server_args.py 113 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
Lianmin Zheng's avatar
Lianmin Zheng committed
14
15
"""The arguments of the server."""

Lianmin Zheng's avatar
Lianmin Zheng committed
16
17
import argparse
import dataclasses
18
import json
19
import logging
20
import os
21
import random
22
import socket
23
import sys
24
import tempfile
25
from typing import List, Literal, Optional, Union
Lianmin Zheng's avatar
Lianmin Zheng committed
26

27
from sglang.srt.connector import ConnectorType
28
from sglang.srt.function_call.function_call_parser import FunctionCallParser
29
from sglang.srt.hf_transformers_utils import check_gguf_file, get_config
30
from sglang.srt.lora.lora_registry import LoRARef
31
from sglang.srt.parser.reasoning_parser import ReasoningParser
32
from sglang.srt.utils import (
33
34
    LORA_TARGET_ALL_MODULES,
    SUPPORTED_LORA_TARGET_MODULES,
Vincent's avatar
Vincent committed
35
    configure_ipv6,
36
    get_device,
Lianmin Zheng's avatar
Lianmin Zheng committed
37
    get_device_memory_capacity,
38
    is_cuda,
39
    is_flashinfer_available,
HAI's avatar
HAI committed
40
    is_hip,
41
    is_npu,
42
    is_port_available,
43
    is_remote_url,
44
45
    is_sm90_supported,
    is_sm100_supported,
46
    is_triton_kernels_available,
47
    is_valid_ipv6_address,
48
    json_list_type,
bjmsong's avatar
bjmsong committed
49
    nullable_str,
50
    parse_connector_type,
51
)
52
from sglang.utils import is_in_ci
53

54
55
logger = logging.getLogger(__name__)

Lianmin Zheng's avatar
Lianmin Zheng committed
56

57
58
59
60
61
62
63
64
65
66
67
68
# Define constants
LOAD_FORMAT_CHOICES = [
    "auto",
    "pt",
    "safetensors",
    "npcache",
    "dummy",
    "sharded_state",
    "gguf",
    "bitsandbytes",
    "layered",
    "remote",
69
    "remote_instance",
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
]

QUANTIZATION_CHOICES = [
    "awq",
    "fp8",
    "gptq",
    "marlin",
    "gptq_marlin",
    "awq_marlin",
    "bitsandbytes",
    "gguf",
    "modelopt",
    "modelopt_fp4",
    "petit_nvfp4",
    "w8a8_int8",
    "w8a8_fp8",
    "moe_wna16",
    "qoq",
    "w4afp8",
    "mxfp4",
]

ATTENTION_BACKEND_CHOICES = [
    # Common
    "triton",
    "torch_native",
    # NVIDIA specific
    "cutlass_mla",
    "fa3",
    "flashinfer",
    "flashmla",
    "trtllm_mla",
    "trtllm_mha",
    "dual_chunk_flash_attn",
Yi Zhang's avatar
Yi Zhang committed
104
    "hybrid_linear_attn",
105
106
107
108
109
110
111
112
113
114
    # AMD specific
    "aiter",
    "wave",
    # Other platforms
    "intel_amx",
    "ascend",
]

DISAGG_TRANSFER_BACKEND_CHOICES = ["mooncake", "nixl", "ascend", "fake"]

115
116
GRAMMAR_BACKEND_CHOICES = ["xgrammar", "outlines", "llguidance", "none"]

117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134

# Allow external code to add more choices
def add_load_format_choices(choices):
    LOAD_FORMAT_CHOICES.extend(choices)


def add_quantization_method_choices(choices):
    QUANTIZATION_CHOICES.extend(choices)


def add_attention_backend_choices(choices):
    ATTENTION_BACKEND_CHOICES.extend(choices)


def add_disagg_transfer_backend_choices(choices):
    DISAGG_TRANSFER_BACKEND_CHOICES.extend(choices)


135
136
137
138
def add_grammar_backend_choices(choices):
    GRAMMAR_BACKEND_CHOICES.extend(choices)


Lianmin Zheng's avatar
Lianmin Zheng committed
139
140
@dataclasses.dataclass
class ServerArgs:
Lianmin Zheng's avatar
Lianmin Zheng committed
141
    # Model and tokenizer
Lianmin Zheng's avatar
Lianmin Zheng committed
142
143
144
    model_path: str
    tokenizer_path: Optional[str] = None
    tokenizer_mode: str = "auto"
145
    tokenizer_worker_num: int = 1
146
    skip_tokenizer_init: bool = False
Lianmin Zheng's avatar
Lianmin Zheng committed
147
    load_format: str = "auto"
148
    model_loader_extra_config: str = "{}"
149
    trust_remote_code: bool = False
150
    context_length: Optional[int] = None
151
    is_embedding: bool = False
152
    enable_multimodal: Optional[bool] = None
153
    revision: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
154
    model_impl: str = "auto"
Lianmin Zheng's avatar
Lianmin Zheng committed
155

Lianmin Zheng's avatar
Lianmin Zheng committed
156
    # HTTP server
Lianmin Zheng's avatar
Lianmin Zheng committed
157
158
    host: str = "127.0.0.1"
    port: int = 30000
Lianmin Zheng's avatar
Lianmin Zheng committed
159
160
    skip_server_warmup: bool = False
    warmups: Optional[str] = None
161
    nccl_port: Optional[int] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
162

Lianmin Zheng's avatar
Lianmin Zheng committed
163
164
165
166
167
168
    # Quantization and data type
    dtype: str = "auto"
    quantization: Optional[str] = None
    quantization_param_path: Optional[str] = None
    kv_cache_dtype: str = "auto"

Lianmin Zheng's avatar
Lianmin Zheng committed
169
    # Memory and scheduling
Lianmin Zheng's avatar
Lianmin Zheng committed
170
    mem_fraction_static: Optional[float] = None
171
    max_running_requests: Optional[int] = None
172
    max_queued_requests: Optional[int] = sys.maxsize
173
    max_total_tokens: Optional[int] = None
174
    chunked_prefill_size: Optional[int] = None
175
    max_prefill_tokens: int = 16384
176
    schedule_policy: str = "fcfs"
177
    schedule_conservativeness: float = 1.0
178
    page_size: Optional[int] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
179
180
181
    hybrid_kvcache_ratio: Optional[float] = None
    swa_full_tokens_ratio: float = 0.8
    disable_hybrid_swa_memory: bool = False
Lianmin Zheng's avatar
Lianmin Zheng committed
182

Lianmin Zheng's avatar
Lianmin Zheng committed
183
184
    # Runtime options
    device: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
185
    tp_size: int = 1
186
187
    pp_size: int = 1
    max_micro_batch_size: Optional[int] = None
188
    stream_interval: int = 1
189
    stream_output: bool = False
190
    random_seed: Optional[int] = None
191
    constrained_json_whitespace_pattern: Optional[str] = None
192
    watchdog_timeout: float = 300
193
    dist_timeout: Optional[int] = None  # timeout for torch.distributed
194
    download_dir: Optional[str] = None
195
    base_gpu_id: int = 0
196
    gpu_id_step: int = 1
197
    sleep_on_idle: bool = False
Lianmin Zheng's avatar
Lianmin Zheng committed
198
199
200

    # Logging
    log_level: str = "info"
201
    log_level_http: Optional[str] = None
202
    log_requests: bool = False
203
    log_requests_level: int = 2
204
    crash_dump_folder: Optional[str] = None
Liangsheng Yin's avatar
Liangsheng Yin committed
205
    show_time_cost: bool = False
206
    enable_metrics: bool = False
207
    enable_metrics_for_all_schedulers: bool = False
208
209
    bucket_time_to_first_token: Optional[List[float]] = None
    bucket_inter_token_latency: Optional[List[float]] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
210
    bucket_e2e_request_latency: Optional[List[float]] = None
211
    collect_tokens_histogram: bool = False
212
213
    prompt_tokens_buckets: Optional[List[str]] = None
    generation_tokens_buckets: Optional[List[str]] = None
214
    decode_log_interval: int = 40
215
    enable_request_time_stats_logging: bool = False
216
    kv_events_config: Optional[str] = None
217
    gc_warning_threshold_secs: float = 0.0
Liangsheng Yin's avatar
Liangsheng Yin committed
218

219
    # API related
220
    api_key: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
221
    served_model_name: Optional[str] = None
222
    weight_version: str = "default"
Lianmin Zheng's avatar
Lianmin Zheng committed
223
224
    chat_template: Optional[str] = None
    completion_template: Optional[str] = None
225
    file_storage_path: str = "sglang_storage"
226
    enable_cache_report: bool = False
Xihuai Wang's avatar
Xihuai Wang committed
227
    reasoning_parser: Optional[str] = None
228
    tool_call_parser: Optional[str] = None
229
    tool_server: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
230

231
232
233
    # Data parallelism
    dp_size: int = 1
    load_balance_method: str = "round_robin"
234
235
    # FIXME: remove this after dp rank scheduling is fully supported with PD-Disaggregation
    prefill_round_robin_balance: bool = False
236

237
    # Multi-node distributed serving
238
    dist_init_addr: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
239
    nnodes: int = 1
240
    node_rank: int = 0
Lianmin Zheng's avatar
Lianmin Zheng committed
241
242
243

    # Model override args in JSON
    json_model_override_args: str = "{}"
244
    preferred_sampling_params: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
245

246
    # LoRA
247
    enable_lora: Optional[bool] = None
248
    max_lora_rank: Optional[int] = None
249
    lora_target_modules: Optional[Union[set[str], List[str]]] = None
250
251
252
    lora_paths: Optional[
        Union[dict[str, str], List[dict[str, str]], List[str], List[LoRARef]]
    ] = None
253
    max_loaded_loras: Optional[int] = None
254
    max_loras_per_batch: int = 8
255
    lora_backend: str = "triton"
256
257

    # Kernel backend
258
    attention_backend: Optional[str] = None
259
260
    decode_attention_backend: Optional[str] = None
    prefill_attention_backend: Optional[str] = None
261
    sampling_backend: Optional[str] = None
262
    grammar_backend: Optional[str] = None
263
    mm_attention_backend: Optional[str] = None
264

265
266
    # Speculative decoding
    speculative_algorithm: Optional[str] = None
267
    speculative_draft_model_path: Optional[str] = None
268
    speculative_draft_model_revision: Optional[str] = None
269
270
271
    speculative_num_steps: Optional[int] = None
    speculative_eagle_topk: Optional[int] = None
    speculative_num_draft_tokens: Optional[int] = None
272
273
    speculative_accept_threshold_single: float = 1.0
    speculative_accept_threshold_acc: float = 1.0
274
    speculative_token_map: Optional[str] = None
275
    speculative_attention_mode: str = "prefill"
276

277
278
    # Expert parallelism
    ep_size: int = 1
279
280
281
282
283
284
285
286
287
    moe_a2a_backend: Literal["none", "deepep"] = "none"
    moe_runner_backend: Literal[
        "auto",
        "triton",
        "triton_kernel",
        "flashinfer_trtllm",
        "flashinfer_cutlass",
        "flashinfer_mxfp4",
    ] = "auto"
288
    flashinfer_mxfp4_moe_precision: Literal["default", "bf16"] = "default"
289
    enable_flashinfer_allreduce_fusion: bool = False
290
    deepep_mode: Literal["auto", "normal", "low_latency"] = "auto"
291
292
293
294
295
296
297
    ep_num_redundant_experts: int = 0
    ep_dispatch_algorithm: Optional[Literal["static", "dynamic", "fake"]] = None
    init_expert_location: str = "trivial"
    enable_eplb: bool = False
    eplb_algorithm: str = "auto"
    eplb_rebalance_num_iterations: int = 1000
    eplb_rebalance_layers_per_chunk: Optional[int] = None
298
    eplb_min_rebalancing_utilization_threshold: float = 1.0
299
300
301
302
303
304
305
306
    expert_distribution_recorder_mode: Optional[
        Literal["stat", "stat_approx", "per_pass", "per_token"]
    ] = None
    expert_distribution_recorder_buffer_size: Optional[int] = None
    enable_expert_distribution_metrics: bool = False
    deepep_config: Optional[str] = None
    moe_dense_tp_size: Optional[int] = None

Lianmin Zheng's avatar
Lianmin Zheng committed
307
308
309
310
    # Hierarchical cache
    enable_hierarchical_cache: bool = False
    hicache_ratio: float = 2.0
    hicache_size: int = 0
311
    hicache_write_policy: str = "write_through"
312
313
    hicache_io_backend: str = "kernel"
    hicache_mem_layout: str = "layer_first"
Lianmin Zheng's avatar
Lianmin Zheng committed
314
    hicache_storage_backend: Optional[str] = None
pansicheng's avatar
pansicheng committed
315
    hicache_storage_prefetch_policy: str = "best_effort"
316
    hicache_storage_backend_extra_config: Optional[str] = None
317
318
    # LMCache
    enable_lmcache: bool = False
Lianmin Zheng's avatar
Lianmin Zheng committed
319

320
321
    # Double Sparsity
    enable_double_sparsity: bool = False
Vincent's avatar
Vincent committed
322
    ds_channel_config_path: Optional[str] = None
323
324
325
326
327
    ds_heavy_channel_num: int = 32
    ds_heavy_token_num: int = 256
    ds_heavy_channel_type: str = "qk"
    ds_sparse_decode_threshold: int = 4096

fzyzcjy's avatar
fzyzcjy committed
328
329
330
331
332
333
334
    # Offloading
    cpu_offload_gb: int = 0
    offload_group_size: int = -1
    offload_num_in_group: int = 1
    offload_prefetch_step: int = 1
    offload_mode: str = "cpu"

335
    # Optimization/debug options
Lianmin Zheng's avatar
Lianmin Zheng committed
336
    disable_radix_cache: bool = False
337
338
    cuda_graph_max_bs: Optional[int] = None
    cuda_graph_bs: Optional[List[int]] = None
339
    disable_cuda_graph: bool = False
340
    disable_cuda_graph_padding: bool = False
341
    enable_profile_cuda_graph: bool = False
342
    enable_cudagraph_gc: bool = False
343
    enable_nccl_nvls: bool = False
344
    enable_symm_mem: bool = False
345
    disable_flashinfer_cutlass_moe_fp4_allgather: bool = False
346
    enable_tokenizer_batch_encode: bool = False
347
    disable_outlines_disk_cache: bool = False
348
    disable_custom_all_reduce: bool = False
349
    enable_mscclpp: bool = False
350
    disable_overlap_schedule: bool = False
351
    enable_mixed_chunk: bool = False
Ke Bao's avatar
Ke Bao committed
352
    enable_dp_attention: bool = False
353
    enable_dp_lm_head: bool = False
354
    enable_two_batch_overlap: bool = False
355
    tbo_token_distribution_threshold: float = 0.48
356
    enable_torch_compile: bool = False
357
    torch_compile_max_bs: int = 32
358
    torchao_config: str = ""
359
    enable_nan_detection: bool = False
360
    enable_p2p_check: bool = False
361
    triton_attention_reduce_in_fp32: bool = False
362
    triton_attention_num_kv_splits: int = 8
363
    num_continuous_decode_steps: int = 1
364
    delete_ckpt_after_loading: bool = False
365
    enable_memory_saver: bool = False
366
    allow_auto_truncate: bool = False
367
    enable_custom_logit_processor: bool = False
368
    flashinfer_mla_disable_ragged: bool = False
369
    disable_shared_experts_fusion: bool = False
370
    disable_chunked_prefix_cache: bool = False
Lianmin Zheng's avatar
Lianmin Zheng committed
371
    disable_fast_image_processor: bool = False
372
    enable_return_hidden_states: bool = False
373
    scheduler_recv_interval: int = 1
374
    numa_node: Optional[List[int]] = None
375

