"README_ORIGIN.md" did not exist on "87ca9e99868d69403f75210ae59d3a7b5c6c4a39"
server_args.py 124 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
Lianmin Zheng's avatar
Lianmin Zheng committed
14
15
"""The arguments of the server."""

Lianmin Zheng's avatar
Lianmin Zheng committed
16
17
import argparse
import dataclasses
18
import json
19
import logging
20
import os
21
import random
22
import socket
23
import sys
24
import tempfile
25
from typing import List, Literal, Optional, Union
Lianmin Zheng's avatar
Lianmin Zheng committed
26

27
from sglang.srt.connector import ConnectorType
28
from sglang.srt.function_call.function_call_parser import FunctionCallParser
29
from sglang.srt.hf_transformers_utils import check_gguf_file, get_config
30
from sglang.srt.lora.lora_registry import LoRARef
31
from sglang.srt.parser.reasoning_parser import ReasoningParser
32
from sglang.srt.utils import (
33
34
    LORA_TARGET_ALL_MODULES,
    SUPPORTED_LORA_TARGET_MODULES,
Vincent's avatar
Vincent committed
35
    configure_ipv6,
36
    get_device,
Lianmin Zheng's avatar
Lianmin Zheng committed
37
    get_device_memory_capacity,
38
    is_cuda,
39
    is_flashinfer_available,
HAI's avatar
HAI committed
40
    is_hip,
41
    is_npu,
42
    is_port_available,
43
    is_remote_url,
44
45
    is_sm90_supported,
    is_sm100_supported,
46
    is_triton_kernels_available,
47
    is_valid_ipv6_address,
48
    json_list_type,
bjmsong's avatar
bjmsong committed
49
    nullable_str,
50
    parse_connector_type,
51
)
52
from sglang.utils import is_in_ci
53

54
55
logger = logging.getLogger(__name__)

Lianmin Zheng's avatar
Lianmin Zheng committed
56

57
58
59
60
61
62
63
64
65
66
67
68
# Define constants
LOAD_FORMAT_CHOICES = [
    "auto",
    "pt",
    "safetensors",
    "npcache",
    "dummy",
    "sharded_state",
    "gguf",
    "bitsandbytes",
    "layered",
    "remote",
69
    "remote_instance",
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
]

QUANTIZATION_CHOICES = [
    "awq",
    "fp8",
    "gptq",
    "marlin",
    "gptq_marlin",
    "awq_marlin",
    "bitsandbytes",
    "gguf",
    "modelopt",
    "modelopt_fp4",
    "petit_nvfp4",
    "w8a8_int8",
    "w8a8_fp8",
    "moe_wna16",
    "qoq",
    "w4afp8",
    "mxfp4",
]

ATTENTION_BACKEND_CHOICES = [
    # Common
    "triton",
    "torch_native",
96
    "flex_attention",
97
98
99
    # NVIDIA specific
    "cutlass_mla",
    "fa3",
100
    "fa4",
101
102
103
104
105
    "flashinfer",
    "flashmla",
    "trtllm_mla",
    "trtllm_mha",
    "dual_chunk_flash_attn",
Yi Zhang's avatar
Yi Zhang committed
106
    "hybrid_linear_attn",
107
108
109
110
111
112
113
114
    # AMD specific
    "aiter",
    "wave",
    # Other platforms
    "intel_amx",
    "ascend",
]

115
116
LORA_BACKEND_CHOICES = ["triton", "csgmv"]

117
118
DISAGG_TRANSFER_BACKEND_CHOICES = ["mooncake", "nixl", "ascend", "fake"]

119
120
GRAMMAR_BACKEND_CHOICES = ["xgrammar", "outlines", "llguidance", "none"]

121
DETERMINISTIC_ATTENTION_BACKEND_CHOICES = ["flashinfer", "fa3"]
122

123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

# Allow external code to add more choices
def add_load_format_choices(choices):
    LOAD_FORMAT_CHOICES.extend(choices)


def add_quantization_method_choices(choices):
    QUANTIZATION_CHOICES.extend(choices)


def add_attention_backend_choices(choices):
    ATTENTION_BACKEND_CHOICES.extend(choices)


def add_disagg_transfer_backend_choices(choices):
    DISAGG_TRANSFER_BACKEND_CHOICES.extend(choices)


141
142
143
144
def add_grammar_backend_choices(choices):
    GRAMMAR_BACKEND_CHOICES.extend(choices)


Lianmin Zheng's avatar
Lianmin Zheng committed
145
146
@dataclasses.dataclass
class ServerArgs:
Lianmin Zheng's avatar
Lianmin Zheng committed
147
    # Model and tokenizer
Lianmin Zheng's avatar
Lianmin Zheng committed
148
149
150
    model_path: str
    tokenizer_path: Optional[str] = None
    tokenizer_mode: str = "auto"
151
    tokenizer_worker_num: int = 1
152
    skip_tokenizer_init: bool = False
Lianmin Zheng's avatar
Lianmin Zheng committed
153
    load_format: str = "auto"
154
    model_loader_extra_config: str = "{}"
155
    trust_remote_code: bool = False
156
    context_length: Optional[int] = None
157
    is_embedding: bool = False
158
    enable_multimodal: Optional[bool] = None
159
    revision: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
160
    model_impl: str = "auto"
Lianmin Zheng's avatar
Lianmin Zheng committed
161

Lianmin Zheng's avatar
Lianmin Zheng committed
162
    # HTTP server
Lianmin Zheng's avatar
Lianmin Zheng committed
163
164
    host: str = "127.0.0.1"
    port: int = 30000
Lianmin Zheng's avatar
Lianmin Zheng committed
165
166
    skip_server_warmup: bool = False
    warmups: Optional[str] = None
167
    nccl_port: Optional[int] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
168

Lianmin Zheng's avatar
Lianmin Zheng committed
169
170
171
172
173
174
    # Quantization and data type
    dtype: str = "auto"
    quantization: Optional[str] = None
    quantization_param_path: Optional[str] = None
    kv_cache_dtype: str = "auto"

Lianmin Zheng's avatar
Lianmin Zheng committed
175
    # Memory and scheduling
Lianmin Zheng's avatar
Lianmin Zheng committed
176
    mem_fraction_static: Optional[float] = None
177
    max_running_requests: Optional[int] = None
178
    max_queued_requests: Optional[int] = None
179
    max_total_tokens: Optional[int] = None
180
    chunked_prefill_size: Optional[int] = None
181
    max_prefill_tokens: int = 16384
182
    schedule_policy: str = "fcfs"
183
184
185
    enable_priority_scheduling: bool = False
    schedule_low_priority_values_first: bool = False
    priority_scheduling_preemption_threshold: int = 10
186
    schedule_conservativeness: float = 1.0
187
    page_size: Optional[int] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
188
189
190
    hybrid_kvcache_ratio: Optional[float] = None
    swa_full_tokens_ratio: float = 0.8
    disable_hybrid_swa_memory: bool = False
191
    radix_eviction_policy: str = "lru"
Lianmin Zheng's avatar
Lianmin Zheng committed
192

Lianmin Zheng's avatar
Lianmin Zheng committed
193
194
    # Runtime options
    device: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
195
    tp_size: int = 1
196
197
    pp_size: int = 1
    max_micro_batch_size: Optional[int] = None
198
    stream_interval: int = 1
199
    stream_output: bool = False
200
    random_seed: Optional[int] = None
201
    constrained_json_whitespace_pattern: Optional[str] = None
202
    watchdog_timeout: float = 300
203
    dist_timeout: Optional[int] = None  # timeout for torch.distributed
204
    download_dir: Optional[str] = None
205
    base_gpu_id: int = 0
206
    gpu_id_step: int = 1
207
    sleep_on_idle: bool = False
Lianmin Zheng's avatar
Lianmin Zheng committed
208
209
210

    # Logging
    log_level: str = "info"
211
    log_level_http: Optional[str] = None
212
    log_requests: bool = False
213
    log_requests_level: int = 2
214
    crash_dump_folder: Optional[str] = None
Liangsheng Yin's avatar
Liangsheng Yin committed
215
    show_time_cost: bool = False
216
    enable_metrics: bool = False
217
    enable_metrics_for_all_schedulers: bool = False
218
219
    tokenizer_metrics_custom_labels_header: str = "x-customer-labels"
    tokenizer_metrics_allowed_customer_labels: Optional[List[str]] = None
220
221
    bucket_time_to_first_token: Optional[List[float]] = None
    bucket_inter_token_latency: Optional[List[float]] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
222
    bucket_e2e_request_latency: Optional[List[float]] = None
223
    collect_tokens_histogram: bool = False
224
225
    prompt_tokens_buckets: Optional[List[str]] = None
    generation_tokens_buckets: Optional[List[str]] = None
226
    decode_log_interval: int = 40
227
    enable_request_time_stats_logging: bool = False
228
    kv_events_config: Optional[str] = None
229
    gc_warning_threshold_secs: float = 0.0
230
231
    enable_trace: bool = False
    oltp_traces_endpoint: str = "localhost:4317"
Liangsheng Yin's avatar
Liangsheng Yin committed
232

233
    # API related
234
    api_key: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
235
    served_model_name: Optional[str] = None
236
    weight_version: str = "default"
Lianmin Zheng's avatar
Lianmin Zheng committed
237
238
    chat_template: Optional[str] = None
    completion_template: Optional[str] = None
239
    file_storage_path: str = "sglang_storage"
240
    enable_cache_report: bool = False
Xihuai Wang's avatar
Xihuai Wang committed
241
    reasoning_parser: Optional[str] = None
242
    tool_call_parser: Optional[str] = None
243
    tool_server: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
244

245
246
247
    # Data parallelism
    dp_size: int = 1
    load_balance_method: str = "round_robin"
248
    load_watch_interval: float = 0.1
249
250
    # FIXME: remove this after dp rank scheduling is fully supported with PD-Disaggregation
    prefill_round_robin_balance: bool = False
251

252
    # Multi-node distributed serving
253
    dist_init_addr: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
254
    nnodes: int = 1
255
    node_rank: int = 0
Lianmin Zheng's avatar
Lianmin Zheng committed
256
257
258

    # Model override args in JSON
    json_model_override_args: str = "{}"
259
    preferred_sampling_params: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
260

261
    # LoRA
262
    enable_lora: Optional[bool] = None
263
    max_lora_rank: Optional[int] = None
264
    lora_target_modules: Optional[Union[set[str], List[str]]] = None
265
266
267
    lora_paths: Optional[
        Union[dict[str, str], List[dict[str, str]], List[str], List[LoRARef]]
    ] = None
268
    max_loaded_loras: Optional[int] = None
269
    max_loras_per_batch: int = 8
270
    lora_backend: str = "triton"
271
272

    # Kernel backend
273
    attention_backend: Optional[str] = None
274
275
    decode_attention_backend: Optional[str] = None
    prefill_attention_backend: Optional[str] = None
276
    sampling_backend: Optional[str] = None
277
    grammar_backend: Optional[str] = None
278
    mm_attention_backend: Optional[str] = None
279

280
281
    # Speculative decoding
    speculative_algorithm: Optional[str] = None
282
    speculative_draft_model_path: Optional[str] = None
283
    speculative_draft_model_revision: Optional[str] = None
284
285
286
    speculative_num_steps: Optional[int] = None
    speculative_eagle_topk: Optional[int] = None
    speculative_num_draft_tokens: Optional[int] = None
287
288
    speculative_accept_threshold_single: float = 1.0
    speculative_accept_threshold_acc: float = 1.0
289
    speculative_token_map: Optional[str] = None
290
    speculative_attention_mode: str = "prefill"
291
292
293
294
295
296
297
298
    # For lookahead only
    speculative_lookahead_min_match_window_size: int = 1
    speculative_lookahead_max_match_window_size: int = 12
    speculative_lookahead_min_bfs_breadth: int = 1
    speculative_lookahead_max_bfs_breadth: int = 10
    speculative_lookahead_match_type: Literal["BFS", "PROB"] = "BFS"
    speculative_lookahead_branch_length: int = 18
    speculative_lookahead_capacity: int = 10 * 1000 * 1000
299

