server_args.py 65.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
Lianmin Zheng's avatar
Lianmin Zheng committed
14
15
"""The arguments of the server."""

Lianmin Zheng's avatar
Lianmin Zheng committed
16
17
import argparse
import dataclasses
18
import json
19
import logging
20
import os
21
import random
22
import tempfile
23
from typing import List, Literal, Optional
Lianmin Zheng's avatar
Lianmin Zheng committed
24

25
from sglang.srt.hf_transformers_utils import check_gguf_file, get_config
Xihuai Wang's avatar
Xihuai Wang committed
26
from sglang.srt.reasoning_parser import ReasoningParser
27
from sglang.srt.utils import (
Vincent's avatar
Vincent committed
28
    configure_ipv6,
29
    get_device,
Lianmin Zheng's avatar
Lianmin Zheng committed
30
    get_device_memory_capacity,
31
    is_cuda,
32
    is_flashinfer_available,
HAI's avatar
HAI committed
33
    is_hip,
34
    is_port_available,
35
    is_remote_url,
36
    is_valid_ipv6_address,
bjmsong's avatar
bjmsong committed
37
    nullable_str,
38
)
39

40
41
logger = logging.getLogger(__name__)

Lianmin Zheng's avatar
Lianmin Zheng committed
42
43
44

@dataclasses.dataclass
class ServerArgs:
Lianmin Zheng's avatar
Lianmin Zheng committed
45
    # Model and tokenizer
Lianmin Zheng's avatar
Lianmin Zheng committed
46
47
48
    model_path: str
    tokenizer_path: Optional[str] = None
    tokenizer_mode: str = "auto"
49
    skip_tokenizer_init: bool = False
Lianmin Zheng's avatar
Lianmin Zheng committed
50
    load_format: str = "auto"
51
    trust_remote_code: bool = False
Lianmin Zheng's avatar
Lianmin Zheng committed
52
    dtype: str = "auto"
53
    kv_cache_dtype: str = "auto"
Lianmin Zheng's avatar
Lianmin Zheng committed
54
    quantization: Optional[str] = None
Vincent's avatar
Vincent committed
55
    quantization_param_path: Optional[str] = None
56
    context_length: Optional[int] = None
57
    device: Optional[str] = None
58
    served_model_name: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
59
    chat_template: Optional[str] = None
60
    completion_template: Optional[str] = None
61
    is_embedding: bool = False
62
    enable_multimodal: Optional[bool] = None
63
    revision: Optional[str] = None
64
    impl: str = "auto"
Lianmin Zheng's avatar
Lianmin Zheng committed
65

66
    # Port for the HTTP server
Lianmin Zheng's avatar
Lianmin Zheng committed
67
68
69
70
    host: str = "127.0.0.1"
    port: int = 30000

    # Memory and scheduling
Lianmin Zheng's avatar
Lianmin Zheng committed
71
    mem_fraction_static: Optional[float] = None
72
    max_running_requests: Optional[int] = None
73
    max_total_tokens: Optional[int] = None
74
    chunked_prefill_size: Optional[int] = None
75
    max_prefill_tokens: int = 16384
76
    schedule_policy: str = "fcfs"
77
    schedule_conservativeness: float = 1.0
78
    cpu_offload_gb: int = 0
79
    page_size: int = 1
Lianmin Zheng's avatar
Lianmin Zheng committed
80
81
82

    # Other runtime options
    tp_size: int = 1
83
84
    pp_size: int = 1
    max_micro_batch_size: Optional[int] = None
85
    stream_interval: int = 1
86
    stream_output: bool = False
87
    random_seed: Optional[int] = None
88
    constrained_json_whitespace_pattern: Optional[str] = None
89
    watchdog_timeout: float = 300
90
    dist_timeout: Optional[int] = None  # timeout for torch.distributed
91
    download_dir: Optional[str] = None
92
    base_gpu_id: int = 0
93
    gpu_id_step: int = 1
Lianmin Zheng's avatar
Lianmin Zheng committed
94
95
96

    # Logging
    log_level: str = "info"
97
    log_level_http: Optional[str] = None
98
    log_requests: bool = False
99
    log_requests_level: int = 0
Liangsheng Yin's avatar
Liangsheng Yin committed
100
    show_time_cost: bool = False
101
    enable_metrics: bool = False
102
103
104
105
    bucket_time_to_first_token: Optional[List[float]] = None
    bucket_e2e_request_latency: Optional[List[float]] = None
    bucket_inter_token_latency: Optional[List[float]] = None
    collect_tokens_histogram: bool = False
106
    decode_log_interval: int = 40
107
    enable_request_time_stats_logging: bool = False
108
    kv_events_config: Optional[str] = None
Liangsheng Yin's avatar
Liangsheng Yin committed
109

110
    # API related
111
    api_key: Optional[str] = None
112
    file_storage_path: str = "sglang_storage"
113
    enable_cache_report: bool = False
Xihuai Wang's avatar
Xihuai Wang committed
114
    reasoning_parser: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
115

116
117
118
    # Data parallelism
    dp_size: int = 1
    load_balance_method: str = "round_robin"
119

xiaobochen's avatar
xiaobochen committed
120
121
    # Expert parallelism
    ep_size: int = 1
122

123
    # Multi-node distributed serving
124
    dist_init_addr: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
125
    nnodes: int = 1
126
    node_rank: int = 0
Lianmin Zheng's avatar
Lianmin Zheng committed
127
128
129

    # Model override args in JSON
    json_model_override_args: str = "{}"
130
    preferred_sampling_params: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
131

132
133
134
    # LoRA
    lora_paths: Optional[List[str]] = None
    max_loras_per_batch: int = 8
135
    lora_backend: str = "triton"
136
137

    # Kernel backend
138
139
    attention_backend: Optional[str] = None
    sampling_backend: Optional[str] = None
140
    grammar_backend: Optional[str] = None
141

142
143
    # Speculative decoding
    speculative_algorithm: Optional[str] = None
144
    speculative_draft_model_path: Optional[str] = None
145
146
147
    speculative_num_steps: Optional[int] = None
    speculative_eagle_topk: Optional[int] = None
    speculative_num_draft_tokens: Optional[int] = None
148
149
    speculative_accept_threshold_single: float = 1.0
    speculative_accept_threshold_acc: float = 1.0
150
    speculative_token_map: Optional[str] = None
151
152
153

    # Double Sparsity
    enable_double_sparsity: bool = False
Vincent's avatar
Vincent committed
154
    ds_channel_config_path: Optional[str] = None
155
156
157
158
159
    ds_heavy_channel_num: int = 32
    ds_heavy_token_num: int = 256
    ds_heavy_channel_type: str = "qk"
    ds_sparse_decode_threshold: int = 4096

160
    # Optimization/debug options
Lianmin Zheng's avatar
Lianmin Zheng committed
161
    disable_radix_cache: bool = False
162
    disable_cuda_graph: bool = False
163
    disable_cuda_graph_padding: bool = False
164
    enable_nccl_nvls: bool = False
165
    enable_tokenizer_batch_encode: bool = False
166
    disable_outlines_disk_cache: bool = False
167
    disable_custom_all_reduce: bool = False
168
    enable_mscclpp: bool = False
169
    disable_overlap_schedule: bool = False
170
    enable_mixed_chunk: bool = False
Ke Bao's avatar
Ke Bao committed
171
    enable_dp_attention: bool = False
172
    enable_dp_lm_head: bool = False
173
    enable_two_batch_overlap: bool = False
xiaobochen's avatar
xiaobochen committed
174
    enable_ep_moe: bool = False
175
    enable_deepep_moe: bool = False
176
    deepep_mode: Optional[Literal["auto", "normal", "low_latency"]] = "auto"
177
    ep_num_redundant_experts: int = 0
178
    ep_dispatch_algorithm: Optional[Literal["static", "dynamic", "fake"]] = None
179
    init_expert_location: str = "trivial"
180
    enable_eplb: bool = False
181
    eplb_algorithm: str = "auto"
182
    eplb_rebalance_num_iterations: int = 1000
183
    eplb_rebalance_layers_per_chunk: Optional[int] = None
184
    expert_distribution_recorder_mode: Optional[
185
        Literal["stat", "stat_approx", "per_pass", "per_token"]
186
187
    ] = None
    expert_distribution_recorder_buffer_size: Optional[int] = None
188
    enable_expert_distribution_metrics: bool = False
189
    deepep_config: Optional[str] = None
190
    enable_torch_compile: bool = False
191
    torch_compile_max_bs: int = 32
192
    cuda_graph_max_bs: Optional[int] = None
193
    cuda_graph_bs: Optional[List[int]] = None
194
    torchao_config: str = ""
195
    enable_nan_detection: bool = False
196
    enable_p2p_check: bool = False
197
    triton_attention_reduce_in_fp32: bool = False
198
    triton_attention_num_kv_splits: int = 8
199
    num_continuous_decode_steps: int = 1
200
    delete_ckpt_after_loading: bool = False
201
    enable_memory_saver: bool = False
202
    allow_auto_truncate: bool = False
203
    enable_custom_logit_processor: bool = False
Vincent's avatar
Vincent committed
204
    tool_call_parser: Optional[str] = None
205
    enable_hierarchical_cache: bool = False
206
    hicache_ratio: float = 2.0
Zhiqiang Xie's avatar
Zhiqiang Xie committed
207
208
    hicache_size: int = 0
    hicache_write_policy: str = "write_through_selective"
209
    flashinfer_mla_disable_ragged: bool = False
210
    warmups: Optional[str] = None
211
    moe_dense_tp_size: Optional[int] = None
212
    disable_shared_experts_fusion: bool = False
213
    disable_chunked_prefix_cache: bool = False
Lianmin Zheng's avatar
Lianmin Zheng committed
214
    disable_fast_image_processor: bool = False
215
    mm_attention_backend: Optional[str] = None
216
217
218
219
220

