            default=ServerArgs.ep_size,
            help="The expert parallelism size.",
        )
934

935
        # Multi-node distributed serving
936
        parser.add_argument(
937
            "--dist-init-addr",
938
            "--nccl-init-addr",  # For backward compatibility. This will be removed in the future.
939
            type=str,
940
            help="The host address for initializing distributed backend (e.g., `192.168.0.2:25000`).",
941
942
        )
        parser.add_argument(
Liangsheng Yin's avatar
Liangsheng Yin committed
943
            "--nnodes", type=int, default=ServerArgs.nnodes, help="The number of nodes."
944
        )
945
946
947
        parser.add_argument(
            "--node-rank", type=int, default=ServerArgs.node_rank, help="The node rank."
        )
948

Lianmin Zheng's avatar
Lianmin Zheng committed
949
950
951
952
953
954
955
        # Model override args
        parser.add_argument(
            "--json-model-override-args",
            type=str,
            help="A dictionary in JSON string format used to override default model configurations.",
            default=ServerArgs.json_model_override_args,
        )
956
957
958
959
960
        parser.add_argument(
            "--preferred-sampling-params",
            type=str,
            help="json-formatted sampling settings that will be returned in /get_model_info",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
961

962
963
964
965
966
967
968
        # LoRA
        parser.add_argument(
            "--lora-paths",
            type=str,
            nargs="*",
            default=None,
            action=LoRAPathAction,
969
            help="The list of LoRA adapters. You can provide a list of either path in str or renamed path in the format {name}={path}.",
970
971
972
973
974
        )
        parser.add_argument(
            "--max-loras-per-batch",
            type=int,
            default=8,
975
976
977
978
979
980
981
            help="Maximum number of adapters for a running batch, include base-only request.",
        )
        parser.add_argument(
            "--lora-backend",
            type=str,
            default="triton",
            help="Choose the kernel backend for multi-LoRA serving.",
982
983
984
        )

        # Kernel backend
985
986
987
        parser.add_argument(
            "--attention-backend",
            type=str,
988
            choices=[
989
                "aiter",
990
991
992
993
994
995
996
                "flashinfer",
                "triton",
                "torch_native",
                "fa3",
                "flashmla",
                "cutlass_mla",
            ],
997
998
999
            default=ServerArgs.attention_backend,
            help="Choose the kernels for attention layers.",
        )
1000
1001
1002
1003
1004
1005
1006
        parser.add_argument(
            "--sampling-backend",
            type=str,
            choices=["flashinfer", "pytorch"],
            default=ServerArgs.sampling_backend,
            help="Choose the kernels for sampling layers.",
        )
1007
1008
1009
        parser.add_argument(
            "--grammar-backend",
            type=str,
1010
            choices=["xgrammar", "outlines", "llguidance", "none"],
1011
            default=ServerArgs.grammar_backend,
Lianmin Zheng's avatar
Lianmin Zheng committed
1012
            help="Choose the backend for grammar-guided decoding.",
1013
        )
1014
1015
        parser.add_argument(
            "--enable-flashinfer-mla",
1016
1017
            action=DeprecatedAction,
            help="--enable-flashinfer-mla is deprecated. Please use '--attention-backend flashinfer' instead.",
1018
        )
lukec's avatar
lukec committed
1019
1020
        parser.add_argument(
            "--enable-flashmla",
1021
1022
            action=DeprecatedAction,
            help="--enable-flashmla is deprecated. Please use '--attention-backend flashmla' instead.",
lukec's avatar
lukec committed
1023
        )
1024
1025
1026
1027
1028
        parser.add_argument(
            "--flashinfer-mla-disable-ragged",
            action="store_true",
            help="Not using ragged prefill wrapper when running flashinfer mla",
        )
1029