300
301
    # Expert parallelism
    ep_size: int = 1
302
303
304
305
306
307
308
309
310
    moe_a2a_backend: Literal["none", "deepep"] = "none"
    moe_runner_backend: Literal[
        "auto",
        "triton",
        "triton_kernel",
        "flashinfer_trtllm",
        "flashinfer_cutlass",
        "flashinfer_mxfp4",
    ] = "auto"
311
    flashinfer_mxfp4_moe_precision: Literal["default", "bf16"] = "default"
312
    enable_flashinfer_allreduce_fusion: bool = False
313
    deepep_mode: Literal["auto", "normal", "low_latency"] = "auto"
314
315
316
317
318
319
320
    ep_num_redundant_experts: int = 0
    ep_dispatch_algorithm: Optional[Literal["static", "dynamic", "fake"]] = None
    init_expert_location: str = "trivial"
    enable_eplb: bool = False
    eplb_algorithm: str = "auto"
    eplb_rebalance_num_iterations: int = 1000
    eplb_rebalance_layers_per_chunk: Optional[int] = None
321
    eplb_min_rebalancing_utilization_threshold: float = 1.0
322
323
324
325
326
327
328
329
    expert_distribution_recorder_mode: Optional[
        Literal["stat", "stat_approx", "per_pass", "per_token"]
    ] = None
    expert_distribution_recorder_buffer_size: Optional[int] = None
    enable_expert_distribution_metrics: bool = False
    deepep_config: Optional[str] = None
    moe_dense_tp_size: Optional[int] = None

Lianmin Zheng's avatar
Lianmin Zheng committed
330
331
332
333
    # Hierarchical cache
    enable_hierarchical_cache: bool = False
    hicache_ratio: float = 2.0
    hicache_size: int = 0
334
    hicache_write_policy: str = "write_through"
335
336
    hicache_io_backend: str = "kernel"
    hicache_mem_layout: str = "layer_first"
Lianmin Zheng's avatar
Lianmin Zheng committed
337
    hicache_storage_backend: Optional[str] = None
pansicheng's avatar
pansicheng committed
338
    hicache_storage_prefetch_policy: str = "best_effort"
339
    hicache_storage_backend_extra_config: Optional[str] = None
340
341
    # LMCache
    enable_lmcache: bool = False
Lianmin Zheng's avatar
Lianmin Zheng committed
342

343
344
    # Double Sparsity
    enable_double_sparsity: bool = False
Vincent's avatar
Vincent committed
345
    ds_channel_config_path: Optional[str] = None
346
347
348
349
350
    ds_heavy_channel_num: int = 32
    ds_heavy_token_num: int = 256
    ds_heavy_channel_type: str = "qk"
    ds_sparse_decode_threshold: int = 4096

fzyzcjy's avatar
fzyzcjy committed
351
352
353
354
355
356
357
    # Offloading
    cpu_offload_gb: int = 0
    offload_group_size: int = -1
    offload_num_in_group: int = 1
    offload_prefetch_step: int = 1
    offload_mode: str = "cpu"

358
    # Optimization/debug options
Lianmin Zheng's avatar
Lianmin Zheng committed
359
    disable_radix_cache: bool = False
360
361
    cuda_graph_max_bs: Optional[int] = None
    cuda_graph_bs: Optional[List[int]] = None
362
    disable_cuda_graph: bool = False
363
    disable_cuda_graph_padding: bool = False
364
    enable_profile_cuda_graph: bool = False
365
    enable_cudagraph_gc: bool = False
366
    enable_nccl_nvls: bool = False
367
    enable_symm_mem: bool = False
368
    disable_flashinfer_cutlass_moe_fp4_allgather: bool = False
369
    enable_tokenizer_batch_encode: bool = False
370
    disable_outlines_disk_cache: bool = False
371
    disable_custom_all_reduce: bool = False
372
    enable_mscclpp: bool = False
373
    disable_overlap_schedule: bool = False
374
    enable_mixed_chunk: bool = False
Ke Bao's avatar
Ke Bao committed
375
    enable_dp_attention: bool = False
376
    enable_dp_lm_head: bool = False
377
    enable_two_batch_overlap: bool = False
378
    tbo_token_distribution_threshold: float = 0.48
379
    enable_torch_compile: bool = False
380
    torch_compile_max_bs: int = 32
381
    torchao_config: str = ""
382
    enable_nan_detection: bool = False
383
    enable_p2p_check: bool = False
384
    triton_attention_reduce_in_fp32: bool = False
385
    triton_attention_num_kv_splits: int = 8
386
    triton_attention_split_tile_size: Optional[int] = None
387
    num_continuous_decode_steps: int = 1
388
    delete_ckpt_after_loading: bool = False
389
    enable_memory_saver: bool = False
390
    allow_auto_truncate: bool = False
391
    enable_custom_logit_processor: bool = False
392
    flashinfer_mla_disable_ragged: bool = False
393
    disable_shared_experts_fusion: bool = False
394
    disable_chunked_prefix_cache: bool = False
Lianmin Zheng's avatar
Lianmin Zheng committed
395
    disable_fast_image_processor: bool = False
396
    keep_mm_feature_on_device: bool = False
397
    enable_return_hidden_states: bool = False
398
    scheduler_recv_interval: int = 1
399
    numa_node: Optional[List[int]] = None
400

401
402
403
404
405
    # Dynamic batch tokenizer
    enable_dynamic_batch_tokenizer: bool = False
    dynamic_batch_tokenizer_batch_size: int = 32
    dynamic_batch_tokenizer_batch_timeout: float = 0.002

406
407
408
409
    # Debug tensor dumps
    debug_tensor_dump_output_folder: Optional[str] = None
    debug_tensor_dump_input_file: Optional[str] = None
    debug_tensor_dump_inject: bool = False
410
    debug_tensor_dump_prefill_only: bool = False
411

Lianmin Zheng's avatar
Lianmin Zheng committed
412
    # PD disaggregation: can be "null" (not disaggregated), "prefill" (prefill-only), or "decode" (decode-only)
413
    disaggregation_mode: Literal["null", "prefill", "decode"] = "null"
414
    disaggregation_transfer_backend: str = "mooncake"
415
    disaggregation_bootstrap_port: int = 8998
Byron Hsu's avatar
Byron Hsu committed
416
417
418
    disaggregation_decode_tp: Optional[int] = None
    disaggregation_decode_dp: Optional[int] = None
    disaggregation_prefill_pp: Optional[int] = 1
419
    disaggregation_ib_device: Optional[str] = None
420
    num_reserved_decode_tokens: int = 512  # used for decode kv cache offload in PD
Byron Hsu's avatar
Byron Hsu committed
421

422
423
424
    # FIXME: hack to reduce ITL when decode bs is small
    disaggregation_decode_polling_interval: int = 1

425
426
    # For model weight update
    custom_weight_loader: Optional[List[str]] = None
427
    weight_loader_disable_mmap: bool = False
428

429
430
431
432
433
    # Remote instance weight loading
    remote_instance_weight_loader_seed_instance_ip: Optional[str] = None
    remote_instance_weight_loader_seed_instance_service_port: Optional[int] = None
    remote_instance_weight_loader_send_weights_group_ports: Optional[List[int]] = None

434
435
436
437
    # For PD-Multiplexing
    enable_pdmux: bool = False
    sm_group_num: int = 3

Yi Zhang's avatar
Yi Zhang committed
438
439
440
441
    # Mamba cache
    max_mamba_cache_size: Optional[int] = None
    mamba_ssm_dtype: str = "float32"

442
443
444
    # For deterministic inference
    enable_deterministic_inference: bool = False

445
446
447
    # Deprecated arguments
    enable_ep_moe: bool = False
    enable_deepep_moe: bool = False
448
    enable_flashinfer_cutlass_moe: bool = False
449
    enable_flashinfer_cutedsl_moe: bool = False
450
451
    enable_flashinfer_trtllm_moe: bool = False
    enable_triton_kernel_moe: bool = False
452
    enable_flashinfer_mxfp4_moe: bool = False
453

Lianmin Zheng's avatar
Lianmin Zheng committed
454
    def __post_init__(self):
455
456
457
458
459
460
461
462
463
464
465
        # Check deprecated arguments
        if self.enable_ep_moe:
            self.ep_size = self.tp_size
            print_deprecated_warning(
                "NOTE: --enable-ep-moe is deprecated. Please set `--ep-size` to the same value as `--tp-size` instead."
            )
        if self.enable_deepep_moe:
            self.moe_a2a_backend = "deepep"
            print_deprecated_warning(
                "NOTE: --enable-deepep-moe is deprecated. Please set `--moe-a2a-backend` to 'deepep' instead."
            )
466
467
468
469
470
        if self.enable_triton_kernel_moe:
            self.moe_runner_backend = "triton_kernel"
            print_deprecated_warning(
                "NOTE: --enable-triton-kernel-moe is deprecated. Please set `--moe-runner-backend` to 'triton_kernel' instead."
            )
471
472
473
474
475
        if self.enable_flashinfer_cutedsl_moe:
            self.moe_runner_backend = "flashinfer_cutedsl"
            print_deprecated_warning(
                "NOTE: --enable-flashinfer-cutedsl-moe is deprecated. Please set `--moe-runner-backend` to 'flashinfer_cutedsl' instead."
            )
476
477
478
479
480
481
482
483
484
485
        if self.enable_flashinfer_cutlass_moe:
            self.moe_runner_backend = "flashinfer_cutlass"
            print_deprecated_warning(
                "NOTE: --enable-flashinfer-cutlass-moe is deprecated. Please set `--moe-runner-backend` to 'flashinfer_cutlass' instead."
            )
        if self.enable_flashinfer_trtllm_moe:
            self.moe_runner_backend = "flashinfer_trtllm"
            print_deprecated_warning(
                "NOTE: --enable-flashinfer-trtllm-moe is deprecated. Please set `--moe-runner-backend` to 'flashinfer_trtllm' instead."
            )
486
487
488
489
490
        if self.enable_flashinfer_mxfp4_moe:
            self.moe_runner_backend = "flashinfer_mxfp4"
            print_deprecated_warning(
                "NOTE: --enable-flashinfer-mxfp4-moe is deprecated. Please set `--moe-runner-backend` to 'flashinfer_mxfp4' instead."
            )
491

492
        # Set missing default values
Lianmin Zheng's avatar
Lianmin Zheng committed
493
494
        if self.tokenizer_path is None:
            self.tokenizer_path = self.model_path
495

496
497
        if self.served_model_name is None:
            self.served_model_name = self.model_path
498
499
        if self.device is None:
            self.device = get_device()
500
501
502
        if self.random_seed is None:
            self.random_seed = random.randint(0, 1 << 30)

Lianmin Zheng's avatar
Lianmin Zheng committed
503
        gpu_mem = get_device_memory_capacity(self.device)
504

505
        # Set mem fraction static
Lianmin Zheng's avatar
Lianmin Zheng committed
506
        if self.mem_fraction_static is None:
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
            if gpu_mem is not None:
                # GPU memory capacity = model weights + KV cache pool + activations + cuda graph buffers
                # mem_fraction_static = (model weights + KV cache pool) / GPU memory capacity.