    # Debug tensor dumps
    debug_tensor_dump_output_folder: Optional[str] = None
    debug_tensor_dump_input_file: Optional[str] = None
    debug_tensor_dump_inject: bool = False
221

Byron Hsu's avatar
Byron Hsu committed
222
223
224
    # For PD disaggregation: can be "null" (not disaggregated), "prefill" (prefill-only), or "decode" (decode-only)
    disaggregation_mode: str = "null"
    disaggregation_bootstrap_port: int = 8998
225
    disaggregation_transfer_backend: str = "mooncake"
226
    disaggregation_ib_device: Optional[str] = None
227
    pdlb_url: Optional[str] = None
Byron Hsu's avatar
Byron Hsu committed
228

Lianmin Zheng's avatar
Lianmin Zheng committed
229
    def __post_init__(self):
230
231
232
        # Expert parallelism
        if self.enable_ep_moe:
            self.ep_size = self.tp_size
Lianmin Zheng's avatar
Lianmin Zheng committed
233
            logger.warning(
234
235
236
                f"EP MoE is enabled. The expert parallel size is adjusted to be the same as the tensor parallel size[{self.tp_size}]."
            )

237
        # Set missing default values
Lianmin Zheng's avatar
Lianmin Zheng committed
238
239
        if self.tokenizer_path is None:
            self.tokenizer_path = self.model_path
240

241
242
243
        if self.device is None:
            self.device = get_device()

244
245
246
        if self.served_model_name is None:
            self.served_model_name = self.model_path

247
248
249
        if self.random_seed is None:
            self.random_seed = random.randint(0, 1 << 30)

Lianmin Zheng's avatar
Lianmin Zheng committed
250
        gpu_mem = get_device_memory_capacity(self.device)
251
252

        # Set mem fraction static, which depends on the tensor parallelism size
Lianmin Zheng's avatar
Lianmin Zheng committed
253
        if self.mem_fraction_static is None:
254
            parallel_size = self.tp_size * self.pp_size
Yi Liu's avatar
Yi Liu committed
255
            if gpu_mem is not None and gpu_mem <= 81920:
256
257
258
259
260
261
262
263
264
265
                if parallel_size >= 16:
                    self.mem_fraction_static = 0.79
                elif parallel_size >= 8:
                    self.mem_fraction_static = 0.81
                elif parallel_size >= 4:
                    self.mem_fraction_static = 0.85
                elif parallel_size >= 2:
                    self.mem_fraction_static = 0.87
                else:
                    self.mem_fraction_static = 0.88
Ying Sheng's avatar
Ying Sheng committed
266
            else:
267
                self.mem_fraction_static = 0.88
268
            if gpu_mem is not None and gpu_mem > 180 * 1000 and is_cuda():
269
270
                self.mem_fraction_static = 0.79
            elif gpu_mem is not None and gpu_mem > 96 * 1024:
271
                mem_fraction = self.mem_fraction_static
272
273
274
275
276
                # 15 GB + additional 3GB for cuda graph
                reserve_mem = 1024 * 18
                # need reserve more memory for spec cuda graph
                if self.speculative_algorithm is not None:
                    reserve_mem = 1024 * 20
277
278
                self.mem_fraction_static = min(
                    mem_fraction + 48 * 1024 * (1 - mem_fraction) / gpu_mem,
279
                    (gpu_mem - reserve_mem) / gpu_mem,
280
                )
281
282
283
            else:
                if self.speculative_algorithm is not None:
                    self.mem_fraction_static *= 0.95
284

285
286
        # Set chunked prefill size, which depends on the gpu memory capacity
        if self.chunked_prefill_size is None:
287
288
289
            if gpu_mem is not None and gpu_mem > 180_000:
                self.chunked_prefill_size = 16384
            elif gpu_mem is not None and gpu_mem < 25_000:
290
                self.chunked_prefill_size = 2048
291
292
            elif self.disaggregation_mode != "null":
                self.chunked_prefill_size = 16384
293
294
            else:
                self.chunked_prefill_size = 8192
Lianmin Zheng's avatar
Lianmin Zheng committed
295
296
        assert self.chunked_prefill_size % self.page_size == 0

297
298
299
        assert self.moe_dense_tp_size in {
            1,
            None,
Lianmin Zheng's avatar
Lianmin Zheng committed
300
        }, "moe_dense_tp_size only support 1 and None currently"
301

302
        if self.attention_backend == "flashmla":
303
304
305
306
            logger.warning(
                "FlashMLA only supports a page_size of 64, change page_size to 64."
            )
            self.page_size = 64
Lianmin Zheng's avatar
Lianmin Zheng committed
307

308
309
310
311
312
313
        if self.attention_backend == "cutlass_mla":
            logger.warning(
                "Cutlass MLA only supports a page_size of 128, change page_size to 128."
            )
            self.page_size = 128

314
        # Set cuda graph max batch size
315
        if self.cuda_graph_max_bs is None:
316
            # Based on detailed statistics, when serving TP1/TP2 models on lower-end GPUs with HBM<25G, you can either disable cuda graph or set `cuda_graph_max_bs` to a very small value to reduce the memory overhead of creating cuda graphs, with almost no impact on performance. However, when serving models with TP4 or TP8, we need to enable cuda graph to maintain high performance. In this case, we can set `cuda_graph_max_bs` to 80 (half of the default value 160) to reduce the memory overhead of creating cuda graphs. Looking at the logs from TP4 serving of qwen2-72b, a value of 80 is sufficient and can reduce the memory overhead of creating cuda graphs on lower-end GPUs compared to the original 160, avoiding OOM issues.
317
            if gpu_mem is not None and gpu_mem < 25_000:
318
319
320
321
                if self.tp_size < 4:
                    self.cuda_graph_max_bs = 8
                else:
                    self.cuda_graph_max_bs = 80
322

323
        # Set kernel backends for hpu device
324
325
326
327
        if self.device == "hpu":
            self.attention_backend = "torch_native"
            self.sampling_backend = "pytorch"

Lianmin Zheng's avatar
Lianmin Zheng committed
328
        # Set kernel backends
329
330
331
332
333
        if self.device == "cpu":
            if self.attention_backend is None:
                self.attention_backend = "intel_amx"
            self.sampling_backend = "pytorch"

334
        if self.sampling_backend is None:
335
336
337
338
339
            self.sampling_backend = (
                "flashinfer" if is_flashinfer_available() else "pytorch"
            )

        if self.attention_backend == "torch_native":
340
            logger.warning(
341
342
343
                "Cuda graph is disabled because of using torch native attention backend"
            )
            self.disable_cuda_graph = True
344

345
346
347
        # Choose grammar backend
        if self.grammar_backend is None:
            self.grammar_backend = "xgrammar"
348

349
        # Data parallelism attention
Ke Bao's avatar
Ke Bao committed
350
        if self.enable_dp_attention:
351
            self.schedule_conservativeness = self.schedule_conservativeness * 0.3
Lianmin Zheng's avatar
Lianmin Zheng committed
352
353
354
355
356
            assert (
                self.dp_size > 1
            ), "Please set a dp-size > 1. You can use 1 < dp-size <= tp-size "
            assert self.tp_size % self.dp_size == 0
            self.chunked_prefill_size = self.chunked_prefill_size // self.dp_size
357
            logger.warning(
358
                f"DP attention is enabled. The chunked prefill size is adjusted to {self.chunked_prefill_size} to avoid MoE kernel issues. "
359
            )
360

361
362
363
364
365
        if self.enable_dp_lm_head:
            assert (
                self.enable_dp_attention
            ), "Please enable dp attention when setting enable_dp_attention. "

366
        # DeepEP MoE
Lianmin Zheng's avatar
Lianmin Zheng committed
367
        self.enable_sp_layernorm = False
368
        if self.enable_deepep_moe:
369
370
371
372
            if self.deepep_mode == "auto":
                assert (
                    not self.enable_dp_attention
                ), "DeepEP MoE `auto` mode is not supported with DP Attention."
373
374
375
            if self.deepep_mode == "normal":
                logger.warning("Cuda graph is disabled because deepep_mode=`normal`")
                self.disable_cuda_graph = True
376
377
378
379
            self.ep_size = self.tp_size
            self.enable_sp_layernorm = (
                self.dp_size < self.tp_size if self.enable_dp_attention else True
            )
Lianmin Zheng's avatar
Lianmin Zheng committed
380
            logger.warning(
381
382
                f"DeepEP MoE is enabled. The expert parallel size is adjusted to be the same as the tensor parallel size[{self.tp_size}]."
            )
383

