server_args.py 91.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
Lianmin Zheng's avatar
Lianmin Zheng committed
14
15
"""The arguments of the server."""

Lianmin Zheng's avatar
Lianmin Zheng committed
16
17
import argparse
import dataclasses
18
import json
19
import logging
20
import os
21
import random
22
import sys
23
import tempfile
24
from typing import List, Literal, Optional, Union
Lianmin Zheng's avatar
Lianmin Zheng committed
25

26
from sglang.srt.hf_transformers_utils import check_gguf_file, get_config
27
from sglang.srt.layers.utils import is_sm100_supported
28
from sglang.srt.lora.lora_registry import LoRARef
Xihuai Wang's avatar
Xihuai Wang committed
29
from sglang.srt.reasoning_parser import ReasoningParser
30
from sglang.srt.utils import (
31
32
    LORA_TARGET_ALL_MODULES,
    SUPPORTED_LORA_TARGET_MODULES,
Vincent's avatar
Vincent committed
33
    configure_ipv6,
34
    get_device,
Lianmin Zheng's avatar
Lianmin Zheng committed
35
    get_device_memory_capacity,
36
    is_flashinfer_available,
HAI's avatar
HAI committed
37
    is_hip,
38
    is_port_available,
39
    is_remote_url,
40
    is_valid_ipv6_address,
bjmsong's avatar
bjmsong committed
41
    nullable_str,
42
)
43

44
45
logger = logging.getLogger(__name__)

Lianmin Zheng's avatar
Lianmin Zheng committed
46
47
48

@dataclasses.dataclass
class ServerArgs:
Lianmin Zheng's avatar
Lianmin Zheng committed
49
    # Model and tokenizer
Lianmin Zheng's avatar
Lianmin Zheng committed
50
51
52
    model_path: str
    tokenizer_path: Optional[str] = None
    tokenizer_mode: str = "auto"
53
    skip_tokenizer_init: bool = False
Lianmin Zheng's avatar
Lianmin Zheng committed
54
    load_format: str = "auto"
55
    model_loader_extra_config: str = "{}"
56
    trust_remote_code: bool = False
57
    context_length: Optional[int] = None
58
    is_embedding: bool = False
59
    enable_multimodal: Optional[bool] = None
60
    revision: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
61
    model_impl: str = "auto"
Lianmin Zheng's avatar
Lianmin Zheng committed
62

Lianmin Zheng's avatar
Lianmin Zheng committed
63
    # HTTP server
Lianmin Zheng's avatar
Lianmin Zheng committed
64
65
    host: str = "127.0.0.1"
    port: int = 30000
Lianmin Zheng's avatar
Lianmin Zheng committed
66
67
    skip_server_warmup: bool = False
    warmups: Optional[str] = None
68
    nccl_port: Optional[int] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
69

Lianmin Zheng's avatar
Lianmin Zheng committed
70
71
72
73
74
75
    # Quantization and data type
    dtype: str = "auto"
    quantization: Optional[str] = None
    quantization_param_path: Optional[str] = None
    kv_cache_dtype: str = "auto"

Lianmin Zheng's avatar
Lianmin Zheng committed
76
    # Memory and scheduling
Lianmin Zheng's avatar
Lianmin Zheng committed
77
    mem_fraction_static: Optional[float] = None
78
    max_running_requests: Optional[int] = None
79
    max_queued_requests: Optional[int] = sys.maxsize
80
    max_total_tokens: Optional[int] = None
81
    chunked_prefill_size: Optional[int] = None
82
    max_prefill_tokens: int = 16384
83
    schedule_policy: str = "fcfs"
84
    schedule_conservativeness: float = 1.0
85
    cpu_offload_gb: int = 0
86
    page_size: Optional[int] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
87
88
89
    hybrid_kvcache_ratio: Optional[float] = None
    swa_full_tokens_ratio: float = 0.8
    disable_hybrid_swa_memory: bool = False
Lianmin Zheng's avatar
Lianmin Zheng committed
90

Lianmin Zheng's avatar
Lianmin Zheng committed
91
92
    # Runtime options
    device: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
93
    tp_size: int = 1
94
95
    pp_size: int = 1
    max_micro_batch_size: Optional[int] = None
96
    stream_interval: int = 1
97
    stream_output: bool = False
98
    random_seed: Optional[int] = None
99
    constrained_json_whitespace_pattern: Optional[str] = None
100
    watchdog_timeout: float = 300
101
    dist_timeout: Optional[int] = None  # timeout for torch.distributed
102
    download_dir: Optional[str] = None
103
    base_gpu_id: int = 0
104
    gpu_id_step: int = 1
105
    sleep_on_idle: bool = False
Lianmin Zheng's avatar
Lianmin Zheng committed
106
107
108

    # Logging
    log_level: str = "info"
109
    log_level_http: Optional[str] = None
110
    log_requests: bool = False
111
    log_requests_level: int = 0
112
    crash_dump_folder: Optional[str] = None
Liangsheng Yin's avatar
Liangsheng Yin committed
113
    show_time_cost: bool = False
114
    enable_metrics: bool = False
115
    enable_metrics_for_all_schedulers: bool = False
116
117
    bucket_time_to_first_token: Optional[List[float]] = None
    bucket_inter_token_latency: Optional[List[float]] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
118
    bucket_e2e_request_latency: Optional[List[float]] = None
119
    collect_tokens_histogram: bool = False
120
    decode_log_interval: int = 40
121
    enable_request_time_stats_logging: bool = False
122
    kv_events_config: Optional[str] = None
Liangsheng Yin's avatar
Liangsheng Yin committed
123

124
    # API related
125
    api_key: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
126
127
128
    served_model_name: Optional[str] = None
    chat_template: Optional[str] = None
    completion_template: Optional[str] = None
129
    file_storage_path: str = "sglang_storage"
130
    enable_cache_report: bool = False
Xihuai Wang's avatar
Xihuai Wang committed
131
    reasoning_parser: Optional[str] = None
132
    tool_call_parser: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
133

134
135
136
    # Data parallelism
    dp_size: int = 1
    load_balance_method: str = "round_robin"
137

138
    # Multi-node distributed serving
139
    dist_init_addr: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
140
    nnodes: int = 1
141
    node_rank: int = 0
Lianmin Zheng's avatar
Lianmin Zheng committed
142
143
144

    # Model override args in JSON
    json_model_override_args: str = "{}"
145
    preferred_sampling_params: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
146

147
    # LoRA
148
    enable_lora: Optional[bool] = None
149
    max_lora_rank: Optional[int] = None
150
    lora_target_modules: Optional[Union[set[str], List[str]]] = None
151
    lora_paths: Optional[Union[dict[str, str], dict[str, LoRARef], List[str]]] = None
152
    max_loaded_loras: Optional[int] = None
153
    max_loras_per_batch: int = 8
154
    lora_backend: str = "triton"
155
156

    # Kernel backend
157
    attention_backend: Optional[str] = None
158
159
    decode_attention_backend: Optional[str] = None
    prefill_attention_backend: Optional[str] = None
160
    sampling_backend: Optional[str] = None
161
    grammar_backend: Optional[str] = None
162
    mm_attention_backend: Optional[str] = None
163

164
165
    # Speculative decoding
    speculative_algorithm: Optional[str] = None
166
    speculative_draft_model_path: Optional[str] = None
167
168
169
    speculative_num_steps: Optional[int] = None
    speculative_eagle_topk: Optional[int] = None
    speculative_num_draft_tokens: Optional[int] = None
170
171
    speculative_accept_threshold_single: float = 1.0
    speculative_accept_threshold_acc: float = 1.0
172
    speculative_token_map: Optional[str] = None
173

174
175
    # Expert parallelism
    ep_size: int = 1
176
    moe_a2a_backend: Optional[Literal["deepep"]] = None
177
178
    enable_flashinfer_cutlass_moe: bool = False
    enable_flashinfer_trtllm_moe: bool = False
179
    enable_flashinfer_allreduce_fusion: bool = False
180
    deepep_mode: Literal["auto", "normal", "low_latency"] = "auto"
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
    ep_num_redundant_experts: int = 0
    ep_dispatch_algorithm: Optional[Literal["static", "dynamic", "fake"]] = None
    init_expert_location: str = "trivial"
    enable_eplb: bool = False
    eplb_algorithm: str = "auto"
    eplb_rebalance_num_iterations: int = 1000
    eplb_rebalance_layers_per_chunk: Optional[int] = None
    expert_distribution_recorder_mode: Optional[
        Literal["stat", "stat_approx", "per_pass", "per_token"]
    ] = None
    expert_distribution_recorder_buffer_size: Optional[int] = None
    enable_expert_distribution_metrics: bool = False
    deepep_config: Optional[str] = None
    moe_dense_tp_size: Optional[int] = None

Lianmin Zheng's avatar
Lianmin Zheng committed
196
197
198
199
200
    # Hierarchical cache
    enable_hierarchical_cache: bool = False
    hicache_ratio: float = 2.0
    hicache_size: int = 0
    hicache_write_policy: str = "write_through_selective"
201
202
    hicache_io_backend: str = "kernel"
    hicache_mem_layout: str = "layer_first"
Lianmin Zheng's avatar
Lianmin Zheng committed
203
204
    hicache_storage_backend: Optional[str] = None

205
206
    # Double Sparsity
    enable_double_sparsity: bool = False
Vincent's avatar
Vincent committed
207
    ds_channel_config_path: Optional[str] = None
208
209
210
211
212
    ds_heavy_channel_num: int = 32
    ds_heavy_token_num: int = 256
    ds_heavy_channel_type: str = "qk"
    ds_sparse_decode_threshold: int = 4096

213
    # Optimization/debug options
Lianmin Zheng's avatar
Lianmin Zheng committed
214
    disable_radix_cache: bool = False
215
216
    cuda_graph_max_bs: Optional[int] = None
    cuda_graph_bs: Optional[List[int]] = None
217
    disable_cuda_graph: bool = False
218
    disable_cuda_graph_padding: bool = False
219
    enable_profile_cuda_graph: bool = False
220
    enable_cudagraph_gc: bool = False
221
    enable_nccl_nvls: bool = False
222
    enable_symm_mem: bool = False
223
    enable_tokenizer_batch_encode: bool = False
224
    disable_outlines_disk_cache: bool = False
225
    disable_custom_all_reduce: bool = False
226
    enable_mscclpp: bool = False
227
    disable_overlap_schedule: bool = False
228
    enable_mixed_chunk: bool = False
Ke Bao's avatar
Ke Bao committed
229
    enable_dp_attention: bool = False
230
    enable_dp_lm_head: bool = False
231
    enable_two_batch_overlap: bool = False
232
    tbo_token_distribution_threshold: float = 0.48
233
    enable_torch_compile: bool = False
234
    torch_compile_max_bs: int = 32
235
    torchao_config: str = ""
236
    enable_nan_detection: bool = False
237
    enable_p2p_check: bool = False
238
    triton_attention_reduce_in_fp32: bool = False
239
    triton_attention_num_kv_splits: int = 8
240
    num_continuous_decode_steps: int = 1
241
    delete_ckpt_after_loading: bool = False
242
    enable_memory_saver: bool = False
243
    allow_auto_truncate: bool = False
244
    enable_custom_logit_processor: bool = False
245
    flashinfer_mla_disable_ragged: bool = False
246
    disable_shared_experts_fusion: bool = False
247
    disable_chunked_prefix_cache: bool = False
Lianmin Zheng's avatar
Lianmin Zheng committed
248
    disable_fast_image_processor: bool = False
249
    enable_return_hidden_states: bool = False
Yuan Luo's avatar
Yuan Luo committed
250
    enable_triton_kernel_moe: bool = False
251
252
253
254
255

    # Debug tensor dumps
    debug_tensor_dump_output_folder: Optional[str] = None
    debug_tensor_dump_input_file: Optional[str] = None
    debug_tensor_dump_inject: bool = False
256
    debug_tensor_dump_prefill_only: bool = False
257

Lianmin Zheng's avatar
Lianmin Zheng committed
258
    # PD disaggregation: can be "null" (not disaggregated), "prefill" (prefill-only), or "decode" (decode-only)
Byron Hsu's avatar
Byron Hsu committed
259
    disaggregation_mode: str = "null"
260
    disaggregation_transfer_backend: str = "mooncake"
261
    disaggregation_bootstrap_port: int = 8998
Byron Hsu's avatar
Byron Hsu committed
262
263
264
    disaggregation_decode_tp: Optional[int] = None
    disaggregation_decode_dp: Optional[int] = None
    disaggregation_prefill_pp: Optional[int] = 1
265
    disaggregation_ib_device: Optional[str] = None
266
    num_reserved_decode_tokens: int = 512  # used for decode kv cache offload in PD
267
    pdlb_url: Optional[str] = None
Byron Hsu's avatar
Byron Hsu committed
268