                # We want mem_fraction_static to be as large as possible but still has enough room
                # for activations and cuda graph buffers. We use the following heuristic to
                # compute the needed size for activations and cuda graph buffers:
                # - The size of the activation depends on the chunked_prefill_size and model size.
                # - The size of cuda graph buffers depends on the cuda graph capture range and model size.
                # For GPUs with more memory, we use a larger chunked_prefill_size and
                # capture more cuda graphs, so they need to reserve more memory.
                parallel_size = self.tp_size * self.pp_size

                if gpu_mem < 20 * 1024:
                    # T4, 4080. (chunked_prefill_size 2k, cuda_graph_max_bs 8)
                    reserved_mem = (2.8 + parallel_size / 10) * 1024
                elif gpu_mem < 35 * 1024:
                    # A10, L40, 4090, 5090. (chunked_prefill_size 2k, cuda_graph_max_bs 8)
                    reserved_mem = (2.8 + parallel_size / 10) * 1024
                elif gpu_mem < 90 * 1024:
                    # H100, A100. (chunked_prefill_size 8k, cuda_graph_max_bs 160)
                    reserved_mem = (9.5 + parallel_size / 2) * 1024
                elif gpu_mem < 100 * 1024:
                    # H20. (chunked_prefill_size 8k, cuda_graph_max_bs 256)
                    reserved_mem = (12 + parallel_size / 2) * 1024
                elif gpu_mem < 160 * 1024:
                    # H200. (chunked_prefill_size 8k, cuda_graph_max_bs 256)
                    reserved_mem = (12 + parallel_size / 2) * 1024
535
                else:
536
537
538
                    # B200, MI300. (chunked_prefill_size 16k, cuda_graph_max_bs 512)
                    reserved_mem = 32 * 1024

539
                # draft model and larger cuda graph buffers
540
                if self.speculative_algorithm is not None:
541
542
543
544
                    if self.speculative_algorithm == "STANDALONE":
                        # Standalone speculative decoding needs more memory than other speculative
                        # decoding algorithms since the draft model is typically larger.
                        reserved_mem += 6 * 1024
545
                    elif self.speculative_algorithm != "LOOKAHEAD":
546
                        reserved_mem += 2 * 1024
547
548
549
550
                if self.enable_dp_attention:
                    reserved_mem += 4 * 1024

                self.mem_fraction_static = round((gpu_mem - reserved_mem) / gpu_mem, 3)
551
            else:
552
                self.mem_fraction_static = 0.88
553

554
            # Lazy init to avoid circular import
Lianmin Zheng's avatar
Lianmin Zheng committed
555
            # Multimodal models need more memory for the image processor
556
557
558
            from sglang.srt.configs.model_config import ModelConfig

            model_config = ModelConfig.from_server_args(self)
Lianmin Zheng's avatar
Lianmin Zheng committed
559
560
            if model_config.is_multimodal:
                self.adjust_mem_fraction_for_vlm(model_config)
561

562
563
        # Set chunked prefill size, which depends on the gpu memory capacity
        if self.chunked_prefill_size is None:
564
565
566
567
568
569
570
            if gpu_mem is not None:
                if gpu_mem < 35 * 1024:  # A10, L40, 4090
                    self.chunked_prefill_size = 2048
                elif gpu_mem < 160 * 1024:  # H100, H200, A100, H20
                    self.chunked_prefill_size = 8192
                else:  # B200, MI300
                    self.chunked_prefill_size = 16384
571
            else:
572
                self.chunked_prefill_size = 4096
Lianmin Zheng's avatar
Lianmin Zheng committed
573

574
575
576
577
578
579
580
581
582
        # Set cuda graph max batch size
        if self.cuda_graph_max_bs is None:
            # Based on detailed statistics, when serving TP1/TP2 models on lower-end GPUs with HBM<25G, you can either disable cuda graph or set `cuda_graph_max_bs` to a very small value to reduce the memory overhead of creating cuda graphs, with almost no impact on performance. However, when serving models with TP4 or TP8, we need to enable cuda graph to maintain high performance. In this case, we can set `cuda_graph_max_bs` to 80 (half of the default value 160) to reduce the memory overhead of creating cuda graphs. Looking at the logs from TP4 serving of qwen2-72b, a value of 80 is sufficient and can reduce the memory overhead of creating cuda graphs on lower-end GPUs compared to the original 160, avoiding OOM issues.
            if gpu_mem is not None and gpu_mem < 35 * 1024:
                if self.tp_size < 4:
                    self.cuda_graph_max_bs = 8
                else:
                    self.cuda_graph_max_bs = 80

583
        # Set kernel backends for hpu device
584
585
586
587
        if self.device == "hpu":
            self.attention_backend = "torch_native"
            self.sampling_backend = "pytorch"

588
        # Model-specific adjustments
589
590
        if parse_connector_type(self.model_path) != ConnectorType.INSTANCE:
            self.model_specific_adjustments()
591

Lianmin Zheng's avatar
Lianmin Zheng committed
592
        # Set kernel backends
593
594
595
596
597
        if self.device == "cpu":
            if self.attention_backend is None:
                self.attention_backend = "intel_amx"
            self.sampling_backend = "pytorch"

598
        if self.sampling_backend is None:
599
600
601
602
603
            self.sampling_backend = (
                "flashinfer" if is_flashinfer_available() else "pytorch"
            )

        if self.attention_backend == "torch_native":
604
            logger.warning(
605
606
607
                "Cuda graph is disabled because of using torch native attention backend"
            )
            self.disable_cuda_graph = True
608

609
610
611
612
613
614
615
616
617
        if self.attention_backend == "flex_attention":
            logger.warning(
                "Cuda graph is disabled because of using torch Flex Attention backend"
            )
            self.disable_cuda_graph = True
            assert (
                self.speculative_algorithm is None
            ), "Speculative decoding is currently not supported with Flex Attention backend"

618
        if is_npu() and self.attention_backend in ["ascend", "hybrid_linear_attn"]:
619
620
621
622
623
            logger.warning(
                "At this moment Ascend attention backend only supports a page_size of 128, change page_size to 128."
            )
            self.page_size = 128

624
625
626
627
        if (
            self.attention_backend == "flashmla"
            or self.decode_attention_backend == "flashmla"
        ):
Lianmin Zheng's avatar
Lianmin Zheng committed
628
629
630
631
632
            logger.warning(
                "FlashMLA only supports a page_size of 64, change page_size to 64."
            )
            self.page_size = 64

633
634
635
636
        if (
            self.attention_backend == "cutlass_mla"
            or self.decode_attention_backend == "cutlass_mla"
        ):
Lianmin Zheng's avatar
Lianmin Zheng committed
637
638
639
640
641
            logger.warning(
                "Cutlass MLA only supports a page_size of 128, change page_size to 128."
            )
            self.page_size = 128

Faraz's avatar
Faraz committed
642
643
644
645
        if (
            self.attention_backend == "trtllm_mla"
            or self.decode_attention_backend == "trtllm_mla"
        ):
646
647
648
649
650
651
652
653
654
655
            if not is_sm100_supported():
                raise ValueError(
                    "TRTLLM MLA backend is only supported on Blackwell GPUs (SM100). Please use a different backend."
                )

            if self.page_size not in [32, 64]:
                logger.warning(
                    f"TensorRT-LLM MLA only supports page_size of 32 or 64, changing page_size from {self.page_size} to 64."
                )
                self.page_size = 64
Faraz's avatar
Faraz committed
656
657
658
659
660

            if self.kv_cache_dtype not in ["fp8_e4m3", "auto"]:
                raise ValueError(
                    "TensorRT-LLM MLA backend only supports kv-cache-dtype of fp8_e4m3 or auto."
                )
661

662
663
664
665
666
        if (
            self.attention_backend == "trtllm_mha"
            or self.decode_attention_backend == "trtllm_mha"
            or self.prefill_attention_backend == "trtllm_mha"
        ):
667
668
669
670
671
672
673
674
675
676
677
            if not is_sm100_supported():
                raise ValueError(
                    "TRTLLM MHA backend is only supported on Blackwell GPUs (SM100). Please use a different backend."
                )

            if self.page_size not in [16, 32, 64]:
                logger.warning(
                    f"TensorRT-LLM MHA only supports page_size of 16, 32 or 64, changing page_size from {self.page_size} to 64."
                )
                self.page_size = 64

678
679
        if self.attention_backend == "dual_chunk_flash_attn":
            logger.warning(
680
                "Mixed chunk, radix cache, and cuda graphs are disabled because of using dual chunk flash attention backend"
681
682
683
684
685
            )
            self.enable_mixed_chunk = False
            self.disable_cuda_graph = True
            self.disable_radix_cache = True

686
687
688
689
690
691
692
693
        # Set page size
        if self.page_size is None:
            self.page_size = 1

        # AMD-specific Triton attention KV splits default number
        if is_hip():
            self.triton_attention_num_kv_splits = 16

694
695
696
        # Choose grammar backend
        if self.grammar_backend is None:
            self.grammar_backend = "xgrammar"
697

698
699
        if self.dp_size == 1:
            self.enable_dp_attention = False
700
            self.enable_dp_lm_head = False
701

702
        # Data parallelism attention
Ke Bao's avatar
Ke Bao committed
703
        if self.enable_dp_attention:
704
            self.schedule_conservativeness = self.schedule_conservativeness * 0.3
Lianmin Zheng's avatar
Lianmin Zheng committed
705
706
            assert self.tp_size % self.dp_size == 0
            self.chunked_prefill_size = self.chunked_prefill_size // self.dp_size
707
            logger.warning(
708
                f"DP attention is enabled. The chunked prefill size is adjusted to {self.chunked_prefill_size} to avoid MoE kernel issues. "
709
            )
710

711
712
713
        if self.enable_dp_lm_head:
            assert (
                self.enable_dp_attention
714
            ), "Please enable dp attention when setting enable_dp_lm_head. "
715

716
        # MoE kernel
717
        if self.moe_runner_backend == "flashinfer_cutlass":
718
719
720
            assert (
                self.quantization == "modelopt_fp4"
            ), "modelopt_fp4 quantization is required for Flashinfer MOE"
721
722
723
724
            assert self.ep_size in [
                1,
                self.tp_size,
            ], "The expert parallel size must be 1 or the same as the tensor parallel size"
725

726
        if self.moe_runner_backend == "flashinfer_trtllm":
727
728
729
730
731
732
733
            assert (
                self.quantization == "modelopt_fp4" or self.quantization == "fp8"
            ), "modelopt_fp4 quantization is required for Flashinfer TRTLLM MoE"
            self.disable_shared_experts_fusion = True
            logger.warning(
                "FlashInfer TRTLLM MoE is enabled. --disable-shared-experts-fusion is automatically set."
            )
734

735
        # DeepEP MoE
736
        if self.moe_a2a_backend == "deepep":
737
738
739
            if self.deepep_mode == "normal":
                logger.warning("Cuda graph is disabled because deepep_mode=`normal`")
                self.disable_cuda_graph = True
740
            self.ep_size = self.tp_size
Lianmin Zheng's avatar
Lianmin Zheng committed
741
            logger.warning(
742
743
                f"DeepEP MoE is enabled. The expert parallel size is adjusted to be the same as the tensor parallel size[{self.tp_size}]."
            )
744

745
746
        if self.enable_eplb and (self.expert_distribution_recorder_mode is None):
            self.expert_distribution_recorder_mode = "stat"
747
            logger.warning(
748
                "EPLB is enabled. The expert_distribution_recorder_mode is automatically set."
749
750
751
752
753
754
755
            )

        if (self.enable_eplb or (self.init_expert_location is not None)) and (
            self.ep_dispatch_algorithm is None
        ):
            self.ep_dispatch_algorithm = "static"

756
        if self.enable_eplb:
757
            assert self.ep_size > 1
758

759
760
761
762
763
        if self.enable_expert_distribution_metrics and (
            self.expert_distribution_recorder_mode is None
        ):
            self.expert_distribution_recorder_mode = "stat"

764
        if self.expert_distribution_recorder_buffer_size is None:
765
766
            if (x := self.eplb_rebalance_num_iterations) is not None:
                self.expert_distribution_recorder_buffer_size = x
767
768
769
            elif self.expert_distribution_recorder_mode is not None:
                self.expert_distribution_recorder_buffer_size = 1000

Lianmin Zheng's avatar
Lianmin Zheng committed
770
771
772
773
774
775
776
        # Pipeline parallelism
        if self.pp_size > 1:
            self.disable_overlap_schedule = True
            logger.warning(
                "Pipeline parallelism is incompatible with overlap schedule."
            )

Lianmin Zheng's avatar
Lianmin Zheng committed
777
        # Hicache
778
779
780
781
782
        if self.hicache_storage_backend == "mooncake":
            # to use mooncake storage backend, the following conditions must be met:
            self.hicache_io_backend = "kernel"
            self.hicache_mem_layout = "page_first"

783
784
785
786
787
788
789
        if self.hicache_mem_layout == "page_first_direct":
            if self.hicache_io_backend != "direct":
                self.hicache_io_backend = "direct"
                logger.warning(
                    "Page first direct layout only support direct io backend"
                )

790
        # Speculative Decoding
791
792
793
794
        if self.speculative_algorithm == "NEXTN":
            # NEXTN shares the same implementation of EAGLE
            self.speculative_algorithm = "EAGLE"

795
        if self.speculative_algorithm in ("EAGLE", "EAGLE3", "STANDALONE"):
796
            if self.speculative_algorithm == "STANDALONE" and self.enable_dp_attention:
797
                # TODO: support dp attention for standalone speculative decoding
798
799
800
                raise ValueError(
                    "Currently standalone speculative decoding does not support dp attention."
                )
801
            if self.max_running_requests is None:
802
                self.max_running_requests = 48
803
            self.disable_overlap_schedule = True
Lianmin Zheng's avatar
Lianmin Zheng committed
804
            logger.warning(
805
                "Overlap scheduler is disabled because of using "
806
                "eagle speculative decoding."
807
            )
808
809
810
811
812
813
            if self.enable_mixed_chunk:
                self.enable_mixed_chunk = False
                logger.warning(
                    "Mixed chunked prefill is disabled because of using "
                    "eagle speculative decoding."
                )
814