384
385
386
387
388
389
        if self.pp_size > 1:
            self.disable_overlap_schedule = True
            logger.warning(
                "Pipeline parallelism is incompatible with overlap schedule."
            )

390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
        if self.enable_eplb and (self.expert_distribution_recorder_mode is None):
            self.expert_distribution_recorder_mode = "stat"
            logger.info(
                f"EPLB is enabled. The expert_distribution_recorder_mode is automatically set."
            )

        if (self.enable_eplb or (self.init_expert_location is not None)) and (
            self.ep_dispatch_algorithm is None
        ):
            self.ep_dispatch_algorithm = "static"
            logger.info(
                f"EPLB is enabled or init_expert_location is provided. ep_dispatch_algorithm is configured."
            )

        if self.enable_expert_distribution_metrics and (
            self.expert_distribution_recorder_mode is None
        ):
            self.expert_distribution_recorder_mode = "stat"

409
        if self.expert_distribution_recorder_buffer_size is None:
410
411
            if (x := self.eplb_rebalance_num_iterations) is not None:
                self.expert_distribution_recorder_buffer_size = x
412
413
414
            elif self.expert_distribution_recorder_mode is not None:
                self.expert_distribution_recorder_buffer_size = 1000

415
        # Speculative Decoding
416
417
418
419
        if self.speculative_algorithm == "NEXTN":
            # NEXTN shares the same implementation of EAGLE
            self.speculative_algorithm = "EAGLE"

Lianmin Zheng's avatar
Lianmin Zheng committed
420
        if self.speculative_algorithm in ("EAGLE", "EAGLE3"):
421
            if self.max_running_requests is None:
422
                self.max_running_requests = 48
423
            self.disable_overlap_schedule = True
Lianmin Zheng's avatar
Lianmin Zheng committed
424
            logger.warning(
425
                "Overlap scheduler is disabled because of using "
426
                "eagle speculative decoding."
427
            )
428
429
430
431
432
433
            if self.enable_mixed_chunk:
                self.enable_mixed_chunk = False
                logger.warning(
                    "Mixed chunked prefill is disabled because of using "
                    "eagle speculative decoding."
                )
434

435
436
437
            model_arch = get_model_arch(self)

            # Auto set draft_model_path DeepSeek-V3/R1
438
439
440
441
442
443
444
            if model_arch == "DeepseekV3ForCausalLM":
                if self.speculative_draft_model_path is None:
                    self.speculative_draft_model_path = self.model_path
                else:
                    logger.warning(
                        "DeepSeek MTP does not require setting speculative_draft_model_path."
                    )
445

446
447
448
449
450
451
452
453
454
455
            # Auto choose parameters
            if self.speculative_num_steps is None:
                assert (
                    self.speculative_eagle_topk is None
                    and self.speculative_num_draft_tokens is None
                )
                (
                    self.speculative_num_steps,
                    self.speculative_eagle_topk,
                    self.speculative_num_draft_tokens,
456
                ) = auto_choose_speculative_params(self)
457
458
459

            if self.page_size > 1 and self.speculative_eagle_topk > 1:
                self.speculative_eagle_topk = 1
Lianmin Zheng's avatar
Lianmin Zheng committed
460
                logger.warning(
461
462
463
464
465
466
467
                    "speculative_eagle_topk is adjusted to 1 when page_size > 1"
                )

            if (
                self.speculative_eagle_topk == 1
                and self.speculative_num_draft_tokens != self.speculative_num_steps + 1
            ):
Lianmin Zheng's avatar
Lianmin Zheng committed
468
                logger.warning(
469
470
471
                    "speculative_num_draft_tokens is adjusted to speculative_num_steps + 1 when speculative_eagle_topk == 1"
                )
                self.speculative_num_draft_tokens = self.speculative_num_steps + 1
472

473
            # The token generated from the verify step is counted.
474
            # If sepculative_num_steps >= speculative_num_draft_tokens, the additional tokens will definitely be discarded.
475
            # assert self.speculative_num_steps < self.speculative_num_draft_tokens
476

477
478
479
480
481
482
        # GGUF
        if (
            self.load_format == "auto" or self.load_format == "gguf"
        ) and check_gguf_file(self.model_path):
            self.quantization = self.load_format = "gguf"

483
484
485
        if is_remote_url(self.model_path):
            self.load_format = "remote"

486
487
488
489
        # AMD-specific Triton attention KV splits default number
        if is_hip():
            self.triton_attention_num_kv_splits = 16

Byron Hsu's avatar
Byron Hsu committed
490
491
492
        # PD disaggregation
        if self.disaggregation_mode == "prefill":
            self.disable_cuda_graph = True
493
            logger.warning("Cuda graph is disabled for prefill server")
Byron Hsu's avatar
Byron Hsu committed
494
495
        elif self.disaggregation_mode == "decode":
            self.disable_radix_cache = True
496
            logger.warning("KV cache is forced as chunk cache for decode server")
Byron Hsu's avatar
Byron Hsu committed
497

498
499
500
        os.environ["SGLANG_ENABLE_TORCH_COMPILE"] = (
            "1" if self.enable_torch_compile else "0"
        )
501
502
503
504
        # Set env var before grammar backends init
        os.environ["SGLANG_DISABLE_OUTLINES_DISK_CACHE"] = (
            "1" if self.disable_outlines_disk_cache else "0"
        )
505

Lianmin Zheng's avatar
Lianmin Zheng committed
506
507
    @staticmethod
    def add_cli_args(parser: argparse.ArgumentParser):
508
        # Model and port args
Lianmin Zheng's avatar
Lianmin Zheng committed
509
510
511
512
513
514
515
516
517
518
519
520
        parser.add_argument(
            "--model-path",
            type=str,
            help="The path of the model weights. This can be a local folder or a Hugging Face repo ID.",
            required=True,
        )
        parser.add_argument(
            "--tokenizer-path",
            type=str,
            default=ServerArgs.tokenizer_path,
            help="The path of the tokenizer.",
        )
Yuanhan Zhang's avatar
Yuanhan Zhang committed
521
522
523
524
525
526
        parser.add_argument(
            "--host", type=str, default=ServerArgs.host, help="The host of the server."
        )
        parser.add_argument(
            "--port", type=int, default=ServerArgs.port, help="The port of the server."
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
527
528
529
530
531
532
533
534
535
        parser.add_argument(
            "--tokenizer-mode",
            type=str,
            default=ServerArgs.tokenizer_mode,
            choices=["auto", "slow"],
            help="Tokenizer mode. 'auto' will use the fast "
            "tokenizer if available, and 'slow' will "
            "always use the slow tokenizer.",
        )
536
537
538
        parser.add_argument(
            "--skip-tokenizer-init",
            action="store_true",
539
            help="If set, skip init tokenizer and pass input_ids in generate request.",
540
        )
541
        parser.add_argument(
Lianmin Zheng's avatar
Lianmin Zheng committed
542
543
544
            "--load-format",
            type=str,
            default=ServerArgs.load_format,
545
546
547
548
549
550
            choices=[
                "auto",
                "pt",
                "safetensors",
                "npcache",
                "dummy",
551
                "sharded_state",
552
553
                "gguf",
                "bitsandbytes",
554
                "layered",
555
                "remote",
556
            ],
Lianmin Zheng's avatar
Lianmin Zheng committed
557
558
559
560
561
562
563
564
565
            help="The format of the model weights to load. "
            '"auto" will try to load the weights in the safetensors format '
            "and fall back to the pytorch bin format if safetensors format "
            "is not available. "
            '"pt" will load the weights in the pytorch bin format. '
            '"safetensors" will load the weights in the safetensors format. '
            '"npcache" will load the weights in pytorch format and store '
            "a numpy cache to speed up the loading. "
            '"dummy" will initialize the weights with random values, '
566
            "which is mainly for profiling."
567
568
            '"gguf" will load the weights in the gguf format. '
            '"bitsandbytes" will load the weights using bitsandbytes '
569
570
571
572
            "quantization."
            '"layered" loads weights layer by layer so that one can quantize a '
            "layer before loading another to make the peak memory envelope "
            "smaller.",
Lianmin Zheng's avatar
Lianmin Zheng committed
573
        )
574
575
576
577
578
        parser.add_argument(
            "--trust-remote-code",
            action="store_true",
            help="Whether or not to allow for custom models defined on the Hub in their own modeling files.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
579
        parser.add_argument(
Lianmin Zheng's avatar
Lianmin Zheng committed
580
            "--dtype",
Cody Yu's avatar
Cody Yu committed
581
            type=str,
Lianmin Zheng's avatar
Lianmin Zheng committed
582
            default=ServerArgs.dtype,
Ying Sheng's avatar
Ying Sheng committed
583
584
            choices=["auto", "half", "float16", "bfloat16", "float", "float32"],
            help="Data type for model weights and activations.\n\n"
Lianmin Zheng's avatar
Lianmin Zheng committed
585
            '* "auto" will use FP16 precision for FP32 and FP16 models, and '
Ying Sheng's avatar
Ying Sheng committed
586
            "BF16 precision for BF16 models.\n"
Lianmin Zheng's avatar
Lianmin Zheng committed
587
588
589
590
            '* "half" for FP16. Recommended for AWQ quantization.\n'
            '* "float16" is the same as "half".\n'
            '* "bfloat16" for a balance between precision and range.\n'
            '* "float" is shorthand for FP32 precision.\n'
Ying Sheng's avatar
Ying Sheng committed
591
592
            '* "float32" for FP32 precision.',
        )
593
594
595
596
        parser.add_argument(
            "--kv-cache-dtype",
            type=str,
            default=ServerArgs.kv_cache_dtype,
bjmsong's avatar
bjmsong committed
597
598
599
            choices=["auto", "fp8_e5m2", "fp8_e4m3"],
            help='Data type for kv cache storage. "auto" will use model data type. "fp8_e5m2" and "fp8_e4m3" is supported for CUDA 11.8+.',
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
600
601
602
603
        parser.add_argument(
            "--quantization",
            type=str,
            default=ServerArgs.quantization,
Ying Sheng's avatar
Ying Sheng committed
604
605
606
607
608
609
            choices=[
                "awq",
                "fp8",
                "gptq",
                "marlin",
                "gptq_marlin",
Ying Sheng's avatar
Ying Sheng committed
610
                "awq_marlin",
Ying Sheng's avatar
Ying Sheng committed
611
                "bitsandbytes",
612
                "gguf",
613
                "modelopt",
614
                "modelopt_fp4",
615
                "w8a8_int8",
HandH1998's avatar
HandH1998 committed
616
                "w8a8_fp8",
AniZpZ's avatar
AniZpZ committed
617
                "moe_wna16",
HandH1998's avatar
HandH1998 committed
618
                "qoq",
Ying Sheng's avatar
Ying Sheng committed
619
            ],
Lianmin Zheng's avatar
Lianmin Zheng committed
620
621
            help="The quantization method.",
        )
622
623
624
625
626
627
628
629
630
        parser.add_argument(
            "--quantization-param-path",
            type=nullable_str,
            default=None,
            help="Path to the JSON file containing the KV cache "
            "scaling factors. This should generally be supplied, when "
            "KV cache dtype is FP8. Otherwise, KV cache scaling factors "
            "default to 1.0, which may cause accuracy issues. ",
        )
631
632
633
634
635
636
637
638
639
        parser.add_argument(
            "--context-length",
            type=int,
            default=ServerArgs.context_length,
            help="The model's maximum context length. Defaults to None (will use the value from the model's config.json instead).",
        )
        parser.add_argument(
            "--device",
            type=str,
640
            default=ServerArgs.device,
641
            help="The device to use ('cuda', 'xpu', 'hpu', 'npu', 'cpu'). Defaults to auto-detection if not specified.",
642
        )
643
644
645
646
647
648
        parser.add_argument(
            "--served-model-name",
            type=str,
            default=ServerArgs.served_model_name,
            help="Override the model name returned by the v1/models endpoint in OpenAI API server.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
649
650
651
652
653
654
        parser.add_argument(
            "--chat-template",
            type=str,
            default=ServerArgs.chat_template,
            help="The buliltin chat template name or the path of the chat template file. This is only used for OpenAI-compatible API server.",
        )
655
656
657
658
659
660
        parser.add_argument(
            "--completion-template",
            type=str,
            default=ServerArgs.completion_template,
            help="The buliltin completion template name or the path of the completion template file. This is only used for OpenAI-compatible API server. only for code completion currently.",
        )
661
662
663
664
665
        parser.add_argument(
            "--is-embedding",
            action="store_true",
            help="Whether to use a CausalLM as an embedding model.",
        )
666
667
668
669
670
671
        parser.add_argument(
            "--enable-multimodal",
            default=ServerArgs.enable_multimodal,
            action="store_true",
            help="Enable the multimodal functionality for the served model. If the model being served is not multimodal, nothing will happen",
        )
672
673
674
675
676
677
678
679
        parser.add_argument(
            "--revision",
            type=str,
            default=None,
            help="The specific model version to use. It can be a branch "
            "name, a tag name, or a commit id. If unspecified, will use "
            "the default version.",
        )
680