376
377
378
379
380
    # Dynamic batch tokenizer
    enable_dynamic_batch_tokenizer: bool = False
    dynamic_batch_tokenizer_batch_size: int = 32
    dynamic_batch_tokenizer_batch_timeout: float = 0.002

381
382
383
384
    # Debug tensor dumps
    debug_tensor_dump_output_folder: Optional[str] = None
    debug_tensor_dump_input_file: Optional[str] = None
    debug_tensor_dump_inject: bool = False
385
    debug_tensor_dump_prefill_only: bool = False
386

Lianmin Zheng's avatar
Lianmin Zheng committed
387
    # PD disaggregation: can be "null" (not disaggregated), "prefill" (prefill-only), or "decode" (decode-only)
Byron Hsu's avatar
Byron Hsu committed
388
    disaggregation_mode: str = "null"
389
    disaggregation_transfer_backend: str = "mooncake"
390
    disaggregation_bootstrap_port: int = 8998
Byron Hsu's avatar
Byron Hsu committed
391
392
393
    disaggregation_decode_tp: Optional[int] = None
    disaggregation_decode_dp: Optional[int] = None
    disaggregation_prefill_pp: Optional[int] = 1
394
    disaggregation_ib_device: Optional[str] = None
395
    num_reserved_decode_tokens: int = 512  # used for decode kv cache offload in PD
Byron Hsu's avatar
Byron Hsu committed
396

397
398
    # For model weight update
    custom_weight_loader: Optional[List[str]] = None
399
    weight_loader_disable_mmap: bool = False
400

401
402
403
404
405
    # Remote instance weight loading
    remote_instance_weight_loader_seed_instance_ip: Optional[str] = None
    remote_instance_weight_loader_seed_instance_service_port: Optional[int] = None
    remote_instance_weight_loader_send_weights_group_ports: Optional[List[int]] = None

406
407
408
409
    # For PD-Multiplexing
    enable_pdmux: bool = False
    sm_group_num: int = 3

Yi Zhang's avatar
Yi Zhang committed
410
411
412
413
    # Mamba cache
    max_mamba_cache_size: Optional[int] = None
    mamba_ssm_dtype: str = "float32"

414
415
416
    # Deprecated arguments
    enable_ep_moe: bool = False
    enable_deepep_moe: bool = False
417
    enable_flashinfer_cutlass_moe: bool = False
418
    enable_flashinfer_cutedsl_moe: bool = False
419
420
    enable_flashinfer_trtllm_moe: bool = False
    enable_triton_kernel_moe: bool = False
421
    enable_flashinfer_mxfp4_moe: bool = False
422

Lianmin Zheng's avatar
Lianmin Zheng committed
423
    def __post_init__(self):
424
425
426
427
428
429
430
431
432
433
434
        # Check deprecated arguments
        if self.enable_ep_moe:
            self.ep_size = self.tp_size
            print_deprecated_warning(
                "NOTE: --enable-ep-moe is deprecated. Please set `--ep-size` to the same value as `--tp-size` instead."
            )
        if self.enable_deepep_moe:
            self.moe_a2a_backend = "deepep"
            print_deprecated_warning(
                "NOTE: --enable-deepep-moe is deprecated. Please set `--moe-a2a-backend` to 'deepep' instead."
            )
435
436
437
438
439
        if self.enable_triton_kernel_moe:
            self.moe_runner_backend = "triton_kernel"
            print_deprecated_warning(
                "NOTE: --enable-triton-kernel-moe is deprecated. Please set `--moe-runner-backend` to 'triton_kernel' instead."
            )
440
441
442
443
444
        if self.enable_flashinfer_cutedsl_moe:
            self.moe_runner_backend = "flashinfer_cutedsl"
            print_deprecated_warning(
                "NOTE: --enable-flashinfer-cutedsl-moe is deprecated. Please set `--moe-runner-backend` to 'flashinfer_cutedsl' instead."
            )
445
446
447
448
449
450
451
452
453
454
        if self.enable_flashinfer_cutlass_moe:
            self.moe_runner_backend = "flashinfer_cutlass"
            print_deprecated_warning(
                "NOTE: --enable-flashinfer-cutlass-moe is deprecated. Please set `--moe-runner-backend` to 'flashinfer_cutlass' instead."
            )
        if self.enable_flashinfer_trtllm_moe:
            self.moe_runner_backend = "flashinfer_trtllm"
            print_deprecated_warning(
                "NOTE: --enable-flashinfer-trtllm-moe is deprecated. Please set `--moe-runner-backend` to 'flashinfer_trtllm' instead."
            )
455
456
457
458
459
        if self.enable_flashinfer_mxfp4_moe:
            self.moe_runner_backend = "flashinfer_mxfp4"
            print_deprecated_warning(
                "NOTE: --enable-flashinfer-mxfp4-moe is deprecated. Please set `--moe-runner-backend` to 'flashinfer_mxfp4' instead."
            )
460

461
        # Set missing default values
Lianmin Zheng's avatar
Lianmin Zheng committed
462
463
        if self.tokenizer_path is None:
            self.tokenizer_path = self.model_path
464

465
466
        if self.served_model_name is None:
            self.served_model_name = self.model_path
467
468
        if self.device is None:
            self.device = get_device()
469
470
471
        if self.random_seed is None:
            self.random_seed = random.randint(0, 1 << 30)

Lianmin Zheng's avatar
Lianmin Zheng committed
472
        gpu_mem = get_device_memory_capacity(self.device)
473

474
        # Set mem fraction static
Lianmin Zheng's avatar
Lianmin Zheng committed
475
        if self.mem_fraction_static is None:
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
            if gpu_mem is not None:
                # GPU memory capacity = model weights + KV cache pool + activations + cuda graph buffers
                # mem_fraction_static = (model weights + KV cache pool) / GPU memory capacity.

                # We want mem_fraction_static to be as large as possible but still has enough room
                # for activations and cuda graph buffers. We use the following heuristic to
                # compute the needed size for activations and cuda graph buffers:
                # - The size of the activation depends on the chunked_prefill_size and model size.
                # - The size of cuda graph buffers depends on the cuda graph capture range and model size.
                # For GPUs with more memory, we use a larger chunked_prefill_size and
                # capture more cuda graphs, so they need to reserve more memory.
                parallel_size = self.tp_size * self.pp_size

                if gpu_mem < 20 * 1024:
                    # T4, 4080. (chunked_prefill_size 2k, cuda_graph_max_bs 8)
                    reserved_mem = (2.8 + parallel_size / 10) * 1024
                elif gpu_mem < 35 * 1024:
                    # A10, L40, 4090, 5090. (chunked_prefill_size 2k, cuda_graph_max_bs 8)
                    reserved_mem = (2.8 + parallel_size / 10) * 1024
                elif gpu_mem < 90 * 1024:
                    # H100, A100. (chunked_prefill_size 8k, cuda_graph_max_bs 160)
                    reserved_mem = (9.5 + parallel_size / 2) * 1024
                elif gpu_mem < 100 * 1024:
                    # H20. (chunked_prefill_size 8k, cuda_graph_max_bs 256)
                    reserved_mem = (12 + parallel_size / 2) * 1024
                elif gpu_mem < 160 * 1024:
                    # H200. (chunked_prefill_size 8k, cuda_graph_max_bs 256)
                    reserved_mem = (12 + parallel_size / 2) * 1024
504
                else:
505
506
507
                    # B200, MI300. (chunked_prefill_size 16k, cuda_graph_max_bs 512)
                    reserved_mem = 32 * 1024

508
                # draft model and larger cuda graph buffers
509
                if self.speculative_algorithm is not None:
510
511
512
513
514
515
                    if self.speculative_algorithm == "STANDALONE":
                        # Standalone speculative decoding needs more memory than other speculative
                        # decoding algorithms since the draft model is typically larger.
                        reserved_mem += 6 * 1024
                    else:
                        reserved_mem += 2 * 1024
516
517
518
519
                if self.enable_dp_attention:
                    reserved_mem += 4 * 1024

                self.mem_fraction_static = round((gpu_mem - reserved_mem) / gpu_mem, 3)
520
            else:
521
                self.mem_fraction_static = 0.88
522

523
            # Lazy init to avoid circular import
Lianmin Zheng's avatar
Lianmin Zheng committed
524
            # Multimodal models need more memory for the image processor
525
526
527
            from sglang.srt.configs.model_config import ModelConfig

            model_config = ModelConfig.from_server_args(self)
Lianmin Zheng's avatar
Lianmin Zheng committed
528
529
            if model_config.is_multimodal:
                self.adjust_mem_fraction_for_vlm(model_config)
530

531
532
        # Set chunked prefill size, which depends on the gpu memory capacity
        if self.chunked_prefill_size is None:
533
534
535
536
537
538
539
            if gpu_mem is not None:
                if gpu_mem < 35 * 1024:  # A10, L40, 4090
                    self.chunked_prefill_size = 2048
                elif gpu_mem < 160 * 1024:  # H100, H200, A100, H20
                    self.chunked_prefill_size = 8192
                else:  # B200, MI300
                    self.chunked_prefill_size = 16384
540
            else:
541
                self.chunked_prefill_size = 4096
Lianmin Zheng's avatar
Lianmin Zheng committed
542

543
544
545
546
547
548
549
550
551
        # Set cuda graph max batch size
        if self.cuda_graph_max_bs is None:
            # Based on detailed statistics, when serving TP1/TP2 models on lower-end GPUs with HBM<25G, you can either disable cuda graph or set `cuda_graph_max_bs` to a very small value to reduce the memory overhead of creating cuda graphs, with almost no impact on performance. However, when serving models with TP4 or TP8, we need to enable cuda graph to maintain high performance. In this case, we can set `cuda_graph_max_bs` to 80 (half of the default value 160) to reduce the memory overhead of creating cuda graphs. Looking at the logs from TP4 serving of qwen2-72b, a value of 80 is sufficient and can reduce the memory overhead of creating cuda graphs on lower-end GPUs compared to the original 160, avoiding OOM issues.
            if gpu_mem is not None and gpu_mem < 35 * 1024:
                if self.tp_size < 4:
                    self.cuda_graph_max_bs = 8
                else:
                    self.cuda_graph_max_bs = 80

552
        # Set kernel backends for hpu device
553
554
555
556
        if self.device == "hpu":
            self.attention_backend = "torch_native"
            self.sampling_backend = "pytorch"

557
        # Model-specific adjustments
558
559
        if parse_connector_type(self.model_path) != ConnectorType.INSTANCE:
            self.model_specific_adjustments()
560

Lianmin Zheng's avatar
Lianmin Zheng committed
561
        # Set kernel backends
562
563
564
565
566
        if self.device == "cpu":
            if self.attention_backend is None:
                self.attention_backend = "intel_amx"
            self.sampling_backend = "pytorch"

567
        if self.sampling_backend is None:
568
569
570
571
572
            self.sampling_backend = (
                "flashinfer" if is_flashinfer_available() else "pytorch"
            )

        if self.attention_backend == "torch_native":
573
            logger.warning(
574
575
576
                "Cuda graph is disabled because of using torch native attention backend"
            )
            self.disable_cuda_graph = True
577

578
        if is_npu() and self.attention_backend in ["ascend", "hybrid_linear_attn"]:
579
580
581
582
583
            logger.warning(
                "At this moment Ascend attention backend only supports a page_size of 128, change page_size to 128."
            )
            self.page_size = 128

584
585
586
587
        if (
            self.attention_backend == "flashmla"
            or self.decode_attention_backend == "flashmla"
        ):
Lianmin Zheng's avatar
Lianmin Zheng committed
588
589
590
591
592
            logger.warning(
                "FlashMLA only supports a page_size of 64, change page_size to 64."
            )
            self.page_size = 64

593
594
595
596
        if (
            self.attention_backend == "cutlass_mla"
            or self.decode_attention_backend == "cutlass_mla"
        ):
Lianmin Zheng's avatar
Lianmin Zheng committed
597
598
599
600
601
            logger.warning(
                "Cutlass MLA only supports a page_size of 128, change page_size to 128."
            )
            self.page_size = 128

Faraz's avatar
Faraz committed
602
603
604
605
        if (
            self.attention_backend == "trtllm_mla"
            or self.decode_attention_backend == "trtllm_mla"
        ):
606
607
608
609
610
611
612
613
614
615
            if not is_sm100_supported():
                raise ValueError(
                    "TRTLLM MLA backend is only supported on Blackwell GPUs (SM100). Please use a different backend."
                )

            if self.page_size not in [32, 64]:
                logger.warning(
                    f"TensorRT-LLM MLA only supports page_size of 32 or 64, changing page_size from {self.page_size} to 64."
                )
                self.page_size = 64
Faraz's avatar
Faraz committed
616
617
618
619
620

            if self.kv_cache_dtype not in ["fp8_e4m3", "auto"]:
                raise ValueError(
                    "TensorRT-LLM MLA backend only supports kv-cache-dtype of fp8_e4m3 or auto."
                )
621

622
623
624
625
626
        if (
            self.attention_backend == "trtllm_mha"
            or self.decode_attention_backend == "trtllm_mha"
            or self.prefill_attention_backend == "trtllm_mha"
        ):
627
628
629
630
631
632
633
634
635
636
637
            if not is_sm100_supported():
                raise ValueError(
                    "TRTLLM MHA backend is only supported on Blackwell GPUs (SM100). Please use a different backend."
                )

            if self.page_size not in [16, 32, 64]:
                logger.warning(
                    f"TensorRT-LLM MHA only supports page_size of 16, 32 or 64, changing page_size from {self.page_size} to 64."
                )
                self.page_size = 64

638
639
        if self.attention_backend == "dual_chunk_flash_attn":
            logger.warning(
640
                "Mixed chunk, radix cache, and cuda graphs are disabled because of using dual chunk flash attention backend"
641
642
643
644
645
            )
            self.enable_mixed_chunk = False
            self.disable_cuda_graph = True
            self.disable_radix_cache = True

646
647
648
649
650
651
652
653
        # Set page size
        if self.page_size is None:
            self.page_size = 1

        # AMD-specific Triton attention KV splits default number
        if is_hip():
            self.triton_attention_num_kv_splits = 16

654
655
656
        # Choose grammar backend
        if self.grammar_backend is None:
            self.grammar_backend = "xgrammar"
657

658
659
660
        if self.dp_size == 1:
            self.enable_dp_attention = False

661
        # Data parallelism attention
Ke Bao's avatar
Ke Bao committed
662
        if self.enable_dp_attention:
663
            self.schedule_conservativeness = self.schedule_conservativeness * 0.3
Lianmin Zheng's avatar
Lianmin Zheng committed
664
665
            assert self.tp_size % self.dp_size == 0
            self.chunked_prefill_size = self.chunked_prefill_size // self.dp_size
666
            logger.warning(
667
                f"DP attention is enabled. The chunked prefill size is adjusted to {self.chunked_prefill_size} to avoid MoE kernel issues. "
668
            )
669

670
671
672
        if self.enable_dp_lm_head:
            assert (
                self.enable_dp_attention
673
            ), "Please enable dp attention when setting enable_dp_lm_head. "
674