Lianmin Zheng's avatar
Lianmin Zheng committed
815
            model_arch = self.get_hf_config().architectures[0]
strgrb's avatar
strgrb committed
816
817
818
            if model_arch in [
                "DeepseekV3ForCausalLM",
                "Glm4MoeForCausalLM",
Yuan Luo's avatar
Yuan Luo committed
819
                "BailingMoeForCausalLM",
strgrb's avatar
strgrb committed
820
821
                "BailingMoeV2ForCausalLM",
            ]:
Hanming Lu's avatar
Hanming Lu committed
822
                # Auto set draft_model_path DeepSeek-V3/R1
823
824
825
826
827
828
                if self.speculative_draft_model_path is None:
                    self.speculative_draft_model_path = self.model_path
                else:
                    logger.warning(
                        "DeepSeek MTP does not require setting speculative_draft_model_path."
                    )
829

830
831
832
833
834
835
836
837
838
839
            # Auto choose parameters
            if self.speculative_num_steps is None:
                assert (
                    self.speculative_eagle_topk is None
                    and self.speculative_num_draft_tokens is None
                )
                (
                    self.speculative_num_steps,
                    self.speculative_eagle_topk,
                    self.speculative_num_draft_tokens,
840
                ) = auto_choose_speculative_params(self)
841

842
843
844
845
846
847
848
849
850
851
            if (
                self.attention_backend == "trtllm_mha"
                or self.decode_attention_backend == "trtllm_mha"
                or self.prefill_attention_backend == "trtllm_mha"
            ):
                if self.speculative_eagle_topk > 1:
                    raise ValueError(
                        "trtllm_mha backend only supports topk = 1 for speculative decoding."
                    )

852
853
854
855
            if (
                self.speculative_eagle_topk == 1
                and self.speculative_num_draft_tokens != self.speculative_num_steps + 1
            ):
Lianmin Zheng's avatar
Lianmin Zheng committed
856
                logger.warning(
857
858
859
                    "speculative_num_draft_tokens is adjusted to speculative_num_steps + 1 when speculative_eagle_topk == 1"
                )
                self.speculative_num_draft_tokens = self.speculative_num_steps + 1
860

861
862
863
864
865
866
867
868
869
            if (
                self.speculative_eagle_topk > 1
                and self.page_size > 1
                and self.attention_backend != "flashinfer"
            ):
                raise ValueError(
                    "speculative_eagle_topk > 1 with page_size > 1 is unstable and produces incorrect results for paged attention backends. This combination is only supported for the 'flashinfer' backend."
                )

870
            # The token generated from the verify step is counted.
871
            # If sepculative_num_steps >= speculative_num_draft_tokens, the additional tokens will definitely be discarded.
872
            # assert self.speculative_num_steps < self.speculative_num_draft_tokens
873

874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
        if self.speculative_algorithm == "LOOKAHEAD":
            if not self.device.startswith("cuda"):
                raise ValueError(
                    "Lookahead speculative decoding only supports CUDA device."
                )
            if self.max_running_requests is None:
                self.max_running_requests = 48
            self.disable_overlap_schedule = True
            self.enable_mixed_chunk = False
            self.speculative_eagle_topk = self.speculative_lookahead_max_bfs_breadth
            if self.speculative_num_draft_tokens is None:
                # TODO: Do better auto choose in the future
                self.speculative_num_draft_tokens = (
                    self.speculative_lookahead_max_match_window_size
                )
            logger.warning(
                "The overlap scheduler and mixed chunked prefill are disabled because of "
                "using lookahead speculative decoding."
            )
            if (
                self.speculative_eagle_topk > 1
                and self.page_size > 1
                and self.attention_backend != "flashinfer"
            ):
                raise ValueError(
                    "speculative_eagle_topk > 1 with page_size > 1 is unstable and produces incorrect results for paged attention backends. This combination is only supported for the 'flashinfer' backend."
                )

            if self.enable_dp_attention:
                # TODO: support dp attention for lookahead speculative decoding
                raise ValueError(
                    "Currently lookahead speculative decoding does not support dp attention."
                )
907
908
909
910
911
912
        # GGUF
        if (
            self.load_format == "auto" or self.load_format == "gguf"
        ) and check_gguf_file(self.model_path):
            self.quantization = self.load_format = "gguf"

913
914
        if is_remote_url(self.model_path):
            self.load_format = "remote"
915
916
        if self.custom_weight_loader is None:
            self.custom_weight_loader = []
917

918
919
920
921
922
923
924
925
        if self.load_format == "remote_instance":
            if (
                self.remote_instance_weight_loader_seed_instance_ip is None
                or self.remote_instance_weight_loader_seed_instance_service_port is None
                or self.remote_instance_weight_loader_send_weights_group_ports is None
            ):
                self.load_format = "auto"

Byron Hsu's avatar
Byron Hsu committed
926
        # PD disaggregation
Byron Hsu's avatar
Byron Hsu committed
927
928
929
930
931
932
933
934
        if self.disaggregation_mode == "decode":
            assert (
                self.disaggregation_decode_tp is None
            ), "Cannot set --disaggregation-decode-tp for the decode engine."
            assert (
                self.disaggregation_decode_dp is None
            ), "Cannot set --disaggregation-decode-dp for the decode engine."

Byron Hsu's avatar
Byron Hsu committed
935
            self.disable_radix_cache = True
936
            logger.warning("KV cache is forced as chunk cache for decode server")
937
938
939
940
941
942
943

            if self.dp_size > 1 and not is_in_ci():
                assert self.prefill_round_robin_balance, (
                    "Prefill round robin balance is required when dp size > 1. "
                    "Please make sure that the prefill instance is launched with `--load-balance-method round_robin`"
                    " and `--prefill-round-robin-balance` is set for decode server."
                )
Byron Hsu's avatar
Byron Hsu committed
944
945
946
947
948
949
950
951
952
953
954
        elif self.disaggregation_mode == "prefill":
            if self.disaggregation_decode_tp is None:
                self.disaggregation_decode_tp = self.tp_size
            if self.disaggregation_decode_dp is None:
                self.disaggregation_decode_dp = self.dp_size

            self.disaggregation_prefill_pp = self.pp_size
            self.validate_disagg_tp_size(self.tp_size, self.disaggregation_decode_tp)

            self.disable_cuda_graph = True
            logger.warning("Cuda graph is disabled for prefill server")
Byron Hsu's avatar
Byron Hsu committed
955

956
957
958
959
960
961
962
        # Validation: prevent both tokenizer batching features from being enabled
        if self.enable_tokenizer_batch_encode and self.enable_dynamic_batch_tokenizer:
            raise ValueError(
                "Cannot enable both --enable-tokenizer-batch-encode and --enable-dynamic-batch-tokenizer. "
                "Please choose one tokenizer batching approach."
            )

963
        # Propagate env vars
964
965
966
        os.environ["SGLANG_ENABLE_TORCH_COMPILE"] = (
            "1" if self.enable_torch_compile else "0"
        )
Yi Zhang's avatar
Yi Zhang committed
967
968
        os.environ["SGLANG_MAMBA_SSM_DTYPE"] = self.mamba_ssm_dtype

969
970
971
972
        # Set env var before grammar backends init
        os.environ["SGLANG_DISABLE_OUTLINES_DISK_CACHE"] = (
            "1" if self.disable_outlines_disk_cache else "0"
        )
973

974
975
976
977
978
979
        if self.enable_hierarchical_cache and self.disable_radix_cache:
            raise ValueError(
                "The arguments enable-hierarchical-cache and disable-radix-cache are mutually exclusive "
                "and cannot be used at the same time. Please use only one of them."
            )

980
981
982
983
984
985
986
987
        if (
            not self.tokenizer_metrics_custom_labels_header
            and self.tokenizer_metrics_allowed_customer_labels
        ):
            raise ValueError(
                "Please set --tokenizer-metrics-custom-labels-header when setting --tokenizer-metrics-allowed-customer-labels."
            )

988
989
990
991
992
993
994
995
996
997
998
999
1000
        # Deterministic inference
        os.environ["SGLANG_ENABLE_DETERMINISTIC_INFERENCE"] = (
            "1" if self.enable_deterministic_inference else "0"
        )
        if self.enable_deterministic_inference:
            # Check batch_invariant_ops dependency
            import importlib

            if not importlib.util.find_spec("batch_invariant_ops"):
                raise ValueError(
                    "batch_invariant_ops is not installed. Please install it from https://github.com/thinking-machines-lab/batch_invariant_ops/."
                )

1001
1002
1003
1004
1005
1006
1007
            # Currently, only FA3 supports radix cache. Support for other backends is in progress
            if self.attention_backend != "fa3":
                self.disable_radix_cache = True
                logger.warning(
                    "Currently radix cache is disabled for deterministic inference. It will be supported in the future."
                )

1008
1009
1010
1011
1012
            if self.attention_backend not in DETERMINISTIC_ATTENTION_BACKEND_CHOICES:
                raise ValueError(
                    f"Currently only {DETERMINISTIC_ATTENTION_BACKEND_CHOICES} attention backends are supported for deterministic inference."
                )

Lianmin Zheng's avatar
Lianmin Zheng committed
1013
1014
    @staticmethod
    def add_cli_args(parser: argparse.ArgumentParser):
Lianmin Zheng's avatar
Lianmin Zheng committed
1015
        # Model and tokenizer
Lianmin Zheng's avatar
Lianmin Zheng committed
1016
1017
        parser.add_argument(
            "--model-path",
1018
            "--model",
Lianmin Zheng's avatar
Lianmin Zheng committed
1019
1020
1021
1022
            type=str,
            help="The path of the model weights. This can be a local folder or a Hugging Face repo ID.",
            required=True,
        )
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
        parser.add_argument(
            "--remote-instance-weight-loader-seed-instance-ip",
            type=str,
            default=ServerArgs.remote_instance_weight_loader_seed_instance_ip,
            help="The ip of the seed instance for loading weights from remote instance.",
        )
        parser.add_argument(
            "--remote-instance-weight-loader-seed-instance-service-port",
            type=int,
            default=ServerArgs.remote_instance_weight_loader_seed_instance_service_port,
            help="The service port of the seed instance for loading weights from remote instance.",
        )
        parser.add_argument(
            "--remote-instance-weight-loader-send-weights-group-ports",
            type=json_list_type,
            default=ServerArgs.remote_instance_weight_loader_send_weights_group_ports,
            help="The communication group ports for loading weights from remote instance.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1041
1042
1043
1044
1045
1046
        parser.add_argument(
            "--tokenizer-path",
            type=str,
            default=ServerArgs.tokenizer_path,
            help="The path of the tokenizer.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1047
1048
1049
1050
1051
1052
1053
1054
1055
        parser.add_argument(
            "--tokenizer-mode",
            type=str,
            default=ServerArgs.tokenizer_mode,
            choices=["auto", "slow"],
            help="Tokenizer mode. 'auto' will use the fast "
            "tokenizer if available, and 'slow' will "
            "always use the slow tokenizer.",
        )
1056
1057
1058
1059
1060
1061
        parser.add_argument(
            "--tokenizer-worker-num",
            type=int,
            default=ServerArgs.tokenizer_worker_num,
            help="The worker num of the tokenizer manager.",
        )
1062
1063
1064
        parser.add_argument(
            "--skip-tokenizer-init",
            action="store_true",
1065
            help="If set, skip init tokenizer and pass input_ids in generate request.",
1066
        )
1067
        parser.add_argument(
Lianmin Zheng's avatar
Lianmin Zheng committed
1068
1069
1070
            "--load-format",
            type=str,
            default=ServerArgs.load_format,
1071
            choices=LOAD_FORMAT_CHOICES,
Lianmin Zheng's avatar
Lianmin Zheng committed
1072
1073
1074
1075
1076
1077
1078
1079
1080
            help="The format of the model weights to load. "
            '"auto" will try to load the weights in the safetensors format '
            "and fall back to the pytorch bin format if safetensors format "
            "is not available. "
            '"pt" will load the weights in the pytorch bin format. '
            '"safetensors" will load the weights in the safetensors format. '
            '"npcache" will load the weights in pytorch format and store '
            "a numpy cache to speed up the loading. "
            '"dummy" will initialize the weights with random values, '
1081
            "which is mainly for profiling."
1082
1083
            '"gguf" will load the weights in the gguf format. '
            '"bitsandbytes" will load the weights using bitsandbytes '
1084
1085
1086
1087
            "quantization."
            '"layered" loads weights layer by layer so that one can quantize a '
            "layer before loading another to make the peak memory envelope "
            "smaller.",
Lianmin Zheng's avatar
Lianmin Zheng committed
1088
        )
1089
1090
1091
1092
1093
1094
1095
        parser.add_argument(
            "--model-loader-extra-config",
            type=str,
            help="Extra config for model loader. "
            "This will be passed to the model loader corresponding to the chosen load_format.",
            default=ServerArgs.model_loader_extra_config,
        )
1096
1097
1098
1099
1100
        parser.add_argument(
            "--trust-remote-code",
            action="store_true",
            help="Whether or not to allow for custom models defined on the Hub in their own modeling files.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
        parser.add_argument(
            "--context-length",
            type=int,
            default=ServerArgs.context_length,
            help="The model's maximum context length. Defaults to None (will use the value from the model's config.json instead).",
        )
        parser.add_argument(
            "--is-embedding",
            action="store_true",
            help="Whether to use a CausalLM as an embedding model.",
        )
        parser.add_argument(
            "--enable-multimodal",
            default=ServerArgs.enable_multimodal,
            action="store_true",
            help="Enable the multimodal functionality for the served model. If the model being served is not multimodal, nothing will happen",
        )
        parser.add_argument(
            "--revision",
            type=str,
            default=None,
            help="The specific model version to use. It can be a branch "
            "name, a tag name, or a commit id. If unspecified, will use "
            "the default version.",
        )
        parser.add_argument(
            "--model-impl",
            type=str,
            default=ServerArgs.model_impl,
            help="Which implementation of the model to use.\n\n"
            '* "auto" will try to use the SGLang implementation if it exists '
            "and fall back to the Transformers implementation if no SGLang "
            "implementation is available.\n"
            '* "sglang" will use the SGLang model implementation.\n'
            '* "transformers" will use the Transformers model '
            "implementation.\n",
        )