1030
1031
1032
1033
        # Speculative decoding
        parser.add_argument(
            "--speculative-algorithm",
            type=str,
James Liu's avatar
James Liu committed
1034
            choices=["EAGLE", "EAGLE3", "NEXTN"],
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
            help="Speculative algorithm.",
        )
        parser.add_argument(
            "--speculative-draft-model-path",
            type=str,
            help="The path of the draft model weights. This can be a local folder or a Hugging Face repo ID.",
        )
        parser.add_argument(
            "--speculative-num-steps",
            type=int,
            help="The number of steps sampled from draft model in Speculative Decoding.",
            default=ServerArgs.speculative_num_steps,
        )
        parser.add_argument(
            "--speculative-eagle-topk",
            type=int,
1051
            help="The number of tokens sampled from the draft model in eagle2 each step.",
1052
1053
            default=ServerArgs.speculative_eagle_topk,
        )
1054
1055
1056
        parser.add_argument(
            "--speculative-num-draft-tokens",
            type=int,
1057
            help="The number of tokens sampled from the draft model in Speculative Decoding.",
1058
1059
            default=ServerArgs.speculative_num_draft_tokens,
        )
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
        parser.add_argument(
            "--speculative-accept-threshold-single",
            type=float,
            help="Accept a draft token if its probability in the target model is greater than this threshold.",
            default=ServerArgs.speculative_accept_threshold_single,
        )
        parser.add_argument(
            "--speculative-accept-threshold-acc",
            type=float,
            help="The accept probability of a draft token is raised from its target probability p to min(1, p / threshold_acc).",
            default=ServerArgs.speculative_accept_threshold_acc,
        )
1072
1073
1074
1075
1076
1077
        parser.add_argument(
            "--speculative-token-map",
            type=str,
            help="The path of the draft model's small vocab table.",
            default=ServerArgs.speculative_token_map,
        )
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115

        # Double Sparsity
        parser.add_argument(
            "--enable-double-sparsity",
            action="store_true",
            help="Enable double sparsity attention",
        )
        parser.add_argument(
            "--ds-channel-config-path",
            type=str,
            default=ServerArgs.ds_channel_config_path,
            help="The path of the double sparsity channel config",
        )
        parser.add_argument(
            "--ds-heavy-channel-num",
            type=int,
            default=ServerArgs.ds_heavy_channel_num,
            help="The number of heavy channels in double sparsity attention",
        )
        parser.add_argument(
            "--ds-heavy-token-num",
            type=int,
            default=ServerArgs.ds_heavy_token_num,
            help="The number of heavy tokens in double sparsity attention",
        )
        parser.add_argument(
            "--ds-heavy-channel-type",
            type=str,
            default=ServerArgs.ds_heavy_channel_type,
            help="The type of heavy channels in double sparsity attention",
        )
        parser.add_argument(
            "--ds-sparse-decode-threshold",
            type=int,
            default=ServerArgs.ds_sparse_decode_threshold,
            help="The type of heavy channels in double sparsity attention",
        )