675
        # MoE kernel
676
        if self.moe_runner_backend == "flashinfer_cutlass":
677
678
679
            assert (
                self.quantization == "modelopt_fp4"
            ), "modelopt_fp4 quantization is required for Flashinfer MOE"
680
681
682
683
            assert self.ep_size in [
                1,
                self.tp_size,
            ], "The expert parallel size must be 1 or the same as the tensor parallel size"
684

685
        if self.moe_runner_backend == "flashinfer_trtllm":
686
687
688
689
690
691
692
            assert (
                self.quantization == "modelopt_fp4" or self.quantization == "fp8"
            ), "modelopt_fp4 quantization is required for Flashinfer TRTLLM MoE"
            self.disable_shared_experts_fusion = True
            logger.warning(
                "FlashInfer TRTLLM MoE is enabled. --disable-shared-experts-fusion is automatically set."
            )
693

694
        # DeepEP MoE
695
        if self.moe_a2a_backend == "deepep":
696
697
698
            if self.deepep_mode == "normal":
                logger.warning("Cuda graph is disabled because deepep_mode=`normal`")
                self.disable_cuda_graph = True
699
            self.ep_size = self.tp_size
Lianmin Zheng's avatar
Lianmin Zheng committed
700
            logger.warning(
701
702
                f"DeepEP MoE is enabled. The expert parallel size is adjusted to be the same as the tensor parallel size[{self.tp_size}]."
            )
703

704
705
        if self.enable_eplb and (self.expert_distribution_recorder_mode is None):
            self.expert_distribution_recorder_mode = "stat"
706
            logger.warning(
707
                "EPLB is enabled. The expert_distribution_recorder_mode is automatically set."
708
709
710
711
712
713
714
            )

        if (self.enable_eplb or (self.init_expert_location is not None)) and (
            self.ep_dispatch_algorithm is None
        ):
            self.ep_dispatch_algorithm = "static"

715
        if self.enable_eplb:
716
            assert self.ep_size > 1
717

718
719
720
721
722
        if self.enable_expert_distribution_metrics and (
            self.expert_distribution_recorder_mode is None
        ):
            self.expert_distribution_recorder_mode = "stat"

723
        if self.expert_distribution_recorder_buffer_size is None:
724
725
            if (x := self.eplb_rebalance_num_iterations) is not None:
                self.expert_distribution_recorder_buffer_size = x
726
727
728
            elif self.expert_distribution_recorder_mode is not None:
                self.expert_distribution_recorder_buffer_size = 1000

Lianmin Zheng's avatar
Lianmin Zheng committed
729
730
731
732
733
734
735
        # Pipeline parallelism
        if self.pp_size > 1:
            self.disable_overlap_schedule = True
            logger.warning(
                "Pipeline parallelism is incompatible with overlap schedule."
            )

Lianmin Zheng's avatar
Lianmin Zheng committed
736
        # Hicache
737
738
739
740
741
        if self.hicache_storage_backend == "mooncake":
            # to use mooncake storage backend, the following conditions must be met:
            self.hicache_io_backend = "kernel"
            self.hicache_mem_layout = "page_first"

742
743
744
745
746
747
748
        if self.hicache_mem_layout == "page_first_direct":
            if self.hicache_io_backend != "direct":
                self.hicache_io_backend = "direct"
                logger.warning(
                    "Page first direct layout only support direct io backend"
                )

749
        # Speculative Decoding
750
751
752
753
        if self.speculative_algorithm == "NEXTN":
            # NEXTN shares the same implementation of EAGLE
            self.speculative_algorithm = "EAGLE"

754
755
756
757
758
759
        if self.speculative_algorithm in ("EAGLE", "EAGLE3", "STANDALONE"):
            if self.speculative_algorithm == "STANDALONE":
                # TODO: support dp attention for standalone speculative decoding
                assert (
                    self.enable_dp_attention is False
                ), "Currently standalone speculative decoding does not support dp attention."
760
            if self.max_running_requests is None:
761
                self.max_running_requests = 48
762
            self.disable_overlap_schedule = True
Lianmin Zheng's avatar
Lianmin Zheng committed
763
            logger.warning(
764
                "Overlap scheduler is disabled because of using "
765
                "eagle speculative decoding."
766
            )
767
768
769
770
771
772
            if self.enable_mixed_chunk:
                self.enable_mixed_chunk = False
                logger.warning(
                    "Mixed chunked prefill is disabled because of using "
                    "eagle speculative decoding."
                )
773

Lianmin Zheng's avatar
Lianmin Zheng committed
774
            model_arch = self.get_hf_config().architectures[0]
strgrb's avatar
strgrb committed
775
776
777
            if model_arch in [
                "DeepseekV3ForCausalLM",
                "Glm4MoeForCausalLM",
Yuan Luo's avatar
Yuan Luo committed
778
                "BailingMoeForCausalLM",
strgrb's avatar
strgrb committed
779
780
                "BailingMoeV2ForCausalLM",
            ]:
Hanming Lu's avatar
Hanming Lu committed
781
                # Auto set draft_model_path DeepSeek-V3/R1
782
783
784
785
786
787
                if self.speculative_draft_model_path is None:
                    self.speculative_draft_model_path = self.model_path
                else:
                    logger.warning(
                        "DeepSeek MTP does not require setting speculative_draft_model_path."
                    )
788

789
790
791
792
793
794
795
796
797
798
            # Auto choose parameters
            if self.speculative_num_steps is None:
                assert (
                    self.speculative_eagle_topk is None
                    and self.speculative_num_draft_tokens is None
                )
                (
                    self.speculative_num_steps,
                    self.speculative_eagle_topk,
                    self.speculative_num_draft_tokens,
799
                ) = auto_choose_speculative_params(self)
800

801
802
803
804
805
806
807
808
809
810
            if (
                self.attention_backend == "trtllm_mha"
                or self.decode_attention_backend == "trtllm_mha"
                or self.prefill_attention_backend == "trtllm_mha"
            ):
                if self.speculative_eagle_topk > 1:
                    raise ValueError(
                        "trtllm_mha backend only supports topk = 1 for speculative decoding."
                    )

811
812
813
814
            if (
                self.speculative_eagle_topk == 1
                and self.speculative_num_draft_tokens != self.speculative_num_steps + 1
            ):
Lianmin Zheng's avatar
Lianmin Zheng committed
815
                logger.warning(
816
817
818
                    "speculative_num_draft_tokens is adjusted to speculative_num_steps + 1 when speculative_eagle_topk == 1"
                )
                self.speculative_num_draft_tokens = self.speculative_num_steps + 1
819

820
821
822
823
824
825
826
827
828
            if (
                self.speculative_eagle_topk > 1
                and self.page_size > 1
                and self.attention_backend != "flashinfer"
            ):
                raise ValueError(
                    "speculative_eagle_topk > 1 with page_size > 1 is unstable and produces incorrect results for paged attention backends. This combination is only supported for the 'flashinfer' backend."
                )

829
            # The token generated from the verify step is counted.
830
            # If sepculative_num_steps >= speculative_num_draft_tokens, the additional tokens will definitely be discarded.
831
            # assert self.speculative_num_steps < self.speculative_num_draft_tokens
832

833
834
835
836
837
838
        # GGUF
        if (
            self.load_format == "auto" or self.load_format == "gguf"
        ) and check_gguf_file(self.model_path):
            self.quantization = self.load_format = "gguf"

839
840
        if is_remote_url(self.model_path):
            self.load_format = "remote"
841
842
        if self.custom_weight_loader is None:
            self.custom_weight_loader = []
843

844
845
846
847
848
849
850
851
        if self.load_format == "remote_instance":
            if (
                self.remote_instance_weight_loader_seed_instance_ip is None
                or self.remote_instance_weight_loader_seed_instance_service_port is None
                or self.remote_instance_weight_loader_send_weights_group_ports is None
            ):
                self.load_format = "auto"

Byron Hsu's avatar
Byron Hsu committed
852
        # PD disaggregation
Byron Hsu's avatar
Byron Hsu committed
853
854
855
856
857
858
859
860
        if self.disaggregation_mode == "decode":
            assert (
                self.disaggregation_decode_tp is None
            ), "Cannot set --disaggregation-decode-tp for the decode engine."
            assert (
                self.disaggregation_decode_dp is None
            ), "Cannot set --disaggregation-decode-dp for the decode engine."

Byron Hsu's avatar
Byron Hsu committed
861
            self.disable_radix_cache = True
862
            logger.warning("KV cache is forced as chunk cache for decode server")
863
864
865
866
867
868
869

            if self.dp_size > 1 and not is_in_ci():
                assert self.prefill_round_robin_balance, (
                    "Prefill round robin balance is required when dp size > 1. "
                    "Please make sure that the prefill instance is launched with `--load-balance-method round_robin`"
                    " and `--prefill-round-robin-balance` is set for decode server."
                )
Byron Hsu's avatar
Byron Hsu committed
870
871
872
873
874
875
876
877
878
879
880
        elif self.disaggregation_mode == "prefill":
            if self.disaggregation_decode_tp is None:
                self.disaggregation_decode_tp = self.tp_size
            if self.disaggregation_decode_dp is None:
                self.disaggregation_decode_dp = self.dp_size

            self.disaggregation_prefill_pp = self.pp_size
            self.validate_disagg_tp_size(self.tp_size, self.disaggregation_decode_tp)

            self.disable_cuda_graph = True
            logger.warning("Cuda graph is disabled for prefill server")
Byron Hsu's avatar
Byron Hsu committed
881

882
883
884
885
886
887
888
        # Validation: prevent both tokenizer batching features from being enabled
        if self.enable_tokenizer_batch_encode and self.enable_dynamic_batch_tokenizer:
            raise ValueError(
                "Cannot enable both --enable-tokenizer-batch-encode and --enable-dynamic-batch-tokenizer. "
                "Please choose one tokenizer batching approach."
            )

889
        # Propagate env vars
890
891
892
        os.environ["SGLANG_ENABLE_TORCH_COMPILE"] = (
            "1" if self.enable_torch_compile else "0"
        )
Yi Zhang's avatar
Yi Zhang committed
893
894
        os.environ["SGLANG_MAMBA_SSM_DTYPE"] = self.mamba_ssm_dtype

895
896
897
898
        # Set env var before grammar backends init
        os.environ["SGLANG_DISABLE_OUTLINES_DISK_CACHE"] = (
            "1" if self.disable_outlines_disk_cache else "0"
        )
899

900
901
902
903
904
905
        if self.enable_hierarchical_cache and self.disable_radix_cache:
            raise ValueError(
                "The arguments enable-hierarchical-cache and disable-radix-cache are mutually exclusive "
                "and cannot be used at the same time. Please use only one of them."
            )

Lianmin Zheng's avatar
Lianmin Zheng committed
906
907
    @staticmethod
    def add_cli_args(parser: argparse.ArgumentParser):
Lianmin Zheng's avatar
Lianmin Zheng committed
908
        # Model and tokenizer
Lianmin Zheng's avatar
Lianmin Zheng committed
909
910
        parser.add_argument(
            "--model-path",
911
            "--model",
Lianmin Zheng's avatar
Lianmin Zheng committed
912
913
914
915
            type=str,
            help="The path of the model weights. This can be a local folder or a Hugging Face repo ID.",
            required=True,
        )
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
        parser.add_argument(
            "--remote-instance-weight-loader-seed-instance-ip",
            type=str,
            default=ServerArgs.remote_instance_weight_loader_seed_instance_ip,
            help="The ip of the seed instance for loading weights from remote instance.",
        )
        parser.add_argument(
            "--remote-instance-weight-loader-seed-instance-service-port",
            type=int,
            default=ServerArgs.remote_instance_weight_loader_seed_instance_service_port,
            help="The service port of the seed instance for loading weights from remote instance.",
        )
        parser.add_argument(
            "--remote-instance-weight-loader-send-weights-group-ports",
            type=json_list_type,
            default=ServerArgs.remote_instance_weight_loader_send_weights_group_ports,
            help="The communication group ports for loading weights from remote instance.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
934
935
936
937
938
939
        parser.add_argument(
            "--tokenizer-path",
            type=str,
            default=ServerArgs.tokenizer_path,
            help="The path of the tokenizer.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
940
941
942
943
944
945
946
947
948
        parser.add_argument(
            "--tokenizer-mode",
            type=str,
            default=ServerArgs.tokenizer_mode,
            choices=["auto", "slow"],
            help="Tokenizer mode. 'auto' will use the fast "
            "tokenizer if available, and 'slow' will "
            "always use the slow tokenizer.",
        )
949
950
951
952
953
954
        parser.add_argument(
            "--tokenizer-worker-num",
            type=int,
            default=ServerArgs.tokenizer_worker_num,
            help="The worker num of the tokenizer manager.",
        )
955
956
957
        parser.add_argument(
            "--skip-tokenizer-init",
            action="store_true",
958
            help="If set, skip init tokenizer and pass input_ids in generate request.",
959
        )
960
        parser.add_argument(
Lianmin Zheng's avatar
Lianmin Zheng committed
961
962
963
            "--load-format",
            type=str,
            default=ServerArgs.load_format,
964
            choices=LOAD_FORMAT_CHOICES,
Lianmin Zheng's avatar
Lianmin Zheng committed
965
966
967
968
969
970
971
972
973
            help="The format of the model weights to load. "
            '"auto" will try to load the weights in the safetensors format '
            "and fall back to the pytorch bin format if safetensors format "
            "is not available. "
            '"pt" will load the weights in the pytorch bin format. '
            '"safetensors" will load the weights in the safetensors format. '
            '"npcache" will load the weights in pytorch format and store '
            "a numpy cache to speed up the loading. "
            '"dummy" will initialize the weights with random values, '
974
            "which is mainly for profiling."
975
976
            '"gguf" will load the weights in the gguf format. '
            '"bitsandbytes" will load the weights using bitsandbytes '
977
978
979
980
            "quantization."
            '"layered" loads weights layer by layer so that one can quantize a '
            "layer before loading another to make the peak memory envelope "
            "smaller.",
Lianmin Zheng's avatar
Lianmin Zheng committed
981
        )
982
983
984
985
986
987
988
        parser.add_argument(
            "--model-loader-extra-config",
            type=str,
            help="Extra config for model loader. "
            "This will be passed to the model loader corresponding to the chosen load_format.",
            default=ServerArgs.model_loader_extra_config,
        )
989
990
991
992
993
        parser.add_argument(
            "--trust-remote-code",
            action="store_true",
            help="Whether or not to allow for custom models defined on the Hub in their own modeling files.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
        parser.add_argument(
            "--context-length",
            type=int,
            default=ServerArgs.context_length,
            help="The model's maximum context length. Defaults to None (will use the value from the model's config.json instead).",
        )
        parser.add_argument(
            "--is-embedding",
            action="store_true",
            help="Whether to use a CausalLM as an embedding model.",
        )
        parser.add_argument(
            "--enable-multimodal",
            default=ServerArgs.enable_multimodal,
            action="store_true",
            help="Enable the multimodal functionality for the served model. If the model being served is not multimodal, nothing will happen",
        )
        parser.add_argument(
            "--revision",
            type=str,
            default=None,
            help="The specific model version to use. It can be a branch "
            "name, a tag name, or a commit id. If unspecified, will use "
            "the default version.",
        )
        parser.add_argument(
            "--model-impl",
            type=str,
            default=ServerArgs.model_impl,
            help="Which implementation of the model to use.\n\n"
            '* "auto" will try to use the SGLang implementation if it exists '
            "and fall back to the Transformers implementation if no SGLang "
            "implementation is available.\n"
            '* "sglang" will use the SGLang model implementation.\n'
            '* "transformers" will use the Transformers model '
            "implementation.\n",
        )