        # HTTP server
        parser.add_argument(
            "--host",
            type=str,
            default=ServerArgs.host,
            help="The host of the HTTP server.",
        )
        parser.add_argument(
            "--port",
            type=int,
            default=ServerArgs.port,
            help="The port of the HTTP server.",
        )
        parser.add_argument(
            "--skip-server-warmup",
            action="store_true",
            help="If set, skip warmup.",
        )
        parser.add_argument(
            "--warmups",
            type=str,
            required=False,
            help="Specify custom warmup functions (csv) to run before server starts eg. --warmups=warmup_name1,warmup_name2 "
            "will run the functions `warmup_name1` and `warmup_name2` specified in warmup.py before the server starts listening for requests",
        )
        parser.add_argument(
            "--nccl-port",
            type=int,
            default=ServerArgs.nccl_port,
            help="The port for NCCL distributed environment setup. Defaults to a random port.",
        )

        # Quantization and data type
Lianmin Zheng's avatar
Lianmin Zheng committed
1172
        parser.add_argument(
Lianmin Zheng's avatar
Lianmin Zheng committed
1173
            "--dtype",
Cody Yu's avatar
Cody Yu committed
1174
            type=str,
Lianmin Zheng's avatar
Lianmin Zheng committed
1175
            default=ServerArgs.dtype,
Ying Sheng's avatar
Ying Sheng committed
1176
1177
            choices=["auto", "half", "float16", "bfloat16", "float", "float32"],
            help="Data type for model weights and activations.\n\n"
Lianmin Zheng's avatar
Lianmin Zheng committed
1178
            '* "auto" will use FP16 precision for FP32 and FP16 models, and '
Ying Sheng's avatar
Ying Sheng committed
1179
            "BF16 precision for BF16 models.\n"
Lianmin Zheng's avatar
Lianmin Zheng committed
1180
1181
1182
1183
            '* "half" for FP16. Recommended for AWQ quantization.\n'
            '* "float16" is the same as "half".\n'
            '* "bfloat16" for a balance between precision and range.\n'
            '* "float" is shorthand for FP32 precision.\n'
Ying Sheng's avatar
Ying Sheng committed
1184
1185
            '* "float32" for FP32 precision.',
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1186
1187
1188
1189
        parser.add_argument(
            "--quantization",
            type=str,
            default=ServerArgs.quantization,
1190
            choices=QUANTIZATION_CHOICES,
Lianmin Zheng's avatar
Lianmin Zheng committed
1191
1192
            help="The quantization method.",
        )
1193
1194
1195
1196
1197
1198
1199
1200
1201
        parser.add_argument(
            "--quantization-param-path",
            type=nullable_str,
            default=None,
            help="Path to the JSON file containing the KV cache "
            "scaling factors. This should generally be supplied, when "
            "KV cache dtype is FP8. Otherwise, KV cache scaling factors "
            "default to 1.0, which may cause accuracy issues. ",
        )
1202
        parser.add_argument(
Lianmin Zheng's avatar
Lianmin Zheng committed
1203
            "--kv-cache-dtype",
1204
            type=str,
Lianmin Zheng's avatar
Lianmin Zheng committed
1205
1206
1207
            default=ServerArgs.kv_cache_dtype,
            choices=["auto", "fp8_e5m2", "fp8_e4m3"],
            help='Data type for kv cache storage. "auto" will use model data type. "fp8_e5m2" and "fp8_e4m3" is supported for CUDA 11.8+.',
1208
        )
1209

1210
        # Memory and scheduling
Lianmin Zheng's avatar
Lianmin Zheng committed
1211
1212
1213
1214
        parser.add_argument(
            "--mem-fraction-static",
            type=float,
            default=ServerArgs.mem_fraction_static,
1215
            help="The fraction of the memory used for static allocation (model weights and KV cache memory pool). Use a smaller value if you see out-of-memory errors.",
Lianmin Zheng's avatar
Lianmin Zheng committed
1216
        )
1217
1218
1219
1220
1221
1222
        parser.add_argument(
            "--max-running-requests",
            type=int,
            default=ServerArgs.max_running_requests,
            help="The maximum number of running requests.",
        )
1223
1224
1225
1226
1227
1228
        parser.add_argument(
            "--max-queued-requests",
            type=int,
            default=ServerArgs.max_queued_requests,
            help="The maximum number of queued requests. This option is ignored when using disaggregation-mode.",
        )
1229
1230
1231
1232
        parser.add_argument(
            "--max-total-tokens",
            type=int,
            default=ServerArgs.max_total_tokens,
1233
1234
            help="The maximum number of tokens in the memory pool. If not specified, it will be automatically calculated based on the memory usage fraction. "
            "This option is typically used for development and debugging purposes.",
1235
        )
1236
1237
1238
1239
        parser.add_argument(
            "--chunked-prefill-size",
            type=int,
            default=ServerArgs.chunked_prefill_size,
1240
            help="The maximum number of tokens in a chunk for the chunked prefill. Setting this to -1 means disabling chunked prefill.",
1241
1242
1243
1244
1245
1246
1247
        )
        parser.add_argument(
            "--max-prefill-tokens",
            type=int,
            default=ServerArgs.max_prefill_tokens,
            help="The maximum number of tokens in a prefill batch. The real bound will be the maximum of this value and the model's maximum context length.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1248
        parser.add_argument(
1249
            "--schedule-policy",
Lianmin Zheng's avatar
Lianmin Zheng committed
1250
            type=str,
1251
            default=ServerArgs.schedule_policy,
1252
            choices=["lpm", "random", "fcfs", "dfs-weight", "lof", "priority"],
1253
            help="The scheduling policy of the requests.",
Lianmin Zheng's avatar
Lianmin Zheng committed
1254
        )
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
        parser.add_argument(
            "--enable-priority-scheduling",
            action="store_true",
            default=ServerArgs.enable_priority_scheduling,
            help="Enable priority scheduling. Requests with higher priority integer values will be scheduled first by default.",
        )
        parser.add_argument(
            "--schedule-low-priority-values-first",
            action="store_true",
            default=ServerArgs.schedule_low_priority_values_first,
            help="If specified with --enable-priority-scheduling, the scheduler will schedule requests with lower priority integer values first.",
        )
        parser.add_argument(
            "--priority-scheduling-preemption-threshold",
            type=int,
            default=ServerArgs.priority_scheduling_preemption_threshold,
            help="Minimum difference in priorities for an incoming request to have to preempt running request(s).",
        )
1273
1274
1275
1276
        parser.add_argument(
            "--schedule-conservativeness",
            type=float,
            default=ServerArgs.schedule_conservativeness,
1277
            help="How conservative the schedule policy is. A larger value means more conservative scheduling. Use a larger value if you see requests being retracted frequently.",
1278
        )
1279
1280
1281
1282
1283
1284
        parser.add_argument(
            "--page-size",
            type=int,
            default=ServerArgs.page_size,
            help="The number of tokens in a page.",
        )
tarinkk's avatar
tarinkk committed
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
        parser.add_argument(
            "--hybrid-kvcache-ratio",
            nargs="?",
            const=0.5,
            type=float,
            default=ServerArgs.hybrid_kvcache_ratio,
            help=(
                "Mix ratio in [0,1] between uniform and hybrid kv buffers "
                "(0.0 = pure uniform: swa_size / full_size = 1)"
                "(1.0 = pure hybrid: swa_size / full_size = local_attention_size / context_length)"
            ),
        )
Hanming Lu's avatar
Hanming Lu committed
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
        parser.add_argument(
            "--swa-full-tokens-ratio",
            type=float,
            default=ServerArgs.swa_full_tokens_ratio,
            help="The ratio of SWA layer KV tokens / full layer KV tokens, regardless of the number of swa:full layers. It should be between 0 and 1. "
            "E.g. 0.5 means if each swa layer has 50 tokens, then each full layer has 100 tokens.",
        )
        parser.add_argument(
            "--disable-hybrid-swa-memory",
            action="store_true",
            help="Disable the hybrid SWA memory.",
        )
1309

Lianmin Zheng's avatar
Lianmin Zheng committed
1310
1311
1312
1313
1314
1315
1316
        # Runtime options
        parser.add_argument(
            "--device",
            type=str,
            default=ServerArgs.device,
            help="The device to use ('cuda', 'xpu', 'hpu', 'npu', 'cpu'). Defaults to auto-detection if not specified.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1317
        parser.add_argument(
1318
            "--tensor-parallel-size",
Lianmin Zheng's avatar
Lianmin Zheng committed
1319
            "--tp-size",
Lianmin Zheng's avatar
Lianmin Zheng committed
1320
            type=int,
Lianmin Zheng's avatar
Lianmin Zheng committed
1321
            default=ServerArgs.tp_size,
1322
            help="The tensor parallelism size.",
1323
        )
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
        parser.add_argument(
            "--pipeline-parallel-size",
            "--pp-size",
            type=int,
            default=ServerArgs.pp_size,
            help="The pipeline parallelism size.",
        )
        parser.add_argument(
            "--max-micro-batch-size",
            type=int,
            default=ServerArgs.max_micro_batch_size,
            help="The maximum micro batch size in pipeline parallelism.",
        )
1337
1338
1339
        parser.add_argument(
            "--stream-interval",
            type=int,
Lianmin Zheng's avatar
Lianmin Zheng committed
1340
            default=ServerArgs.stream_interval,
1341
            help="The interval (or buffer size) for streaming in terms of the token length. A smaller value makes streaming smoother, while a larger value makes the throughput higher",
1342
        )
1343
1344
1345
1346
1347
        parser.add_argument(
            "--stream-output",
            action="store_true",
            help="Whether to output as a sequence of disjoint segments.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1348
1349
1350
1351
        parser.add_argument(
            "--random-seed",
            type=int,
            default=ServerArgs.random_seed,
1352
            help="The random seed.",
Lianmin Zheng's avatar
Lianmin Zheng committed
1353
        )
1354
1355
1356
1357
        parser.add_argument(
            "--constrained-json-whitespace-pattern",
            type=str,
            default=ServerArgs.constrained_json_whitespace_pattern,
Lianmin Zheng's avatar
Lianmin Zheng committed
1358
            help="(outlines backend only) Regex pattern for syntactic whitespaces allowed in JSON constrained output. For example, to allow the model generate consecutive whitespaces, set the pattern to [\n\t ]*",
1359
        )
1360
1361
1362
1363
1364
1365
        parser.add_argument(
            "--watchdog-timeout",
            type=float,
            default=ServerArgs.watchdog_timeout,
            help="Set watchdog timeout in seconds. If a forward batch takes longer than this, the server will crash to prevent hanging.",
        )
1366
1367
1368
1369
1370
1371
        parser.add_argument(
            "--dist-timeout",
            type=int,
            default=ServerArgs.dist_timeout,
            help="Set timeout for torch.distributed initialization.",
        )
1372
1373
1374
1375
        parser.add_argument(
            "--download-dir",
            type=str,
            default=ServerArgs.download_dir,
1376
            help="Model download directory for huggingface.",
1377
        )
1378
1379
1380
1381
1382
1383
        parser.add_argument(
            "--base-gpu-id",
            type=int,
            default=ServerArgs.base_gpu_id,
            help="The base GPU ID to start allocating GPUs from. Useful when running multiple instances on the same machine.",
        )
1384
1385
1386
1387
1388
1389
        parser.add_argument(
            "--gpu-id-step",
            type=int,
            default=ServerArgs.gpu_id_step,
            help="The delta between consecutive GPU IDs that are used. For example, setting it to 2 will use GPU 0,2,4,...",
        )
1390
1391
1392
1393
1394
        parser.add_argument(
            "--sleep-on-idle",
            action="store_true",
            help="Reduce CPU usage when sglang is idle.",
        )
1395
1396