1116
        # Optimization/debug options
Liangsheng Yin's avatar
Liangsheng Yin committed
1117
        parser.add_argument(
Lianmin Zheng's avatar
Lianmin Zheng committed
1118
            "--disable-radix-cache",
Liangsheng Yin's avatar
Liangsheng Yin committed
1119
            action="store_true",
Ying Sheng's avatar
Ying Sheng committed
1120
            help="Disable RadixAttention for prefix caching.",
Liangsheng Yin's avatar
Liangsheng Yin committed
1121
        )
1122
1123
1124
        parser.add_argument(
            "--disable-cuda-graph",
            action="store_true",
1125
            help="Disable cuda graph.",
1126
        )
1127
        parser.add_argument(
1128
1129
            "--disable-cuda-graph-padding",
            action="store_true",
1130
            help="Disable cuda graph when padding is needed. Still uses cuda graph when padding is not needed.",
1131
        )
1132
1133
1134
1135
1136
        parser.add_argument(
            "--enable-nccl-nvls",
            action="store_true",
            help="Enable NCCL NVLS for prefill heavy requests when available.",
        )
1137
1138
1139
1140
1141
        parser.add_argument(
            "--enable-tokenizer-batch-encode",
            action="store_true",
            help="Enable batch tokenization for improved performance when processing multiple text inputs. Do not use with image inputs, pre-tokenized input_ids, or input_embeds.",
        )
1142
        parser.add_argument(
1143
            "--disable-outlines-disk-cache",
1144
            action="store_true",
1145
            help="Disable disk cache of outlines to avoid possible crashes related to file system or high concurrency.",
1146
        )
1147
1148
1149
1150
1151
        parser.add_argument(
            "--disable-custom-all-reduce",
            action="store_true",
            help="Disable the custom all-reduce kernel and fall back to NCCL.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1152
        parser.add_argument(
1153
            "--disable-overlap-schedule",
Lianmin Zheng's avatar
Lianmin Zheng committed
1154
            action="store_true",
1155
            help="Disable the overlap scheduler, which overlaps the CPU scheduler with GPU model worker.",
Lianmin Zheng's avatar
Lianmin Zheng committed
1156
        )
1157
1158
1159
        parser.add_argument(
            "--enable-mixed-chunk",
            action="store_true",
1160
            help="Enabling mixing prefill and decode in a batch when using chunked prefill.",
1161
        )
Ke Bao's avatar
Ke Bao committed
1162
1163
1164
        parser.add_argument(
            "--enable-dp-attention",
            action="store_true",
1165
            help="Enabling data parallelism for attention and tensor parallelism for FFN. The dp size should be equal to the tp size. Currently DeepSeek-V2 and Qwen 2/3 MoE models are supported.",
Ke Bao's avatar
Ke Bao committed
1166
        )
1167
1168
1169
1170
1171
        parser.add_argument(
            "--enable-dp-lm-head",
            action="store_true",
            help="Enable vocabulary parallel across the attention TP group to avoid all-gather across DP groups, optimizing performance under DP attention.",
        )
xiaobochen's avatar
xiaobochen committed
1172
1173
1174
        parser.add_argument(
            "--enable-ep-moe",
            action="store_true",
1175
            help="Enabling expert parallelism for moe. The ep size is equal to the tp size.",
xiaobochen's avatar
xiaobochen committed
1176
        )
1177
1178
1179
1180
1181
        parser.add_argument(
            "--enable-two-batch-overlap",
            action="store_true",
            help="Enabling two micro batches to overlap.",
        )
1182
1183
1184
        parser.add_argument(
            "--enable-torch-compile",
            action="store_true",
1185
1186
            help="Optimize the model with torch.compile. Experimental feature.",
        )
1187
        parser.add_argument(
1188
            "--torch-compile-max-bs",
1189
            type=int,
1190
            default=ServerArgs.torch_compile_max_bs,
1191
1192
            help="Set the maximum batch size when using torch compile.",
        )
1193
        parser.add_argument(
1194
            "--cuda-graph-max-bs",
1195
            type=int,
1196