269
270
    # For model weight update
    custom_weight_loader: Optional[List[str]] = None
271
    weight_loader_disable_mmap: bool = False
272

273
274
275
276
    # For PD-Multiplexing
    enable_pdmux: bool = False
    sm_group_num: int = 3

277
278
279
    # For tool server
    tool_server: Optional[str] = None

280
281
282
283
    # Deprecated arguments
    enable_ep_moe: bool = False
    enable_deepep_moe: bool = False

Lianmin Zheng's avatar
Lianmin Zheng committed
284
    def __post_init__(self):
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300

        # Check deprecated arguments
        def print_deprecated_warning(message: str):
            logger.warning(f"\033[33m{message}\033[0m")

        if self.enable_ep_moe:
            self.ep_size = self.tp_size
            print_deprecated_warning(
                "NOTE: --enable-ep-moe is deprecated. Please set `--ep-size` to the same value as `--tp-size` instead."
            )
        if self.enable_deepep_moe:
            self.moe_a2a_backend = "deepep"
            print_deprecated_warning(
                "NOTE: --enable-deepep-moe is deprecated. Please set `--moe-a2a-backend` to 'deepep' instead."
            )

301
        # Set missing default values
Lianmin Zheng's avatar
Lianmin Zheng committed
302
303
        if self.tokenizer_path is None:
            self.tokenizer_path = self.model_path
304
305
        if self.served_model_name is None:
            self.served_model_name = self.model_path
306
307
        if self.device is None:
            self.device = get_device()
308
309
310
        if self.random_seed is None:
            self.random_seed = random.randint(0, 1 << 30)

Lianmin Zheng's avatar
Lianmin Zheng committed
311
        gpu_mem = get_device_memory_capacity(self.device)
312

313
        # Set mem fraction static
Lianmin Zheng's avatar
Lianmin Zheng committed
314
        if self.mem_fraction_static is None:
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
            if gpu_mem is not None:
                # GPU memory capacity = model weights + KV cache pool + activations + cuda graph buffers
                # mem_fraction_static = (model weights + KV cache pool) / GPU memory capacity.

                # We want mem_fraction_static to be as large as possible but still has enough room
                # for activations and cuda graph buffers. We use the following heuristic to
                # compute the needed size for activations and cuda graph buffers:
                # - The size of the activation depends on the chunked_prefill_size and model size.
                # - The size of cuda graph buffers depends on the cuda graph capture range and model size.
                # For GPUs with more memory, we use a larger chunked_prefill_size and
                # capture more cuda graphs, so they need to reserve more memory.
                parallel_size = self.tp_size * self.pp_size

                if gpu_mem < 20 * 1024:
                    # T4, 4080. (chunked_prefill_size 2k, cuda_graph_max_bs 8)
                    reserved_mem = (2.8 + parallel_size / 10) * 1024
                elif gpu_mem < 35 * 1024:
                    # A10, L40, 4090, 5090. (chunked_prefill_size 2k, cuda_graph_max_bs 8)
                    reserved_mem = (2.8 + parallel_size / 10) * 1024
                elif gpu_mem < 90 * 1024:
                    # H100, A100. (chunked_prefill_size 8k, cuda_graph_max_bs 160)
                    reserved_mem = (9.5 + parallel_size / 2) * 1024
                elif gpu_mem < 100 * 1024:
                    # H20. (chunked_prefill_size 8k, cuda_graph_max_bs 256)
                    reserved_mem = (12 + parallel_size / 2) * 1024
                elif gpu_mem < 160 * 1024:
                    # H200. (chunked_prefill_size 8k, cuda_graph_max_bs 256)
                    reserved_mem = (12 + parallel_size / 2) * 1024
343
                else:
344
345
346
                    # B200, MI300. (chunked_prefill_size 16k, cuda_graph_max_bs 512)
                    reserved_mem = 32 * 1024

347
                if self.speculative_algorithm is not None:
348
349
350
351
352
353
                    # draft model and larger cuda graph buffers
                    reserved_mem += 2 * 1024
                if self.enable_dp_attention:
                    reserved_mem += 4 * 1024

                self.mem_fraction_static = round((gpu_mem - reserved_mem) / gpu_mem, 3)
354
            else:
355
                self.mem_fraction_static = 0.88
356

357
            # Lazy init to avoid circular import
Lianmin Zheng's avatar
Lianmin Zheng committed
358
            # Multimodal models need more memory for the image processor
359
360
361
            from sglang.srt.configs.model_config import ModelConfig

            model_config = ModelConfig.from_server_args(self)
Lianmin Zheng's avatar
Lianmin Zheng committed
362
363
            if model_config.is_multimodal:
                self.adjust_mem_fraction_for_vlm(model_config)
364

365
366
        # Set chunked prefill size, which depends on the gpu memory capacity
        if self.chunked_prefill_size is None:
367
368
369
370
371
372
373
            if gpu_mem is not None:
                if gpu_mem < 35 * 1024:  # A10, L40, 4090
                    self.chunked_prefill_size = 2048
                elif gpu_mem < 160 * 1024:  # H100, H200, A100, H20
                    self.chunked_prefill_size = 8192
                else:  # B200, MI300
                    self.chunked_prefill_size = 16384
374
            else:
375
                self.chunked_prefill_size = 4096
Lianmin Zheng's avatar
Lianmin Zheng committed
376

377
378
379
380
381
382
383
384
385
        # Set cuda graph max batch size
        if self.cuda_graph_max_bs is None:
            # Based on detailed statistics, when serving TP1/TP2 models on lower-end GPUs with HBM<25G, you can either disable cuda graph or set `cuda_graph_max_bs` to a very small value to reduce the memory overhead of creating cuda graphs, with almost no impact on performance. However, when serving models with TP4 or TP8, we need to enable cuda graph to maintain high performance. In this case, we can set `cuda_graph_max_bs` to 80 (half of the default value 160) to reduce the memory overhead of creating cuda graphs. Looking at the logs from TP4 serving of qwen2-72b, a value of 80 is sufficient and can reduce the memory overhead of creating cuda graphs on lower-end GPUs compared to the original 160, avoiding OOM issues.
            if gpu_mem is not None and gpu_mem < 35 * 1024:
                if self.tp_size < 4:
                    self.cuda_graph_max_bs = 8
                else:
                    self.cuda_graph_max_bs = 80

386
        # Set kernel backends for hpu device
387
388
389
390
        if self.device == "hpu":
            self.attention_backend = "torch_native"
            self.sampling_backend = "pytorch"

Lianmin Zheng's avatar
Lianmin Zheng committed
391
        # Set kernel backends
392
393
394
395
396
        if self.device == "cpu":
            if self.attention_backend is None:
                self.attention_backend = "intel_amx"
            self.sampling_backend = "pytorch"

397
        if self.sampling_backend is None:
398
399
400
401
402
            self.sampling_backend = (
                "flashinfer" if is_flashinfer_available() else "pytorch"
            )

        if self.attention_backend == "torch_native":
403
            logger.warning(
404
405
406
                "Cuda graph is disabled because of using torch native attention backend"
            )
            self.disable_cuda_graph = True
407

408
409
410
411
412
413
        if self.attention_backend == "ascend":
            logger.warning(
                "At this moment Ascend attention backend only supports a page_size of 128, change page_size to 128."
            )
            self.page_size = 128

414
415
416
417
        if (
            self.attention_backend == "flashmla"
            or self.decode_attention_backend == "flashmla"
        ):
Lianmin Zheng's avatar
Lianmin Zheng committed
418
419
420
421
422
            logger.warning(
                "FlashMLA only supports a page_size of 64, change page_size to 64."
            )
            self.page_size = 64

423
424
425
426
        if (
            self.attention_backend == "cutlass_mla"
            or self.decode_attention_backend == "cutlass_mla"
        ):
Lianmin Zheng's avatar
Lianmin Zheng committed
427
428
429
430
431
            logger.warning(
                "Cutlass MLA only supports a page_size of 128, change page_size to 128."
            )
            self.page_size = 128

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
        if self.attention_backend == "trtllm_mla":
            if not is_sm100_supported():
                raise ValueError(
                    "TRTLLM MLA backend is only supported on Blackwell GPUs (SM100). Please use a different backend."
                )

            if self.page_size not in [32, 64]:
                logger.warning(
                    f"TensorRT-LLM MLA only supports page_size of 32 or 64, changing page_size from {self.page_size} to 64."
                )
                self.page_size = 64
            if self.speculative_algorithm is not None:
                raise ValueError(
                    "trtllm_mla backend does not support speculative decoding yet."
                )

448
449
450
451
452
        if (
            self.attention_backend == "trtllm_mha"
            or self.decode_attention_backend == "trtllm_mha"
            or self.prefill_attention_backend == "trtllm_mha"
        ):
453
454
455
456
457
458
459
460
461
462
463
464
465
            if not is_sm100_supported():
                raise ValueError(
                    "TRTLLM MHA backend is only supported on Blackwell GPUs (SM100). Please use a different backend."
                )

            if self.page_size not in [16, 32, 64]:
                logger.warning(
                    f"TensorRT-LLM MHA only supports page_size of 16, 32 or 64, changing page_size from {self.page_size} to 64."
                )
                self.page_size = 64

            if self.speculative_algorithm is not None:
                raise ValueError(
466
                    "trtllm_mha backend does not support speculative decoding yet."
467
                )
468

469
470
        model_arch = self.get_hf_config().architectures[0]
        if model_arch in ["GptOssForCausalLM"]:
471
472
473
474
475
476
477
            if self.attention_backend is None:
                # default is triton, but we could have trtllm_mha as an option
                self.attention_backend = "triton"
            assert (
                self.attention_backend == "trtllm_mha"
                or self.attention_backend == "triton"
            )
Xiaoyu Zhang's avatar
Xiaoyu Zhang committed
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492

            # Check if FlashInfer MXFP4 MoE is enabled
            from sglang.srt.utils import get_bool_env_var

            USE_FLASHINFER_MXFP4_MOE = get_bool_env_var(
                "SGLANG_USE_FLASHINFER_MXFP4_MOE", "false"
            )
            USE_FLASHINFER_MXFP4_BF16_MOE = get_bool_env_var(
                "SGLANG_USE_FLASHINFER_MXFP4_BF16_MOE", "false"
            )

            # Only enable Triton kernel MoE if FlashInfer is not enabled
            if not (USE_FLASHINFER_MXFP4_MOE or USE_FLASHINFER_MXFP4_BF16_MOE):
                self.enable_triton_kernel_moe = True

493
            self.disable_hybrid_swa_memory = True
494

Ying Sheng's avatar
Ying Sheng committed
495
496
497
498
499
500
501
502
503
504
            quantization_config = getattr(
                self.get_hf_config(), "quantization_config", None
            )
            if (
                quantization_config is not None
                and quantization_config.get("quant_method") == "mxfp4"
            ):
                # use bf16 for mxfp4 triton kernels
                self.dtype = "bfloat16"

505
506
507
508
509
510
511
512
        # Set page size
        if self.page_size is None:
            self.page_size = 1

        # AMD-specific Triton attention KV splits default number
        if is_hip():
            self.triton_attention_num_kv_splits = 16

513
514
515
        # Choose grammar backend
        if self.grammar_backend is None:
            self.grammar_backend = "xgrammar"
516

517
        # Data parallelism attention
Ke Bao's avatar
Ke Bao committed
518
        if self.enable_dp_attention:
519
            self.schedule_conservativeness = self.schedule_conservativeness * 0.3
Lianmin Zheng's avatar
Lianmin Zheng committed
520
521
522
523
524
            assert (
                self.dp_size > 1
            ), "Please set a dp-size > 1. You can use 1 < dp-size <= tp-size "
            assert self.tp_size % self.dp_size == 0
            self.chunked_prefill_size = self.chunked_prefill_size // self.dp_size
525
            logger.warning(
526
                f"DP attention is enabled. The chunked prefill size is adjusted to {self.chunked_prefill_size} to avoid MoE kernel issues. "
527
            )
528

529
530
531
        if self.enable_dp_lm_head:
            assert (
                self.enable_dp_attention
532
            ), "Please enable dp attention when setting enable_dp_lm_head. "
533