        # Logging
Lianmin Zheng's avatar
Lianmin Zheng committed
1397
1398
1399
1400
        parser.add_argument(
            "--log-level",
            type=str,
            default=ServerArgs.log_level,
1401
            help="The logging level of all loggers.",
Lianmin Zheng's avatar
Lianmin Zheng committed
1402
        )
1403
        parser.add_argument(
1404
1405
1406
1407
            "--log-level-http",
            type=str,
            default=ServerArgs.log_level_http,
            help="The logging level of HTTP server. If not set, reuse --log-level by default.",
1408
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1409
        parser.add_argument(
1410
            "--log-requests",
Lianmin Zheng's avatar
Lianmin Zheng committed
1411
            action="store_true",
1412
1413
1414
1415
1416
            help="Log metadata, inputs, outputs of all requests. The verbosity is decided by --log-requests-level",
        )
        parser.add_argument(
            "--log-requests-level",
            type=int,
1417
            default=ServerArgs.log_requests_level,
1418
1419
1420
1421
1422
1423
1424
1425
            help="0: Log metadata (no sampling parameters). 1: Log metadata and sampling parameters. 2: Log metadata, sampling parameters and partial input/output. 3: Log every input/output.",
            choices=[0, 1, 2, 3],
        )
        parser.add_argument(
            "--crash-dump-folder",
            type=str,
            default=ServerArgs.crash_dump_folder,
            help="Folder path to dump requests from the last 5 min before a crash (if any). If not specified, crash dumping is disabled.",
Lianmin Zheng's avatar
Lianmin Zheng committed
1426
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1427
1428
1429
        parser.add_argument(
            "--show-time-cost",
            action="store_true",
Ying Sheng's avatar
Ying Sheng committed
1430
            help="Show time cost of custom marks.",
Lianmin Zheng's avatar
Lianmin Zheng committed
1431
        )
1432
1433
1434
1435
1436
        parser.add_argument(
            "--enable-metrics",
            action="store_true",
            help="Enable log prometheus metrics.",
        )
1437
1438
1439
1440
1441
1442
1443
        parser.add_argument(
            "--enable-metrics-for-all-schedulers",
            action="store_true",
            help="Enable --enable-metrics-for-all-schedulers when you want schedulers on all TP ranks (not just TP 0) "
            "to record request metrics separately. This is especially useful when dp_attention is enabled, as "
            "otherwise all metrics appear to come from TP 0.",
        )
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
        parser.add_argument(
            "--tokenizer-metrics-custom-labels-header",
            type=str,
            default=ServerArgs.tokenizer_metrics_custom_labels_header,
            help="Specify the HTTP header for passing customer labels for tokenizer metrics.",
        )
        parser.add_argument(
            "--tokenizer-metrics-allowed-customer-labels",
            type=str,
            nargs="+",
            default=ServerArgs.tokenizer_metrics_allowed_customer_labels,
            help="The customer labels allowed for tokenizer metrics. The labels are specified via a dict in "
            "'--tokenizer-metrics-custom-labels-header' field in HTTP requests, e.g., {'label1': 'value1', 'label2': "
            "'value2'} is allowed if '--tokenizer-metrics-allowed-labels label1 label2' is set.",
        )
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
        parser.add_argument(
            "--bucket-time-to-first-token",
            type=float,
            nargs="+",
            default=ServerArgs.bucket_time_to_first_token,
            help="The buckets of time to first token, specified as a list of floats.",
        )
        parser.add_argument(
            "--bucket-inter-token-latency",
            type=float,
            nargs="+",
            default=ServerArgs.bucket_inter_token_latency,
            help="The buckets of inter-token latency, specified as a list of floats.",
        )
        parser.add_argument(
            "--bucket-e2e-request-latency",
            type=float,
            nargs="+",
            default=ServerArgs.bucket_e2e_request_latency,
            help="The buckets of end-to-end request latency, specified as a list of floats.",
        )
        parser.add_argument(
            "--collect-tokens-histogram",
            action="store_true",
            default=ServerArgs.collect_tokens_histogram,
            help="Collect prompt/generation tokens histogram.",
        )
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
        bucket_rule = (
            "Supports 3 rule types: 'default' uses predefined buckets; 'tse <middle> <base> <count>' "
            "generates two sides exponential distributed buckets (e.g., 'tse 1000 2 8' generates buckets "
            "[984.0, 992.0, 996.0, 998.0, 1000.0, 1002.0, 1004.0, 1008.0, 1016.0]).); 'customer <value1> "
            "<value2> ...' uses custom bucket values (e.g., 'customer 10 50 100 500')."
        )
        parser.add_argument(
            "--prompt-tokens-buckets",
            type=str,
            nargs="+",
            default=ServerArgs.prompt_tokens_buckets,
            help=f"The buckets rule of prompt tokens. {bucket_rule}",
        )
        parser.add_argument(
            "--generation-tokens-buckets",
            type=str,
            nargs="+",
            default=ServerArgs.generation_tokens_buckets,
            help=f"The buckets rule for generation tokens histogram. {bucket_rule}",
        )
1506
1507
1508
1509
1510
1511
        parser.add_argument(
            "--gc-warning-threshold-secs",
            type=float,
            default=ServerArgs.gc_warning_threshold_secs,
            help="The threshold for long GC warning. If a GC takes longer than this, a warning will be logged. Set to 0 to disable.",
        )
1512
1513
1514
1515
        parser.add_argument(
            "--decode-log-interval",
            type=int,
            default=ServerArgs.decode_log_interval,
1516
            help="The log interval of decode batch.",
1517
        )
1518
1519
1520
1521
1522
1523
        parser.add_argument(
            "--enable-request-time-stats-logging",
            action="store_true",
            default=ServerArgs.enable_request_time_stats_logging,
            help="Enable per request time stats logging",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1524
1525
1526
1527
1528
        parser.add_argument(
            "--kv-events-config",
            type=str,
            default=None,
            help="Config in json format for NVIDIA dynamo KV event publishing. Publishing will be enabled if this flag is used.",
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
        )
        parser.add_argument(
            "--enable-trace",
            action="store_true",
            help="Enable opentelemetry trace",
        )
        parser.add_argument(
            "--oltp-traces-endpoint",
            type=str,
            default="localhost:4317",
            help="Config opentelemetry collector endpoint if --enable-trace is set. format: <ip>:<port>",
Lianmin Zheng's avatar
Lianmin Zheng committed
1540
        )
1541

1542
        # API related
Liangsheng Yin's avatar
Liangsheng Yin committed
1543
1544
1545
1546
        parser.add_argument(
            "--api-key",
            type=str,
            default=ServerArgs.api_key,
1547
            help="Set API key of the server. It is also used in the OpenAI API compatible server.",
Liangsheng Yin's avatar
Liangsheng Yin committed
1548
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1549
1550
1551
1552
1553
1554
        parser.add_argument(
            "--served-model-name",
            type=str,
            default=ServerArgs.served_model_name,
            help="Override the model name returned by the v1/models endpoint in OpenAI API server.",
        )
1555
1556
1557
1558
1559
1560
        parser.add_argument(
            "--weight-version",
            type=str,
            default=ServerArgs.weight_version,
            help="Version identifier for the model weights. Defaults to 'default' if not specified.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
        parser.add_argument(
            "--chat-template",
            type=str,
            default=ServerArgs.chat_template,
            help="The buliltin chat template name or the path of the chat template file. This is only used for OpenAI-compatible API server.",
        )
        parser.add_argument(
            "--completion-template",
            type=str,
            default=ServerArgs.completion_template,
            help="The buliltin completion template name or the path of the completion template file. This is only used for OpenAI-compatible API server. only for code completion currently.",
        )
1573
        parser.add_argument(
1574
            "--file-storage-path",
1575
            type=str,
1576
            default=ServerArgs.file_storage_path,
1577
1578
            help="The path of the file storage in backend.",
        )
1579
1580
1581
1582
1583
        parser.add_argument(
            "--enable-cache-report",
            action="store_true",
            help="Return number of cached tokens in usage.prompt_tokens_details for each openai request.",
        )
Xihuai Wang's avatar
Xihuai Wang committed
1584
1585
1586
1587
1588
1589
1590
        parser.add_argument(
            "--reasoning-parser",
            type=str,
            choices=list(ReasoningParser.DetectorMap.keys()),
            default=ServerArgs.reasoning_parser,
            help=f"Specify the parser for reasoning models, supported parsers are: {list(ReasoningParser.DetectorMap.keys())}.",
        )
1591
        tool_call_parser_choices = list(FunctionCallParser.ToolCallParserEnum.keys())
1592
1593
1594
        parser.add_argument(
            "--tool-call-parser",
            type=str,
1595
            choices=tool_call_parser_choices,
1596
            default=ServerArgs.tool_call_parser,
1597
            help=f"Specify the parser for handling tool-call interactions. Options include: {tool_call_parser_choices}.",
1598
        )
1599
1600
1601
1602
1603
1604
        parser.add_argument(
            "--tool-server",
            type=str,
            default=None,
            help="Either 'demo' or a comma-separated list of tool server urls to use for the model. If not specified, no tool server will be used.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1605

1606
1607
        # Data parallelism
        parser.add_argument(
1608
            "--data-parallel-size",
1609
1610
1611
            "--dp-size",
            type=int,
            default=ServerArgs.dp_size,
1612
            help="The data parallelism size.",
1613
1614
1615
1616
1617
        )
        parser.add_argument(
            "--load-balance-method",
            type=str,
            default=ServerArgs.load_balance_method,
1618
            help="The load balancing strategy for data parallelism.",
1619
1620
1621
            choices=[
                "round_robin",
                "shortest_queue",
1622
                "minimum_tokens",
1623
1624
            ],
        )
1625
1626
1627
1628
1629
1630
        parser.add_argument(
            "--load-watch-interval",
            type=float,
            default=ServerArgs.load_watch_interval,
            help="The interval of load watching in seconds.",
        )
1631
1632
1633
1634
1635
1636
        parser.add_argument(
            "--prefill-round-robin-balance",
            default=ServerArgs.prefill_round_robin_balance,
            action="store_true",
            help="Prefill is round robin balanced. This is used to promise decode server can get the correct dp rank.",
        )
1637

1638
        # Multi-node distributed serving
1639
        parser.add_argument(
1640
            "--dist-init-addr",
1641
            "--nccl-init-addr",  # For backward compatibility. This will be removed in the future.
1642
            type=str,
1643
            help="The host address for initializing distributed backend (e.g., `192.168.0.2:25000`).",
1644
1645
        )
        parser.add_argument(
Liangsheng Yin's avatar
Liangsheng Yin committed
1646
            "--nnodes", type=int, default=ServerArgs.nnodes, help="The number of nodes."
1647
        )
1648
1649
1650
        parser.add_argument(
            "--node-rank", type=int, default=ServerArgs.node_rank, help="The node rank."
        )
1651

Lianmin Zheng's avatar
Lianmin Zheng committed
1652
1653
1654
1655
1656
1657
1658
        # Model override args
        parser.add_argument(
            "--json-model-override-args",
            type=str,
            help="A dictionary in JSON string format used to override default model configurations.",
            default=ServerArgs.json_model_override_args,
        )
1659
1660
1661
1662
1663
        parser.add_argument(
            "--preferred-sampling-params",
            type=str,
            help="json-formatted sampling settings that will be returned in /get_model_info",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1664