681
        # Memory and scheduling
Lianmin Zheng's avatar
Lianmin Zheng committed
682
683
684
685
        parser.add_argument(
            "--mem-fraction-static",
            type=float,
            default=ServerArgs.mem_fraction_static,
686
            help="The fraction of the memory used for static allocation (model weights and KV cache memory pool). Use a smaller value if you see out-of-memory errors.",
Lianmin Zheng's avatar
Lianmin Zheng committed
687
        )
688
689
690
691
692
693
        parser.add_argument(
            "--max-running-requests",
            type=int,
            default=ServerArgs.max_running_requests,
            help="The maximum number of running requests.",
        )
694
695
696
697
        parser.add_argument(
            "--max-total-tokens",
            type=int,
            default=ServerArgs.max_total_tokens,
698
699
            help="The maximum number of tokens in the memory pool. If not specified, it will be automatically calculated based on the memory usage fraction. "
            "This option is typically used for development and debugging purposes.",
700
        )
701
702
703
704
        parser.add_argument(
            "--chunked-prefill-size",
            type=int,
            default=ServerArgs.chunked_prefill_size,
705
            help="The maximum number of tokens in a chunk for the chunked prefill. Setting this to -1 means disabling chunked prefill.",
706
707
708
709
710
711
712
        )
        parser.add_argument(
            "--max-prefill-tokens",
            type=int,
            default=ServerArgs.max_prefill_tokens,
            help="The maximum number of tokens in a prefill batch. The real bound will be the maximum of this value and the model's maximum context length.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
713
        parser.add_argument(
714
            "--schedule-policy",
Lianmin Zheng's avatar
Lianmin Zheng committed
715
            type=str,
716
            default=ServerArgs.schedule_policy,
Liangsheng Yin's avatar
Liangsheng Yin committed
717
            choices=["lpm", "random", "fcfs", "dfs-weight"],
718
            help="The scheduling policy of the requests.",
Lianmin Zheng's avatar
Lianmin Zheng committed
719
        )
720
721
722
723
        parser.add_argument(
            "--schedule-conservativeness",
            type=float,
            default=ServerArgs.schedule_conservativeness,
724
            help="How conservative the schedule policy is. A larger value means more conservative scheduling. Use a larger value if you see requests being retracted frequently.",
725
        )
726
727
728
729
        parser.add_argument(
            "--cpu-offload-gb",
            type=int,
            default=ServerArgs.cpu_offload_gb,
730
            help="How many GBs of RAM to reserve for CPU offloading.",
731
        )
732
733
734
735
736
737
        parser.add_argument(
            "--page-size",
            type=int,
            default=ServerArgs.page_size,
            help="The number of tokens in a page.",
        )
738
739
740
741
742
743
744
745
746
747
748
749
        parser.add_argument(
            "--impl",
            type=str,
            default=ServerArgs.impl,
            help="Which implementation of the model to use.\n\n"
            '* "auto" will try to use the SGLang implementation if it exists '
            "and fall back to the Transformers implementation if no SGLang "
            "implementation is available.\n"
            '* "sglang" will use the SGLang model implementation.\n'
            '* "transformers" will use the Transformers model '
            "implementation.\n",
        )
750

751
        # Other runtime options
Lianmin Zheng's avatar
Lianmin Zheng committed
752
        parser.add_argument(
753
            "--tensor-parallel-size",
Lianmin Zheng's avatar
Lianmin Zheng committed
754
            "--tp-size",
Lianmin Zheng's avatar
Lianmin Zheng committed
755
            type=int,
Lianmin Zheng's avatar
Lianmin Zheng committed
756
            default=ServerArgs.tp_size,
757
            help="The tensor parallelism size.",
758
        )
759
760
761
762
763
764
765
766
767
768
769
770
771
        parser.add_argument(
            "--pipeline-parallel-size",
            "--pp-size",
            type=int,
            default=ServerArgs.pp_size,
            help="The pipeline parallelism size.",
        )
        parser.add_argument(
            "--max-micro-batch-size",
            type=int,
            default=ServerArgs.max_micro_batch_size,
            help="The maximum micro batch size in pipeline parallelism.",
        )
772
773
774
        parser.add_argument(
            "--stream-interval",
            type=int,
Lianmin Zheng's avatar
Lianmin Zheng committed
775
            default=ServerArgs.stream_interval,
776
            help="The interval (or buffer size) for streaming in terms of the token length. A smaller value makes streaming smoother, while a larger value makes the throughput higher",
777
        )
778
779
780
781
782
        parser.add_argument(
            "--stream-output",
            action="store_true",
            help="Whether to output as a sequence of disjoint segments.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
783
784
785
786
        parser.add_argument(
            "--random-seed",
            type=int,
            default=ServerArgs.random_seed,
787
            help="The random seed.",
Lianmin Zheng's avatar
Lianmin Zheng committed
788
        )
789
790
791
792
793
794
        parser.add_argument(
            "--constrained-json-whitespace-pattern",
            type=str,
            default=ServerArgs.constrained_json_whitespace_pattern,
            help=r"Regex pattern for syntactic whitespaces allowed in JSON constrained output. For example, to allow the model generate consecutive whitespaces, set the pattern to [\n\t ]*",
        )
795
796
797
798
799
800
        parser.add_argument(
            "--watchdog-timeout",
            type=float,
            default=ServerArgs.watchdog_timeout,
            help="Set watchdog timeout in seconds. If a forward batch takes longer than this, the server will crash to prevent hanging.",
        )
801
802
803
804
805
806
        parser.add_argument(
            "--dist-timeout",
            type=int,
            default=ServerArgs.dist_timeout,
            help="Set timeout for torch.distributed initialization.",
        )
807
808
809
810
        parser.add_argument(
            "--download-dir",
            type=str,
            default=ServerArgs.download_dir,
811
            help="Model download directory for huggingface.",
812
        )
813
814
815
816
817
818
        parser.add_argument(
            "--base-gpu-id",
            type=int,
            default=ServerArgs.base_gpu_id,
            help="The base GPU ID to start allocating GPUs from. Useful when running multiple instances on the same machine.",
        )
819
820
821
822
823
824
        parser.add_argument(
            "--gpu-id-step",
            type=int,
            default=ServerArgs.gpu_id_step,
            help="The delta between consecutive GPU IDs that are used. For example, setting it to 2 will use GPU 0,2,4,...",
        )
825
826