534
        # MoE kernel
535
        if self.enable_flashinfer_cutlass_moe:
536
537
538
539
            assert (
                self.quantization == "modelopt_fp4"
            ), "modelopt_fp4 quantization is required for Flashinfer MOE"
            os.environ["TRTLLM_ENABLE_PDL"] = "1"
540
541
542
543
            assert self.ep_size in [
                1,
                self.tp_size,
            ], "The expert parallel size must be 1 or the same as the tensor parallel size"
544

545
546
547
548
549
550
551
        if self.enable_flashinfer_trtllm_moe:
            if not self.disable_shared_experts_fusion:
                self.disable_shared_experts_fusion = True
                logger.warning(
                    "FlashInfer TRTLLM MoE is enabled. --disable-shared-experts-fusion is automatically set."
                )

552
        # DeepEP MoE
553
        if self.moe_a2a_backend == "deepep":
554
555
556
            if self.deepep_mode == "normal":
                logger.warning("Cuda graph is disabled because deepep_mode=`normal`")
                self.disable_cuda_graph = True
557
            self.ep_size = self.tp_size
Lianmin Zheng's avatar
Lianmin Zheng committed
558
            logger.warning(
559
560
                f"DeepEP MoE is enabled. The expert parallel size is adjusted to be the same as the tensor parallel size[{self.tp_size}]."
            )
561

562
563
564
        if self.enable_eplb and (self.expert_distribution_recorder_mode is None):
            self.expert_distribution_recorder_mode = "stat"
            logger.info(
565
                "EPLB is enabled. The expert_distribution_recorder_mode is automatically set."
566
567
568
569
570
571
572
            )

        if (self.enable_eplb or (self.init_expert_location is not None)) and (
            self.ep_dispatch_algorithm is None
        ):
            self.ep_dispatch_algorithm = "static"
            logger.info(
573
                "EPLB is enabled or init_expert_location is provided. ep_dispatch_algorithm is configured."
574
575
            )

576
        if self.enable_eplb:
577
            assert self.ep_size > 1 or self.moe_a2a_backend is not None
578

579
580
581
582
583
        if self.enable_expert_distribution_metrics and (
            self.expert_distribution_recorder_mode is None
        ):
            self.expert_distribution_recorder_mode = "stat"

584
        if self.expert_distribution_recorder_buffer_size is None:
585
586
            if (x := self.eplb_rebalance_num_iterations) is not None:
                self.expert_distribution_recorder_buffer_size = x
587
588
589
            elif self.expert_distribution_recorder_mode is not None:
                self.expert_distribution_recorder_buffer_size = 1000

Lianmin Zheng's avatar
Lianmin Zheng committed
590
591
592
593
594
595
596
        # Pipeline parallelism
        if self.pp_size > 1:
            self.disable_overlap_schedule = True
            logger.warning(
                "Pipeline parallelism is incompatible with overlap schedule."
            )

597
        # Speculative Decoding
598
599
600
601
        if self.speculative_algorithm == "NEXTN":
            # NEXTN shares the same implementation of EAGLE
            self.speculative_algorithm = "EAGLE"

Lianmin Zheng's avatar
Lianmin Zheng committed
602
        if self.speculative_algorithm in ("EAGLE", "EAGLE3"):
603
            if self.max_running_requests is None:
604
                self.max_running_requests = 48
605
            self.disable_overlap_schedule = True
Lianmin Zheng's avatar
Lianmin Zheng committed
606
            logger.warning(
607
                "Overlap scheduler is disabled because of using "
608
                "eagle speculative decoding."
609
            )
610
611
612
613
614
615
            if self.enable_mixed_chunk:
                self.enable_mixed_chunk = False
                logger.warning(
                    "Mixed chunked prefill is disabled because of using "
                    "eagle speculative decoding."
                )
616

Lianmin Zheng's avatar
Lianmin Zheng committed
617
            model_arch = self.get_hf_config().architectures[0]
Yuxuan Zhang's avatar
Yuxuan Zhang committed
618
            if model_arch in ["DeepseekV3ForCausalLM", "Glm4MoeForCausalLM"]:
Hanming Lu's avatar
Hanming Lu committed
619
                # Auto set draft_model_path DeepSeek-V3/R1
620
621
622
623
624
625
                if self.speculative_draft_model_path is None:
                    self.speculative_draft_model_path = self.model_path
                else:
                    logger.warning(
                        "DeepSeek MTP does not require setting speculative_draft_model_path."
                    )
626

627
628
629
630
631
632
633
634
635
636
            # Auto choose parameters
            if self.speculative_num_steps is None:
                assert (
                    self.speculative_eagle_topk is None
                    and self.speculative_num_draft_tokens is None
                )
                (
                    self.speculative_num_steps,
                    self.speculative_eagle_topk,
                    self.speculative_num_draft_tokens,
637
                ) = auto_choose_speculative_params(self)
638

639
640
641
642
            if (
                self.speculative_eagle_topk == 1
                and self.speculative_num_draft_tokens != self.speculative_num_steps + 1
            ):
Lianmin Zheng's avatar
Lianmin Zheng committed
643
                logger.warning(
644
645
646
                    "speculative_num_draft_tokens is adjusted to speculative_num_steps + 1 when speculative_eagle_topk == 1"
                )
                self.speculative_num_draft_tokens = self.speculative_num_steps + 1
647

648
            # The token generated from the verify step is counted.
649
            # If sepculative_num_steps >= speculative_num_draft_tokens, the additional tokens will definitely be discarded.
650
            # assert self.speculative_num_steps < self.speculative_num_draft_tokens
651

652
653
654
655
656
657
        # GGUF
        if (
            self.load_format == "auto" or self.load_format == "gguf"
        ) and check_gguf_file(self.model_path):
            self.quantization = self.load_format = "gguf"

658
        # Model loading
659
660
        if is_remote_url(self.model_path):
            self.load_format = "remote"
661
662
        if self.custom_weight_loader is None:
            self.custom_weight_loader = []
663

Byron Hsu's avatar
Byron Hsu committed
664
        # PD disaggregation
Byron Hsu's avatar
Byron Hsu committed
665
666
667
668
669
670
671
672
        if self.disaggregation_mode == "decode":
            assert (
                self.disaggregation_decode_tp is None
            ), "Cannot set --disaggregation-decode-tp for the decode engine."
            assert (
                self.disaggregation_decode_dp is None
            ), "Cannot set --disaggregation-decode-dp for the decode engine."

Byron Hsu's avatar
Byron Hsu committed
673
            self.disable_radix_cache = True
674
            logger.warning("KV cache is forced as chunk cache for decode server")
Byron Hsu's avatar
Byron Hsu committed
675
676
677
678
679
680
681
682
683
684
685
        elif self.disaggregation_mode == "prefill":
            if self.disaggregation_decode_tp is None:
                self.disaggregation_decode_tp = self.tp_size
            if self.disaggregation_decode_dp is None:
                self.disaggregation_decode_dp = self.dp_size

            self.disaggregation_prefill_pp = self.pp_size
            self.validate_disagg_tp_size(self.tp_size, self.disaggregation_decode_tp)

            self.disable_cuda_graph = True
            logger.warning("Cuda graph is disabled for prefill server")
Byron Hsu's avatar
Byron Hsu committed
686

687
        # Propagate env vars
688
689
690
        os.environ["SGLANG_ENABLE_TORCH_COMPILE"] = (
            "1" if self.enable_torch_compile else "0"
        )
691
692
693
694
        # Set env var before grammar backends init
        os.environ["SGLANG_DISABLE_OUTLINES_DISK_CACHE"] = (
            "1" if self.disable_outlines_disk_cache else "0"
        )
695

Lianmin Zheng's avatar
Lianmin Zheng committed
696
697
    @staticmethod
    def add_cli_args(parser: argparse.ArgumentParser):
Lianmin Zheng's avatar
Lianmin Zheng committed
698
        # Model and tokenizer
Lianmin Zheng's avatar
Lianmin Zheng committed
699
700
        parser.add_argument(
            "--model-path",
701
            "--model",
Lianmin Zheng's avatar
Lianmin Zheng committed
702
703
704
705
706
707
708
709
710
711
            type=str,
            help="The path of the model weights. This can be a local folder or a Hugging Face repo ID.",
            required=True,
        )
        parser.add_argument(
            "--tokenizer-path",
            type=str,
            default=ServerArgs.tokenizer_path,
            help="The path of the tokenizer.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
712
713
714
715
716
717
718
719
720
        parser.add_argument(
            "--tokenizer-mode",
            type=str,
            default=ServerArgs.tokenizer_mode,
            choices=["auto", "slow"],
            help="Tokenizer mode. 'auto' will use the fast "
            "tokenizer if available, and 'slow' will "
            "always use the slow tokenizer.",
        )
721
722
723
        parser.add_argument(
            "--skip-tokenizer-init",
            action="store_true",
724
            help="If set, skip init tokenizer and pass input_ids in generate request.",
725
        )
726
        parser.add_argument(
Lianmin Zheng's avatar
Lianmin Zheng committed
727
728
729
            "--load-format",
            type=str,
            default=ServerArgs.load_format,
730
731
732
733
734
735
            choices=[
                "auto",
                "pt",
                "safetensors",
                "npcache",
                "dummy",
736
                "sharded_state",
737
738
                "gguf",
                "bitsandbytes",
739
                "layered",
740
                "remote",
741
            ],
Lianmin Zheng's avatar
Lianmin Zheng committed
742
743
744
745
746
747
748
749
750
            help="The format of the model weights to load. "
            '"auto" will try to load the weights in the safetensors format '
            "and fall back to the pytorch bin format if safetensors format "
            "is not available. "
            '"pt" will load the weights in the pytorch bin format. '
            '"safetensors" will load the weights in the safetensors format. '
            '"npcache" will load the weights in pytorch format and store '
            "a numpy cache to speed up the loading. "
            '"dummy" will initialize the weights with random values, '
751
            "which is mainly for profiling."
752
753
            '"gguf" will load the weights in the gguf format. '
            '"bitsandbytes" will load the weights using bitsandbytes '
754
755
756
757
            "quantization."
            '"layered" loads weights layer by layer so that one can quantize a '
            "layer before loading another to make the peak memory envelope "
            "smaller.",
Lianmin Zheng's avatar
Lianmin Zheng committed
758
        )
759
760
761
762
763
764
765
        parser.add_argument(
            "--model-loader-extra-config",
            type=str,
            help="Extra config for model loader. "
            "This will be passed to the model loader corresponding to the chosen load_format.",
            default=ServerArgs.model_loader_extra_config,
        )
766
767
768
769
770
        parser.add_argument(
            "--trust-remote-code",
            action="store_true",
            help="Whether or not to allow for custom models defined on the Hub in their own modeling files.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
        parser.add_argument(
            "--context-length",
            type=int,
            default=ServerArgs.context_length,
            help="The model's maximum context length. Defaults to None (will use the value from the model's config.json instead).",
        )
        parser.add_argument(
            "--is-embedding",
            action="store_true",
            help="Whether to use a CausalLM as an embedding model.",
        )
        parser.add_argument(
            "--enable-multimodal",
            default=ServerArgs.enable_multimodal,
            action="store_true",
            help="Enable the multimodal functionality for the served model. If the model being served is not multimodal, nothing will happen",
        )
        parser.add_argument(
            "--revision",
            type=str,
            default=None,
            help="The specific model version to use. It can be a branch "
            "name, a tag name, or a commit id. If unspecified, will use "
            "the default version.",
        )
        parser.add_argument(
            "--model-impl",
            type=str,
            default=ServerArgs.model_impl,
            help="Which implementation of the model to use.\n\n"
            '* "auto" will try to use the SGLang implementation if it exists '
            "and fall back to the Transformers implementation if no SGLang "
            "implementation is available.\n"
            '* "sglang" will use the SGLang model implementation.\n'
            '* "transformers" will use the Transformers model '
            "implementation.\n",
        )

        # HTTP server
        parser.add_argument(
            "--host",
            type=str,
            default=ServerArgs.host,
            help="The host of the HTTP server.",
        )
        parser.add_argument(
            "--port",
            type=int,
            default=ServerArgs.port,
            help="The port of the HTTP server.",
        )
        parser.add_argument(
            "--skip-server-warmup",
            action="store_true",
            help="If set, skip warmup.",
        )
        parser.add_argument(
            "--warmups",
            type=str,
            required=False,
            help="Specify custom warmup functions (csv) to run before server starts eg. --warmups=warmup_name1,warmup_name2 "
            "will run the functions `warmup_name1` and `warmup_name2` specified in warmup.py before the server starts listening for requests",
        )
        parser.add_argument(
            "--nccl-port",
            type=int,
            default=ServerArgs.nccl_port,
            help="The port for NCCL distributed environment setup. Defaults to a random port.",
        )