            default=ServerArgs.cuda_graph_max_bs,
1197
            help="Set the maximum batch size for cuda graph. It will extend the cuda graph capture batch size to this value.",
1198
        )
1199
1200
1201
1202
        parser.add_argument(
            "--cuda-graph-bs",
            type=int,
            nargs="+",
1203
            help="Set the list of batch sizes for cuda graph.",
1204
        )
1205
1206
1207
1208
        parser.add_argument(
            "--torchao-config",
            type=str,
            default=ServerArgs.torchao_config,
1209
            help="Optimize the model with torchao. Experimental feature. Current choices are: int8dq, int8wo, int4wo-<group_size>, fp8wo, fp8dq-per_tensor, fp8dq-per_row",
1210
        )
1211
1212
1213
1214
1215
        parser.add_argument(
            "--enable-nan-detection",
            action="store_true",
            help="Enable the NaN detection for debugging purposes.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1216
        parser.add_argument(
1217
            "--enable-p2p-check",
Lianmin Zheng's avatar
Lianmin Zheng committed
1218
            action="store_true",
1219
            help="Enable P2P check for GPU access, otherwise the p2p access is allowed by default.",
Lianmin Zheng's avatar
Lianmin Zheng committed
1220
        )
1221
        parser.add_argument(
1222
            "--triton-attention-reduce-in-fp32",
1223
            action="store_true",
1224
            help="Cast the intermediate attention results to fp32 to avoid possible crashes related to fp16."
1225
            "This only affects Triton attention kernels.",
1226
        )
1227
1228
1229
1230
1231
1232
        parser.add_argument(
            "--triton-attention-num-kv-splits",
            type=int,
            default=ServerArgs.triton_attention_num_kv_splits,
            help="The number of KV splits in flash decoding Triton kernel. Larger value is better in longer context scenarios. The default value is 8.",
        )
1233
1234
1235
1236
1237
1238
1239
1240
        parser.add_argument(
            "--num-continuous-decode-steps",
            type=int,
            default=ServerArgs.num_continuous_decode_steps,
            help="Run multiple continuous decoding steps to reduce scheduling overhead. "
            "This can potentially increase throughput but may also increase time-to-first-token latency. "
            "The default value is 1, meaning only run one decoding step at a time.",
        )
1241
1242
1243
1244
1245
        parser.add_argument(
            "--delete-ckpt-after-loading",
            action="store_true",
            help="Delete the model checkpoint after loading the model.",
        )
1246
1247
1248
1249
1250
        parser.add_argument(
            "--enable-memory-saver",
            action="store_true",
            help="Allow saving memory using release_memory_occupation and resume_memory_occupation",
        )
1251
1252
1253
1254
1255
        parser.add_argument(
            "--allow-auto-truncate",
            action="store_true",
            help="Allow automatically truncating requests that exceed the maximum input length instead of returning an error.",
        )
1256
1257
1258
1259
1260
        parser.add_argument(
            "--enable-custom-logit-processor",
            action="store_true",
            help="Enable users to pass custom logit processors to the server (disabled by default for security)",
        )
YAMY's avatar
YAMY committed
1261
1262
1263
        parser.add_argument(
            "--tool-call-parser",
            type=str,
1264
            choices=["qwen25", "mistral", "llama3", "deepseekv3", "pythonic"],
YAMY's avatar
YAMY committed
1265
            default=ServerArgs.tool_call_parser,
1266
            help="Specify the parser for handling tool-call interactions. Options include: 'qwen25', 'mistral', 'llama3', 'deepseekv3', and 'pythonic'.",
YAMY's avatar
YAMY committed
1267
        )
1268
1269
1270
1271
1272
        parser.add_argument(
            "--enable-hierarchical-cache",
            action="store_true",
            help="Enable hierarchical cache",
        )
1273
1274
1275
1276
1277
1278
        parser.add_argument(
            "--hicache-ratio",
            type=float,
            default=ServerArgs.hicache_ratio,