        # Logging
Lianmin Zheng's avatar
Lianmin Zheng committed
827
828
829
830
        parser.add_argument(
            "--log-level",
            type=str,
            default=ServerArgs.log_level,
831
            help="The logging level of all loggers.",
Lianmin Zheng's avatar
Lianmin Zheng committed
832
        )
833
        parser.add_argument(
834
835
836
837
            "--log-level-http",
            type=str,
            default=ServerArgs.log_level_http,
            help="The logging level of HTTP server. If not set, reuse --log-level by default.",
838
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
839
        parser.add_argument(
840
            "--log-requests",
Lianmin Zheng's avatar
Lianmin Zheng committed
841
            action="store_true",
842
843
844
845
846
847
848
849
            help="Log metadata, inputs, outputs of all requests. The verbosity is decided by --log-requests-level",
        )
        parser.add_argument(
            "--log-requests-level",
            type=int,
            default=0,
            help="0: Log metadata. 1. Log metadata and partial input/output. 2. Log every input/output.",
            choices=[0, 1, 2],
Lianmin Zheng's avatar
Lianmin Zheng committed
850
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
851
852
853
        parser.add_argument(
            "--show-time-cost",
            action="store_true",
Ying Sheng's avatar
Ying Sheng committed
854
            help="Show time cost of custom marks.",
Lianmin Zheng's avatar
Lianmin Zheng committed
855
        )
856
857
858
859
860
        parser.add_argument(
            "--enable-metrics",
            action="store_true",
            help="Enable log prometheus metrics.",
        )
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
        parser.add_argument(
            "--bucket-time-to-first-token",
            type=float,
            nargs="+",
            default=ServerArgs.bucket_time_to_first_token,
            help="The buckets of time to first token, specified as a list of floats.",
        )
        parser.add_argument(
            "--bucket-inter-token-latency",
            type=float,
            nargs="+",
            default=ServerArgs.bucket_inter_token_latency,
            help="The buckets of inter-token latency, specified as a list of floats.",
        )
        parser.add_argument(
            "--bucket-e2e-request-latency",
            type=float,
            nargs="+",
            default=ServerArgs.bucket_e2e_request_latency,
            help="The buckets of end-to-end request latency, specified as a list of floats.",
        )
        parser.add_argument(
            "--collect-tokens-histogram",
            action="store_true",
            default=ServerArgs.collect_tokens_histogram,
            help="Collect prompt/generation tokens histogram.",
        )
888
889
890
891
892
893
        parser.add_argument(
            "--kv-events-config",
            type=str,
            default=None,
            help="Config in json format for NVIDIA dynamo KV event publishing. Publishing will be enabled if this flag is used.",
        )
894
895
896
897
        parser.add_argument(
            "--decode-log-interval",
            type=int,
            default=ServerArgs.decode_log_interval,
898
            help="The log interval of decode batch.",
899
        )
900
901
902
903
904
905
        parser.add_argument(
            "--enable-request-time-stats-logging",
            action="store_true",
            default=ServerArgs.enable_request_time_stats_logging,
            help="Enable per request time stats logging",
        )
906

907
        # API related
Liangsheng Yin's avatar
Liangsheng Yin committed
908
909
910
911
        parser.add_argument(
            "--api-key",
            type=str,
            default=ServerArgs.api_key,
912
            help="Set API key of the server. It is also used in the OpenAI API compatible server.",
Liangsheng Yin's avatar
Liangsheng Yin committed
913
        )
914
        parser.add_argument(
915
            "--file-storage-path",
916
            type=str,
917
            default=ServerArgs.file_storage_path,
918
919
            help="The path of the file storage in backend.",
        )
920
921
922
923
924
        parser.add_argument(
            "--enable-cache-report",
            action="store_true",
            help="Return number of cached tokens in usage.prompt_tokens_details for each openai request.",
        )
Xihuai Wang's avatar
Xihuai Wang committed
925
926
927
928
929
930
931
        parser.add_argument(
            "--reasoning-parser",
            type=str,
            choices=list(ReasoningParser.DetectorMap.keys()),
            default=ServerArgs.reasoning_parser,
            help=f"Specify the parser for reasoning models, supported parsers are: {list(ReasoningParser.DetectorMap.keys())}.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
932

933
934
        # Data parallelism
        parser.add_argument(
935
            "--data-parallel-size",
936
937
938
            "--dp-size",
            type=int,
            default=ServerArgs.dp_size,
939
            help="The data parallelism size.",
940
941
942
943
944
        )
        parser.add_argument(
            "--load-balance-method",
            type=str,
            default=ServerArgs.load_balance_method,
945
            help="The load balancing strategy for data parallelism.",
946
947
948
949
950
            choices=[
                "round_robin",
                "shortest_queue",
            ],
        )
951

xiaobochen's avatar
xiaobochen committed
952
953
954
955
956
957
958
959
        # Expert parallelism
        parser.add_argument(
            "--expert-parallel-size",
            "--ep-size",
            type=int,
            default=ServerArgs.ep_size,
            help="The expert parallelism size.",
        )
960

961
        # Multi-node distributed serving
962
        parser.add_argument(
963
            "--dist-init-addr",
964
            "--nccl-init-addr",  # For backward compatibility. This will be removed in the future.
965
            type=str,
966
            help="The host address for initializing distributed backend (e.g., `192.168.0.2:25000`).",
967
968
        )
        parser.add_argument(
Liangsheng Yin's avatar
Liangsheng Yin committed
969
            "--nnodes", type=int, default=ServerArgs.nnodes, help="The number of nodes."
970
        )
971
972
973
        parser.add_argument(
            "--node-rank", type=int, default=ServerArgs.node_rank, help="The node rank."
        )
974

Lianmin Zheng's avatar
Lianmin Zheng committed
975
976
977
978
979
980
981
        # Model override args
        parser.add_argument(
            "--json-model-override-args",
            type=str,
            help="A dictionary in JSON string format used to override default model configurations.",
            default=ServerArgs.json_model_override_args,
        )
982
983
984
985
986
        parser.add_argument(
            "--preferred-sampling-params",
            type=str,
            help="json-formatted sampling settings that will be returned in /get_model_info",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
987

988
989
990
991
992
993
994
        # LoRA
        parser.add_argument(
            "--lora-paths",
            type=str,
            nargs="*",
            default=None,
            action=LoRAPathAction,
995
            help="The list of LoRA adapters. You can provide a list of either path in str or renamed path in the format {name}={path}.",
996
997
998
999
1000
        )
        parser.add_argument(
            "--max-loras-per-batch",
            type=int,
            default=8,
1001
1002
1003
1004
1005
1006
1007
            help="Maximum number of adapters for a running batch, include base-only request.",
        )
        parser.add_argument(
            "--lora-backend",
            type=str,
            default="triton",
            help="Choose the kernel backend for multi-LoRA serving.",
1008
1009
1010
        )

        # Kernel backend
1011
1012
1013
        parser.add_argument(
            "--attention-backend",
            type=str,
1014
            choices=[
1015
                "aiter",
1016
                "cutlass_mla",
1017
                "fa3",
1018
                "flashinfer",
1019
                "flashmla",
1020
                "intel_amx",
1021
1022
                "torch_native",
                "triton",
1023
            ],
1024
1025
1026
            default=ServerArgs.attention_backend,
            help="Choose the kernels for attention layers.",
        )
1027
1028
1029
1030
1031
1032
1033
        parser.add_argument(
            "--sampling-backend",
            type=str,
            choices=["flashinfer", "pytorch"],
            default=ServerArgs.sampling_backend,
            help="Choose the kernels for sampling layers.",
        )
1034
1035
1036
        parser.add_argument(
            "--grammar-backend",
            type=str,
1037
            choices=["xgrammar", "outlines", "llguidance", "none"],
1038
            default=ServerArgs.grammar_backend,
Lianmin Zheng's avatar
Lianmin Zheng committed
1039
            help="Choose the backend for grammar-guided decoding.",
1040
        )
1041
1042
        parser.add_argument(
            "--enable-flashinfer-mla",
1043
1044
            action=DeprecatedAction,
            help="--enable-flashinfer-mla is deprecated. Please use '--attention-backend flashinfer' instead.",
1045
        )
lukec's avatar
lukec committed
1046
1047
        parser.add_argument(
            "--enable-flashmla",
1048
1049
            action=DeprecatedAction,
            help="--enable-flashmla is deprecated. Please use '--attention-backend flashmla' instead.",
lukec's avatar
lukec committed
1050
        )
1051
1052
1053
1054
1055
        parser.add_argument(
            "--flashinfer-mla-disable-ragged",
            action="store_true",
            help="Not using ragged prefill wrapper when running flashinfer mla",
        )
1056