        # Quantization and data type
Lianmin Zheng's avatar
Lianmin Zheng committed
842
        parser.add_argument(
Lianmin Zheng's avatar
Lianmin Zheng committed
843
            "--dtype",
Cody Yu's avatar
Cody Yu committed
844
            type=str,
Lianmin Zheng's avatar
Lianmin Zheng committed
845
            default=ServerArgs.dtype,
Ying Sheng's avatar
Ying Sheng committed
846
847
            choices=["auto", "half", "float16", "bfloat16", "float", "float32"],
            help="Data type for model weights and activations.\n\n"
Lianmin Zheng's avatar
Lianmin Zheng committed
848
            '* "auto" will use FP16 precision for FP32 and FP16 models, and '
Ying Sheng's avatar
Ying Sheng committed
849
            "BF16 precision for BF16 models.\n"
Lianmin Zheng's avatar
Lianmin Zheng committed
850
851
852
853
            '* "half" for FP16. Recommended for AWQ quantization.\n'
            '* "float16" is the same as "half".\n'
            '* "bfloat16" for a balance between precision and range.\n'
            '* "float" is shorthand for FP32 precision.\n'
Ying Sheng's avatar
Ying Sheng committed
854
855
            '* "float32" for FP32 precision.',
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
856
857
858
859
        parser.add_argument(
            "--quantization",
            type=str,
            default=ServerArgs.quantization,
Ying Sheng's avatar
Ying Sheng committed
860
861
862
863
864
865
            choices=[
                "awq",
                "fp8",
                "gptq",
                "marlin",
                "gptq_marlin",
Ying Sheng's avatar
Ying Sheng committed
866
                "awq_marlin",
Ying Sheng's avatar
Ying Sheng committed
867
                "bitsandbytes",
868
                "gguf",
869
                "modelopt",
870
                "modelopt_fp4",
871
                "petit_nvfp4",
872
                "w8a8_int8",
HandH1998's avatar
HandH1998 committed
873
                "w8a8_fp8",
AniZpZ's avatar
AniZpZ committed
874
                "moe_wna16",
HandH1998's avatar
HandH1998 committed
875
                "qoq",
876
                "w4afp8",
877
                "mxfp4",
Ying Sheng's avatar
Ying Sheng committed
878
            ],
Lianmin Zheng's avatar
Lianmin Zheng committed
879
880
            help="The quantization method.",
        )
881
882
883
884
885
886
887
888
889
        parser.add_argument(
            "--quantization-param-path",
            type=nullable_str,
            default=None,
            help="Path to the JSON file containing the KV cache "
            "scaling factors. This should generally be supplied, when "
            "KV cache dtype is FP8. Otherwise, KV cache scaling factors "
            "default to 1.0, which may cause accuracy issues. ",
        )
890
        parser.add_argument(
Lianmin Zheng's avatar
Lianmin Zheng committed
891
            "--kv-cache-dtype",
892
            type=str,
Lianmin Zheng's avatar
Lianmin Zheng committed
893
894
895
            default=ServerArgs.kv_cache_dtype,
            choices=["auto", "fp8_e5m2", "fp8_e4m3"],
            help='Data type for kv cache storage. "auto" will use model data type. "fp8_e5m2" and "fp8_e4m3" is supported for CUDA 11.8+.',
896
        )
897

898
        # Memory and scheduling
Lianmin Zheng's avatar
Lianmin Zheng committed
899
900
901
902
        parser.add_argument(
            "--mem-fraction-static",
            type=float,
            default=ServerArgs.mem_fraction_static,
903
            help="The fraction of the memory used for static allocation (model weights and KV cache memory pool). Use a smaller value if you see out-of-memory errors.",
Lianmin Zheng's avatar
Lianmin Zheng committed
904
        )
905
906
907
908
909
910
        parser.add_argument(
            "--max-running-requests",
            type=int,
            default=ServerArgs.max_running_requests,
            help="The maximum number of running requests.",
        )
911
912
913
914
915
916
        parser.add_argument(
            "--max-queued-requests",
            type=int,
            default=ServerArgs.max_queued_requests,
            help="The maximum number of queued requests. This option is ignored when using disaggregation-mode.",
        )
917
918
919
920
        parser.add_argument(
            "--max-total-tokens",
            type=int,
            default=ServerArgs.max_total_tokens,
921
922
            help="The maximum number of tokens in the memory pool. If not specified, it will be automatically calculated based on the memory usage fraction. "
            "This option is typically used for development and debugging purposes.",
923
        )
924
925
926
927
        parser.add_argument(
            "--chunked-prefill-size",
            type=int,
            default=ServerArgs.chunked_prefill_size,
928
            help="The maximum number of tokens in a chunk for the chunked prefill. Setting this to -1 means disabling chunked prefill.",
929
930
931
932
933
934
935
        )
        parser.add_argument(
            "--max-prefill-tokens",
            type=int,
            default=ServerArgs.max_prefill_tokens,
            help="The maximum number of tokens in a prefill batch. The real bound will be the maximum of this value and the model's maximum context length.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
936
        parser.add_argument(
937
            "--schedule-policy",
Lianmin Zheng's avatar
Lianmin Zheng committed
938
            type=str,
939
            default=ServerArgs.schedule_policy,
940
            choices=["lpm", "random", "fcfs", "dfs-weight", "lof"],
941
            help="The scheduling policy of the requests.",
Lianmin Zheng's avatar
Lianmin Zheng committed
942
        )
943
944
945
946
        parser.add_argument(
            "--schedule-conservativeness",
            type=float,
            default=ServerArgs.schedule_conservativeness,
947
            help="How conservative the schedule policy is. A larger value means more conservative scheduling. Use a larger value if you see requests being retracted frequently.",
948
        )
949
950
951
952
        parser.add_argument(
            "--cpu-offload-gb",
            type=int,
            default=ServerArgs.cpu_offload_gb,
953
            help="How many GBs of RAM to reserve for CPU offloading.",
954
        )
955
956
957
958
959
960
        parser.add_argument(
            "--page-size",
            type=int,
            default=ServerArgs.page_size,
            help="The number of tokens in a page.",
        )
tarinkk's avatar
tarinkk committed
961
962
963
964
965
966
967
968
969
970
971
972
        parser.add_argument(
            "--hybrid-kvcache-ratio",
            nargs="?",
            const=0.5,
            type=float,
            default=ServerArgs.hybrid_kvcache_ratio,
            help=(
                "Mix ratio in [0,1] between uniform and hybrid kv buffers "
                "(0.0 = pure uniform: swa_size / full_size = 1)"
                "(1.0 = pure hybrid: swa_size / full_size = local_attention_size / context_length)"
            ),
        )
Hanming Lu's avatar
Hanming Lu committed
973
974
975
976
977
978
979
980
981
982
983
984
        parser.add_argument(
            "--swa-full-tokens-ratio",
            type=float,
            default=ServerArgs.swa_full_tokens_ratio,
            help="The ratio of SWA layer KV tokens / full layer KV tokens, regardless of the number of swa:full layers. It should be between 0 and 1. "
            "E.g. 0.5 means if each swa layer has 50 tokens, then each full layer has 100 tokens.",
        )
        parser.add_argument(
            "--disable-hybrid-swa-memory",
            action="store_true",
            help="Disable the hybrid SWA memory.",
        )
985

Lianmin Zheng's avatar
Lianmin Zheng committed
986
987
988
989
990
991
992
        # Runtime options
        parser.add_argument(
            "--device",
            type=str,
            default=ServerArgs.device,
            help="The device to use ('cuda', 'xpu', 'hpu', 'npu', 'cpu'). Defaults to auto-detection if not specified.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
993
        parser.add_argument(
994
            "--tensor-parallel-size",
Lianmin Zheng's avatar
Lianmin Zheng committed
995
            "--tp-size",
Lianmin Zheng's avatar
Lianmin Zheng committed
996
            type=int,
Lianmin Zheng's avatar
Lianmin Zheng committed
997
            default=ServerArgs.tp_size,
998
            help="The tensor parallelism size.",
999
        )
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
        parser.add_argument(
            "--pipeline-parallel-size",
            "--pp-size",
            type=int,
            default=ServerArgs.pp_size,
            help="The pipeline parallelism size.",
        )
        parser.add_argument(
            "--max-micro-batch-size",
            type=int,
            default=ServerArgs.max_micro_batch_size,
            help="The maximum micro batch size in pipeline parallelism.",
        )
1013
1014
1015
        parser.add_argument(
            "--stream-interval",
            type=int,
Lianmin Zheng's avatar
Lianmin Zheng committed
1016
            default=ServerArgs.stream_interval,
1017
            help="The interval (or buffer size) for streaming in terms of the token length. A smaller value makes streaming smoother, while a larger value makes the throughput higher",
1018
        )
1019
1020
1021
1022
1023
        parser.add_argument(
            "--stream-output",
            action="store_true",
            help="Whether to output as a sequence of disjoint segments.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1024
1025
1026
1027
        parser.add_argument(
            "--random-seed",
            type=int,
            default=ServerArgs.random_seed,
1028
            help="The random seed.",
Lianmin Zheng's avatar
Lianmin Zheng committed
1029
        )
1030
1031
1032
1033
        parser.add_argument(
            "--constrained-json-whitespace-pattern",
            type=str,
            default=ServerArgs.constrained_json_whitespace_pattern,
Lianmin Zheng's avatar
Lianmin Zheng committed
1034
            help="(outlines backend only) Regex pattern for syntactic whitespaces allowed in JSON constrained output. For example, to allow the model generate consecutive whitespaces, set the pattern to [\n\t ]*",
1035
        )
1036
1037
1038
1039
1040
1041
        parser.add_argument(
            "--watchdog-timeout",
            type=float,
            default=ServerArgs.watchdog_timeout,
            help="Set watchdog timeout in seconds. If a forward batch takes longer than this, the server will crash to prevent hanging.",
        )
1042
1043
1044
1045
1046
1047
        parser.add_argument(
            "--dist-timeout",
            type=int,
            default=ServerArgs.dist_timeout,
            help="Set timeout for torch.distributed initialization.",
        )
1048
1049
1050
1051
        parser.add_argument(
            "--download-dir",
            type=str,
            default=ServerArgs.download_dir,
1052
            help="Model download directory for huggingface.",
1053
        )
1054
1055
1056
1057
1058
1059
        parser.add_argument(
            "--base-gpu-id",
            type=int,
            default=ServerArgs.base_gpu_id,
            help="The base GPU ID to start allocating GPUs from. Useful when running multiple instances on the same machine.",
        )
1060
1061
1062
1063
1064
1065
        parser.add_argument(
            "--gpu-id-step",
            type=int,
            default=ServerArgs.gpu_id_step,
            help="The delta between consecutive GPU IDs that are used. For example, setting it to 2 will use GPU 0,2,4,...",
        )
1066
1067
1068
1069
1070
        parser.add_argument(
            "--sleep-on-idle",
            action="store_true",
            help="Reduce CPU usage when sglang is idle.",
        )
1071
1072