            help="The ratio of the size of host KV cache memory pool to the size of device pool.",
        )
Zhiqiang Xie's avatar
Zhiqiang Xie committed
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
        parser.add_argument(
            "--hicache-size",
            type=int,
            default=ServerArgs.hicache_size,
            help="The size of host KV cache memory pool in gigabytes, which will override the hicache_ratio if set.",
        )
        parser.add_argument(
            "--hicache-write-policy",
            type=str,
            choices=["write_back", "write_through", "write_through_selective"],
            default=ServerArgs.hicache_write_policy,
            help="The write policy of hierarchical cache.",
        )
1292
1293
1294
1295
1296
        parser.add_argument(
            "--enable-deepep-moe",
            action="store_true",
            help="Enabling DeepEP MoE implementation for EP MoE.",
        )
1297
1298
1299
1300
1301
1302
        parser.add_argument(
            "--moe-dense-tp-size",
            type=int,
            default=ServerArgs.moe_dense_tp_size,
            help="TP size for MoE dense MLP layers. This flag is useful when, with large TP size, there are errors caused by weights in MLP layers having dimension smaller than the min dimension GEMM supports.",
        )
1303
1304
1305
1306
        parser.add_argument(
            "--deepep-mode",
            type=str,
            choices=["normal", "low_latency", "auto"],
1307
            default="auto",
1308
1309
            help="Select the mode when enable DeepEP MoE, could be `normal`, `low_latency` or `auto`. Default is `auto`, which means `low_latency` for decode batch and `normal` for prefill batch.",
        )
1310
1311
1312
1313
1314
1315
        parser.add_argument(
            "--ep-num-redundant-experts",
            type=int,
            default=ServerArgs.ep_num_redundant_experts,
            help="Allocate this number of redundant experts in expert parallel.",
        )
1316
1317
1318
1319
1320
1321
        parser.add_argument(
            "--ep-dispatch-algorithm",
            type=str,
            default=ServerArgs.ep_dispatch_algorithm,
            help="The algorithm to choose ranks for redundant experts in expert parallel.",
        )
1322
1323
1324
1325
1326
1327
        parser.add_argument(
            "--init-expert-location",
            type=str,
            default=ServerArgs.init_expert_location,
            help="Initial location of EP experts.",
        )
1328
1329
1330
1331
1332
        parser.add_argument(
            "--enable-eplb",
            action="store_true",
            help="Enable EPLB algorithm",
        )
1333
1334
1335
1336
1337
1338
        parser.add_argument(
            "--eplb-algorithm",
            type=str,
            default=ServerArgs.eplb_algorithm,
            help="Chosen EPLB algorithm",
        )
1339
1340
1341
1342
1343
1344
        parser.add_argument(
            "--eplb-rebalance-num-iterations",
            type=int,
            default=ServerArgs.eplb_rebalance_num_iterations,
            help="Number of iterations to automatically trigger a EPLB re-balance.",
        )
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
        parser.add_argument(
            "--expert-distribution-recorder-mode",
            type=str,
            default=ServerArgs.expert_distribution_recorder_mode,
            help="Mode of expert distribution recorder.",
        )
        parser.add_argument(
            "--expert-distribution-recorder-buffer-size",
            type=int,
            default=ServerArgs.expert_distribution_recorder_buffer_size,
            help="Circular buffer size of expert distribution recorder. Set to -1 to denote infinite buffer.",
        )
1357
1358
1359
1360
1361
        parser.add_argument(
            "--enable-expert-distribution-metrics",
            action="store_true",
            help="Enable logging metrics for expert balancedness",
        )
1362
1363
1364
1365
        parser.add_argument(
            "--deepep-config",
            type=str,
            default=ServerArgs.deepep_config,
1366
            help="Tuned DeepEP config suitable for your own cluster. It can be either a string with JSON content or a file path.",
1367
        )
1368