        # HTTP server
        parser.add_argument(
            "--host",
            type=str,
            default=ServerArgs.host,
            help="The host of the HTTP server.",
        )
        parser.add_argument(
            "--port",
            type=int,
            default=ServerArgs.port,
            help="The port of the HTTP server.",
        )
        parser.add_argument(
            "--skip-server-warmup",
            action="store_true",
            help="If set, skip warmup.",
        )
        parser.add_argument(
            "--warmups",
            type=str,
            required=False,
            help="Specify custom warmup functions (csv) to run before server starts eg. --warmups=warmup_name1,warmup_name2 "
            "will run the functions `warmup_name1` and `warmup_name2` specified in warmup.py before the server starts listening for requests",
        )
        parser.add_argument(
            "--nccl-port",
            type=int,
            default=ServerArgs.nccl_port,
            help="The port for NCCL distributed environment setup. Defaults to a random port.",
        )

        # Quantization and data type
Lianmin Zheng's avatar
Lianmin Zheng committed
1065
        parser.add_argument(
Lianmin Zheng's avatar
Lianmin Zheng committed
1066
            "--dtype",
Cody Yu's avatar
Cody Yu committed
1067
            type=str,
Lianmin Zheng's avatar
Lianmin Zheng committed
1068
            default=ServerArgs.dtype,
Ying Sheng's avatar
Ying Sheng committed
1069
1070
            choices=["auto", "half", "float16", "bfloat16", "float", "float32"],
            help="Data type for model weights and activations.\n\n"
Lianmin Zheng's avatar
Lianmin Zheng committed
1071
            '* "auto" will use FP16 precision for FP32 and FP16 models, and '
Ying Sheng's avatar
Ying Sheng committed
1072
            "BF16 precision for BF16 models.\n"
Lianmin Zheng's avatar
Lianmin Zheng committed
1073
1074
1075
1076
            '* "half" for FP16. Recommended for AWQ quantization.\n'
            '* "float16" is the same as "half".\n'
            '* "bfloat16" for a balance between precision and range.\n'
            '* "float" is shorthand for FP32 precision.\n'
Ying Sheng's avatar
Ying Sheng committed
1077
1078
            '* "float32" for FP32 precision.',
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1079
1080
1081
1082
        parser.add_argument(
            "--quantization",
            type=str,
            default=ServerArgs.quantization,
1083
            choices=QUANTIZATION_CHOICES,
Lianmin Zheng's avatar
Lianmin Zheng committed
1084
1085
            help="The quantization method.",
        )
1086
1087
1088
1089
1090
1091
1092
1093
1094
        parser.add_argument(
            "--quantization-param-path",
            type=nullable_str,
            default=None,
            help="Path to the JSON file containing the KV cache "
            "scaling factors. This should generally be supplied, when "
            "KV cache dtype is FP8. Otherwise, KV cache scaling factors "
            "default to 1.0, which may cause accuracy issues. ",
        )
1095
        parser.add_argument(
Lianmin Zheng's avatar
Lianmin Zheng committed
1096
            "--kv-cache-dtype",
1097
            type=str,
Lianmin Zheng's avatar
Lianmin Zheng committed
1098
1099
1100
            default=ServerArgs.kv_cache_dtype,
            choices=["auto", "fp8_e5m2", "fp8_e4m3"],
            help='Data type for kv cache storage. "auto" will use model data type. "fp8_e5m2" and "fp8_e4m3" is supported for CUDA 11.8+.',
1101
        )
1102

1103
        # Memory and scheduling
Lianmin Zheng's avatar
Lianmin Zheng committed
1104
1105
1106
1107
        parser.add_argument(
            "--mem-fraction-static",
            type=float,
            default=ServerArgs.mem_fraction_static,
1108
            help="The fraction of the memory used for static allocation (model weights and KV cache memory pool). Use a smaller value if you see out-of-memory errors.",
Lianmin Zheng's avatar
Lianmin Zheng committed
1109
        )
1110
1111
1112
1113
1114
1115
        parser.add_argument(
            "--max-running-requests",
            type=int,
            default=ServerArgs.max_running_requests,
            help="The maximum number of running requests.",
        )
1116
1117
1118
1119
1120
1121
        parser.add_argument(
            "--max-queued-requests",
            type=int,
            default=ServerArgs.max_queued_requests,
            help="The maximum number of queued requests. This option is ignored when using disaggregation-mode.",
        )
1122
1123
1124
1125
        parser.add_argument(
            "--max-total-tokens",
            type=int,
            default=ServerArgs.max_total_tokens,
1126
1127
            help="The maximum number of tokens in the memory pool. If not specified, it will be automatically calculated based on the memory usage fraction. "
            "This option is typically used for development and debugging purposes.",
1128
        )
1129
1130
1131
1132
        parser.add_argument(
            "--chunked-prefill-size",
            type=int,
            default=ServerArgs.chunked_prefill_size,
1133
            help="The maximum number of tokens in a chunk for the chunked prefill. Setting this to -1 means disabling chunked prefill.",
1134
1135
1136
1137
1138
1139
1140
        )
        parser.add_argument(
            "--max-prefill-tokens",
            type=int,
            default=ServerArgs.max_prefill_tokens,
            help="The maximum number of tokens in a prefill batch. The real bound will be the maximum of this value and the model's maximum context length.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1141
        parser.add_argument(
1142
            "--schedule-policy",
Lianmin Zheng's avatar
Lianmin Zheng committed
1143
            type=str,
1144
            default=ServerArgs.schedule_policy,
1145
            choices=["lpm", "random", "fcfs", "dfs-weight", "lof", "priority"],
1146
            help="The scheduling policy of the requests.",
Lianmin Zheng's avatar
Lianmin Zheng committed
1147
        )
1148
1149
1150
1151
        parser.add_argument(
            "--schedule-conservativeness",
            type=float,
            default=ServerArgs.schedule_conservativeness,
1152
            help="How conservative the schedule policy is. A larger value means more conservative scheduling. Use a larger value if you see requests being retracted frequently.",
1153
        )
1154
1155
1156
1157
1158
1159
        parser.add_argument(
            "--page-size",
            type=int,
            default=ServerArgs.page_size,
            help="The number of tokens in a page.",
        )
tarinkk's avatar
tarinkk committed
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
        parser.add_argument(
            "--hybrid-kvcache-ratio",
            nargs="?",
            const=0.5,
            type=float,
            default=ServerArgs.hybrid_kvcache_ratio,
            help=(
                "Mix ratio in [0,1] between uniform and hybrid kv buffers "
                "(0.0 = pure uniform: swa_size / full_size = 1)"
                "(1.0 = pure hybrid: swa_size / full_size = local_attention_size / context_length)"
            ),
        )
Hanming Lu's avatar
Hanming Lu committed
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
        parser.add_argument(
            "--swa-full-tokens-ratio",
            type=float,
            default=ServerArgs.swa_full_tokens_ratio,
            help="The ratio of SWA layer KV tokens / full layer KV tokens, regardless of the number of swa:full layers. It should be between 0 and 1. "
            "E.g. 0.5 means if each swa layer has 50 tokens, then each full layer has 100 tokens.",
        )
        parser.add_argument(
            "--disable-hybrid-swa-memory",
            action="store_true",
            help="Disable the hybrid SWA memory.",
        )
1184

Lianmin Zheng's avatar
Lianmin Zheng committed
1185
1186
1187
1188
1189
1190
1191
        # Runtime options
        parser.add_argument(
            "--device",
            type=str,
            default=ServerArgs.device,
            help="The device to use ('cuda', 'xpu', 'hpu', 'npu', 'cpu'). Defaults to auto-detection if not specified.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1192
        parser.add_argument(
1193
            "--tensor-parallel-size",
Lianmin Zheng's avatar
Lianmin Zheng committed
1194
            "--tp-size",
Lianmin Zheng's avatar
Lianmin Zheng committed
1195
            type=int,
Lianmin Zheng's avatar
Lianmin Zheng committed
1196
            default=ServerArgs.tp_size,
1197
            help="The tensor parallelism size.",
1198
        )
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
        parser.add_argument(
            "--pipeline-parallel-size",
            "--pp-size",
            type=int,
            default=ServerArgs.pp_size,
            help="The pipeline parallelism size.",
        )
        parser.add_argument(
            "--max-micro-batch-size",
            type=int,
            default=ServerArgs.max_micro_batch_size,
            help="The maximum micro batch size in pipeline parallelism.",
        )
1212
1213
1214
        parser.add_argument(
            "--stream-interval",
            type=int,
Lianmin Zheng's avatar
Lianmin Zheng committed
1215
            default=ServerArgs.stream_interval,
1216
            help="The interval (or buffer size) for streaming in terms of the token length. A smaller value makes streaming smoother, while a larger value makes the throughput higher",
1217
        )
1218
1219
1220
1221
1222
        parser.add_argument(
            "--stream-output",
            action="store_true",
            help="Whether to output as a sequence of disjoint segments.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1223
1224
1225
1226
        parser.add_argument(
            "--random-seed",
            type=int,
            default=ServerArgs.random_seed,
1227
            help="The random seed.",
Lianmin Zheng's avatar
Lianmin Zheng committed
1228
        )
1229
1230
1231
1232
        parser.add_argument(
            "--constrained-json-whitespace-pattern",
            type=str,
            default=ServerArgs.constrained_json_whitespace_pattern,
Lianmin Zheng's avatar
Lianmin Zheng committed
1233
            help="(outlines backend only) Regex pattern for syntactic whitespaces allowed in JSON constrained output. For example, to allow the model generate consecutive whitespaces, set the pattern to [\n\t ]*",
1234
        )
1235
1236
1237
1238
1239
1240
        parser.add_argument(
            "--watchdog-timeout",
            type=float,
            default=ServerArgs.watchdog_timeout,
            help="Set watchdog timeout in seconds. If a forward batch takes longer than this, the server will crash to prevent hanging.",
        )
1241
1242
1243
1244
1245
1246
        parser.add_argument(
            "--dist-timeout",
            type=int,
            default=ServerArgs.dist_timeout,
            help="Set timeout for torch.distributed initialization.",
        )
1247
1248
1249
1250
        parser.add_argument(
            "--download-dir",
            type=str,
            default=ServerArgs.download_dir,
1251
            help="Model download directory for huggingface.",
1252
        )
1253
1254
1255
1256
1257
1258
        parser.add_argument(
            "--base-gpu-id",
            type=int,
            default=ServerArgs.base_gpu_id,
            help="The base GPU ID to start allocating GPUs from. Useful when running multiple instances on the same machine.",
        )
1259
1260
1261
1262
1263
1264
        parser.add_argument(
            "--gpu-id-step",
            type=int,
            default=ServerArgs.gpu_id_step,
            help="The delta between consecutive GPU IDs that are used. For example, setting it to 2 will use GPU 0,2,4,...",
        )
1265
1266
1267
1268
1269
        parser.add_argument(
            "--sleep-on-idle",
            action="store_true",
            help="Reduce CPU usage when sglang is idle.",
        )
1270
1271

        # Logging
Lianmin Zheng's avatar
Lianmin Zheng committed
1272
1273
1274
1275
        parser.add_argument(
            "--log-level",
            type=str,
            default=ServerArgs.log_level,
1276
            help="The logging level of all loggers.",
Lianmin Zheng's avatar
Lianmin Zheng committed
1277
        )
1278
        parser.add_argument(
1279
1280
1281
1282
            "--log-level-http",
            type=str,
            default=ServerArgs.log_level_http,
            help="The logging level of HTTP server. If not set, reuse --log-level by default.",
1283
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1284
        parser.add_argument(
1285
            "--log-requests",
Lianmin Zheng's avatar
Lianmin Zheng committed
1286
            action="store_true",
1287
1288
1289
1290
1291
            help="Log metadata, inputs, outputs of all requests. The verbosity is decided by --log-requests-level",
        )
        parser.add_argument(
            "--log-requests-level",
            type=int,
1292
            default=ServerArgs.log_requests_level,
1293
1294
1295
1296
1297
1298
1299
1300
            help="0: Log metadata (no sampling parameters). 1: Log metadata and sampling parameters. 2: Log metadata, sampling parameters and partial input/output. 3: Log every input/output.",
            choices=[0, 1, 2, 3],
        )
        parser.add_argument(
            "--crash-dump-folder",
            type=str,
            default=ServerArgs.crash_dump_folder,
            help="Folder path to dump requests from the last 5 min before a crash (if any). If not specified, crash dumping is disabled.",
Lianmin Zheng's avatar
Lianmin Zheng committed
1301
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1302
1303
1304
        parser.add_argument(
            "--show-time-cost",
            action="store_true",
Ying Sheng's avatar
Ying Sheng committed
1305
            help="Show time cost of custom marks.",
Lianmin Zheng's avatar
Lianmin Zheng committed
1306
        )
1307
1308
1309
1310
1311
        parser.add_argument(
            "--enable-metrics",
            action="store_true",
            help="Enable log prometheus metrics.",
        )
1312
1313
1314
1315
1316
1317
1318
        parser.add_argument(
            "--enable-metrics-for-all-schedulers",
            action="store_true",
            help="Enable --enable-metrics-for-all-schedulers when you want schedulers on all TP ranks (not just TP 0) "
            "to record request metrics separately. This is especially useful when dp_attention is enabled, as "
            "otherwise all metrics appear to come from TP 0.",
        )
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
        parser.add_argument(
            "--bucket-time-to-first-token",
            type=float,
            nargs="+",
            default=ServerArgs.bucket_time_to_first_token,
            help="The buckets of time to first token, specified as a list of floats.",
        )
        parser.add_argument(
            "--bucket-inter-token-latency",
            type=float,
            nargs="+",
            default=ServerArgs.bucket_inter_token_latency,
            help="The buckets of inter-token latency, specified as a list of floats.",
        )
        parser.add_argument(
            "--bucket-e2e-request-latency",
            type=float,
            nargs="+",
            default=ServerArgs.bucket_e2e_request_latency,
            help="The buckets of end-to-end request latency, specified as a list of floats.",
        )
        parser.add_argument(
            "--collect-tokens-histogram",
            action="store_true",
            default=ServerArgs.collect_tokens_histogram,
            help="Collect prompt/generation tokens histogram.",
        )
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
        bucket_rule = (
            "Supports 3 rule types: 'default' uses predefined buckets; 'tse <middle> <base> <count>' "
            "generates two sides exponential distributed buckets (e.g., 'tse 1000 2 8' generates buckets "
            "[984.0, 992.0, 996.0, 998.0, 1000.0, 1002.0, 1004.0, 1008.0, 1016.0]).); 'customer <value1> "
            "<value2> ...' uses custom bucket values (e.g., 'customer 10 50 100 500')."
        )
        parser.add_argument(
            "--prompt-tokens-buckets",
            type=str,
            nargs="+",
            default=ServerArgs.prompt_tokens_buckets,
            help=f"The buckets rule of prompt tokens. {bucket_rule}",
        )
        parser.add_argument(
            "--generation-tokens-buckets",
            type=str,
            nargs="+",
            default=ServerArgs.generation_tokens_buckets,
            help=f"The buckets rule for generation tokens histogram. {bucket_rule}",
        )
1366
1367
1368
1369
1370
1371
        parser.add_argument(
            "--gc-warning-threshold-secs",
            type=float,
            default=ServerArgs.gc_warning_threshold_secs,
            help="The threshold for long GC warning. If a GC takes longer than this, a warning will be logged. Set to 0 to disable.",
        )
1372
1373
1374
1375
        parser.add_argument(
            "--decode-log-interval",
            type=int,
            default=ServerArgs.decode_log_interval,
1376
            help="The log interval of decode batch.",
1377
        )
1378
1379
1380
1381
1382
1383
        parser.add_argument(
            "--enable-request-time-stats-logging",
            action="store_true",
            default=ServerArgs.enable_request_time_stats_logging,
            help="Enable per request time stats logging",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1384
1385
1386
1387
1388
1389
        parser.add_argument(
            "--kv-events-config",
            type=str,
            default=None,
            help="Config in json format for NVIDIA dynamo KV event publishing. Publishing will be enabled if this flag is used.",
        )
1390