        # Logging
Lianmin Zheng's avatar
Lianmin Zheng committed
1073
1074
1075
1076
        parser.add_argument(
            "--log-level",
            type=str,
            default=ServerArgs.log_level,
1077
            help="The logging level of all loggers.",
Lianmin Zheng's avatar
Lianmin Zheng committed
1078
        )
1079
        parser.add_argument(
1080
1081
1082
1083
            "--log-level-http",
            type=str,
            default=ServerArgs.log_level_http,
            help="The logging level of HTTP server. If not set, reuse --log-level by default.",
1084
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1085
        parser.add_argument(
1086
            "--log-requests",
Lianmin Zheng's avatar
Lianmin Zheng committed
1087
            action="store_true",
1088
1089
1090
1091
1092
1093
            help="Log metadata, inputs, outputs of all requests. The verbosity is decided by --log-requests-level",
        )
        parser.add_argument(
            "--log-requests-level",
            type=int,
            default=0,
1094
1095
1096
1097
1098
1099
1100
1101
            help="0: Log metadata (no sampling parameters). 1: Log metadata and sampling parameters. 2: Log metadata, sampling parameters and partial input/output. 3: Log every input/output.",
            choices=[0, 1, 2, 3],
        )
        parser.add_argument(
            "--crash-dump-folder",
            type=str,
            default=ServerArgs.crash_dump_folder,
            help="Folder path to dump requests from the last 5 min before a crash (if any). If not specified, crash dumping is disabled.",
Lianmin Zheng's avatar
Lianmin Zheng committed
1102
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1103
1104
1105
        parser.add_argument(
            "--show-time-cost",
            action="store_true",
Ying Sheng's avatar
Ying Sheng committed
1106
            help="Show time cost of custom marks.",
Lianmin Zheng's avatar
Lianmin Zheng committed
1107
        )
1108
1109
1110
1111
1112
        parser.add_argument(
            "--enable-metrics",
            action="store_true",
            help="Enable log prometheus metrics.",
        )
1113
1114
1115
1116
1117
1118
1119
        parser.add_argument(
            "--enable-metrics-for-all-schedulers",
            action="store_true",
            help="Enable --enable-metrics-for-all-schedulers when you want schedulers on all TP ranks (not just TP 0) "
            "to record request metrics separately. This is especially useful when dp_attention is enabled, as "
            "otherwise all metrics appear to come from TP 0.",
        )
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
        parser.add_argument(
            "--bucket-time-to-first-token",
            type=float,
            nargs="+",
            default=ServerArgs.bucket_time_to_first_token,
            help="The buckets of time to first token, specified as a list of floats.",
        )
        parser.add_argument(
            "--bucket-inter-token-latency",
            type=float,
            nargs="+",
            default=ServerArgs.bucket_inter_token_latency,
            help="The buckets of inter-token latency, specified as a list of floats.",
        )
        parser.add_argument(
            "--bucket-e2e-request-latency",
            type=float,
            nargs="+",
            default=ServerArgs.bucket_e2e_request_latency,
            help="The buckets of end-to-end request latency, specified as a list of floats.",
        )
        parser.add_argument(
            "--collect-tokens-histogram",
            action="store_true",
            default=ServerArgs.collect_tokens_histogram,
            help="Collect prompt/generation tokens histogram.",
        )
1147
1148
1149
1150
        parser.add_argument(
            "--decode-log-interval",
            type=int,
            default=ServerArgs.decode_log_interval,
1151
            help="The log interval of decode batch.",
1152
        )
1153
1154
1155
1156
1157
1158
        parser.add_argument(
            "--enable-request-time-stats-logging",
            action="store_true",
            default=ServerArgs.enable_request_time_stats_logging,
            help="Enable per request time stats logging",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1159
1160
1161
1162
1163
1164
        parser.add_argument(
            "--kv-events-config",
            type=str,
            default=None,
            help="Config in json format for NVIDIA dynamo KV event publishing. Publishing will be enabled if this flag is used.",
        )
1165

1166
        # API related
Liangsheng Yin's avatar
Liangsheng Yin committed
1167
1168
1169
1170
        parser.add_argument(
            "--api-key",
            type=str,
            default=ServerArgs.api_key,
1171
            help="Set API key of the server. It is also used in the OpenAI API compatible server.",
Liangsheng Yin's avatar
Liangsheng Yin committed
1172
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
        parser.add_argument(
            "--served-model-name",
            type=str,
            default=ServerArgs.served_model_name,
            help="Override the model name returned by the v1/models endpoint in OpenAI API server.",
        )
        parser.add_argument(
            "--chat-template",
            type=str,
            default=ServerArgs.chat_template,
            help="The buliltin chat template name or the path of the chat template file. This is only used for OpenAI-compatible API server.",
        )
        parser.add_argument(
            "--completion-template",
            type=str,
            default=ServerArgs.completion_template,
            help="The buliltin completion template name or the path of the completion template file. This is only used for OpenAI-compatible API server. only for code completion currently.",
        )
1191
        parser.add_argument(
1192
            "--file-storage-path",
1193
            type=str,
1194
            default=ServerArgs.file_storage_path,
1195
1196
            help="The path of the file storage in backend.",
        )
1197
1198
1199
1200
1201
        parser.add_argument(
            "--enable-cache-report",
            action="store_true",
            help="Return number of cached tokens in usage.prompt_tokens_details for each openai request.",
        )
Xihuai Wang's avatar
Xihuai Wang committed
1202
1203
1204
1205
1206
1207
1208
        parser.add_argument(
            "--reasoning-parser",
            type=str,
            choices=list(ReasoningParser.DetectorMap.keys()),
            default=ServerArgs.reasoning_parser,
            help=f"Specify the parser for reasoning models, supported parsers are: {list(ReasoningParser.DetectorMap.keys())}.",
        )
1209
1210
1211
        parser.add_argument(
            "--tool-call-parser",
            type=str,
Atream's avatar
Atream committed
1212
1213
1214
1215
1216
1217
1218
            choices=[
                "qwen25",
                "mistral",
                "llama3",
                "deepseekv3",
                "pythonic",
                "kimi_k2",
1219
                "qwen3_coder",
Yuxuan Zhang's avatar
Yuxuan Zhang committed
1220
                "glm45",
Chang Su's avatar
Chang Su committed
1221
                "step3",
Atream's avatar
Atream committed
1222
            ],
1223
            default=ServerArgs.tool_call_parser,
Chang Su's avatar
Chang Su committed
1224
            help="Specify the parser for handling tool-call interactions. Options include: 'qwen25', 'mistral', 'llama3', 'deepseekv3', 'pythonic', 'kimi_k2', 'qwen3_coder', 'glm45', and 'step3'.",
1225
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1226

1227
1228
        # Data parallelism
        parser.add_argument(
1229
            "--data-parallel-size",
1230
1231
1232
            "--dp-size",
            type=int,
            default=ServerArgs.dp_size,
1233
            help="The data parallelism size.",
1234
1235
1236
1237
1238
        )
        parser.add_argument(
            "--load-balance-method",
            type=str,
            default=ServerArgs.load_balance_method,
1239
            help="The load balancing strategy for data parallelism.",
1240
1241
1242
            choices=[
                "round_robin",
                "shortest_queue",
1243
                "minimum_tokens",
1244
1245
            ],
        )
1246

1247
        # Multi-node distributed serving
1248
        parser.add_argument(
1249
            "--dist-init-addr",
1250
            "--nccl-init-addr",  # For backward compatibility. This will be removed in the future.
1251
            type=str,
1252
            help="The host address for initializing distributed backend (e.g., `192.168.0.2:25000`).",
1253
1254
        )
        parser.add_argument(
Liangsheng Yin's avatar
Liangsheng Yin committed
1255
            "--nnodes", type=int, default=ServerArgs.nnodes, help="The number of nodes."
1256
        )
1257
1258
1259
        parser.add_argument(
            "--node-rank", type=int, default=ServerArgs.node_rank, help="The node rank."
        )
1260

Lianmin Zheng's avatar
Lianmin Zheng committed
1261
1262
1263
1264
1265
1266
1267
        # Model override args
        parser.add_argument(
            "--json-model-override-args",
            type=str,
            help="A dictionary in JSON string format used to override default model configurations.",
            default=ServerArgs.json_model_override_args,
        )
1268
1269
1270
1271
1272
        parser.add_argument(
            "--preferred-sampling-params",
            type=str,
            help="json-formatted sampling settings that will be returned in /get_model_info",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1273

1274
        # LoRA
1275
1276
1277
1278
1279
1280
        parser.add_argument(
            "--enable-lora",
            default=ServerArgs.enable_lora,
            action="store_true",
            help="Enable LoRA support for the model. This argument is automatically set to True if `--lora-paths` is provided for backward compatibility.",
        )
1281
1282
1283
1284
1285
1286
1287
1288
1289
        parser.add_argument(
            "--max-lora-rank",
            default=ServerArgs.max_lora_rank,
            type=int,
            help="The maximum rank of LoRA adapters. If not specified, it will be automatically inferred from the adapters provided in --lora-paths.",
        )
        parser.add_argument(
            "--lora-target-modules",
            type=str,
1290
            choices=SUPPORTED_LORA_TARGET_MODULES + [LORA_TARGET_ALL_MODULES],
1291
1292
            nargs="*",
            default=None,
1293
1294
1295
            help="The union set of all target modules where LoRA should be applied. If not specified, "
            "it will be automatically inferred from the adapters provided in --lora-paths. If 'all' is specified, "
            "all supported modules will be targeted.",
1296
        )
1297
1298
1299
1300
1301
1302
        parser.add_argument(
            "--lora-paths",
            type=str,
            nargs="*",
            default=None,
            action=LoRAPathAction,
1303
            help="The list of LoRA adapters. You can provide a list of either path in str or renamed path in the format {name}={path}.",
1304
1305
1306
1307
1308
        )
        parser.add_argument(
            "--max-loras-per-batch",
            type=int,
            default=8,
1309
1310
            help="Maximum number of adapters for a running batch, include base-only request.",
        )
1311
1312
1313
1314
1315
1316
        parser.add_argument(
            "--max-loaded-loras",
            type=int,
            default=ServerArgs.max_loaded_loras,
            help="If specified, it limits the maximum number of LoRA adapters loaded in CPU memory at a time. The value must be greater than or equal to `--max-loras-per-batch`.",
        )
1317
1318
1319
1320
1321
        parser.add_argument(
            "--lora-backend",
            type=str,
            default="triton",
            help="Choose the kernel backend for multi-LoRA serving.",
1322
1323
1324
        )

        # Kernel backend
1325
1326
1327
        parser.add_argument(
            "--attention-backend",
            type=str,
1328
            choices=[
1329
                "aiter",
1330
                "cutlass_mla",
1331
                "fa3",
1332
                "flashinfer",
1333
                "flashmla",
1334
                "intel_amx",
1335
                "torch_native",
1336
                "ascend",
1337
                "triton",
1338
                "trtllm_mla",
1339
                "trtllm_mha",
1340
            ],
1341
1342
1343
            default=ServerArgs.attention_backend,
            help="Choose the kernels for attention layers.",
        )
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
        parser.add_argument(
            "--decode-attention-backend",
            type=str,
            choices=[
                "flashinfer",
                "triton",
                "torch_native",
                "fa3",
                "flashmla",
                "cutlass_mla",
            ],
            default=ServerArgs.decode_attention_backend,
            help="Choose the kernels for decode attention layers (have priority over --attention-backend).",
        )

        parser.add_argument(
            "--prefill-attention-backend",
            type=str,
            choices=[
                "flashinfer",
                "triton",
                "torch_native",
                "fa3",
                "flashmla",
                "cutlass_mla",
            ],
            default=ServerArgs.prefill_attention_backend,
            help="Choose the kernels for prefill attention layers (have priority over --attention-backend).",
        )
1373
1374
1375
1376
1377
1378
1379
        parser.add_argument(
            "--sampling-backend",
            type=str,
            choices=["flashinfer", "pytorch"],
            default=ServerArgs.sampling_backend,
            help="Choose the kernels for sampling layers.",
        )
1380
1381
1382
        parser.add_argument(
            "--grammar-backend",
            type=str,
1383
            choices=["xgrammar", "outlines", "llguidance", "none"],
1384
            default=ServerArgs.grammar_backend,
Lianmin Zheng's avatar
Lianmin Zheng committed
1385
            help="Choose the backend for grammar-guided decoding.",
1386
        )
1387
1388
1389
1390
1391
1392
1393
        parser.add_argument(
            "--mm-attention-backend",
            type=str,
            choices=["sdpa", "fa3", "triton_attn"],
            default=ServerArgs.mm_attention_backend,
            help="Set multimodal attention backend.",
        )
1394

1395
1396
1397
1398
        # Speculative decoding
        parser.add_argument(
            "--speculative-algorithm",
            type=str,
James Liu's avatar
James Liu committed
1399
            choices=["EAGLE", "EAGLE3", "NEXTN"],
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
            help="Speculative algorithm.",
        )
        parser.add_argument(
            "--speculative-draft-model-path",
            type=str,
            help="The path of the draft model weights. This can be a local folder or a Hugging Face repo ID.",
        )
        parser.add_argument(
            "--speculative-num-steps",
            type=int,
            help="The number of steps sampled from draft model in Speculative Decoding.",
            default=ServerArgs.speculative_num_steps,
        )
        parser.add_argument(
            "--speculative-eagle-topk",
            type=int,
1416
            help="The number of tokens sampled from the draft model in eagle2 each step.",
1417
1418
            default=ServerArgs.speculative_eagle_topk,
        )
1419
1420
1421
        parser.add_argument(
            "--speculative-num-draft-tokens",
            type=int,
1422
            help="The number of tokens sampled from the draft model in Speculative Decoding.",
1423
1424
            default=ServerArgs.speculative_num_draft_tokens,
        )
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
        parser.add_argument(
            "--speculative-accept-threshold-single",
            type=float,
            help="Accept a draft token if its probability in the target model is greater than this threshold.",
            default=ServerArgs.speculative_accept_threshold_single,
        )
        parser.add_argument(
            "--speculative-accept-threshold-acc",
            type=float,
            help="The accept probability of a draft token is raised from its target probability p to min(1, p / threshold_acc).",
            default=ServerArgs.speculative_accept_threshold_acc,
        )
1437
1438
1439
1440
1441
1442
        parser.add_argument(
            "--speculative-token-map",
            type=str,
            help="The path of the draft model's small vocab table.",
            default=ServerArgs.speculative_token_map,
        )
1443
1444
1445
1446
1447