1665
        # LoRA
1666
1667
1668
1669
1670
1671
        parser.add_argument(
            "--enable-lora",
            default=ServerArgs.enable_lora,
            action="store_true",
            help="Enable LoRA support for the model. This argument is automatically set to True if `--lora-paths` is provided for backward compatibility.",
        )
1672
1673
1674
1675
1676
1677
1678
1679
1680
        parser.add_argument(
            "--max-lora-rank",
            default=ServerArgs.max_lora_rank,
            type=int,
            help="The maximum rank of LoRA adapters. If not specified, it will be automatically inferred from the adapters provided in --lora-paths.",
        )
        parser.add_argument(
            "--lora-target-modules",
            type=str,
1681
            choices=SUPPORTED_LORA_TARGET_MODULES + [LORA_TARGET_ALL_MODULES],
1682
1683
            nargs="*",
            default=None,
1684
1685
1686
            help="The union set of all target modules where LoRA should be applied. If not specified, "
            "it will be automatically inferred from the adapters provided in --lora-paths. If 'all' is specified, "
            "all supported modules will be targeted.",
1687
        )
1688
1689
1690
1691
1692
1693
        parser.add_argument(
            "--lora-paths",
            type=str,
            nargs="*",
            default=None,
            action=LoRAPathAction,
1694
            help='The list of LoRA adapters to load. Each adapter must be specified in one of the following formats: <PATH> | <NAME>=<PATH> | JSON with schema {"lora_name":str,"lora_path":str,"pinned":bool}',
1695
1696
1697
1698
1699
        )
        parser.add_argument(
            "--max-loras-per-batch",
            type=int,
            default=8,
1700
1701
            help="Maximum number of adapters for a running batch, include base-only request.",
        )
1702
1703
1704
1705
1706
1707
        parser.add_argument(
            "--max-loaded-loras",
            type=int,
            default=ServerArgs.max_loaded_loras,
            help="If specified, it limits the maximum number of LoRA adapters loaded in CPU memory at a time. The value must be greater than or equal to `--max-loras-per-batch`.",
        )
1708
1709
1710
        parser.add_argument(
            "--lora-backend",
            type=str,
1711
1712
            choices=LORA_BACKEND_CHOICES,
            default=ServerArgs.lora_backend,
1713
            help="Choose the kernel backend for multi-LoRA serving.",
1714
1715
1716
        )

        # Kernel backend
1717
1718
1719
        parser.add_argument(
            "--attention-backend",
            type=str,
1720
            choices=ATTENTION_BACKEND_CHOICES,
1721
1722
1723
            default=ServerArgs.attention_backend,
            help="Choose the kernels for attention layers.",
        )
1724
1725
1726
        parser.add_argument(
            "--prefill-attention-backend",
            type=str,
1727
            choices=ATTENTION_BACKEND_CHOICES,
1728
1729
1730
            default=ServerArgs.prefill_attention_backend,
            help="Choose the kernels for prefill attention layers (have priority over --attention-backend).",
        )
1731
1732
1733
        parser.add_argument(
            "--decode-attention-backend",
            type=str,
1734
            choices=ATTENTION_BACKEND_CHOICES,
1735
1736
1737
            default=ServerArgs.decode_attention_backend,
            help="Choose the kernels for decode attention layers (have priority over --attention-backend).",
        )
1738
1739
1740
1741
1742
1743
1744
        parser.add_argument(
            "--sampling-backend",
            type=str,
            choices=["flashinfer", "pytorch"],
            default=ServerArgs.sampling_backend,
            help="Choose the kernels for sampling layers.",
        )
1745
1746
1747
        parser.add_argument(
            "--grammar-backend",
            type=str,
1748
            choices=GRAMMAR_BACKEND_CHOICES,
1749
            default=ServerArgs.grammar_backend,
Lianmin Zheng's avatar
Lianmin Zheng committed
1750
            help="Choose the backend for grammar-guided decoding.",
1751
        )
1752
1753
1754
1755
1756
1757
1758
        parser.add_argument(
            "--mm-attention-backend",
            type=str,
            choices=["sdpa", "fa3", "triton_attn"],
            default=ServerArgs.mm_attention_backend,
            help="Set multimodal attention backend.",
        )
1759

1760
1761
1762
1763
        # Speculative decoding
        parser.add_argument(
            "--speculative-algorithm",
            type=str,
1764
            choices=["EAGLE", "EAGLE3", "NEXTN", "STANDALONE", "LOOKAHEAD"],
1765
1766
1767
1768
            help="Speculative algorithm.",
        )
        parser.add_argument(
            "--speculative-draft-model-path",
1769
            "--speculative-draft-model",
1770
1771
1772
            type=str,
            help="The path of the draft model weights. This can be a local folder or a Hugging Face repo ID.",
        )
1773
1774
1775
1776
1777
1778
1779
1780
        parser.add_argument(
            "--speculative-draft-model-revision",
            type=str,
            default=None,
            help="The specific draft model version to use. It can be a branch "
            "name, a tag name, or a commit id. If unspecified, will use "
            "the default version.",
        )
1781
1782
1783
1784
1785
1786
1787
1788
1789
        parser.add_argument(
            "--speculative-num-steps",
            type=int,
            help="The number of steps sampled from draft model in Speculative Decoding.",
            default=ServerArgs.speculative_num_steps,
        )
        parser.add_argument(
            "--speculative-eagle-topk",
            type=int,
1790
            help="The number of tokens sampled from the draft model in eagle2 each step.",
1791
1792
            default=ServerArgs.speculative_eagle_topk,
        )
1793
1794
1795
        parser.add_argument(
            "--speculative-num-draft-tokens",
            type=int,
1796
            help="The number of tokens sampled from the draft model in Speculative Decoding.",
1797
1798
            default=ServerArgs.speculative_num_draft_tokens,
        )
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
        parser.add_argument(
            "--speculative-accept-threshold-single",
            type=float,
            help="Accept a draft token if its probability in the target model is greater than this threshold.",
            default=ServerArgs.speculative_accept_threshold_single,
        )
        parser.add_argument(
            "--speculative-accept-threshold-acc",
            type=float,
            help="The accept probability of a draft token is raised from its target probability p to min(1, p / threshold_acc).",
            default=ServerArgs.speculative_accept_threshold_acc,
        )
1811
1812
1813
1814
1815
1816
        parser.add_argument(
            "--speculative-token-map",
            type=str,
            help="The path of the draft model's small vocab table.",
            default=ServerArgs.speculative_token_map,
        )
1817
        parser.add_argument(
1818
            "--speculative-attention-mode",
1819
1820
            type=str,
            choices=["prefill", "decode"],
1821
1822
            help="Attention backend for speculative decoding operations (both target verify and draft extend). Can be one of 'prefill' (default) or 'decode'.",
            default=ServerArgs.speculative_attention_mode,
1823
        )
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
        # Lookahead speculative decoding
        parser.add_argument(
            "--speculative-lookahead-min-match-window-size",
            type=int,
            default=ServerArgs.speculative_lookahead_min_match_window_size,
            help="The minimum window size for pattern matching in lookahead speculative decoding.",
        )
        parser.add_argument(
            "--speculative-lookahead-max-match-window-size",
            type=int,
            default=ServerArgs.speculative_lookahead_max_match_window_size,
            help="The maximum window size for pattern matching in lookahead speculative decoding.",
        )
        parser.add_argument(
            "--speculative-lookahead-min-bfs-breadth",
            type=int,
            default=ServerArgs.speculative_lookahead_min_bfs_breadth,
            help="The minimum breadth for BFS (Breadth-First Search) in lookahead speculative decoding.",
        )
        parser.add_argument(
            "--speculative-lookahead-max-bfs-breadth",
            type=int,
            default=ServerArgs.speculative_lookahead_max_bfs_breadth,
            help="The maximum breadth for BFS (Breadth-First Search) in lookahead speculative decoding.",
        )
        parser.add_argument(
            "--speculative-lookahead-match-type",
            type=str,
            choices=["BFS", "PROB"],
            default=ServerArgs.speculative_lookahead_match_type,
            help="The match type for cache tree.",
        )
        parser.add_argument(
            "--speculative-lookahead-branch-length",
            type=int,
            default=ServerArgs.speculative_lookahead_branch_length,
            help="The branch length for lookahead speculative decoding.",
        )
        parser.add_argument(
            "--speculative-lookahead-capacity",
            type=int,
            default=ServerArgs.speculative_lookahead_capacity,
            help="The cache capacity for lookahead speculative decoding.",
        )
1868
1869
1870
1871
1872

        # Expert parallelism
        parser.add_argument(
            "--expert-parallel-size",
            "--ep-size",
Cheng Wan's avatar
Cheng Wan committed
1873
            "--ep",
1874
1875
1876
1877
1878
            type=int,
            default=ServerArgs.ep_size,
            help="The expert parallelism size.",
        )
        parser.add_argument(
1879
1880
            "--moe-a2a-backend",
            type=str,
1881
            choices=["none", "deepep"],
1882
1883
            default=ServerArgs.moe_a2a_backend,
            help="Choose the backend for MoE A2A.",
1884
        )
1885
        parser.add_argument(
1886
1887
1888
1889
1890
1891
1892
1893
            "--moe-runner-backend",
            type=str,
            choices=[
                "auto",
                "triton",
                "triton_kernel",
                "flashinfer_trtllm",
                "flashinfer_cutlass",
1894
                "flashinfer_mxfp4",
1895
                "flashinfer_cutedsl",
1896
1897
1898
            ],
            default=ServerArgs.moe_runner_backend,
            help="Choose the runner backend for MoE.",
1899
1900
        )
        parser.add_argument(
1901
1902
            "--flashinfer-mxfp4-moe-precision",
            type=str,
1903
            choices=["default", "bf16"],
1904
1905
1906
1907
            default=ServerArgs.flashinfer_mxfp4_moe_precision,
            help="Choose the computation precision of flashinfer mxfp4 moe",
        )
        parser.add_argument(
1908
1909
            "--enable-flashinfer-allreduce-fusion",
            action="store_true",
1910
            help="Enable FlashInfer allreduce fusion with Residual RMSNorm.",
1911
        )
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
        parser.add_argument(
            "--deepep-mode",
            type=str,
            choices=["normal", "low_latency", "auto"],
            default="auto",
            help="Select the mode when enable DeepEP MoE, could be `normal`, `low_latency` or `auto`. Default is `auto`, which means `low_latency` for decode batch and `normal` for prefill batch.",
        )
        parser.add_argument(
            "--ep-num-redundant-experts",
            type=int,
            default=ServerArgs.ep_num_redundant_experts,
            help="Allocate this number of redundant experts in expert parallel.",
        )
        parser.add_argument(
            "--ep-dispatch-algorithm",
            type=str,
            default=ServerArgs.ep_dispatch_algorithm,
            help="The algorithm to choose ranks for redundant experts in expert parallel.",
        )
        parser.add_argument(
            "--init-expert-location",
            type=str,
            default=ServerArgs.init_expert_location,
            help="Initial location of EP experts.",
        )
        parser.add_argument(
            "--enable-eplb",
            action="store_true",
            help="Enable EPLB algorithm",
        )
        parser.add_argument(
            "--eplb-algorithm",
            type=str,
            default=ServerArgs.eplb_algorithm,
            help="Chosen EPLB algorithm",
        )
        parser.add_argument(
            "--eplb-rebalance-num-iterations",
            type=int,
            default=ServerArgs.eplb_rebalance_num_iterations,
            help="Number of iterations to automatically trigger a EPLB re-balance.",
        )
        parser.add_argument(
            "--eplb-rebalance-layers-per-chunk",
            type=int,
            default=ServerArgs.eplb_rebalance_layers_per_chunk,
            help="Number of layers to rebalance per forward pass.",
        )
1960
1961
1962
1963
1964
1965
        parser.add_argument(
            "--eplb-min-rebalancing-utilization-threshold",
            type=float,
            default=ServerArgs.eplb_min_rebalancing_utilization_threshold,
            help="Minimum threshold for GPU average utilization to trigger EPLB rebalancing. Must be in the range [0.0, 1.0].",
        )
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
        parser.add_argument(
            "--expert-distribution-recorder-mode",
            type=str,
            default=ServerArgs.expert_distribution_recorder_mode,
            help="Mode of expert distribution recorder.",
        )
        parser.add_argument(
            "--expert-distribution-recorder-buffer-size",
            type=int,
            default=ServerArgs.expert_distribution_recorder_buffer_size,
            help="Circular buffer size of expert distribution recorder. Set to -1 to denote infinite buffer.",
        )
        parser.add_argument(
            "--enable-expert-distribution-metrics",
            action="store_true",
            help="Enable logging metrics for expert balancedness",
        )
        parser.add_argument(
            "--deepep-config",
            type=str,
            default=ServerArgs.deepep_config,
            help="Tuned DeepEP config suitable for your own cluster. It can be either a string with JSON content or a file path.",
        )
        parser.add_argument(
            "--moe-dense-tp-size",
            type=int,
            default=ServerArgs.moe_dense_tp_size,
            help="TP size for MoE dense MLP layers. This flag is useful when, with large TP size, there are errors caused by weights in MLP layers having dimension smaller than the min dimension GEMM supports.",
        )
1995