1391
        # API related
Liangsheng Yin's avatar
Liangsheng Yin committed
1392
1393
1394
1395
        parser.add_argument(
            "--api-key",
            type=str,
            default=ServerArgs.api_key,
1396
            help="Set API key of the server. It is also used in the OpenAI API compatible server.",
Liangsheng Yin's avatar
Liangsheng Yin committed
1397
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1398
1399
1400
1401
1402
1403
        parser.add_argument(
            "--served-model-name",
            type=str,
            default=ServerArgs.served_model_name,
            help="Override the model name returned by the v1/models endpoint in OpenAI API server.",
        )
1404
1405
1406
1407
1408
1409
        parser.add_argument(
            "--weight-version",
            type=str,
            default=ServerArgs.weight_version,
            help="Version identifier for the model weights. Defaults to 'default' if not specified.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
        parser.add_argument(
            "--chat-template",
            type=str,
            default=ServerArgs.chat_template,
            help="The buliltin chat template name or the path of the chat template file. This is only used for OpenAI-compatible API server.",
        )
        parser.add_argument(
            "--completion-template",
            type=str,
            default=ServerArgs.completion_template,
            help="The buliltin completion template name or the path of the completion template file. This is only used for OpenAI-compatible API server. only for code completion currently.",
        )
1422
        parser.add_argument(
1423
            "--file-storage-path",
1424
            type=str,
1425
            default=ServerArgs.file_storage_path,
1426
1427
            help="The path of the file storage in backend.",
        )
1428
1429
1430
1431
1432
        parser.add_argument(
            "--enable-cache-report",
            action="store_true",
            help="Return number of cached tokens in usage.prompt_tokens_details for each openai request.",
        )
Xihuai Wang's avatar
Xihuai Wang committed
1433
1434
1435
1436
1437
1438
1439
        parser.add_argument(
            "--reasoning-parser",
            type=str,
            choices=list(ReasoningParser.DetectorMap.keys()),
            default=ServerArgs.reasoning_parser,
            help=f"Specify the parser for reasoning models, supported parsers are: {list(ReasoningParser.DetectorMap.keys())}.",
        )
1440
        tool_call_parser_choices = list(FunctionCallParser.ToolCallParserEnum.keys())
1441
1442
1443
        parser.add_argument(
            "--tool-call-parser",
            type=str,
1444
            choices=tool_call_parser_choices,
1445
            default=ServerArgs.tool_call_parser,
1446
            help=f"Specify the parser for handling tool-call interactions. Options include: {tool_call_parser_choices}.",
1447
        )
1448
1449
1450
1451
1452
1453
        parser.add_argument(
            "--tool-server",
            type=str,
            default=None,
            help="Either 'demo' or a comma-separated list of tool server urls to use for the model. If not specified, no tool server will be used.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1454

1455
1456
        # Data parallelism
        parser.add_argument(
1457
            "--data-parallel-size",
1458
1459
1460
            "--dp-size",
            type=int,
            default=ServerArgs.dp_size,
1461
            help="The data parallelism size.",
1462
1463
1464
1465
1466
        )
        parser.add_argument(
            "--load-balance-method",
            type=str,
            default=ServerArgs.load_balance_method,
1467
            help="The load balancing strategy for data parallelism.",
1468
1469
1470
            choices=[
                "round_robin",
                "shortest_queue",
1471
                "minimum_tokens",
1472
1473
            ],
        )
1474
1475
1476
1477
1478
1479
        parser.add_argument(
            "--prefill-round-robin-balance",
            default=ServerArgs.prefill_round_robin_balance,
            action="store_true",
            help="Prefill is round robin balanced. This is used to promise decode server can get the correct dp rank.",
        )
1480

1481
        # Multi-node distributed serving
1482
        parser.add_argument(
1483
            "--dist-init-addr",
1484
            "--nccl-init-addr",  # For backward compatibility. This will be removed in the future.
1485
            type=str,
1486
            help="The host address for initializing distributed backend (e.g., `192.168.0.2:25000`).",
1487
1488
        )
        parser.add_argument(
Liangsheng Yin's avatar
Liangsheng Yin committed
1489
            "--nnodes", type=int, default=ServerArgs.nnodes, help="The number of nodes."
1490
        )
1491
1492
1493
        parser.add_argument(
            "--node-rank", type=int, default=ServerArgs.node_rank, help="The node rank."
        )
1494

Lianmin Zheng's avatar
Lianmin Zheng committed
1495
1496
1497
1498
1499
1500
1501
        # Model override args
        parser.add_argument(
            "--json-model-override-args",
            type=str,
            help="A dictionary in JSON string format used to override default model configurations.",
            default=ServerArgs.json_model_override_args,
        )
1502
1503
1504
1505
1506
        parser.add_argument(
            "--preferred-sampling-params",
            type=str,
            help="json-formatted sampling settings that will be returned in /get_model_info",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1507

1508
        # LoRA
1509
1510
1511
1512
1513
1514
        parser.add_argument(
            "--enable-lora",
            default=ServerArgs.enable_lora,
            action="store_true",
            help="Enable LoRA support for the model. This argument is automatically set to True if `--lora-paths` is provided for backward compatibility.",
        )
1515
1516
1517
1518
1519
1520
1521
1522
1523
        parser.add_argument(
            "--max-lora-rank",
            default=ServerArgs.max_lora_rank,
            type=int,
            help="The maximum rank of LoRA adapters. If not specified, it will be automatically inferred from the adapters provided in --lora-paths.",
        )
        parser.add_argument(
            "--lora-target-modules",
            type=str,
1524
            choices=SUPPORTED_LORA_TARGET_MODULES + [LORA_TARGET_ALL_MODULES],
1525
1526
            nargs="*",
            default=None,
1527
1528
1529
            help="The union set of all target modules where LoRA should be applied. If not specified, "
            "it will be automatically inferred from the adapters provided in --lora-paths. If 'all' is specified, "
            "all supported modules will be targeted.",
1530
        )
1531
1532
1533
1534
1535
1536
        parser.add_argument(
            "--lora-paths",
            type=str,
            nargs="*",
            default=None,
            action=LoRAPathAction,
1537
            help='The list of LoRA adapters to load. Each adapter must be specified in one of the following formats: <PATH> | <NAME>=<PATH> | JSON with schema {"lora_name":str,"lora_path":str,"pinned":bool}',
1538
1539
1540
1541
1542
        )
        parser.add_argument(
            "--max-loras-per-batch",
            type=int,
            default=8,
1543
1544
            help="Maximum number of adapters for a running batch, include base-only request.",
        )
1545
1546
1547
1548
1549
1550
        parser.add_argument(
            "--max-loaded-loras",
            type=int,
            default=ServerArgs.max_loaded_loras,
            help="If specified, it limits the maximum number of LoRA adapters loaded in CPU memory at a time. The value must be greater than or equal to `--max-loras-per-batch`.",
        )
1551
1552
1553
1554
1555
        parser.add_argument(
            "--lora-backend",
            type=str,
            default="triton",
            help="Choose the kernel backend for multi-LoRA serving.",
1556
1557
1558
        )

        # Kernel backend
1559
1560
1561
        parser.add_argument(
            "--attention-backend",
            type=str,
1562
            choices=ATTENTION_BACKEND_CHOICES,
1563
1564
1565
            default=ServerArgs.attention_backend,
            help="Choose the kernels for attention layers.",
        )
1566
1567
1568
        parser.add_argument(
            "--prefill-attention-backend",
            type=str,
1569
            choices=ATTENTION_BACKEND_CHOICES,
1570
1571
1572
            default=ServerArgs.prefill_attention_backend,
            help="Choose the kernels for prefill attention layers (have priority over --attention-backend).",
        )
1573
1574
1575
        parser.add_argument(
            "--decode-attention-backend",
            type=str,
1576
            choices=ATTENTION_BACKEND_CHOICES,
1577
1578
1579
            default=ServerArgs.decode_attention_backend,
            help="Choose the kernels for decode attention layers (have priority over --attention-backend).",
        )
1580
1581
1582
1583
1584
1585
1586
        parser.add_argument(
            "--sampling-backend",
            type=str,
            choices=["flashinfer", "pytorch"],
            default=ServerArgs.sampling_backend,
            help="Choose the kernels for sampling layers.",
        )
1587
1588
1589
        parser.add_argument(
            "--grammar-backend",
            type=str,
1590
            choices=GRAMMAR_BACKEND_CHOICES,
1591
            default=ServerArgs.grammar_backend,
Lianmin Zheng's avatar
Lianmin Zheng committed
1592
            help="Choose the backend for grammar-guided decoding.",
1593
        )
1594
1595
1596
1597
1598
1599
1600
        parser.add_argument(
            "--mm-attention-backend",
            type=str,
            choices=["sdpa", "fa3", "triton_attn"],
            default=ServerArgs.mm_attention_backend,
            help="Set multimodal attention backend.",
        )
1601

1602
1603
1604
1605
        # Speculative decoding
        parser.add_argument(
            "--speculative-algorithm",
            type=str,
1606
            choices=["EAGLE", "EAGLE3", "NEXTN", "STANDALONE"],
1607
1608
1609
1610
            help="Speculative algorithm.",
        )
        parser.add_argument(
            "--speculative-draft-model-path",
1611
            "--speculative-draft-model",
1612
1613
1614
            type=str,
            help="The path of the draft model weights. This can be a local folder or a Hugging Face repo ID.",
        )
1615
1616
1617
1618
1619
1620
1621
1622
        parser.add_argument(
            "--speculative-draft-model-revision",
            type=str,
            default=None,
            help="The specific draft model version to use. It can be a branch "
            "name, a tag name, or a commit id. If unspecified, will use "
            "the default version.",
        )
1623
1624
1625
1626
1627
1628
1629
1630
1631
        parser.add_argument(
            "--speculative-num-steps",
            type=int,
            help="The number of steps sampled from draft model in Speculative Decoding.",
            default=ServerArgs.speculative_num_steps,
        )
        parser.add_argument(
            "--speculative-eagle-topk",
            type=int,
1632
            help="The number of tokens sampled from the draft model in eagle2 each step.",
1633
1634
            default=ServerArgs.speculative_eagle_topk,
        )
1635
1636
1637
        parser.add_argument(
            "--speculative-num-draft-tokens",
            type=int,
1638
            help="The number of tokens sampled from the draft model in Speculative Decoding.",
1639
1640
            default=ServerArgs.speculative_num_draft_tokens,
        )
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
        parser.add_argument(
            "--speculative-accept-threshold-single",
            type=float,
            help="Accept a draft token if its probability in the target model is greater than this threshold.",
            default=ServerArgs.speculative_accept_threshold_single,
        )
        parser.add_argument(
            "--speculative-accept-threshold-acc",
            type=float,
            help="The accept probability of a draft token is raised from its target probability p to min(1, p / threshold_acc).",
            default=ServerArgs.speculative_accept_threshold_acc,
        )
1653
1654
1655
1656
1657
1658
        parser.add_argument(
            "--speculative-token-map",
            type=str,
            help="The path of the draft model's small vocab table.",
            default=ServerArgs.speculative_token_map,
        )
1659
        parser.add_argument(
1660
            "--speculative-attention-mode",
1661
1662
            type=str,
            choices=["prefill", "decode"],
1663
1664
            help="Attention backend for speculative decoding operations (both target verify and draft extend). Can be one of 'prefill' (default) or 'decode'.",
            default=ServerArgs.speculative_attention_mode,
1665
        )
1666
1667
1668
1669
1670

        # Expert parallelism
        parser.add_argument(
            "--expert-parallel-size",
            "--ep-size",
Cheng Wan's avatar
Cheng Wan committed
1671
            "--ep",
1672
1673
1674
1675
1676
            type=int,
            default=ServerArgs.ep_size,
            help="The expert parallelism size.",
        )
        parser.add_argument(
1677
1678
            "--moe-a2a-backend",
            type=str,
1679
            choices=["none", "deepep"],
1680
1681
            default=ServerArgs.moe_a2a_backend,
            help="Choose the backend for MoE A2A.",
1682
        )
1683
        parser.add_argument(
1684
1685
1686
1687
1688
1689
1690
1691
            "--moe-runner-backend",
            type=str,
            choices=[
                "auto",
                "triton",
                "triton_kernel",
                "flashinfer_trtllm",
                "flashinfer_cutlass",
1692
                "flashinfer_mxfp4",
1693
                "flashinfer_cutedsl",
1694
1695
1696
            ],
            default=ServerArgs.moe_runner_backend,
            help="Choose the runner backend for MoE.",
1697
1698
        )
        parser.add_argument(
1699
1700
            "--flashinfer-mxfp4-moe-precision",
            type=str,
1701
            choices=["default", "bf16"],
1702
1703
1704
1705
            default=ServerArgs.flashinfer_mxfp4_moe_precision,
            help="Choose the computation precision of flashinfer mxfp4 moe",
        )
        parser.add_argument(
1706
1707
            "--enable-flashinfer-allreduce-fusion",
            action="store_true",
1708
            help="Enable FlashInfer allreduce fusion with Residual RMSNorm.",
1709
        )
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
        parser.add_argument(
            "--deepep-mode",
            type=str,
            choices=["normal", "low_latency", "auto"],
            default="auto",
            help="Select the mode when enable DeepEP MoE, could be `normal`, `low_latency` or `auto`. Default is `auto`, which means `low_latency` for decode batch and `normal` for prefill batch.",
        )
        parser.add_argument(
            "--ep-num-redundant-experts",
            type=int,
            default=ServerArgs.ep_num_redundant_experts,
            help="Allocate this number of redundant experts in expert parallel.",
        )
        parser.add_argument(
            "--ep-dispatch-algorithm",
            type=str,
            default=ServerArgs.ep_dispatch_algorithm,
            help="The algorithm to choose ranks for redundant experts in expert parallel.",
        )
        parser.add_argument(
            "--init-expert-location",
            type=str,
            default=ServerArgs.init_expert_location,
            help="Initial location of EP experts.",
        )
        parser.add_argument(
            "--enable-eplb",
            action="store_true",
            help="Enable EPLB algorithm",
        )
        parser.add_argument(
            "--eplb-algorithm",
            type=str,
            default=ServerArgs.eplb_algorithm,
            help="Chosen EPLB algorithm",
        )
        parser.add_argument(
            "--eplb-rebalance-num-iterations",
            type=int,
            default=ServerArgs.eplb_rebalance_num_iterations,
            help="Number of iterations to automatically trigger a EPLB re-balance.",
        )
        parser.add_argument(
            "--eplb-rebalance-layers-per-chunk",
            type=int,
            default=ServerArgs.eplb_rebalance_layers_per_chunk,
            help="Number of layers to rebalance per forward pass.",
        )
1758
1759
1760
1761
1762
1763
        parser.add_argument(
            "--eplb-min-rebalancing-utilization-threshold",
            type=float,
            default=ServerArgs.eplb_min_rebalancing_utilization_threshold,
            help="Minimum threshold for GPU average utilization to trigger EPLB rebalancing. Must be in the range [0.0, 1.0].",
        )
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
        parser.add_argument(
            "--expert-distribution-recorder-mode",
            type=str,
            default=ServerArgs.expert_distribution_recorder_mode,
            help="Mode of expert distribution recorder.",
        )
        parser.add_argument(
            "--expert-distribution-recorder-buffer-size",
            type=int,
            default=ServerArgs.expert_distribution_recorder_buffer_size,
            help="Circular buffer size of expert distribution recorder. Set to -1 to denote infinite buffer.",
        )
        parser.add_argument(
            "--enable-expert-distribution-metrics",
            action="store_true",
            help="Enable logging metrics for expert balancedness",
        )
        parser.add_argument(
            "--deepep-config",
            type=str,
            default=ServerArgs.deepep_config,
            help="Tuned DeepEP config suitable for your own cluster. It can be either a string with JSON content or a file path.",
        )
        parser.add_argument(
            "--moe-dense-tp-size",
            type=int,
            default=ServerArgs.moe_dense_tp_size,
            help="TP size for MoE dense MLP layers. This flag is useful when, with large TP size, there are errors caused by weights in MLP layers having dimension smaller than the min dimension GEMM supports.",
        )
1793