        # Expert parallelism
        parser.add_argument(
            "--expert-parallel-size",
            "--ep-size",
Cheng Wan's avatar
Cheng Wan committed
1448
            "--ep",
1449
1450
1451
1452
1453
            type=int,
            default=ServerArgs.ep_size,
            help="The expert parallelism size.",
        )
        parser.add_argument(
1454
1455
1456
1457
1458
            "--moe-a2a-backend",
            type=str,
            choices=["deepep"],
            default=ServerArgs.moe_a2a_backend,
            help="Choose the backend for MoE A2A.",
1459
        )
1460
        parser.add_argument(
1461
            "--enable-flashinfer-cutlass-moe",
1462
            action="store_true",
1463
            help="Enable FlashInfer CUTLASS MoE backend for modelopt_fp4 quant on Blackwell. Supports MoE-EP",
1464
        )
1465
        parser.add_argument(
1466
1467
            "--enable-flashinfer-trtllm-moe",
            action="store_true",
1468
            help="Enable FlashInfer TRTLLM MoE backend on Blackwell. Supports BlockScale FP8 MoE-EP",
1469
1470
        )
        parser.add_argument(
1471
1472
1473
1474
            "--enable-flashinfer-allreduce-fusion",
            action="store_true",
            help="Enable FlashInfer allreduce fusion for Add_RMSNorm.",
        )
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
        parser.add_argument(
            "--deepep-mode",
            type=str,
            choices=["normal", "low_latency", "auto"],
            default="auto",
            help="Select the mode when enable DeepEP MoE, could be `normal`, `low_latency` or `auto`. Default is `auto`, which means `low_latency` for decode batch and `normal` for prefill batch.",
        )
        parser.add_argument(
            "--ep-num-redundant-experts",
            type=int,
            default=ServerArgs.ep_num_redundant_experts,
            help="Allocate this number of redundant experts in expert parallel.",
        )
        parser.add_argument(
            "--ep-dispatch-algorithm",
            type=str,
            default=ServerArgs.ep_dispatch_algorithm,
            help="The algorithm to choose ranks for redundant experts in expert parallel.",
        )
        parser.add_argument(
            "--init-expert-location",
            type=str,
            default=ServerArgs.init_expert_location,
            help="Initial location of EP experts.",
        )
        parser.add_argument(
            "--enable-eplb",
            action="store_true",
            help="Enable EPLB algorithm",
        )
        parser.add_argument(
            "--eplb-algorithm",
            type=str,
            default=ServerArgs.eplb_algorithm,
            help="Chosen EPLB algorithm",
        )
        parser.add_argument(
            "--eplb-rebalance-num-iterations",
            type=int,
            default=ServerArgs.eplb_rebalance_num_iterations,
            help="Number of iterations to automatically trigger a EPLB re-balance.",
        )
        parser.add_argument(
            "--eplb-rebalance-layers-per-chunk",
            type=int,
            default=ServerArgs.eplb_rebalance_layers_per_chunk,
            help="Number of layers to rebalance per forward pass.",
        )
        parser.add_argument(
            "--expert-distribution-recorder-mode",
            type=str,
            default=ServerArgs.expert_distribution_recorder_mode,
            help="Mode of expert distribution recorder.",
        )
        parser.add_argument(
            "--expert-distribution-recorder-buffer-size",
            type=int,
            default=ServerArgs.expert_distribution_recorder_buffer_size,
            help="Circular buffer size of expert distribution recorder. Set to -1 to denote infinite buffer.",
        )
        parser.add_argument(
            "--enable-expert-distribution-metrics",
            action="store_true",
            help="Enable logging metrics for expert balancedness",
        )
        parser.add_argument(
            "--deepep-config",
            type=str,
            default=ServerArgs.deepep_config,
            help="Tuned DeepEP config suitable for your own cluster. It can be either a string with JSON content or a file path.",
        )
        parser.add_argument(
            "--moe-dense-tp-size",
            type=int,
            default=ServerArgs.moe_dense_tp_size,
            help="TP size for MoE dense MLP layers. This flag is useful when, with large TP size, there are errors caused by weights in MLP layers having dimension smaller than the min dimension GEMM supports.",
        )
1552

Lianmin Zheng's avatar
Lianmin Zheng committed
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
        # Hierarchical cache
        parser.add_argument(
            "--enable-hierarchical-cache",
            action="store_true",
            help="Enable hierarchical cache",
        )
        parser.add_argument(
            "--hicache-ratio",
            type=float,
            default=ServerArgs.hicache_ratio,
            help="The ratio of the size of host KV cache memory pool to the size of device pool.",
        )
        parser.add_argument(
            "--hicache-size",
            type=int,
            default=ServerArgs.hicache_size,
            help="The size of host KV cache memory pool in gigabytes, which will override the hicache_ratio if set.",
        )
        parser.add_argument(
            "--hicache-write-policy",
            type=str,
            choices=["write_back", "write_through", "write_through_selective"],
            default=ServerArgs.hicache_write_policy,
            help="The write policy of hierarchical cache.",
        )
        parser.add_argument(
            "--hicache-io-backend",
            type=str,
            choices=["direct", "kernel"],
            default=ServerArgs.hicache_io_backend,
            help="The IO backend for KV cache transfer between CPU and GPU",
        )
1585
1586
1587
1588
1589
1590
1591
1592
        parser.add_argument(
            "--hicache-mem-layout",
            type=str,
            choices=["layer_first", "page_first"],
            default=ServerArgs.hicache_mem_layout,
            help="The layout of host memory pool for hierarchical cache.",
        )

Lianmin Zheng's avatar
Lianmin Zheng committed
1593
1594
1595
        parser.add_argument(
            "--hicache-storage-backend",
            type=str,
1596
            choices=["file", "mooncake", "hf3fs", "nixl"],
Lianmin Zheng's avatar
Lianmin Zheng committed
1597
1598
1599
1600
            default=ServerArgs.hicache_storage_backend,
            help="The storage backend for hierarchical KV cache.",
        )

1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
        # Double Sparsity
        parser.add_argument(
            "--enable-double-sparsity",
            action="store_true",
            help="Enable double sparsity attention",
        )
        parser.add_argument(
            "--ds-channel-config-path",
            type=str,
            default=ServerArgs.ds_channel_config_path,
            help="The path of the double sparsity channel config",
        )
        parser.add_argument(
            "--ds-heavy-channel-num",
            type=int,
            default=ServerArgs.ds_heavy_channel_num,
            help="The number of heavy channels in double sparsity attention",
        )
        parser.add_argument(
            "--ds-heavy-token-num",
            type=int,
            default=ServerArgs.ds_heavy_token_num,
            help="The number of heavy tokens in double sparsity attention",
        )
        parser.add_argument(
            "--ds-heavy-channel-type",
            type=str,
            default=ServerArgs.ds_heavy_channel_type,
            help="The type of heavy channels in double sparsity attention",
        )
        parser.add_argument(
            "--ds-sparse-decode-threshold",
            type=int,
            default=ServerArgs.ds_sparse_decode_threshold,
            help="The type of heavy channels in double sparsity attention",
        )

1638
        # Optimization/debug options
Liangsheng Yin's avatar
Liangsheng Yin committed
1639
        parser.add_argument(
Lianmin Zheng's avatar
Lianmin Zheng committed
1640
            "--disable-radix-cache",
Liangsheng Yin's avatar
Liangsheng Yin committed
1641
            action="store_true",
Ying Sheng's avatar
Ying Sheng committed
1642
            help="Disable RadixAttention for prefix caching.",
Liangsheng Yin's avatar
Liangsheng Yin committed
1643
        )
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
        parser.add_argument(
            "--cuda-graph-max-bs",
            type=int,
            default=ServerArgs.cuda_graph_max_bs,
            help="Set the maximum batch size for cuda graph. It will extend the cuda graph capture batch size to this value.",
        )
        parser.add_argument(
            "--cuda-graph-bs",
            type=int,
            nargs="+",
            help="Set the list of batch sizes for cuda graph.",
        )
1656
1657
1658
        parser.add_argument(
            "--disable-cuda-graph",
            action="store_true",
1659
            help="Disable cuda graph.",
1660
        )
1661
        parser.add_argument(
1662
1663
            "--disable-cuda-graph-padding",
            action="store_true",
1664
            help="Disable cuda graph when padding is needed. Still uses cuda graph when padding is not needed.",
1665
        )
1666
1667
1668
1669
1670
        parser.add_argument(
            "--enable-profile-cuda-graph",
            action="store_true",
            help="Enable profiling of cuda graph capture.",
        )
1671
1672
1673
1674
1675
        parser.add_argument(
            "--enable-cudagraph-gc",
            action="store_true",
            help="Enable garbage collection during CUDA graph capture. If disabled (default), GC is frozen during capture to speed up the process.",
        )
1676
1677
1678
1679
1680
        parser.add_argument(
            "--enable-nccl-nvls",
            action="store_true",
            help="Enable NCCL NVLS for prefill heavy requests when available.",
        )
1681
1682
1683
1684
1685
        parser.add_argument(
            "--enable-symm-mem",
            action="store_true",
            help="Enable NCCL symmetric memory for fast collectives.",
        )
1686
1687
1688
1689
1690
        parser.add_argument(
            "--enable-tokenizer-batch-encode",
            action="store_true",
            help="Enable batch tokenization for improved performance when processing multiple text inputs. Do not use with image inputs, pre-tokenized input_ids, or input_embeds.",
        )
1691
        parser.add_argument(
1692
            "--disable-outlines-disk-cache",
1693
            action="store_true",
1694
            help="Disable disk cache of outlines to avoid possible crashes related to file system or high concurrency.",
1695
        )
1696
1697
1698
1699
1700
        parser.add_argument(
            "--disable-custom-all-reduce",
            action="store_true",
            help="Disable the custom all-reduce kernel and fall back to NCCL.",
        )
1701
1702
1703
1704
1705
        parser.add_argument(
            "--enable-mscclpp",
            action="store_true",
            help="Enable using mscclpp for small messages for all-reduce kernel and fall back to NCCL.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1706
        parser.add_argument(
1707
            "--disable-overlap-schedule",
Lianmin Zheng's avatar
Lianmin Zheng committed
1708
            action="store_true",
1709
            help="Disable the overlap scheduler, which overlaps the CPU scheduler with GPU model worker.",
Lianmin Zheng's avatar
Lianmin Zheng committed
1710
        )
1711
1712
1713
        parser.add_argument(
            "--enable-mixed-chunk",
            action="store_true",
1714
            help="Enabling mixing prefill and decode in a batch when using chunked prefill.",
1715
        )
Ke Bao's avatar
Ke Bao committed
1716
1717
1718
        parser.add_argument(
            "--enable-dp-attention",
            action="store_true",
1719
            help="Enabling data parallelism for attention and tensor parallelism for FFN. The dp size should be equal to the tp size. Currently DeepSeek-V2 and Qwen 2/3 MoE models are supported.",
Ke Bao's avatar
Ke Bao committed
1720
        )
1721
1722
1723
1724
1725
        parser.add_argument(
            "--enable-dp-lm-head",
            action="store_true",
            help="Enable vocabulary parallel across the attention TP group to avoid all-gather across DP groups, optimizing performance under DP attention.",
        )
1726
1727
1728
1729
1730
        parser.add_argument(
            "--enable-two-batch-overlap",
            action="store_true",
            help="Enabling two micro batches to overlap.",
        )
1731
1732
1733
1734
1735
1736
        parser.add_argument(
            "--tbo-token-distribution-threshold",
            type=float,
            default=ServerArgs.tbo_token_distribution_threshold,
            help="The threshold of token distribution between two batches in micro-batch-overlap, determines whether to two-batch-overlap or two-chunk-overlap. Set to 0 denote disable two-chunk-overlap.",
        )
1737
1738
1739
        parser.add_argument(
            "--enable-torch-compile",
            action="store_true",
1740
1741
            help="Optimize the model with torch.compile. Experimental feature.",
        )
1742
        parser.add_argument(
1743
            "--torch-compile-max-bs",
1744
            type=int,
1745
            default=ServerArgs.torch_compile_max_bs,
1746
1747
            help="Set the maximum batch size when using torch compile.",
        )
1748
1749
1750
1751
        parser.add_argument(
            "--torchao-config",
            type=str,
            default=ServerArgs.torchao_config,
1752
            help="Optimize the model with torchao. Experimental feature. Current choices are: int8dq, int8wo, int4wo-<group_size>, fp8wo, fp8dq-per_tensor, fp8dq-per_row",
1753
        )
1754
1755
1756
1757
1758
        parser.add_argument(
            "--enable-nan-detection",
            action="store_true",
            help="Enable the NaN detection for debugging purposes.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1759
        parser.add_argument(
1760
            "--enable-p2p-check",
Lianmin Zheng's avatar
Lianmin Zheng committed
1761
            action="store_true",
1762
            help="Enable P2P check for GPU access, otherwise the p2p access is allowed by default.",
Lianmin Zheng's avatar
Lianmin Zheng committed
1763
        )
1764
        parser.add_argument(
1765
            "--triton-attention-reduce-in-fp32",
1766
            action="store_true",
1767
            help="Cast the intermediate attention results to fp32 to avoid possible crashes related to fp16."
1768
            "This only affects Triton attention kernels.",
1769
        )
1770
1771
1772
1773
1774
1775
        parser.add_argument(
            "--triton-attention-num-kv-splits",
            type=int,
            default=ServerArgs.triton_attention_num_kv_splits,
            help="The number of KV splits in flash decoding Triton kernel. Larger value is better in longer context scenarios. The default value is 8.",
        )
1776
1777
1778
1779
1780
1781
1782
1783
        parser.add_argument(
            "--num-continuous-decode-steps",
            type=int,
            default=ServerArgs.num_continuous_decode_steps,
            help="Run multiple continuous decoding steps to reduce scheduling overhead. "
            "This can potentially increase throughput but may also increase time-to-first-token latency. "
            "The default value is 1, meaning only run one decoding step at a time.",
        )
1784
1785
1786
1787
1788
        parser.add_argument(
            "--delete-ckpt-after-loading",
            action="store_true",
            help="Delete the model checkpoint after loading the model.",
        )
1789
1790
1791
1792
1793
        parser.add_argument(
            "--enable-memory-saver",
            action="store_true",
            help="Allow saving memory using release_memory_occupation and resume_memory_occupation",
        )
1794
1795
1796
1797
1798
        parser.add_argument(
            "--allow-auto-truncate",
            action="store_true",
            help="Allow automatically truncating requests that exceed the maximum input length instead of returning an error.",
        )
1799
1800
1801
1802
1803
        parser.add_argument(
            "--enable-custom-logit-processor",
            action="store_true",
            help="Enable users to pass custom logit processors to the server (disabled by default for security)",
        )
1804
        parser.add_argument(
1805
            "--flashinfer-mla-disable-ragged",
1806
            action="store_true",
1807
            help="Not using ragged prefill wrapper when running flashinfer mla",
1808
        )
1809
        parser.add_argument(
1810
1811
1812
            "--disable-shared-experts-fusion",
            action="store_true",
            help="Disable shared experts fusion optimization for deepseek v3/r1.",
1813
        )
1814
1815
1816
1817
1818
        parser.add_argument(
            "--disable-chunked-prefix-cache",
            action="store_true",
            help="Disable chunked prefix cache feature for deepseek, which should save overhead for short sequences.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1819
1820
1821
1822
1823
        parser.add_argument(
            "--disable-fast-image-processor",
            action="store_true",
            help="Adopt base image processor instead of fast image processor.",
        )
1824
1825
1826
1827
1828
        parser.add_argument(
            "--enable-return-hidden-states",
            action="store_true",
            help="Enable returning hidden states with responses.",
        )
Yuan Luo's avatar
Yuan Luo committed
1829
1830
1831
1832
1833
        parser.add_argument(
            "--enable-triton-kernel-moe",
            action="store_true",
            help="Use triton moe grouped gemm kernel.",
        )
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853