1057
1058
1059
1060
        # Speculative decoding
        parser.add_argument(
            "--speculative-algorithm",
            type=str,
James Liu's avatar
James Liu committed
1061
            choices=["EAGLE", "EAGLE3", "NEXTN"],
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
            help="Speculative algorithm.",
        )
        parser.add_argument(
            "--speculative-draft-model-path",
            type=str,
            help="The path of the draft model weights. This can be a local folder or a Hugging Face repo ID.",
        )
        parser.add_argument(
            "--speculative-num-steps",
            type=int,
            help="The number of steps sampled from draft model in Speculative Decoding.",
            default=ServerArgs.speculative_num_steps,
        )
        parser.add_argument(
            "--speculative-eagle-topk",
            type=int,
1078
            help="The number of tokens sampled from the draft model in eagle2 each step.",
1079
1080
            default=ServerArgs.speculative_eagle_topk,
        )
1081
1082
1083
        parser.add_argument(
            "--speculative-num-draft-tokens",
            type=int,
1084
            help="The number of tokens sampled from the draft model in Speculative Decoding.",
1085
1086
            default=ServerArgs.speculative_num_draft_tokens,
        )
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
        parser.add_argument(
            "--speculative-accept-threshold-single",
            type=float,
            help="Accept a draft token if its probability in the target model is greater than this threshold.",
            default=ServerArgs.speculative_accept_threshold_single,
        )
        parser.add_argument(
            "--speculative-accept-threshold-acc",
            type=float,
            help="The accept probability of a draft token is raised from its target probability p to min(1, p / threshold_acc).",
            default=ServerArgs.speculative_accept_threshold_acc,
        )
1099
1100
1101
1102
1103
1104
        parser.add_argument(
            "--speculative-token-map",
            type=str,
            help="The path of the draft model's small vocab table.",
            default=ServerArgs.speculative_token_map,
        )
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142

        # Double Sparsity
        parser.add_argument(
            "--enable-double-sparsity",
            action="store_true",
            help="Enable double sparsity attention",
        )
        parser.add_argument(
            "--ds-channel-config-path",
            type=str,
            default=ServerArgs.ds_channel_config_path,
            help="The path of the double sparsity channel config",
        )
        parser.add_argument(
            "--ds-heavy-channel-num",
            type=int,
            default=ServerArgs.ds_heavy_channel_num,
            help="The number of heavy channels in double sparsity attention",
        )
        parser.add_argument(
            "--ds-heavy-token-num",
            type=int,
            default=ServerArgs.ds_heavy_token_num,
            help="The number of heavy tokens in double sparsity attention",
        )
        parser.add_argument(
            "--ds-heavy-channel-type",
            type=str,
            default=ServerArgs.ds_heavy_channel_type,
            help="The type of heavy channels in double sparsity attention",
        )
        parser.add_argument(
            "--ds-sparse-decode-threshold",
            type=int,
            default=ServerArgs.ds_sparse_decode_threshold,
            help="The type of heavy channels in double sparsity attention",
        )