1369
1370
1371
        parser.add_argument(
            "--n-share-experts-fusion",
            type=int,
1372
            default=0,
1373
            help="The number of shared_experts need to be replicated to fuse with normal experts in deepseek v3/r1, "
1374
            "set it to tp_size can get best optimized performance. Note that for architectures with SM==90, we have enabled the shared experts fusion optimization by default for DeepSeek V3/R1, with n_share_experts_fusion automatically set to the TP size.",
1375
        )
1376
1377
1378
1379
1380
        parser.add_argument(
            "--disable-chunked-prefix-cache",
            action="store_true",
            help="Disable chunked prefix cache feature for deepseek, which should save overhead for short sequences.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1381
1382
1383
1384
1385
        parser.add_argument(
            "--disable-fast-image-processor",
            action="store_true",
            help="Adopt base image processor instead of fast image processor.",
        )
1386

1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
        # Server warmups
        parser.add_argument(
            "--warmups",
            type=str,
            required=False,
            help="Specify custom warmup functions (csv) to run before server starts eg. --warmups=warmup_name1,warmup_name2 "
            "will run the functions `warmup_name1` and `warmup_name2` specified in warmup.py before the server starts listening for requests",
        )

        # Debug tensor dumps
        parser.add_argument(
            "--debug-tensor-dump-output-folder",
            type=str,
            default=ServerArgs.debug_tensor_dump_output_folder,
            help="The output folder for dumping tensors.",
        )
        parser.add_argument(
            "--debug-tensor-dump-input-file",
            type=str,
            default=ServerArgs.debug_tensor_dump_input_file,
            help="The input filename for dumping tensors",
        )
        parser.add_argument(
            "--debug-tensor-dump-inject",
            type=str,
            default=ServerArgs.debug_tensor_dump_inject,
            help="Inject the outputs from jax as the input of every layer.",
        )

Byron Hsu's avatar
Byron Hsu committed
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
        # Disaggregation
        parser.add_argument(
            "--disaggregation-mode",
            type=str,
            default="null",
            choices=["null", "prefill", "decode"],
            help='Only used for PD disaggregation. "prefill" for prefill-only server, and "decode" for decode-only server. If not specified, it is not PD disaggregated',
        )
        parser.add_argument(
            "--disaggregation-bootstrap-port",
            type=int,
            default=ServerArgs.disaggregation_bootstrap_port,
            help="Bootstrap server port on the prefill server. Default is 8998.",
        )
1430
1431
1432
1433
        parser.add_argument(
            "--disaggregation-transfer-backend",
            type=str,
            default=ServerArgs.disaggregation_transfer_backend,
1434
            choices=["mooncake", "nixl"],
1435
1436
            help="The backend for disaggregation transfer. Default is mooncake.",
        )
1437
1438
1439
1440
        parser.add_argument(
            "--disaggregation-ib-device",
            type=str,
            default=ServerArgs.disaggregation_ib_device,
1441
1442
1443
            help="The InfiniBand devices for disaggregation transfer, accepts single device (e.g., --disaggregation-ib-device mlx5_0) "
            "or multiple comma-separated devices (e.g., --disaggregation-ib-device mlx5_0,mlx5_1). "
            "Default is None, which triggers automatic device detection when mooncake backend is enabled.",
1444
        )
1445
1446
1447
1448
1449
1450
        parser.add_argument(
            "--pdlb-url",
            type=str,
            default=None,
            help="The URL of the PD disaggregation load balancer. If set, the prefill/decode server will register with the load balancer.",
        )
Byron Hsu's avatar
Byron Hsu committed
1451

1452
1453
1454
1455
1456
1457
1458
1459
        parser.add_argument(
            "--mm-attention-backend",
            type=str,
            choices=["sdpa", "fa3", "triton_attn"],
            default=ServerArgs.mm_attention_backend,
            help="Set multimodal attention backend.",
        )

Lianmin Zheng's avatar
Lianmin Zheng committed
1460
1461
    @classmethod
    def from_cli_args(cls, args: argparse.Namespace):
1462
        args.tp_size = args.tensor_parallel_size
1463
        args.pp_size = args.pipeline_parallel_size
1464
        args.dp_size = args.data_parallel_size
xiaobochen's avatar
xiaobochen committed
1465
        args.ep_size = args.expert_parallel_size
Lianmin Zheng's avatar
Lianmin Zheng committed
1466
1467
1468
1469
        attrs = [attr.name for attr in dataclasses.fields(cls)]
        return cls(**{attr: getattr(args, attr) for attr in attrs})

    def url(self):
1470
        if is_valid_ipv6_address(self.host):
1471
1472
1473
            return f"http://[{self.host}]:{self.port}"
        else:
            return f"http://{self.host}:{self.port}"
Lianmin Zheng's avatar
Lianmin Zheng committed
1474