        # Debug tensor dumps
        parser.add_argument(
            "--debug-tensor-dump-output-folder",
            type=str,
            default=ServerArgs.debug_tensor_dump_output_folder,
            help="The output folder for dumping tensors.",
        )
        parser.add_argument(
            "--debug-tensor-dump-input-file",
            type=str,
            default=ServerArgs.debug_tensor_dump_input_file,
            help="The input filename for dumping tensors",
        )
        parser.add_argument(
            "--debug-tensor-dump-inject",
            type=str,
            default=ServerArgs.debug_tensor_dump_inject,
            help="Inject the outputs from jax as the input of every layer.",
        )
1854
1855
1856
1857
1858
        parser.add_argument(
            "--debug-tensor-dump-prefill-only",
            action="store_true",
            help="Only dump the tensors for prefill requests (i.e. batch size > 1).",
        )
1859

Lianmin Zheng's avatar
Lianmin Zheng committed
1860
        # PD disaggregation
Byron Hsu's avatar
Byron Hsu committed
1861
1862
1863
1864
1865
1866
1867
        parser.add_argument(
            "--disaggregation-mode",
            type=str,
            default="null",
            choices=["null", "prefill", "decode"],
            help='Only used for PD disaggregation. "prefill" for prefill-only server, and "decode" for decode-only server. If not specified, it is not PD disaggregated',
        )
1868
1869
1870
1871
        parser.add_argument(
            "--disaggregation-transfer-backend",
            type=str,
            default=ServerArgs.disaggregation_transfer_backend,
1872
            choices=["mooncake", "nixl", "ascend"],
1873
1874
            help="The backend for disaggregation transfer. Default is mooncake.",
        )
1875
1876
1877
1878
1879
1880
        parser.add_argument(
            "--disaggregation-bootstrap-port",
            type=int,
            default=ServerArgs.disaggregation_bootstrap_port,
            help="Bootstrap server port on the prefill server. Default is 8998.",
        )
Byron Hsu's avatar
Byron Hsu committed
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
        parser.add_argument(
            "--disaggregation-decode-tp",
            type=int,
            default=ServerArgs.disaggregation_decode_tp,
            help="Decode tp size. If not set, it matches the tp size of the current engine. This is only set on the prefill server.",
        )
        parser.add_argument(
            "--disaggregation-decode-dp",
            type=int,
            default=ServerArgs.disaggregation_decode_dp,
            help="Decode dp size. If not set, it matches the dp size of the current engine. This is only set on the prefill server.",
        )
        parser.add_argument(
            "--disaggregation-prefill-pp",
            type=int,
            default=ServerArgs.disaggregation_prefill_pp,
            help="Prefill pp size. If not set, it is default to 1. This is only set on the decode server.",
        )
1899
1900
1901
1902
        parser.add_argument(
            "--disaggregation-ib-device",
            type=str,
            default=ServerArgs.disaggregation_ib_device,
1903
1904
1905
            help="The InfiniBand devices for disaggregation transfer, accepts single device (e.g., --disaggregation-ib-device mlx5_0) "
            "or multiple comma-separated devices (e.g., --disaggregation-ib-device mlx5_0,mlx5_1). "
            "Default is None, which triggers automatic device detection when mooncake backend is enabled.",
1906
        )
1907
1908
1909
1910
1911
1912
        parser.add_argument(
            "--num-reserved-decode-tokens",
            type=int,
            default=ServerArgs.num_reserved_decode_tokens,
            help="Number of decode tokens that will have memory reserved when adding new request to the running batch.",
        )
1913
1914
1915
1916
1917
1918
        parser.add_argument(
            "--pdlb-url",
            type=str,
            default=None,
            help="The URL of the PD disaggregation load balancer. If set, the prefill/decode server will register with the load balancer.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1919
1920

        # Custom weight loader
1921
1922
1923
1924
1925
1926
1927
        parser.add_argument(
            "--custom-weight-loader",
            type=str,
            nargs="*",
            default=None,
            help="The custom dataloader which used to update the model. Should be set with a valid import path, such as my_package.weight_load_func",
        )
1928
1929
1930
1931
1932
        parser.add_argument(
            "--enable-pdmux",
            action="store_true",
            help="Enable PD-Multiplexing, PD running on greenctx stream.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1933
1934

        # For PD-Multiplexing
1935
1936
1937
1938
1939
1940
        parser.add_argument(
            "--sm-group-num",
            type=int,
            default=ServerArgs.sm_group_num,
            help="Number of sm partition groups.",
        )
1941
1942
1943
1944
1945
        parser.add_argument(
            "--weight-loader-disable-mmap",
            action="store_true",
            help="Disable mmap while loading weight using safetensors.",
        )
Byron Hsu's avatar
Byron Hsu committed
1946

1947
1948
1949
1950
1951
1952
1953
1954
        # For tool server
        parser.add_argument(
            "--tool-server",
            type=str,
            default=None,
            help="Either 'demo' or a comma-separated list of tool server urls to use for the model. If not specified, no tool server will be used.",
        )

1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
        # Deprecated arguments
        parser.add_argument(
            "--enable-ep-moe",
            action="store_true",
            help="(Deprecated) Enabling expert parallelism for moe. The ep size is equal to the tp size.",
        )
        parser.add_argument(
            "--enable-deepep-moe",
            action="store_true",
            help="(Deprecated) Enabling DeepEP MoE implementation for EP MoE.",
        )

Lianmin Zheng's avatar
Lianmin Zheng committed
1967
1968
    @classmethod
    def from_cli_args(cls, args: argparse.Namespace):
1969
        args.tp_size = args.tensor_parallel_size
1970
        args.pp_size = args.pipeline_parallel_size
1971
        args.dp_size = args.data_parallel_size
xiaobochen's avatar
xiaobochen committed
1972
        args.ep_size = args.expert_parallel_size
Lianmin Zheng's avatar
Lianmin Zheng committed
1973
1974
1975
1976
        attrs = [attr.name for attr in dataclasses.fields(cls)]
        return cls(**{attr: getattr(args, attr) for attr in attrs})

    def url(self):
1977
        if is_valid_ipv6_address(self.host):
1978
1979
1980
            return f"http://[{self.host}]:{self.port}"
        else:
            return f"http://{self.host}:{self.port}"
Lianmin Zheng's avatar
Lianmin Zheng committed
1981

Lianmin Zheng's avatar
Lianmin Zheng committed
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
    def get_hf_config(self):
        kwargs = {}
        hf_config = get_config(
            self.model_path,
            trust_remote_code=self.trust_remote_code,
            revision=self.revision,
            model_override_args=json.loads(self.json_model_override_args),
            **kwargs,
        )
        return hf_config

1993
    def check_server_args(self):
1994
        # Check parallel size constraints
1995
        assert (
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
            self.tp_size * self.pp_size
        ) % self.nnodes == 0, "tp_size must be divisible by number of nodes"

        if self.pp_size > 1:
            assert (
                self.disable_overlap_schedule
                and self.speculative_algorithm is None
                and not self.enable_mixed_chunk
            ), "Pipeline parallelism is not compatible with overlap schedule, speculative decoding, mixed chunked prefill."