1143
        # Optimization/debug options
Liangsheng Yin's avatar
Liangsheng Yin committed
1144
        parser.add_argument(
Lianmin Zheng's avatar
Lianmin Zheng committed
1145
            "--disable-radix-cache",
Liangsheng Yin's avatar
Liangsheng Yin committed
1146
            action="store_true",
Ying Sheng's avatar
Ying Sheng committed
1147
            help="Disable RadixAttention for prefix caching.",
Liangsheng Yin's avatar
Liangsheng Yin committed
1148
        )
1149
1150
1151
        parser.add_argument(
            "--disable-cuda-graph",
            action="store_true",
1152
            help="Disable cuda graph.",
1153
        )
1154
        parser.add_argument(
1155
1156
            "--disable-cuda-graph-padding",
            action="store_true",
1157
            help="Disable cuda graph when padding is needed. Still uses cuda graph when padding is not needed.",
1158
        )
1159
1160
1161
1162
1163
        parser.add_argument(
            "--enable-nccl-nvls",
            action="store_true",
            help="Enable NCCL NVLS for prefill heavy requests when available.",
        )
1164
1165
1166
1167
1168
        parser.add_argument(
            "--enable-tokenizer-batch-encode",
            action="store_true",
            help="Enable batch tokenization for improved performance when processing multiple text inputs. Do not use with image inputs, pre-tokenized input_ids, or input_embeds.",
        )
1169
        parser.add_argument(
1170
            "--disable-outlines-disk-cache",
1171
            action="store_true",
1172
            help="Disable disk cache of outlines to avoid possible crashes related to file system or high concurrency.",
1173
        )
1174
1175
1176
1177
1178
        parser.add_argument(
            "--disable-custom-all-reduce",
            action="store_true",
            help="Disable the custom all-reduce kernel and fall back to NCCL.",
        )
1179
1180
1181
1182
1183
        parser.add_argument(
            "--enable-mscclpp",
            action="store_true",
            help="Enable using mscclpp for small messages for all-reduce kernel and fall back to NCCL.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1184
        parser.add_argument(
1185
            "--disable-overlap-schedule",
Lianmin Zheng's avatar
Lianmin Zheng committed
1186
            action="store_true",
1187
            help="Disable the overlap scheduler, which overlaps the CPU scheduler with GPU model worker.",
Lianmin Zheng's avatar
Lianmin Zheng committed
1188
        )
1189
1190
1191
        parser.add_argument(
            "--enable-mixed-chunk",
            action="store_true",
1192
            help="Enabling mixing prefill and decode in a batch when using chunked prefill.",
1193
        )
Ke Bao's avatar
Ke Bao committed
1194
1195
1196
        parser.add_argument(
            "--enable-dp-attention",
            action="store_true",
1197
            help="Enabling data parallelism for attention and tensor parallelism for FFN. The dp size should be equal to the tp size. Currently DeepSeek-V2 and Qwen 2/3 MoE models are supported.",
Ke Bao's avatar
Ke Bao committed
1198
        )
1199
1200
1201
1202
1203
        parser.add_argument(
            "--enable-dp-lm-head",
            action="store_true",
            help="Enable vocabulary parallel across the attention TP group to avoid all-gather across DP groups, optimizing performance under DP attention.",
        )
xiaobochen's avatar
xiaobochen committed
1204
1205
1206
        parser.add_argument(
            "--enable-ep-moe",
            action="store_true",
1207
            help="Enabling expert parallelism for moe. The ep size is equal to the tp size.",
xiaobochen's avatar
xiaobochen committed
1208
        )
1209
1210
1211
1212
1213
        parser.add_argument(
            "--enable-two-batch-overlap",
            action="store_true",
            help="Enabling two micro batches to overlap.",
        )
1214
1215
1216
        parser.add_argument(
            "--enable-torch-compile",
            action="store_true",
1217
1218
            help="Optimize the model with torch.compile. Experimental feature.",
        )
1219
        parser.add_argument(
1220
            "--torch-compile-max-bs",
1221
            type=int,
1222
            default=ServerArgs.torch_compile_max_bs,
1223
1224
            help="Set the maximum batch size when using torch compile.",
        )
1225
        parser.add_argument(
1226
            "--cuda-graph-max-bs",
1227
            type=int,
1228
            default=ServerArgs.cuda_graph_max_bs,
1229
            help="Set the maximum batch size for cuda graph. It will extend the cuda graph capture batch size to this value.",
1230
        )
1231
1232
1233
1234
        parser.add_argument(
            "--cuda-graph-bs",
            type=int,
            nargs="+",
1235
            help="Set the list of batch sizes for cuda graph.",
1236
        )
1237
1238
1239
1240
        parser.add_argument(
            "--torchao-config",
            type=str,
            default=ServerArgs.torchao_config,
1241
            help="Optimize the model with torchao. Experimental feature. Current choices are: int8dq, int8wo, int4wo-<group_size>, fp8wo, fp8dq-per_tensor, fp8dq-per_row",
1242
        )
1243
1244
1245
1246
1247
        parser.add_argument(
            "--enable-nan-detection",
            action="store_true",
            help="Enable the NaN detection for debugging purposes.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1248
        parser.add_argument(
1249
            "--enable-p2p-check",
Lianmin Zheng's avatar
Lianmin Zheng committed
1250
            action="store_true",
1251
            help="Enable P2P check for GPU access, otherwise the p2p access is allowed by default.",
Lianmin Zheng's avatar
Lianmin Zheng committed
1252
        )
1253
        parser.add_argument(
1254
            "--triton-attention-reduce-in-fp32",
1255
            action="store_true",
1256
            help="Cast the intermediate attention results to fp32 to avoid possible crashes related to fp16."
1257
            "This only affects Triton attention kernels.",
1258
        )
1259
1260
1261
1262
1263
1264
        parser.add_argument(
            "--triton-attention-num-kv-splits",
            type=int,
            default=ServerArgs.triton_attention_num_kv_splits,
            help="The number of KV splits in flash decoding Triton kernel. Larger value is better in longer context scenarios. The default value is 8.",
        )
1265
1266
1267
1268
1269
1270
1271
1272
        parser.add_argument(
            "--num-continuous-decode-steps",
            type=int,
            default=ServerArgs.num_continuous_decode_steps,
            help="Run multiple continuous decoding steps to reduce scheduling overhead. "
            "This can potentially increase throughput but may also increase time-to-first-token latency. "
            "The default value is 1, meaning only run one decoding step at a time.",
        )
1273
1274
1275
1276
1277
        parser.add_argument(
            "--delete-ckpt-after-loading",
            action="store_true",
            help="Delete the model checkpoint after loading the model.",
        )
1278
1279
1280
1281
1282
        parser.add_argument(
            "--enable-memory-saver",
            action="store_true",
            help="Allow saving memory using release_memory_occupation and resume_memory_occupation",
        )
1283
1284
1285
1286
1287
        parser.add_argument(
            "--allow-auto-truncate",
            action="store_true",
            help="Allow automatically truncating requests that exceed the maximum input length instead of returning an error.",
        )
1288
1289
1290
1291
1292
        parser.add_argument(
            "--enable-custom-logit-processor",
            action="store_true",
            help="Enable users to pass custom logit processors to the server (disabled by default for security)",
        )
YAMY's avatar
YAMY committed
1293
1294
1295
        parser.add_argument(
            "--tool-call-parser",
            type=str,
1296
            choices=["qwen25", "mistral", "llama3", "deepseekv3", "pythonic"],
YAMY's avatar
YAMY committed
1297
            default=ServerArgs.tool_call_parser,
1298
            help="Specify the parser for handling tool-call interactions. Options include: 'qwen25', 'mistral', 'llama3', 'deepseekv3', and 'pythonic'.",
YAMY's avatar
YAMY committed
1299
        )
1300
1301
1302
1303
1304
        parser.add_argument(
            "--enable-hierarchical-cache",
            action="store_true",
            help="Enable hierarchical cache",
        )
1305
1306
1307
1308
1309
1310
        parser.add_argument(
            "--hicache-ratio",
            type=float,
            default=ServerArgs.hicache_ratio,
            help="The ratio of the size of host KV cache memory pool to the size of device pool.",
        )
Zhiqiang Xie's avatar
Zhiqiang Xie committed
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
        parser.add_argument(
            "--hicache-size",
            type=int,
            default=ServerArgs.hicache_size,
            help="The size of host KV cache memory pool in gigabytes, which will override the hicache_ratio if set.",
        )
        parser.add_argument(
            "--hicache-write-policy",
            type=str,
            choices=["write_back", "write_through", "write_through_selective"],
            default=ServerArgs.hicache_write_policy,
            help="The write policy of hierarchical cache.",
        )
1324
1325
1326
1327
1328
        parser.add_argument(
            "--enable-deepep-moe",
            action="store_true",
            help="Enabling DeepEP MoE implementation for EP MoE.",
        )
1329
1330
1331
1332
1333
1334
        parser.add_argument(
            "--moe-dense-tp-size",
            type=int,
            default=ServerArgs.moe_dense_tp_size,
            help="TP size for MoE dense MLP layers. This flag is useful when, with large TP size, there are errors caused by weights in MLP layers having dimension smaller than the min dimension GEMM supports.",
        )
1335
1336
1337
1338
        parser.add_argument(
            "--deepep-mode",
            type=str,
            choices=["normal", "low_latency", "auto"],
1339
            default="auto",
1340
1341
            help="Select the mode when enable DeepEP MoE, could be `normal`, `low_latency` or `auto`. Default is `auto`, which means `low_latency` for decode batch and `normal` for prefill batch.",
        )
1342
1343
1344
1345
1346
1347
        parser.add_argument(
            "--ep-num-redundant-experts",
            type=int,
            default=ServerArgs.ep_num_redundant_experts,
            help="Allocate this number of redundant experts in expert parallel.",
        )
1348
1349
1350
1351
1352
1353
        parser.add_argument(
            "--ep-dispatch-algorithm",
            type=str,
            default=ServerArgs.ep_dispatch_algorithm,
            help="The algorithm to choose ranks for redundant experts in expert parallel.",
        )
1354
1355
1356
1357
1358
1359
        parser.add_argument(
            "--init-expert-location",
            type=str,
            default=ServerArgs.init_expert_location,
            help="Initial location of EP experts.",
        )
1360
1361
1362
1363
1364
        parser.add_argument(
            "--enable-eplb",
            action="store_true",
            help="Enable EPLB algorithm",
        )
1365
1366
1367
1368
1369
1370
        parser.add_argument(
            "--eplb-algorithm",
            type=str,
            default=ServerArgs.eplb_algorithm,
            help="Chosen EPLB algorithm",
        )
1371
1372
1373
1374
1375
1376
        parser.add_argument(
            "--eplb-rebalance-num-iterations",
            type=int,
            default=ServerArgs.eplb_rebalance_num_iterations,
            help="Number of iterations to automatically trigger a EPLB re-balance.",
        )
1377
1378
1379
1380
1381
1382
        parser.add_argument(
            "--eplb-rebalance-layers-per-chunk",
            type=int,
            default=ServerArgs.eplb_rebalance_layers_per_chunk,
            help="Number of layers to rebalance per forward pass.",
        )
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
        parser.add_argument(
            "--expert-distribution-recorder-mode",
            type=str,
            default=ServerArgs.expert_distribution_recorder_mode,
            help="Mode of expert distribution recorder.",
        )
        parser.add_argument(
            "--expert-distribution-recorder-buffer-size",
            type=int,
            default=ServerArgs.expert_distribution_recorder_buffer_size,
            help="Circular buffer size of expert distribution recorder. Set to -1 to denote infinite buffer.",
        )
1395
1396
1397
1398
1399
        parser.add_argument(
            "--enable-expert-distribution-metrics",
            action="store_true",
            help="Enable logging metrics for expert balancedness",
        )
1400
1401
1402
1403
        parser.add_argument(
            "--deepep-config",
            type=str,
            default=ServerArgs.deepep_config,
1404
            help="Tuned DeepEP config suitable for your own cluster. It can be either a string with JSON content or a file path.",
1405
        )
1406
        parser.add_argument(
1407
1408
1409
            "--disable-shared-experts-fusion",
            action="store_true",
            help="Disable shared experts fusion optimization for deepseek v3/r1.",
1410
        )
1411
1412
1413
1414
1415
        parser.add_argument(
            "--disable-chunked-prefix-cache",
            action="store_true",
            help="Disable chunked prefix cache feature for deepseek, which should save overhead for short sequences.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1416
1417
1418
1419
1420
        parser.add_argument(
            "--disable-fast-image-processor",
            action="store_true",
            help="Adopt base image processor instead of fast image processor.",
        )
1421

1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
        # Server warmups
        parser.add_argument(
            "--warmups",
            type=str,
            required=False,
            help="Specify custom warmup functions (csv) to run before server starts eg. --warmups=warmup_name1,warmup_name2 "
            "will run the functions `warmup_name1` and `warmup_name2` specified in warmup.py before the server starts listening for requests",
        )

        # Debug tensor dumps
        parser.add_argument(
            "--debug-tensor-dump-output-folder",
            type=str,
            default=ServerArgs.debug_tensor_dump_output_folder,
            help="The output folder for dumping tensors.",
        )
        parser.add_argument(
            "--debug-tensor-dump-input-file",
            type=str,
            default=ServerArgs.debug_tensor_dump_input_file,
            help="The input filename for dumping tensors",
        )
        parser.add_argument(
            "--debug-tensor-dump-inject",
            type=str,
            default=ServerArgs.debug_tensor_dump_inject,
            help="Inject the outputs from jax as the input of every layer.",
        )

Byron Hsu's avatar
Byron Hsu committed
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
        # Disaggregation
        parser.add_argument(
            "--disaggregation-mode",
            type=str,
            default="null",
            choices=["null", "prefill", "decode"],
            help='Only used for PD disaggregation. "prefill" for prefill-only server, and "decode" for decode-only server. If not specified, it is not PD disaggregated',
        )
        parser.add_argument(
            "--disaggregation-bootstrap-port",
            type=int,
            default=ServerArgs.disaggregation_bootstrap_port,
            help="Bootstrap server port on the prefill server. Default is 8998.",
        )
1465
1466
1467
1468
        parser.add_argument(
            "--disaggregation-transfer-backend",
            type=str,
            default=ServerArgs.disaggregation_transfer_backend,
1469
            choices=["mooncake", "nixl"],
1470
1471
            help="The backend for disaggregation transfer. Default is mooncake.",
        )
1472
1473
1474
1475
        parser.add_argument(
            "--disaggregation-ib-device",
            type=str,
            default=ServerArgs.disaggregation_ib_device,
1476
1477
1478
            help="The InfiniBand devices for disaggregation transfer, accepts single device (e.g., --disaggregation-ib-device mlx5_0) "
            "or multiple comma-separated devices (e.g., --disaggregation-ib-device mlx5_0,mlx5_1). "
            "Default is None, which triggers automatic device detection when mooncake backend is enabled.",
1479
        )
1480
1481
1482
1483
1484
1485
        parser.add_argument(
            "--pdlb-url",
            type=str,
            default=None,
            help="The URL of the PD disaggregation load balancer. If set, the prefill/decode server will register with the load balancer.",
        )
Byron Hsu's avatar
Byron Hsu committed
1486