Yi Zhang's avatar
Yi Zhang committed
1794
1795
1796
1797
1798
        # Mamba Cache
        parser.add_argument(
            "--max-mamba-cache-size",
            type=int,
            default=ServerArgs.max_mamba_cache_size,
1799
            help="The maximum size of the mamba cache.",
Yi Zhang's avatar
Yi Zhang committed
1800
1801
1802
1803
1804
1805
        )
        parser.add_argument(
            "--mamba-ssm-dtype",
            type=str,
            default=ServerArgs.mamba_ssm_dtype,
            choices=["float32", "bfloat16"],
1806
            help="The data type of the SSM states in mamba cache.",
Yi Zhang's avatar
Yi Zhang committed
1807
        )
1808

Lianmin Zheng's avatar
Lianmin Zheng committed
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
        # Hierarchical cache
        parser.add_argument(
            "--enable-hierarchical-cache",
            action="store_true",
            help="Enable hierarchical cache",
        )
        parser.add_argument(
            "--hicache-ratio",
            type=float,
            default=ServerArgs.hicache_ratio,
            help="The ratio of the size of host KV cache memory pool to the size of device pool.",
        )
        parser.add_argument(
            "--hicache-size",
            type=int,
            default=ServerArgs.hicache_size,
            help="The size of host KV cache memory pool in gigabytes, which will override the hicache_ratio if set.",
        )
        parser.add_argument(
            "--hicache-write-policy",
            type=str,
            choices=["write_back", "write_through", "write_through_selective"],
            default=ServerArgs.hicache_write_policy,
            help="The write policy of hierarchical cache.",
        )
        parser.add_argument(
            "--hicache-io-backend",
            type=str,
            choices=["direct", "kernel"],
            default=ServerArgs.hicache_io_backend,
            help="The IO backend for KV cache transfer between CPU and GPU",
        )
1841
1842
1843
        parser.add_argument(
            "--hicache-mem-layout",
            type=str,
1844
            choices=["layer_first", "page_first", "page_first_direct"],
1845
1846
1847
            default=ServerArgs.hicache_mem_layout,
            help="The layout of host memory pool for hierarchical cache.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1848
1849
1850
        parser.add_argument(
            "--hicache-storage-backend",
            type=str,
1851
            choices=["file", "mooncake", "hf3fs", "nixl"],
Lianmin Zheng's avatar
Lianmin Zheng committed
1852
1853
1854
            default=ServerArgs.hicache_storage_backend,
            help="The storage backend for hierarchical KV cache.",
        )
pansicheng's avatar
pansicheng committed
1855
1856
1857
1858
1859
1860
1861
        parser.add_argument(
            "--hicache-storage-prefetch-policy",
            type=str,
            choices=["best_effort", "wait_complete", "timeout"],
            default=ServerArgs.hicache_storage_prefetch_policy,
            help="Control when prefetching from the storage backend should stop.",
        )
1862
1863
1864
1865
1866
1867
        parser.add_argument(
            "--hicache-storage-backend-extra-config",
            type=str,
            default=ServerArgs.hicache_storage_backend_extra_config,
            help="A dictionary in JSON string format containing extra configuration for the storage backend.",
        )
1868
1869
1870
1871
1872
1873
        # LMCache
        parser.add_argument(
            "--enable-lmcache",
            action="store_true",
            help="Using LMCache as an alternative hierarchical cache solution",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1874

1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
        # Double Sparsity
        parser.add_argument(
            "--enable-double-sparsity",
            action="store_true",
            help="Enable double sparsity attention",
        )
        parser.add_argument(
            "--ds-channel-config-path",
            type=str,
            default=ServerArgs.ds_channel_config_path,
            help="The path of the double sparsity channel config",
        )
        parser.add_argument(
            "--ds-heavy-channel-num",
            type=int,
            default=ServerArgs.ds_heavy_channel_num,
            help="The number of heavy channels in double sparsity attention",
        )
        parser.add_argument(
            "--ds-heavy-token-num",
            type=int,
            default=ServerArgs.ds_heavy_token_num,
            help="The number of heavy tokens in double sparsity attention",
        )
        parser.add_argument(
            "--ds-heavy-channel-type",
            type=str,
            default=ServerArgs.ds_heavy_channel_type,
            help="The type of heavy channels in double sparsity attention",
        )
        parser.add_argument(
            "--ds-sparse-decode-threshold",
            type=int,
            default=ServerArgs.ds_sparse_decode_threshold,
            help="The type of heavy channels in double sparsity attention",
        )

fzyzcjy's avatar
fzyzcjy committed
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
        # Offloading
        parser.add_argument(
            "--cpu-offload-gb",
            type=int,
            default=ServerArgs.cpu_offload_gb,
            help="How many GBs of RAM to reserve for CPU offloading.",
        )
        parser.add_argument(
            "--offload-group-size",
            type=int,
            default=ServerArgs.offload_group_size,
            help="Number of layers per group in offloading.",
        )
        parser.add_argument(
            "--offload-num-in-group",
            type=int,
            default=ServerArgs.offload_num_in_group,
            help="Number of layers to be offloaded within a group.",
        )
        parser.add_argument(
            "--offload-prefetch-step",
            type=int,
            default=ServerArgs.offload_prefetch_step,
            help="Steps to prefetch in offloading.",
        )
        parser.add_argument(
            "--offload-mode",
            type=str,
            default=ServerArgs.offload_mode,
            help="Mode of offloading.",
        )

1944
        # Optimization/debug options
Liangsheng Yin's avatar
Liangsheng Yin committed
1945
        parser.add_argument(
Lianmin Zheng's avatar
Lianmin Zheng committed
1946
            "--disable-radix-cache",
Liangsheng Yin's avatar
Liangsheng Yin committed
1947
            action="store_true",
Ying Sheng's avatar
Ying Sheng committed
1948
            help="Disable RadixAttention for prefix caching.",
Liangsheng Yin's avatar
Liangsheng Yin committed
1949
        )
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
        parser.add_argument(
            "--cuda-graph-max-bs",
            type=int,
            default=ServerArgs.cuda_graph_max_bs,
            help="Set the maximum batch size for cuda graph. It will extend the cuda graph capture batch size to this value.",
        )
        parser.add_argument(
            "--cuda-graph-bs",
            type=int,
            nargs="+",
            help="Set the list of batch sizes for cuda graph.",
        )
1962
1963
1964
        parser.add_argument(
            "--disable-cuda-graph",
            action="store_true",
1965
            help="Disable cuda graph.",
1966
        )
1967
        parser.add_argument(
1968
1969
            "--disable-cuda-graph-padding",
            action="store_true",
1970
            help="Disable cuda graph when padding is needed. Still uses cuda graph when padding is not needed.",
1971
        )
1972
1973
1974
1975
1976
        parser.add_argument(
            "--enable-profile-cuda-graph",
            action="store_true",
            help="Enable profiling of cuda graph capture.",
        )
1977
1978
1979
1980
1981
        parser.add_argument(
            "--enable-cudagraph-gc",
            action="store_true",
            help="Enable garbage collection during CUDA graph capture. If disabled (default), GC is frozen during capture to speed up the process.",
        )
1982
1983
1984
1985
1986
        parser.add_argument(
            "--enable-nccl-nvls",
            action="store_true",
            help="Enable NCCL NVLS for prefill heavy requests when available.",
        )
1987
1988
1989
1990
1991
        parser.add_argument(
            "--enable-symm-mem",
            action="store_true",
            help="Enable NCCL symmetric memory for fast collectives.",
        )
1992
1993
1994
1995
1996
        parser.add_argument(
            "--disable-flashinfer-cutlass-moe-fp4-allgather",
            action="store_true",
            help="Disables quantize before all-gather for flashinfer cutlass moe.",
        )
1997
1998
1999
2000
2001
        parser.add_argument(
            "--enable-tokenizer-batch-encode",
            action="store_true",
            help="Enable batch tokenization for improved performance when processing multiple text inputs. Do not use with image inputs, pre-tokenized input_ids, or input_embeds.",
        )
2002
        parser.add_argument(
2003
            "--disable-outlines-disk-cache",
2004
            action="store_true",
2005
            help="Disable disk cache of outlines to avoid possible crashes related to file system or high concurrency.",
2006
        )
2007
2008
2009
2010
2011
        parser.add_argument(
            "--disable-custom-all-reduce",
            action="store_true",
            help="Disable the custom all-reduce kernel and fall back to NCCL.",
        )
2012
2013
2014
2015
2016
        parser.add_argument(
            "--enable-mscclpp",
            action="store_true",
            help="Enable using mscclpp for small messages for all-reduce kernel and fall back to NCCL.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
2017
        parser.add_argument(
2018
            "--disable-overlap-schedule",
Lianmin Zheng's avatar
Lianmin Zheng committed
2019
            action="store_true",
2020
            help="Disable the overlap scheduler, which overlaps the CPU scheduler with GPU model worker.",
Lianmin Zheng's avatar
Lianmin Zheng committed
2021
        )
2022
2023
2024
        parser.add_argument(
            "--enable-mixed-chunk",
            action="store_true",
2025
            help="Enabling mixing prefill and decode in a batch when using chunked prefill.",
2026
        )
Ke Bao's avatar
Ke Bao committed
2027
2028
2029
        parser.add_argument(
            "--enable-dp-attention",
            action="store_true",
2030
            help="Enabling data parallelism for attention and tensor parallelism for FFN. The dp size should be equal to the tp size. Currently DeepSeek-V2 and Qwen 2/3 MoE models are supported.",
Ke Bao's avatar
Ke Bao committed
2031
        )
2032
2033
2034
2035
2036
        parser.add_argument(
            "--enable-dp-lm-head",
            action="store_true",
            help="Enable vocabulary parallel across the attention TP group to avoid all-gather across DP groups, optimizing performance under DP attention.",
        )
2037
2038
2039
2040
2041
        parser.add_argument(
            "--enable-two-batch-overlap",
            action="store_true",
            help="Enabling two micro batches to overlap.",
        )
2042
2043
2044
2045
2046
2047
        parser.add_argument(
            "--tbo-token-distribution-threshold",
            type=float,
            default=ServerArgs.tbo_token_distribution_threshold,
            help="The threshold of token distribution between two batches in micro-batch-overlap, determines whether to two-batch-overlap or two-chunk-overlap. Set to 0 denote disable two-chunk-overlap.",
        )
2048
2049
2050
        parser.add_argument(
            "--enable-torch-compile",
            action="store_true",
2051
2052
            help="Optimize the model with torch.compile. Experimental feature.",
        )
2053
        parser.add_argument(
2054
            "--torch-compile-max-bs",
2055
            type=int,
2056
            default=ServerArgs.torch_compile_max_bs,
2057
2058
            help="Set the maximum batch size when using torch compile.",
        )
2059
2060
2061
2062
        parser.add_argument(
            "--torchao-config",
            type=str,
            default=ServerArgs.torchao_config,
2063
            help="Optimize the model with torchao. Experimental feature. Current choices are: int8dq, int8wo, int4wo-<group_size>, fp8wo, fp8dq-per_tensor, fp8dq-per_row",
2064
        )
2065
2066
2067
2068
2069
        parser.add_argument(
            "--enable-nan-detection",
            action="store_true",
            help="Enable the NaN detection for debugging purposes.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
2070
        parser.add_argument(
2071
            "--enable-p2p-check",
Lianmin Zheng's avatar
Lianmin Zheng committed
2072
            action="store_true",
2073
            help="Enable P2P check for GPU access, otherwise the p2p access is allowed by default.",
Lianmin Zheng's avatar
Lianmin Zheng committed
2074
        )
2075
        parser.add_argument(
2076
            "--triton-attention-reduce-in-fp32",
2077
            action="store_true",
2078
            help="Cast the intermediate attention results to fp32 to avoid possible crashes related to fp16."
2079
            "This only affects Triton attention kernels.",
2080
        )
2081
2082
2083
2084
2085
2086
        parser.add_argument(
            "--triton-attention-num-kv-splits",
            type=int,
            default=ServerArgs.triton_attention_num_kv_splits,
            help="The number of KV splits in flash decoding Triton kernel. Larger value is better in longer context scenarios. The default value is 8.",
        )
2087
2088
2089
2090
2091
2092
2093
2094
        parser.add_argument(
            "--num-continuous-decode-steps",
            type=int,
            default=ServerArgs.num_continuous_decode_steps,
            help="Run multiple continuous decoding steps to reduce scheduling overhead. "
            "This can potentially increase throughput but may also increase time-to-first-token latency. "
            "The default value is 1, meaning only run one decoding step at a time.",
        )
2095
2096
2097
2098
2099
        parser.add_argument(
            "--delete-ckpt-after-loading",
            action="store_true",
            help="Delete the model checkpoint after loading the model.",
        )
2100
2101
2102
2103
2104
        parser.add_argument(
            "--enable-memory-saver",
            action="store_true",
            help="Allow saving memory using release_memory_occupation and resume_memory_occupation",
        )
2105
2106
2107
2108
2109
        parser.add_argument(
            "--allow-auto-truncate",
            action="store_true",
            help="Allow automatically truncating requests that exceed the maximum input length instead of returning an error.",
        )
2110
2111
2112
2113
2114
        parser.add_argument(
            "--enable-custom-logit-processor",
            action="store_true",
            help="Enable users to pass custom logit processors to the server (disabled by default for security)",
        )
2115
        parser.add_argument(
2116
            "--flashinfer-mla-disable-ragged",
2117
            action="store_true",
2118
            help="Not using ragged prefill wrapper when running flashinfer mla",
2119
        )
2120
        parser.add_argument(
2121
2122
2123
            "--disable-shared-experts-fusion",
            action="store_true",
            help="Disable shared experts fusion optimization for deepseek v3/r1.",
2124
        )
2125
2126
2127
2128
2129
        parser.add_argument(
            "--disable-chunked-prefix-cache",
            action="store_true",
            help="Disable chunked prefix cache feature for deepseek, which should save overhead for short sequences.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
2130
2131
2132
2133
2134
        parser.add_argument(
            "--disable-fast-image-processor",
            action="store_true",
            help="Adopt base image processor instead of fast image processor.",
        )
2135
2136
2137
2138
2139
        parser.add_argument(
            "--enable-return-hidden-states",
            action="store_true",
            help="Enable returning hidden states with responses.",
        )
2140
2141
2142
2143
2144
2145
        parser.add_argument(
            "--scheduler-recv-interval",
            type=int,
            default=ServerArgs.scheduler_recv_interval,
            help="The interval to poll requests in scheduler. Can be set to >1 to reduce the overhead of this.",
        )
2146
2147
2148
2149
2150
2151
        parser.add_argument(
            "--numa-node",
            type=int,
            nargs="+",
            help="Sets the numa node for the subprocesses. i-th element corresponds to i-th subprocess.",
        )
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171