1475
1476
    def check_server_args(self):
        assert (
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
            self.tp_size * self.pp_size
        ) % self.nnodes == 0, "tp_size must be divisible by number of nodes"

        # FIXME pp constraints
        if self.pp_size > 1:
            assert (
                self.disable_overlap_schedule
                and self.speculative_algorithm is None
                and not self.enable_mixed_chunk
            ), "Pipeline parallelism is not compatible with overlap schedule, speculative decoding, mixed chunked prefill."

1488
        assert not (
1489
1490
            self.dp_size > 1 and self.nnodes != 1 and not self.enable_dp_attention
        ), "multi-node data parallel is not supported unless dp attention!"
1491
1492
1493
1494
        assert (
            self.max_loras_per_batch > 0
            # FIXME
            and (self.lora_paths is None or self.disable_radix_cache)
1495
        ), "compatibility of lora and radix attention is in progress"
1496
        assert self.base_gpu_id >= 0, "base_gpu_id must be non-negative"
1497
        assert self.gpu_id_step >= 1, "gpu_id_step must be positive"
1498

1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
        if isinstance(self.lora_paths, list):
            lora_paths = self.lora_paths
            self.lora_paths = {}
            for lora_path in lora_paths:
                if "=" in lora_path:
                    name, path = lora_path.split("=", 1)
                    self.lora_paths[name] = path
                else:
                    self.lora_paths[lora_path] = lora_path

Lianmin Zheng's avatar
Lianmin Zheng committed
1509

Lianmin Zheng's avatar
Lianmin Zheng committed
1510
def prepare_server_args(argv: List[str]) -> ServerArgs:
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
    """
    Prepare the server arguments from the command line arguments.

    Args:
        args: The command line arguments. Typically, it should be `sys.argv[1:]`
            to ensure compatibility with `parse_args` when no arguments are passed.

    Returns:
        The server arguments.
    """
    parser = argparse.ArgumentParser()
    ServerArgs.add_cli_args(parser)
Lianmin Zheng's avatar
Lianmin Zheng committed
1523
    raw_args = parser.parse_args(argv)
1524
1525
1526
1527
    server_args = ServerArgs.from_cli_args(raw_args)
    return server_args


1528
1529
1530
ZMQ_TCP_PORT_DELTA = 233


Lianmin Zheng's avatar
Lianmin Zheng committed
1531
1532
@dataclasses.dataclass
class PortArgs:
1533
1534
1535
1536
1537
1538
    # The ipc filename for tokenizer to receive inputs from detokenizer (zmq)
    tokenizer_ipc_name: str
    # The ipc filename for scheduler (rank 0) to receive inputs from tokenizer (zmq)
    scheduler_input_ipc_name: str
    # The ipc filename for detokenizer to receive inputs from scheduler (zmq)
    detokenizer_ipc_name: str
1539

1540
1541
    # The port for nccl initialization (torch.dist)
    nccl_port: int
1542

1543
1544
1545
    # The ipc filename for rpc call between Engine and Scheduler
    rpc_ipc_name: str

1546
    @staticmethod
1547
    def init_new(server_args, dp_rank: Optional[int] = None) -> "PortArgs":
1548
        port = server_args.port + random.randint(100, 1000)
1549
1550
1551
        while True:
            if is_port_available(port):
                break
TianYu GUO's avatar
TianYu GUO committed
1552
1553
1554
1555
            if port < 60000:
                port += 42
            else:
                port -= 43
1556