1487
1488
1489
1490
1491
1492
1493
1494
        parser.add_argument(
            "--mm-attention-backend",
            type=str,
            choices=["sdpa", "fa3", "triton_attn"],
            default=ServerArgs.mm_attention_backend,
            help="Set multimodal attention backend.",
        )

Lianmin Zheng's avatar
Lianmin Zheng committed
1495
1496
    @classmethod
    def from_cli_args(cls, args: argparse.Namespace):
1497
        args.tp_size = args.tensor_parallel_size
1498
        args.pp_size = args.pipeline_parallel_size
1499
        args.dp_size = args.data_parallel_size
xiaobochen's avatar
xiaobochen committed
1500
        args.ep_size = args.expert_parallel_size
Lianmin Zheng's avatar
Lianmin Zheng committed
1501
1502
1503
1504
        attrs = [attr.name for attr in dataclasses.fields(cls)]
        return cls(**{attr: getattr(args, attr) for attr in attrs})

    def url(self):
1505
        if is_valid_ipv6_address(self.host):
1506
1507
1508
            return f"http://[{self.host}]:{self.port}"
        else:
            return f"http://{self.host}:{self.port}"
Lianmin Zheng's avatar
Lianmin Zheng committed
1509

1510
1511
    def check_server_args(self):
        assert (
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
            self.tp_size * self.pp_size
        ) % self.nnodes == 0, "tp_size must be divisible by number of nodes"

        # FIXME pp constraints
        if self.pp_size > 1:
            assert (
                self.disable_overlap_schedule
                and self.speculative_algorithm is None
                and not self.enable_mixed_chunk
            ), "Pipeline parallelism is not compatible with overlap schedule, speculative decoding, mixed chunked prefill."

1523
        assert not (
1524
1525
            self.dp_size > 1 and self.nnodes != 1 and not self.enable_dp_attention
        ), "multi-node data parallel is not supported unless dp attention!"
1526
1527
1528
1529
        assert (
            self.max_loras_per_batch > 0
            # FIXME
            and (self.lora_paths is None or self.disable_radix_cache)
1530
        ), "compatibility of lora and radix attention is in progress"
1531
        assert self.base_gpu_id >= 0, "base_gpu_id must be non-negative"
1532
        assert self.gpu_id_step >= 1, "gpu_id_step must be positive"
1533

1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
        if isinstance(self.lora_paths, list):
            lora_paths = self.lora_paths
            self.lora_paths = {}
            for lora_path in lora_paths:
                if "=" in lora_path:
                    name, path = lora_path.split("=", 1)
                    self.lora_paths[name] = path
                else:
                    self.lora_paths[lora_path] = lora_path

Lianmin Zheng's avatar
Lianmin Zheng committed
1544

Lianmin Zheng's avatar
Lianmin Zheng committed
1545
def prepare_server_args(argv: List[str]) -> ServerArgs:
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
    """
    Prepare the server arguments from the command line arguments.

    Args:
        args: The command line arguments. Typically, it should be `sys.argv[1:]`
            to ensure compatibility with `parse_args` when no arguments are passed.

    Returns:
        The server arguments.
    """
    parser = argparse.ArgumentParser()
    ServerArgs.add_cli_args(parser)
Lianmin Zheng's avatar
Lianmin Zheng committed
1558
    raw_args = parser.parse_args(argv)
1559
1560
1561
1562
    server_args = ServerArgs.from_cli_args(raw_args)
    return server_args


1563
1564
1565
ZMQ_TCP_PORT_DELTA = 233


Lianmin Zheng's avatar
Lianmin Zheng committed
1566
1567
@dataclasses.dataclass
class PortArgs:
1568
1569
1570
1571
1572
1573
    # The ipc filename for tokenizer to receive inputs from detokenizer (zmq)
    tokenizer_ipc_name: str
    # The ipc filename for scheduler (rank 0) to receive inputs from tokenizer (zmq)
    scheduler_input_ipc_name: str
    # The ipc filename for detokenizer to receive inputs from scheduler (zmq)
    detokenizer_ipc_name: str
1574

1575
1576
    # The port for nccl initialization (torch.dist)
    nccl_port: int
1577

1578
1579
1580
    # The ipc filename for rpc call between Engine and Scheduler
    rpc_ipc_name: str

1581
    @staticmethod
1582
    def init_new(server_args, dp_rank: Optional[int] = None) -> "PortArgs":
1583
        port = server_args.port + random.randint(100, 1000)
1584
1585
1586
        while True:
            if is_port_available(port):
                break
TianYu GUO's avatar
TianYu GUO committed
1587
1588
1589
1590
            if port < 60000:
                port += 42
            else:
                port -= 43
1591

1592
1593
1594
1595
1596
1597
1598
        if not server_args.enable_dp_attention:
            # Normal case, use IPC within a single node
            return PortArgs(
                tokenizer_ipc_name=f"ipc://{tempfile.NamedTemporaryFile(delete=False).name}",
                scheduler_input_ipc_name=f"ipc://{tempfile.NamedTemporaryFile(delete=False).name}",
                detokenizer_ipc_name=f"ipc://{tempfile.NamedTemporaryFile(delete=False).name}",
                nccl_port=port,
1599
                rpc_ipc_name=f"ipc://{tempfile.NamedTemporaryFile(delete=False).name}",
1600
1601
1602
1603
1604
            )
        else:
            # DP attention. Use TCP + port to handle both single-node and multi-node.
            if server_args.nnodes == 1 and server_args.dist_init_addr is None:
                dist_init_addr = ("127.0.0.1", server_args.port + ZMQ_TCP_PORT_DELTA)
Vincent's avatar
Vincent committed
1605
1606
1607
            elif server_args.dist_init_addr.startswith("["):  # ipv6 address
                port_num, host = configure_ipv6(server_args.dist_init_addr)
                dist_init_addr = (host, str(port_num))
1608
1609
            else:
                dist_init_addr = server_args.dist_init_addr.split(":")
Vincent's avatar
Vincent committed
1610

1611
1612
1613
1614
1615
1616
1617
1618
            assert (
                len(dist_init_addr) == 2
            ), "please provide --dist-init-addr as host:port of head node"

            dist_init_host, dist_init_port = dist_init_addr
            port_base = int(dist_init_port) + 1
            if dp_rank is None:
                scheduler_input_port = (
1619
                    port_base + 3
1620
                )  # TokenizerManager to DataParallelController
1621
            else:
1622
                scheduler_input_port = port_base + 3 + 1 + dp_rank
1623
1624
1625
1626
1627
1628

            return PortArgs(
                tokenizer_ipc_name=f"tcp://{dist_init_host}:{port_base}",
                scheduler_input_ipc_name=f"tcp://{dist_init_host}:{scheduler_input_port}",
                detokenizer_ipc_name=f"tcp://{dist_init_host}:{port_base + 1}",
                nccl_port=port,
1629
                rpc_ipc_name=f"tcp://{dist_init_host}:{port_base + 2}",
1630
            )
1631

1632
1633
1634
1635
1636
1637
1638
1639
1640
1641

class LoRAPathAction(argparse.Action):
    def __call__(self, parser, namespace, values, option_string=None):
        setattr(namespace, self.dest, {})
        for lora_path in values:
            if "=" in lora_path:
                name, path = lora_path.split("=", 1)
                getattr(namespace, self.dest)[name] = path
            else:
                getattr(namespace, self.dest)[lora_path] = lora_path
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651


class DeprecatedAction(argparse.Action):
    def __init__(self, option_strings, dest, nargs=0, **kwargs):
        super(DeprecatedAction, self).__init__(
            option_strings, dest, nargs=nargs, **kwargs
        )

    def __call__(self, parser, namespace, values, option_string=None):
        raise ValueError(self.help)
1652
1653


1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
def get_model_arch(args: ServerArgs):
    hf_config = get_config(
        args.model_path,
        trust_remote_code=args.trust_remote_code,
        revision=args.revision,
        model_override_args=json.loads(args.json_model_override_args),
    )
    return hf_config.architectures[0]


1664
def auto_choose_speculative_params(self: ServerArgs):
1665
1666
1667
1668
1669
    """
    Automatically choose the parameters for speculative decoding.

    You can tune them on your own models and prompts with scripts/playground/bench_speculative.py
    """
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
    kwargs = {}

    hf_config = get_config(
        self.model_path,
        trust_remote_code=self.trust_remote_code,
        revision=self.revision,
        model_override_args=json.loads(self.json_model_override_args),
        **kwargs,
    )
    arch = hf_config.architectures[0]

1681
1682
1683
1684
1685
    if arch in ["LlamaForCausalLM"]:
        # The default value for llama
        return (5, 4, 8)
    elif arch in ["DeepseekV3ForCausalLM", "DeepseekV2ForCausalLM"]:
        # The default value for deepseek
1686
        return (3, 1, 4)
1687
1688
1689
1690
1691
    elif arch in ["Grok1ForCausalLM", "Grok1VForCausalLM"]:
        return (5, 4, 8)
    else:
        # The default value for all other models
        return (5, 4, 8)