        # Debug tensor dumps
        parser.add_argument(
            "--debug-tensor-dump-output-folder",
            type=str,
            default=ServerArgs.debug_tensor_dump_output_folder,
            help="The output folder for dumping tensors.",
        )
        parser.add_argument(
            "--debug-tensor-dump-input-file",
            type=str,
            default=ServerArgs.debug_tensor_dump_input_file,
            help="The input filename for dumping tensors",
        )
        parser.add_argument(
            "--debug-tensor-dump-inject",
            type=str,
            default=ServerArgs.debug_tensor_dump_inject,
            help="Inject the outputs from jax as the input of every layer.",
        )
2172
2173
2174
2175
2176
        parser.add_argument(
            "--debug-tensor-dump-prefill-only",
            action="store_true",
            help="Only dump the tensors for prefill requests (i.e. batch size > 1).",
        )
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
        parser.add_argument(
            "--enable-dynamic-batch-tokenizer",
            action="store_true",
            help="Enable async dynamic batch tokenizer for improved performance when multiple requests arrive concurrently.",
        )
        parser.add_argument(
            "--dynamic-batch-tokenizer-batch-size",
            type=int,
            default=ServerArgs.dynamic_batch_tokenizer_batch_size,
            help="[Only used if --enable-dynamic-batch-tokenizer is set] Maximum batch size for dynamic batch tokenizer.",
        )
        parser.add_argument(
            "--dynamic-batch-tokenizer-batch-timeout",
            type=float,
            default=ServerArgs.dynamic_batch_tokenizer_batch_timeout,
            help="[Only used if --enable-dynamic-batch-tokenizer is set] Timeout in seconds for batching tokenization requests.",
        )
2194

Lianmin Zheng's avatar
Lianmin Zheng committed
2195
        # PD disaggregation
Byron Hsu's avatar
Byron Hsu committed
2196
2197
2198
2199
2200
2201
2202
        parser.add_argument(
            "--disaggregation-mode",
            type=str,
            default="null",
            choices=["null", "prefill", "decode"],
            help='Only used for PD disaggregation. "prefill" for prefill-only server, and "decode" for decode-only server. If not specified, it is not PD disaggregated',
        )
2203
2204
2205
2206
        parser.add_argument(
            "--disaggregation-transfer-backend",
            type=str,
            default=ServerArgs.disaggregation_transfer_backend,
2207
            choices=DISAGG_TRANSFER_BACKEND_CHOICES,
2208
2209
            help="The backend for disaggregation transfer. Default is mooncake.",
        )
2210
2211
2212
2213
2214
2215
        parser.add_argument(
            "--disaggregation-bootstrap-port",
            type=int,
            default=ServerArgs.disaggregation_bootstrap_port,
            help="Bootstrap server port on the prefill server. Default is 8998.",
        )
Byron Hsu's avatar
Byron Hsu committed
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
        parser.add_argument(
            "--disaggregation-decode-tp",
            type=int,
            default=ServerArgs.disaggregation_decode_tp,
            help="Decode tp size. If not set, it matches the tp size of the current engine. This is only set on the prefill server.",
        )
        parser.add_argument(
            "--disaggregation-decode-dp",
            type=int,
            default=ServerArgs.disaggregation_decode_dp,
            help="Decode dp size. If not set, it matches the dp size of the current engine. This is only set on the prefill server.",
        )
        parser.add_argument(
            "--disaggregation-prefill-pp",
            type=int,
            default=ServerArgs.disaggregation_prefill_pp,
            help="Prefill pp size. If not set, it is default to 1. This is only set on the decode server.",
        )
2234
2235
2236
2237
        parser.add_argument(
            "--disaggregation-ib-device",
            type=str,
            default=ServerArgs.disaggregation_ib_device,
2238
2239
2240
            help="The InfiniBand devices for disaggregation transfer, accepts single device (e.g., --disaggregation-ib-device mlx5_0) "
            "or multiple comma-separated devices (e.g., --disaggregation-ib-device mlx5_0,mlx5_1). "
            "Default is None, which triggers automatic device detection when mooncake backend is enabled.",
2241
        )
2242
2243
2244
2245
2246
2247
        parser.add_argument(
            "--num-reserved-decode-tokens",
            type=int,
            default=ServerArgs.num_reserved_decode_tokens,
            help="Number of decode tokens that will have memory reserved when adding new request to the running batch.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
2248
2249

        # Custom weight loader
2250
2251
2252
2253
2254
2255
2256
        parser.add_argument(
            "--custom-weight-loader",
            type=str,
            nargs="*",
            default=None,
            help="The custom dataloader which used to update the model. Should be set with a valid import path, such as my_package.weight_load_func",
        )
2257
2258
2259
2260
2261
2262
2263
        parser.add_argument(
            "--weight-loader-disable-mmap",
            action="store_true",
            help="Disable mmap while loading weight using safetensors.",
        )

        # For PD-Multiplexing
2264
2265
2266
2267
2268
        parser.add_argument(
            "--enable-pdmux",
            action="store_true",
            help="Enable PD-Multiplexing, PD running on greenctx stream.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
2269

2270
2271
2272
2273
2274
2275
        parser.add_argument(
            "--sm-group-num",
            type=int,
            default=ServerArgs.sm_group_num,
            help="Number of sm partition groups.",
        )
Byron Hsu's avatar
Byron Hsu committed
2276

2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
        # Deprecated arguments
        parser.add_argument(
            "--enable-ep-moe",
            action="store_true",
            help="(Deprecated) Enabling expert parallelism for moe. The ep size is equal to the tp size.",
        )
        parser.add_argument(
            "--enable-deepep-moe",
            action="store_true",
            help="(Deprecated) Enabling DeepEP MoE implementation for EP MoE.",
        )
2288
2289
2290
2291
2292
        parser.add_argument(
            "--enable-flashinfer-cutlass-moe",
            action="store_true",
            help="(Deprecated) Enable FlashInfer CUTLASS MoE backend for modelopt_fp4 quant on Blackwell. Supports MoE-EP",
        )
2293
2294
2295
2296
2297
        parser.add_argument(
            "--enable-flashinfer-cutedsl-moe",
            action="store_true",
            help="(Deprecated) Enable FlashInfer CuteDSL MoE backend for modelopt_fp4 quant on Blackwell. Supports MoE-EP",
        )
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
        parser.add_argument(
            "--enable-flashinfer-trtllm-moe",
            action="store_true",
            help="(Deprecated) Enable FlashInfer TRTLLM MoE backend on Blackwell. Supports BlockScale FP8 MoE-EP",
        )
        parser.add_argument(
            "--enable-triton-kernel-moe",
            action="store_true",
            help="(Deprecated) Use triton moe grouped gemm kernel.",
        )
2308
2309
2310
2311
2312
        parser.add_argument(
            "--enable-flashinfer-mxfp4-moe",
            action="store_true",
            help="(Deprecated) Enable FlashInfer MXFP4 MoE backend for modelopt_fp4 quant on Blackwell.",
        )
2313

Lianmin Zheng's avatar
Lianmin Zheng committed
2314
2315
    @classmethod
    def from_cli_args(cls, args: argparse.Namespace):
2316
        args.tp_size = args.tensor_parallel_size
2317
        args.pp_size = args.pipeline_parallel_size
2318
        args.dp_size = args.data_parallel_size
xiaobochen's avatar
xiaobochen committed
2319
        args.ep_size = args.expert_parallel_size
2320

Lianmin Zheng's avatar
Lianmin Zheng committed
2321
2322
2323
2324
        attrs = [attr.name for attr in dataclasses.fields(cls)]
        return cls(**{attr: getattr(args, attr) for attr in attrs})

    def url(self):
2325
        if is_valid_ipv6_address(self.host):
2326
2327
2328
            return f"http://[{self.host}]:{self.port}"
        else:
            return f"http://{self.host}:{self.port}"
Lianmin Zheng's avatar
Lianmin Zheng committed
2329

Lianmin Zheng's avatar
Lianmin Zheng committed
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
    def get_hf_config(self):
        kwargs = {}
        hf_config = get_config(
            self.model_path,
            trust_remote_code=self.trust_remote_code,
            revision=self.revision,
            model_override_args=json.loads(self.json_model_override_args),
            **kwargs,
        )
        return hf_config

2341
    def check_server_args(self):
2342
        # Check parallel size constraints
2343
        assert (
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
            self.tp_size * self.pp_size
        ) % self.nnodes == 0, "tp_size must be divisible by number of nodes"

        if self.pp_size > 1:
            assert (
                self.disable_overlap_schedule
                and self.speculative_algorithm is None
                and not self.enable_mixed_chunk
            ), "Pipeline parallelism is not compatible with overlap schedule, speculative decoding, mixed chunked prefill."

2354
        assert not (
2355
2356
            self.dp_size > 1 and self.nnodes != 1 and not self.enable_dp_attention
        ), "multi-node data parallel is not supported unless dp attention!"
2357

2358
        assert self.base_gpu_id >= 0, "base_gpu_id must be non-negative"
2359
        assert self.gpu_id_step >= 1, "gpu_id_step must be positive"
2360

Lianmin Zheng's avatar
Lianmin Zheng committed
2361
2362
2363
2364
2365
        assert self.moe_dense_tp_size in {
            1,
            None,
        }, "moe_dense_tp_size only support 1 and None currently"

2366
        # Check LoRA
2367
2368
        self.check_lora_server_args()

2369
2370
2371
2372
2373
2374
2375
        # Check speculative decoding
        if self.speculative_algorithm is not None:
            assert (
                not self.enable_mixed_chunk
            ), "enable_mixed_chunk is required for speculative decoding"

        # Check chunked prefill
2376
2377
2378
2379
2380
        # Skip validation if chunked prefill is disabled (i.e., size <= 0).
        if self.chunked_prefill_size > 0:
            assert (
                self.chunked_prefill_size % self.page_size == 0
            ), "chunked_prefill_size must be divisible by page_size"
2381

2382
2383
        # Check multi tokenizer
        assert self.tokenizer_worker_num > 0, "Tokenizer worker num must >= 1"
2384
2385
2386
2387
2388
2389
        self.validate_buckets_rule(
            "--prompt-tokens-buckets", self.prompt_tokens_buckets
        )
        self.validate_buckets_rule(
            "--generation-tokens-buckets", self.generation_tokens_buckets
        )
2390

2391
    def check_lora_server_args(self):
2392
        assert self.max_loras_per_batch > 0, "max_loras_per_batch must be positive"
2393

2394
2395
2396
2397
        # Enable LoRA if any LoRA paths are provided for backward compatibility.
        if self.lora_paths:
            if self.enable_lora is None:
                self.enable_lora = True
2398
                logger.warning(
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
                    "--enable-lora is set to True because --lora-paths is provided."
                )
            elif self.enable_lora is False:
                logger.warning(
                    "--enable-lora is set to False, any provided lora_paths will be ignored."
                )

        if self.enable_lora:
            if isinstance(self.lora_paths, list):
                lora_paths = self.lora_paths
2409
                self.lora_paths = []
2410
                for lora_path in lora_paths:
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
                    if isinstance(lora_path, str):
                        if "=" in lora_path:
                            name, path = lora_path.split("=", 1)
                            lora_ref = LoRARef(
                                lora_name=name, lora_path=path, pinned=False
                            )
                        else:
                            lora_ref = LoRARef(
                                lora_name=lora_path, lora_path=lora_path, pinned=False
                            )
                    elif isinstance(lora_path, dict):
                        assert (
                            "lora_name" in lora_path and "lora_path" in lora_path
                        ), f"When providing LoRA paths as a list of dict, each dict should contain 'lora_name' and 'lora_path' keys. Got: {lora_path}"
                        lora_ref = LoRARef(
                            lora_name=lora_path["lora_name"],
                            lora_path=lora_path["lora_path"],
                            pinned=lora_path.get("pinned", False),
2429
                        )
2430
                    else:
2431
2432
2433
                        raise ValueError(
                            f"Invalid type for item in --lora-paths list: {type(lora_path)}. "
                            "Expected a string or a dictionary."
2434
                        )
2435
                    self.lora_paths.append(lora_ref)
2436
            elif isinstance(self.lora_paths, dict):
2437
2438
                self.lora_paths = [
                    LoRARef(lora_name=k, lora_path=v, pinned=False)
2439
                    for k, v in self.lora_paths.items()
2440
                ]
2441
            elif self.lora_paths is None:
2442
                self.lora_paths = []
2443
2444
2445
2446
2447
            else:
                raise ValueError(
                    f"Invalid type for --lora-paths: {type(self.lora_paths)}. "
                    "Expected a list or a dictionary."
                )
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461

            # Expand target modules
            if self.lora_target_modules:
                self.lora_target_modules = set(self.lora_target_modules)
                if "all" in self.lora_target_modules:
                    assert (
                        len(self.lora_target_modules) == 1
                    ), "If 'all' is specified in --lora-target-modules, it should be the only module specified."
                    self.lora_target_modules = set(SUPPORTED_LORA_TARGET_MODULES)

            # Ensure sufficient information is provided for LoRA initialization.
            assert self.lora_paths or (
                self.max_lora_rank and self.lora_target_modules
            ), "When no initial --lora-paths is provided, you need to specify both --max-lora-rank and --lora-target-modules for LoRA initialization."
2462

2463
2464
2465
2466
2467
2468
            # Validate max_loaded_loras
            if self.max_loaded_loras is not None:
                assert self.max_loaded_loras >= self.max_loras_per_batch, (
                    "max_loaded_loras should be greater than or equal to max_loras_per_batch. "
                    f"max_loaded_loras={self.max_loaded_loras}, max_loras_per_batch={self.max_loras_per_batch}"
                )
2469
                assert len(self.lora_paths) <= self.max_loaded_loras, (
2470
2471
2472
2473
                    "The number of LoRA paths should not exceed max_loaded_loras. "
                    f"max_loaded_loras={self.max_loaded_loras}, lora_paths={len(self.lora_paths)}"
                )