2006
        assert not (
2007
2008
            self.dp_size > 1 and self.nnodes != 1 and not self.enable_dp_attention
        ), "multi-node data parallel is not supported unless dp attention!"
2009

2010
        assert self.base_gpu_id >= 0, "base_gpu_id must be non-negative"
2011
        assert self.gpu_id_step >= 1, "gpu_id_step must be positive"
2012

Lianmin Zheng's avatar
Lianmin Zheng committed
2013
2014
2015
2016
2017
        assert self.moe_dense_tp_size in {
            1,
            None,
        }, "moe_dense_tp_size only support 1 and None currently"

2018
2019
2020
2021
2022
        # Check model architecture
        model_arch = self.get_hf_config().architectures[0]
        if "Llama4" in model_arch:
            assert self.attention_backend == "fa3", "fa3 is required for Llama4 model"

2023
2024
2025
2026
2027
        if model_arch in [
            "Gemma2ForCausalLM",
            "Gemma3nForCausalLM",
            "Gemma3nForConditionalGeneration",
        ]:
2028
2029
            # FIXME: https://github.com/sgl-project/sglang/pull/7367 is not compatible with gemma2 model.
            # It failed at this test: https://github.com/sgl-project/sglang/actions/runs/16255155597/job/45890331952#step:4:736
2030
2031
2032
            logger.warning(
                f"Disable hybrid SWA memory for {model_arch} as it is not yet supported."
            )
2033
2034
            self.disable_hybrid_swa_memory = True

2035
        # Check LoRA
2036
2037
        self.check_lora_server_args()

2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
        # Check speculative decoding
        if self.speculative_algorithm is not None:
            assert (
                not self.enable_mixed_chunk
            ), "enable_mixed_chunk is required for speculative decoding"

        # Check chunked prefill
        assert (
            self.chunked_prefill_size % self.page_size == 0
        ), "chunked_prefill_size must be divisible by page_size"

2049
    def check_lora_server_args(self):
2050
2051
2052
2053
2054
2055
        assert (
            self.max_loras_per_batch > 0
            # FIXME
            and (self.lora_paths is None or self.disable_radix_cache)
        ), "compatibility of lora and radix attention is in progress"

2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
        # Enable LoRA if any LoRA paths are provided for backward compatibility.
        if self.lora_paths:
            if self.enable_lora is None:
                self.enable_lora = True
                logger.info(
                    "--enable-lora is set to True because --lora-paths is provided."
                )
            elif self.enable_lora is False:
                logger.warning(
                    "--enable-lora is set to False, any provided lora_paths will be ignored."
                )

        if self.enable_lora:
            # Normalize lora_paths to a dictionary if it is a list.
            if isinstance(self.lora_paths, list):
                lora_paths = self.lora_paths
                self.lora_paths = {}
                for lora_path in lora_paths:
                    if "=" in lora_path:
                        name, path = lora_path.split("=", 1)
2076
                        self.lora_paths[name] = LoRARef(lora_name=name, lora_path=path)
2077
                    else:
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
                        self.lora_paths[lora_path] = LoRARef(
                            lora_name=lora_path,
                            lora_path=lora_path,
                        )
            elif isinstance(self.lora_paths, dict):
                self.lora_paths = {
                    k: LoRARef(lora_name=k, lora_path=v)
                    for k, v in self.lora_paths.items()
                }
            elif self.lora_paths is None:
                self.lora_paths = {}
            else:
                raise ValueError(
                    f"Invalid type for --lora-paths: {type(self.lora_paths)}. "
                    "Expected a list or a dictionary."
                )
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107

            # Expand target modules
            if self.lora_target_modules:
                self.lora_target_modules = set(self.lora_target_modules)
                if "all" in self.lora_target_modules:
                    assert (
                        len(self.lora_target_modules) == 1
                    ), "If 'all' is specified in --lora-target-modules, it should be the only module specified."
                    self.lora_target_modules = set(SUPPORTED_LORA_TARGET_MODULES)

            # Ensure sufficient information is provided for LoRA initialization.
            assert self.lora_paths or (
                self.max_lora_rank and self.lora_target_modules
            ), "When no initial --lora-paths is provided, you need to specify both --max-lora-rank and --lora-target-modules for LoRA initialization."
2108

2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
            # Validate max_loaded_loras
            if self.max_loaded_loras is not None:
                assert self.max_loaded_loras >= self.max_loras_per_batch, (
                    "max_loaded_loras should be greater than or equal to max_loras_per_batch. "
                    f"max_loaded_loras={self.max_loaded_loras}, max_loras_per_batch={self.max_loras_per_batch}"
                )
                assert (
                    not self.lora_paths or len(self.lora_paths) <= self.max_loaded_loras
                ), (
                    "The number of LoRA paths should not exceed max_loaded_loras. "
                    f"max_loaded_loras={self.max_loaded_loras}, lora_paths={len(self.lora_paths)}"
                )

Lianmin Zheng's avatar
Lianmin Zheng committed
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
    def validate_disagg_tp_size(self, prefill_tp: int, decode_tp: int):
        larger_tp = max(decode_tp, prefill_tp)
        smaller_tp = min(decode_tp, prefill_tp)
        assert larger_tp % smaller_tp == 0, (
            "Different tp size is supported only when one tp is multiple of the other. "
            f"decode_tp={decode_tp}, prefill_tp={prefill_tp}"
        )

    def adjust_mem_fraction_for_vlm(self, model_config):
        vision_config = getattr(model_config.hf_config, "vision_config", None)
        if vision_config is None:
            return

        # roughly reduce the mem_fraction_static base on params of Vit
        original_server_arg_mem_fraction = self.mem_fraction_static
        # a base mem_fraction_static factor for regular Vit
        base_mem_fraction_reduction_ratio = 0.95

        vit_num_layers = getattr(vision_config, "num_hidden_layers", 24)
        vit_hidden_size = getattr(vision_config, "hidden_size", 1024)

        # baseline ViT params (ViT-L/14)
        baseline_vit_layers = 24
        baseline_vit_hidden_size = 1024

        # weight params count
        current_complexity_score = vit_num_layers * (vit_hidden_size**2)
        baseline_complexity_score = baseline_vit_layers * (baseline_vit_hidden_size**2)
        complexity_ratio = (
            current_complexity_score / baseline_complexity_score
            if baseline_complexity_score > 0
            else 1.0
        )

        # every time the complexity grows 100%, adjust final factor for 10%
        sensitivity_scale = 0.1
        dynamic_adjustment_factor = 1.0 - sensitivity_scale * (complexity_ratio - 1.0)
        dynamic_adjustment_factor = max(0.8, min(1.05, dynamic_adjustment_factor))

        final_overall_factor = (
            base_mem_fraction_reduction_ratio * dynamic_adjustment_factor
        )
        self.mem_fraction_static = (
            original_server_arg_mem_fraction * final_overall_factor
        )
        logger.warning(
            f"Multimodal model: Dynamically adjusted --mem-fraction-static "
            f"from: {original_server_arg_mem_fraction:.3f} to: {self.mem_fraction_static:.3f}."
        )

Lianmin Zheng's avatar
Lianmin Zheng committed
2172

Lianmin Zheng's avatar
Lianmin Zheng committed
2173
def prepare_server_args(argv: List[str]) -> ServerArgs:
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
    """
    Prepare the server arguments from the command line arguments.

    Args:
        args: The command line arguments. Typically, it should be `sys.argv[1:]`
            to ensure compatibility with `parse_args` when no arguments are passed.

    Returns:
        The server arguments.
    """
    parser = argparse.ArgumentParser()
    ServerArgs.add_cli_args(parser)
Lianmin Zheng's avatar
Lianmin Zheng committed
2186
    raw_args = parser.parse_args(argv)
2187
2188
2189
2190
    server_args = ServerArgs.from_cli_args(raw_args)
    return server_args


2191
2192
2193
ZMQ_TCP_PORT_DELTA = 233


Lianmin Zheng's avatar
Lianmin Zheng committed
2194
2195
@dataclasses.dataclass
class PortArgs:
2196
2197
2198
2199
2200
2201
    # The ipc filename for tokenizer to receive inputs from detokenizer (zmq)
    tokenizer_ipc_name: str
    # The ipc filename for scheduler (rank 0) to receive inputs from tokenizer (zmq)
    scheduler_input_ipc_name: str
    # The ipc filename for detokenizer to receive inputs from scheduler (zmq)
    detokenizer_ipc_name: str
2202

2203
2204
    # The port for nccl initialization (torch.dist)
    nccl_port: int
2205

2206
2207
2208
    # The ipc filename for rpc call between Engine and Scheduler
    rpc_ipc_name: str

2209
2210
2211
    # The ipc filename for Scheduler to send metrics
    metrics_ipc_name: str

2212
    @staticmethod
2213
    def init_new(server_args, dp_rank: Optional[int] = None) -> "PortArgs":
2214
        if server_args.nccl_port is None:
Lianmin Zheng's avatar
Lianmin Zheng committed
2215
            nccl_port = server_args.port + random.randint(100, 1000)
2216
            while True:
Lianmin Zheng's avatar
Lianmin Zheng committed
2217
                if is_port_available(nccl_port):
2218
                    break
Lianmin Zheng's avatar
Lianmin Zheng committed
2219
2220
                if nccl_port < 60000:
                    nccl_port += 42
2221
                else:
Lianmin Zheng's avatar
Lianmin Zheng committed
2222
                    nccl_port -= 43
2223
        else:
Lianmin Zheng's avatar
Lianmin Zheng committed
2224
            nccl_port = server_args.nccl_port
2225

2226
2227
2228
2229
2230
2231
        if not server_args.enable_dp_attention:
            # Normal case, use IPC within a single node
            return PortArgs(
                tokenizer_ipc_name=f"ipc://{tempfile.NamedTemporaryFile(delete=False).name}",
                scheduler_input_ipc_name=f"ipc://{tempfile.NamedTemporaryFile(delete=False).name}",
                detokenizer_ipc_name=f"ipc://{tempfile.NamedTemporaryFile(delete=False).name}",
Lianmin Zheng's avatar
Lianmin Zheng committed
2232
                nccl_port=nccl_port,
2233
                rpc_ipc_name=f"ipc://{tempfile.NamedTemporaryFile(delete=False).name}",
2234
                metrics_ipc_name=f"ipc://{tempfile.NamedTemporaryFile(delete=False).name}",
2235
2236
2237
2238
2239
            )
        else:
            # DP attention. Use TCP + port to handle both single-node and multi-node.
            if server_args.nnodes == 1 and server_args.dist_init_addr is None:
                dist_init_addr = ("127.0.0.1", server_args.port + ZMQ_TCP_PORT_DELTA)
Vincent's avatar
Vincent committed
2240
2241
2242
            elif server_args.dist_init_addr.startswith("["):  # ipv6 address
                port_num, host = configure_ipv6(server_args.dist_init_addr)
                dist_init_addr = (host, str(port_num))
2243
2244
            else:
                dist_init_addr = server_args.dist_init_addr.split(":")
Vincent's avatar
Vincent committed
2245

2246
2247
2248
2249
2250
2251
            assert (
                len(dist_init_addr) == 2
            ), "please provide --dist-init-addr as host:port of head node"

            dist_init_host, dist_init_port = dist_init_addr
            port_base = int(dist_init_port) + 1
2252
2253
2254
            detokenizer_port = port_base + 1
            rpc_port = port_base + 2
            metrics_ipc_name = port_base + 3
2255
            if dp_rank is None:
2256
                # TokenizerManager to DataParallelController
2257
                scheduler_input_port = port_base + 4
2258
            else:
2259
                scheduler_input_port = port_base + 4 + 1 + dp_rank
2260
2261
2262
2263

            return PortArgs(
                tokenizer_ipc_name=f"tcp://{dist_init_host}:{port_base}",
                scheduler_input_ipc_name=f"tcp://{dist_init_host}:{scheduler_input_port}",
2264
                detokenizer_ipc_name=f"tcp://{dist_init_host}:{detokenizer_port}",
Lianmin Zheng's avatar
Lianmin Zheng committed
2265
                nccl_port=nccl_port,
2266
2267
                rpc_ipc_name=f"tcp://{dist_init_host}:{rpc_port}",
                metrics_ipc_name=f"tcp://{dist_init_host}:{metrics_ipc_name}",
2268
            )
2269

2270
2271
2272
2273
2274
2275
2276
2277
2278
2279

class LoRAPathAction(argparse.Action):
    def __call__(self, parser, namespace, values, option_string=None):
        setattr(namespace, self.dest, {})
        for lora_path in values:
            if "=" in lora_path:
                name, path = lora_path.split("=", 1)
                getattr(namespace, self.dest)[name] = path
            else:
                getattr(namespace, self.dest)[lora_path] = lora_path
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289


class DeprecatedAction(argparse.Action):
    def __init__(self, option_strings, dest, nargs=0, **kwargs):
        super(DeprecatedAction, self).__init__(
            option_strings, dest, nargs=nargs, **kwargs
        )

    def __call__(self, parser, namespace, values, option_string=None):
        raise ValueError(self.help)
2290
2291


2292
def auto_choose_speculative_params(self: ServerArgs):
2293
2294
2295
2296
2297
    """
    Automatically choose the parameters for speculative decoding.

    You can tune them on your own models and prompts with scripts/playground/bench_speculative.py
    """
Lianmin Zheng's avatar
Lianmin Zheng committed
2298
    hf_config = self.get_hf_config()
2299
2300
    arch = hf_config.architectures[0]

2301
2302
2303
2304
2305
    if arch in ["LlamaForCausalLM"]:
        # The default value for llama
        return (5, 4, 8)
    elif arch in ["DeepseekV3ForCausalLM", "DeepseekV2ForCausalLM"]:
        # The default value for deepseek
2306
        return (3, 1, 4)
2307
2308
2309
2310
2311
    elif arch in ["Grok1ForCausalLM", "Grok1VForCausalLM"]:
        return (5, 4, 8)
    else:
        # The default value for all other models
        return (5, 4, 8)