1557
1558
1559
1560
1561
1562
1563
        if not server_args.enable_dp_attention:
            # Normal case, use IPC within a single node
            return PortArgs(
                tokenizer_ipc_name=f"ipc://{tempfile.NamedTemporaryFile(delete=False).name}",
                scheduler_input_ipc_name=f"ipc://{tempfile.NamedTemporaryFile(delete=False).name}",
                detokenizer_ipc_name=f"ipc://{tempfile.NamedTemporaryFile(delete=False).name}",
                nccl_port=port,
1564
                rpc_ipc_name=f"ipc://{tempfile.NamedTemporaryFile(delete=False).name}",
1565
1566
1567
1568
1569
            )
        else:
            # DP attention. Use TCP + port to handle both single-node and multi-node.
            if server_args.nnodes == 1 and server_args.dist_init_addr is None:
                dist_init_addr = ("127.0.0.1", server_args.port + ZMQ_TCP_PORT_DELTA)
Vincent's avatar
Vincent committed
1570
1571
1572
            elif server_args.dist_init_addr.startswith("["):  # ipv6 address
                port_num, host = configure_ipv6(server_args.dist_init_addr)
                dist_init_addr = (host, str(port_num))
1573
1574
            else:
                dist_init_addr = server_args.dist_init_addr.split(":")
Vincent's avatar
Vincent committed
1575

1576
1577
1578
1579
1580
1581
1582
1583
            assert (
                len(dist_init_addr) == 2
            ), "please provide --dist-init-addr as host:port of head node"

            dist_init_host, dist_init_port = dist_init_addr
            port_base = int(dist_init_port) + 1
            if dp_rank is None:
                scheduler_input_port = (
1584
                    port_base + 3
1585
                )  # TokenizerManager to DataParallelController
1586
            else:
1587
                scheduler_input_port = port_base + 3 + 1 + dp_rank
1588
1589
1590
1591
1592
1593

            return PortArgs(
                tokenizer_ipc_name=f"tcp://{dist_init_host}:{port_base}",
                scheduler_input_ipc_name=f"tcp://{dist_init_host}:{scheduler_input_port}",
                detokenizer_ipc_name=f"tcp://{dist_init_host}:{port_base + 1}",
                nccl_port=port,
1594
                rpc_ipc_name=f"tcp://{dist_init_host}:{port_base + 2}",
1595
            )
1596

1597
1598
1599
1600
1601
1602
1603
1604
1605
1606

class LoRAPathAction(argparse.Action):
    def __call__(self, parser, namespace, values, option_string=None):
        setattr(namespace, self.dest, {})
        for lora_path in values:
            if "=" in lora_path:
                name, path = lora_path.split("=", 1)
                getattr(namespace, self.dest)[name] = path
            else:
                getattr(namespace, self.dest)[lora_path] = lora_path
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616


class DeprecatedAction(argparse.Action):
    def __init__(self, option_strings, dest, nargs=0, **kwargs):
        super(DeprecatedAction, self).__init__(
            option_strings, dest, nargs=nargs, **kwargs
        )

    def __call__(self, parser, namespace, values, option_string=None):
        raise ValueError(self.help)
1617
1618


1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
def get_model_arch(args: ServerArgs):
    hf_config = get_config(
        args.model_path,
        trust_remote_code=args.trust_remote_code,
        revision=args.revision,
        model_override_args=json.loads(args.json_model_override_args),
    )
    return hf_config.architectures[0]


def auto_choose_speculative_params(arch: str):
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
    """
    Automatically choose the parameters for speculative decoding.

    You can tune them on your own models and prompts with scripts/playground/bench_speculative.py
    """
    if arch in ["LlamaForCausalLM"]:
        # The default value for llama
        return (5, 4, 8)
    elif arch in ["DeepseekV3ForCausalLM", "DeepseekV2ForCausalLM"]:
        # The default value for deepseek
        return (5, 4, 8)
    elif arch in ["Grok1ForCausalLM", "Grok1VForCausalLM"]:
        return (5, 4, 8)
    else:
        # The default value for all other models
        return (5, 4, 8)