Lianmin Zheng's avatar
Lianmin Zheng committed
2474
2475
2476
2477
2478
2479
2480
2481
    def validate_disagg_tp_size(self, prefill_tp: int, decode_tp: int):
        larger_tp = max(decode_tp, prefill_tp)
        smaller_tp = min(decode_tp, prefill_tp)
        assert larger_tp % smaller_tp == 0, (
            "Different tp size is supported only when one tp is multiple of the other. "
            f"decode_tp={decode_tp}, prefill_tp={prefill_tp}"
        )

2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
    def validate_buckets_rule(self, arg_name: str, buckets_rule: List[str]):
        if not buckets_rule:
            return

        assert len(buckets_rule) > 0, f"{arg_name} cannot be empty list"
        rule = buckets_rule[0]
        assert rule in [
            "tse",
            "default",
            "customer",
        ], f"Unsupported {arg_name} rule type: '{rule}'. Must be one of: 'tse', 'default', 'customer'"

        if rule == "tse":
            assert (
                len(buckets_rule) == 4
            ), f"{arg_name} TSE rule requires exactly 4 parameters: ['tse', middle, base, count], got {len(buckets_rule)}"
            try:
                middle = float(buckets_rule[1])
                base = float(buckets_rule[2])
                count = int(buckets_rule[3])
            except (ValueError, IndexError):
                assert (
                    False
                ), f"{arg_name} TSE rule parameters must be: ['tse', <float:middle>, <float:base>, <int:count>]"
            assert base > 1, f"{arg_name} TSE base must be larger than 1, got: {base}"
            assert count > 0, f"{arg_name} TSE count must be positive, got: {count}"
            assert middle > 0, f"{arg_name} TSE middle must be positive, got: {middle}"

        elif rule == "default":
            assert (
                len(buckets_rule) == 1
            ), f"{arg_name} default rule should only have one parameter: ['default'], got {len(buckets_rule)}"

        elif rule == "customer":
            assert (
                len(buckets_rule) >= 2
            ), f"{arg_name} customer rule requires at least one bucket value: ['customer', value1, ...]"
            try:
                bucket_values = [float(x) for x in buckets_rule[1:]]
            except ValueError:
                assert False, f"{arg_name} customer rule bucket values must be numeric"
            assert len(set(bucket_values)) == len(
                bucket_values
            ), f"{arg_name} customer rule bucket values should not contain duplicates"
            assert all(
                val >= 0 for val in bucket_values
            ), f"{arg_name} customer rule bucket values should be non-negative"

2530
2531
2532
2533
2534
    def model_specific_adjustments(self):
        hf_config = self.get_hf_config()
        model_arch = hf_config.architectures[0]
        if model_arch in ["GptOssForCausalLM"]:
            if self.attention_backend is None:
2535
                if is_cuda() and is_sm100_supported():
2536
                    self.attention_backend = "trtllm_mha"
2537
                elif is_cuda() and is_sm90_supported():
2538
2539
2540
                    self.attention_backend = "fa3"
                else:
                    self.attention_backend = "triton"
2541
            supported_backends = ["triton", "trtllm_mha", "fa3"]
2542
2543
2544
            logger.info(
                f"Use {self.attention_backend} as attention backend for GptOssForCausalLM"
            )
2545
2546
2547
            assert (
                self.attention_backend in supported_backends
            ), f"GptOssForCausalLM requires one of {supported_backends} attention backend, but got '{self.attention_backend}'"
2548
2549

            if is_sm100_supported():
2550
2551
2552
2553
2554
                if not self.enable_dp_attention:
                    self.enable_flashinfer_allreduce_fusion = True
                    logger.info(
                        "Enable FlashInfer AllReduce Fusion on sm100 for GptOssForCausalLM"
                    )
2555
2556
2557
2558
2559
2560
2561
            quantization_config = getattr(hf_config, "quantization_config", None)
            is_mxfp4_quant_format = (
                quantization_config is not None
                and quantization_config.get("quant_method") == "mxfp4"
            )

            if is_sm100_supported() and is_mxfp4_quant_format:
2562
                self.moe_runner_backend = "flashinfer_mxfp4"
2563
2564
2565
2566
                logger.warning(
                    "Detected SM100 and MXFP4 quantization format for GPT-OSS model, enabling FlashInfer MXFP4 MOE kernel."
                )
            else:
2567
                if self.moe_runner_backend == "triton_kernel":
2568
2569
2570
                    assert (
                        self.ep_size == 1
                    ), "Triton kernel MoE is only supported when ep_size == 1"
2571
2572
2573
2574
2575
2576
                if (
                    self.moe_runner_backend == "auto"
                    and self.ep_size == 1
                    and is_triton_kernels_available()
                ):
                    self.moe_runner_backend = "triton_kernel"
2577
2578
2579
2580
2581
2582
2583
                    logger.warning(
                        "Detected GPT-OSS model, enabling triton_kernels MOE kernel."
                    )
            self.disable_hybrid_swa_memory = True
            if is_mxfp4_quant_format:
                # use bf16 for mxfp4 triton kernels
                self.dtype = "bfloat16"
2584

2585
        elif "Llama4" in model_arch:
2586
2587
2588
            assert self.attention_backend in {
                "fa3",
                "aiter",
2589
2590
                "triton",
            }, "fa3, aiter, or triton is required for Llama4 model"
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
        elif model_arch in [
            "Gemma2ForCausalLM",
            "Gemma3ForCausalLM",
            "Gemma3ForConditionalGeneration",
            "Gemma3nForCausalLM",
            "Gemma3nForConditionalGeneration",
        ]:
            # FIXME: https://github.com/sgl-project/sglang/pull/7367 is not compatible with gemma2 model.
            # It failed at this test: https://github.com/sgl-project/sglang/actions/runs/16255155597/job/45890331952#step:4:736
            logger.warning(
                f"Disable hybrid SWA memory for {model_arch} as it is not yet supported."
            )
            self.disable_hybrid_swa_memory = True

Lianmin Zheng's avatar
Lianmin Zheng committed
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
    def adjust_mem_fraction_for_vlm(self, model_config):
        vision_config = getattr(model_config.hf_config, "vision_config", None)
        if vision_config is None:
            return

        # roughly reduce the mem_fraction_static base on params of Vit
        original_server_arg_mem_fraction = self.mem_fraction_static
        # a base mem_fraction_static factor for regular Vit
        base_mem_fraction_reduction_ratio = 0.95

        vit_num_layers = getattr(vision_config, "num_hidden_layers", 24)
        vit_hidden_size = getattr(vision_config, "hidden_size", 1024)

        # baseline ViT params (ViT-L/14)
        baseline_vit_layers = 24
        baseline_vit_hidden_size = 1024

        # weight params count
        current_complexity_score = vit_num_layers * (vit_hidden_size**2)
        baseline_complexity_score = baseline_vit_layers * (baseline_vit_hidden_size**2)
        complexity_ratio = (
            current_complexity_score / baseline_complexity_score
            if baseline_complexity_score > 0
            else 1.0
        )

        # every time the complexity grows 100%, adjust final factor for 10%
        sensitivity_scale = 0.1
        dynamic_adjustment_factor = 1.0 - sensitivity_scale * (complexity_ratio - 1.0)
        dynamic_adjustment_factor = max(0.8, min(1.05, dynamic_adjustment_factor))

        final_overall_factor = (
            base_mem_fraction_reduction_ratio * dynamic_adjustment_factor
        )
        self.mem_fraction_static = (
            original_server_arg_mem_fraction * final_overall_factor
        )

Lianmin Zheng's avatar
Lianmin Zheng committed
2643

Lianmin Zheng's avatar
Lianmin Zheng committed
2644
def prepare_server_args(argv: List[str]) -> ServerArgs:
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
    """
    Prepare the server arguments from the command line arguments.

    Args:
        args: The command line arguments. Typically, it should be `sys.argv[1:]`
            to ensure compatibility with `parse_args` when no arguments are passed.

    Returns:
        The server arguments.
    """
    parser = argparse.ArgumentParser()
    ServerArgs.add_cli_args(parser)
Lianmin Zheng's avatar
Lianmin Zheng committed
2657
    raw_args = parser.parse_args(argv)
2658
2659
2660
2661
    server_args = ServerArgs.from_cli_args(raw_args)
    return server_args


2662
2663
2664
ZMQ_TCP_PORT_DELTA = 233


Lianmin Zheng's avatar
Lianmin Zheng committed
2665
2666
@dataclasses.dataclass
class PortArgs:
2667
2668
2669
2670
2671
2672
    # The ipc filename for tokenizer to receive inputs from detokenizer (zmq)
    tokenizer_ipc_name: str
    # The ipc filename for scheduler (rank 0) to receive inputs from tokenizer (zmq)
    scheduler_input_ipc_name: str
    # The ipc filename for detokenizer to receive inputs from scheduler (zmq)
    detokenizer_ipc_name: str
2673

2674
2675
    # The port for nccl initialization (torch.dist)
    nccl_port: int
2676

2677
2678
2679
    # The ipc filename for rpc call between Engine and Scheduler
    rpc_ipc_name: str

2680
2681
2682
    # The ipc filename for Scheduler to send metrics
    metrics_ipc_name: str

2683
2684
2685
    # The ipc filename for Tokenizer and worker tokenizer
    tokenizer_worker_ipc_name: Optional[str]

2686
    @staticmethod
2687
    def init_new(server_args, dp_rank: Optional[int] = None) -> "PortArgs":
2688
        if server_args.nccl_port is None:
Lianmin Zheng's avatar
Lianmin Zheng committed
2689
            nccl_port = server_args.port + random.randint(100, 1000)
2690
            while True:
Lianmin Zheng's avatar
Lianmin Zheng committed
2691
                if is_port_available(nccl_port):
2692
                    break
Lianmin Zheng's avatar
Lianmin Zheng committed
2693
2694
                if nccl_port < 60000:
                    nccl_port += 42
2695
                else:
Lianmin Zheng's avatar
Lianmin Zheng committed
2696
                    nccl_port -= 43
2697
        else:
Lianmin Zheng's avatar
Lianmin Zheng committed
2698
            nccl_port = server_args.nccl_port
2699

2700
2701
2702
2703
2704
2705
        if not server_args.enable_dp_attention:
            # Normal case, use IPC within a single node
            return PortArgs(
                tokenizer_ipc_name=f"ipc://{tempfile.NamedTemporaryFile(delete=False).name}",
                scheduler_input_ipc_name=f"ipc://{tempfile.NamedTemporaryFile(delete=False).name}",
                detokenizer_ipc_name=f"ipc://{tempfile.NamedTemporaryFile(delete=False).name}",
Lianmin Zheng's avatar
Lianmin Zheng committed
2706
                nccl_port=nccl_port,
2707
                rpc_ipc_name=f"ipc://{tempfile.NamedTemporaryFile(delete=False).name}",
2708
                metrics_ipc_name=f"ipc://{tempfile.NamedTemporaryFile(delete=False).name}",
2709
                tokenizer_worker_ipc_name=None,
2710
2711
2712
2713
2714
            )
        else:
            # DP attention. Use TCP + port to handle both single-node and multi-node.
            if server_args.nnodes == 1 and server_args.dist_init_addr is None:
                dist_init_addr = ("127.0.0.1", server_args.port + ZMQ_TCP_PORT_DELTA)
Vincent's avatar
Vincent committed
2715
2716
2717
            elif server_args.dist_init_addr.startswith("["):  # ipv6 address
                port_num, host = configure_ipv6(server_args.dist_init_addr)
                dist_init_addr = (host, str(port_num))
2718
2719
            else:
                dist_init_addr = server_args.dist_init_addr.split(":")
Vincent's avatar
Vincent committed
2720

2721
2722
2723
2724
2725
2726
            assert (
                len(dist_init_addr) == 2
            ), "please provide --dist-init-addr as host:port of head node"

            dist_init_host, dist_init_port = dist_init_addr
            port_base = int(dist_init_port) + 1
2727
2728
2729
            detokenizer_port = port_base + 1
            rpc_port = port_base + 2
            metrics_ipc_name = port_base + 3
2730
            if dp_rank is None:
2731
                # TokenizerManager to DataParallelController
2732
                scheduler_input_port = port_base + 4
2733
            else:
2734
                scheduler_input_port = port_base + 4 + 1 + dp_rank
2735
2736
2737
2738

            return PortArgs(
                tokenizer_ipc_name=f"tcp://{dist_init_host}:{port_base}",
                scheduler_input_ipc_name=f"tcp://{dist_init_host}:{scheduler_input_port}",
2739
                detokenizer_ipc_name=f"tcp://{dist_init_host}:{detokenizer_port}",
Lianmin Zheng's avatar
Lianmin Zheng committed
2740
                nccl_port=nccl_port,
2741
2742
                rpc_ipc_name=f"tcp://{dist_init_host}:{rpc_port}",
                metrics_ipc_name=f"tcp://{dist_init_host}:{metrics_ipc_name}",
2743
                tokenizer_worker_ipc_name=None,
2744
            )
2745

2746
2747
2748

class LoRAPathAction(argparse.Action):
    def __call__(self, parser, namespace, values, option_string=None):
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
        lora_paths = []
        if values:
            assert isinstance(values, list), "Expected a list of LoRA paths."
            for lora_path in values:
                lora_path = lora_path.strip()
                if lora_path.startswith("{") and lora_path.endswith("}"):
                    obj = json.loads(lora_path)
                    assert "lora_path" in obj and "lora_name" in obj, (
                        f"{repr(lora_path)} looks like a JSON str, "
                        "but it does not contain 'lora_name' and 'lora_path' keys."
                    )
                    lora_paths.append(obj)
                else:
                    lora_paths.append(lora_path)

        setattr(namespace, self.dest, lora_paths)
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774


class DeprecatedAction(argparse.Action):
    def __init__(self, option_strings, dest, nargs=0, **kwargs):
        super(DeprecatedAction, self).__init__(
            option_strings, dest, nargs=nargs, **kwargs
        )

    def __call__(self, parser, namespace, values, option_string=None):
        raise ValueError(self.help)
2775
2776


2777
2778
2779
2780
def print_deprecated_warning(message: str):
    logger.warning(f"\033[33m{message}\033[0m")


2781
def auto_choose_speculative_params(self: ServerArgs):
2782
2783
2784
2785
2786
    """
    Automatically choose the parameters for speculative decoding.

    You can tune them on your own models and prompts with scripts/playground/bench_speculative.py
    """
Lianmin Zheng's avatar
Lianmin Zheng committed
2787
    hf_config = self.get_hf_config()
2788
    arch = hf_config.architectures[0]
2789
2790
2791
    if self.speculative_algorithm == "STANDALONE":
        # The default value for standalone speculative decoding
        return (3, 1, 4)
2792
2793
2794
    if arch in ["LlamaForCausalLM"]:
        # The default value for llama
        return (5, 4, 8)
2795
2796
2797
2798
    elif arch in [
        "DeepseekV3ForCausalLM",
        "DeepseekV2ForCausalLM",
        "GptOssForCausalLM",
strgrb's avatar
strgrb committed
2799
2800
        "BailingMoeForCausalLM",
        "BailingMoeV2ForCausalLM",
2801
2802
    ]:
        # The default value for deepseek and gpt-oss
2803
        return (3, 1, 4)
2804
2805
2806
2807
2808
    elif arch in ["Grok1ForCausalLM", "Grok1VForCausalLM"]:
        return (5, 4, 8)
    else:
        # The default value for all other models
        return (5, 4, 8)