Yi Zhang's avatar
Yi Zhang committed
1996
1997
1998
1999
2000
        # Mamba Cache
        parser.add_argument(
            "--max-mamba-cache-size",
            type=int,
            default=ServerArgs.max_mamba_cache_size,
2001
            help="The maximum size of the mamba cache.",
Yi Zhang's avatar
Yi Zhang committed
2002
2003
2004
2005
2006
2007
        )
        parser.add_argument(
            "--mamba-ssm-dtype",
            type=str,
            default=ServerArgs.mamba_ssm_dtype,
            choices=["float32", "bfloat16"],
2008
            help="The data type of the SSM states in mamba cache.",
Yi Zhang's avatar
Yi Zhang committed
2009
        )
2010

Lianmin Zheng's avatar
Lianmin Zheng committed
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
        # Hierarchical cache
        parser.add_argument(
            "--enable-hierarchical-cache",
            action="store_true",
            help="Enable hierarchical cache",
        )
        parser.add_argument(
            "--hicache-ratio",
            type=float,
            default=ServerArgs.hicache_ratio,
            help="The ratio of the size of host KV cache memory pool to the size of device pool.",
        )
        parser.add_argument(
            "--hicache-size",
            type=int,
            default=ServerArgs.hicache_size,
            help="The size of host KV cache memory pool in gigabytes, which will override the hicache_ratio if set.",
        )
        parser.add_argument(
            "--hicache-write-policy",
            type=str,
            choices=["write_back", "write_through", "write_through_selective"],
            default=ServerArgs.hicache_write_policy,
            help="The write policy of hierarchical cache.",
        )
2036
2037
2038
2039
2040
2041
2042
        parser.add_argument(
            "--radix-eviction-policy",
            type=str,
            choices=["lru", "lfu"],
            default=ServerArgs.radix_eviction_policy,
            help="The eviction policy of radix trees. 'lru' stands for Least Recently Used, 'lfu' stands for Least Frequently Used.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
2043
2044
2045
2046
2047
2048
2049
        parser.add_argument(
            "--hicache-io-backend",
            type=str,
            choices=["direct", "kernel"],
            default=ServerArgs.hicache_io_backend,
            help="The IO backend for KV cache transfer between CPU and GPU",
        )
2050
2051
2052
        parser.add_argument(
            "--hicache-mem-layout",
            type=str,
2053
            choices=["layer_first", "page_first", "page_first_direct"],
2054
2055
2056
            default=ServerArgs.hicache_mem_layout,
            help="The layout of host memory pool for hierarchical cache.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
2057
2058
2059
        parser.add_argument(
            "--hicache-storage-backend",
            type=str,
2060
            choices=["file", "mooncake", "hf3fs", "nixl"],
Lianmin Zheng's avatar
Lianmin Zheng committed
2061
2062
2063
            default=ServerArgs.hicache_storage_backend,
            help="The storage backend for hierarchical KV cache.",
        )
pansicheng's avatar
pansicheng committed
2064
2065
2066
2067
2068
2069
2070
        parser.add_argument(
            "--hicache-storage-prefetch-policy",
            type=str,
            choices=["best_effort", "wait_complete", "timeout"],
            default=ServerArgs.hicache_storage_prefetch_policy,
            help="Control when prefetching from the storage backend should stop.",
        )
2071
2072
2073
2074
2075
2076
        parser.add_argument(
            "--hicache-storage-backend-extra-config",
            type=str,
            default=ServerArgs.hicache_storage_backend_extra_config,
            help="A dictionary in JSON string format containing extra configuration for the storage backend.",
        )
2077
2078
2079
2080
2081
2082
        # LMCache
        parser.add_argument(
            "--enable-lmcache",
            action="store_true",
            help="Using LMCache as an alternative hierarchical cache solution",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
2083

2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
        # Double Sparsity
        parser.add_argument(
            "--enable-double-sparsity",
            action="store_true",
            help="Enable double sparsity attention",
        )
        parser.add_argument(
            "--ds-channel-config-path",
            type=str,
            default=ServerArgs.ds_channel_config_path,
            help="The path of the double sparsity channel config",
        )
        parser.add_argument(
            "--ds-heavy-channel-num",
            type=int,
            default=ServerArgs.ds_heavy_channel_num,
            help="The number of heavy channels in double sparsity attention",
        )
        parser.add_argument(
            "--ds-heavy-token-num",
            type=int,
            default=ServerArgs.ds_heavy_token_num,
            help="The number of heavy tokens in double sparsity attention",
        )
        parser.add_argument(
            "--ds-heavy-channel-type",
            type=str,
            default=ServerArgs.ds_heavy_channel_type,
            help="The type of heavy channels in double sparsity attention",
        )
        parser.add_argument(
            "--ds-sparse-decode-threshold",
            type=int,
            default=ServerArgs.ds_sparse_decode_threshold,
            help="The type of heavy channels in double sparsity attention",
        )

fzyzcjy's avatar
fzyzcjy committed
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
        # Offloading
        parser.add_argument(
            "--cpu-offload-gb",
            type=int,
            default=ServerArgs.cpu_offload_gb,
            help="How many GBs of RAM to reserve for CPU offloading.",
        )
        parser.add_argument(
            "--offload-group-size",
            type=int,
            default=ServerArgs.offload_group_size,
            help="Number of layers per group in offloading.",
        )
        parser.add_argument(
            "--offload-num-in-group",
            type=int,
            default=ServerArgs.offload_num_in_group,
            help="Number of layers to be offloaded within a group.",
        )
        parser.add_argument(
            "--offload-prefetch-step",
            type=int,
            default=ServerArgs.offload_prefetch_step,
            help="Steps to prefetch in offloading.",
        )
        parser.add_argument(
            "--offload-mode",
            type=str,
            default=ServerArgs.offload_mode,
            help="Mode of offloading.",
        )

2153
        # Optimization/debug options
Liangsheng Yin's avatar
Liangsheng Yin committed
2154
        parser.add_argument(
Lianmin Zheng's avatar
Lianmin Zheng committed
2155
            "--disable-radix-cache",
Liangsheng Yin's avatar
Liangsheng Yin committed
2156
            action="store_true",
Ying Sheng's avatar
Ying Sheng committed
2157
            help="Disable RadixAttention for prefix caching.",
Liangsheng Yin's avatar
Liangsheng Yin committed
2158
        )
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
        parser.add_argument(
            "--cuda-graph-max-bs",
            type=int,
            default=ServerArgs.cuda_graph_max_bs,
            help="Set the maximum batch size for cuda graph. It will extend the cuda graph capture batch size to this value.",
        )
        parser.add_argument(
            "--cuda-graph-bs",
            type=int,
            nargs="+",
            help="Set the list of batch sizes for cuda graph.",
        )
2171
2172
2173
        parser.add_argument(
            "--disable-cuda-graph",
            action="store_true",
2174
            help="Disable cuda graph.",
2175
        )
2176
        parser.add_argument(
2177
2178
            "--disable-cuda-graph-padding",
            action="store_true",
2179
            help="Disable cuda graph when padding is needed. Still uses cuda graph when padding is not needed.",
2180
        )
2181
2182
2183
2184
2185
        parser.add_argument(
            "--enable-profile-cuda-graph",
            action="store_true",
            help="Enable profiling of cuda graph capture.",
        )
2186
2187
2188
2189
2190
        parser.add_argument(
            "--enable-cudagraph-gc",
            action="store_true",
            help="Enable garbage collection during CUDA graph capture. If disabled (default), GC is frozen during capture to speed up the process.",
        )
2191
2192
2193
2194
2195
        parser.add_argument(
            "--enable-nccl-nvls",
            action="store_true",
            help="Enable NCCL NVLS for prefill heavy requests when available.",
        )
2196
2197
2198
2199
2200
        parser.add_argument(
            "--enable-symm-mem",
            action="store_true",
            help="Enable NCCL symmetric memory for fast collectives.",
        )
2201
2202
2203
2204
2205
        parser.add_argument(
            "--disable-flashinfer-cutlass-moe-fp4-allgather",
            action="store_true",
            help="Disables quantize before all-gather for flashinfer cutlass moe.",
        )
2206
2207
2208
2209
2210
        parser.add_argument(
            "--enable-tokenizer-batch-encode",
            action="store_true",
            help="Enable batch tokenization for improved performance when processing multiple text inputs. Do not use with image inputs, pre-tokenized input_ids, or input_embeds.",
        )
2211
        parser.add_argument(
2212
            "--disable-outlines-disk-cache",
2213
            action="store_true",
2214
            help="Disable disk cache of outlines to avoid possible crashes related to file system or high concurrency.",
2215
        )
2216
2217
2218
2219
2220
        parser.add_argument(
            "--disable-custom-all-reduce",
            action="store_true",
            help="Disable the custom all-reduce kernel and fall back to NCCL.",
        )
2221
2222
2223
2224
2225
        parser.add_argument(
            "--enable-mscclpp",
            action="store_true",
            help="Enable using mscclpp for small messages for all-reduce kernel and fall back to NCCL.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
2226
        parser.add_argument(
2227
            "--disable-overlap-schedule",
Lianmin Zheng's avatar
Lianmin Zheng committed
2228
            action="store_true",
2229
            help="Disable the overlap scheduler, which overlaps the CPU scheduler with GPU model worker.",
Lianmin Zheng's avatar
Lianmin Zheng committed
2230
        )
2231
2232
2233
        parser.add_argument(
            "--enable-mixed-chunk",
            action="store_true",
2234
            help="Enabling mixing prefill and decode in a batch when using chunked prefill.",
2235
        )
Ke Bao's avatar
Ke Bao committed
2236
2237
2238
        parser.add_argument(
            "--enable-dp-attention",
            action="store_true",
2239
            help="Enabling data parallelism for attention and tensor parallelism for FFN. The dp size should be equal to the tp size. Currently DeepSeek-V2 and Qwen 2/3 MoE models are supported.",
Ke Bao's avatar
Ke Bao committed
2240
        )
2241
2242
2243
2244
2245
        parser.add_argument(
            "--enable-dp-lm-head",
            action="store_true",
            help="Enable vocabulary parallel across the attention TP group to avoid all-gather across DP groups, optimizing performance under DP attention.",
        )
2246
2247
2248
2249
2250
        parser.add_argument(
            "--enable-two-batch-overlap",
            action="store_true",
            help="Enabling two micro batches to overlap.",
        )
2251
2252
2253
2254
2255
2256
        parser.add_argument(
            "--tbo-token-distribution-threshold",
            type=float,
            default=ServerArgs.tbo_token_distribution_threshold,
            help="The threshold of token distribution between two batches in micro-batch-overlap, determines whether to two-batch-overlap or two-chunk-overlap. Set to 0 denote disable two-chunk-overlap.",
        )
2257
2258
2259
        parser.add_argument(
            "--enable-torch-compile",
            action="store_true",
2260
2261
            help="Optimize the model with torch.compile. Experimental feature.",
        )
2262
        parser.add_argument(
2263
            "--torch-compile-max-bs",
2264
            type=int,
2265
            default=ServerArgs.torch_compile_max_bs,
2266
2267
            help="Set the maximum batch size when using torch compile.",
        )
2268
2269
2270
2271
        parser.add_argument(
            "--torchao-config",
            type=str,
            default=ServerArgs.torchao_config,
2272
            help="Optimize the model with torchao. Experimental feature. Current choices are: int8dq, int8wo, int4wo-<group_size>, fp8wo, fp8dq-per_tensor, fp8dq-per_row",
2273
        )
2274
2275
2276
2277
2278
        parser.add_argument(
            "--enable-nan-detection",
            action="store_true",
            help="Enable the NaN detection for debugging purposes.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
2279
        parser.add_argument(
2280
            "--enable-p2p-check",
Lianmin Zheng's avatar
Lianmin Zheng committed
2281
            action="store_true",
2282
            help="Enable P2P check for GPU access, otherwise the p2p access is allowed by default.",
Lianmin Zheng's avatar
Lianmin Zheng committed
2283
        )
2284
        parser.add_argument(
2285
            "--triton-attention-reduce-in-fp32",
2286
            action="store_true",
2287
            help="Cast the intermediate attention results to fp32 to avoid possible crashes related to fp16."
2288
            "This only affects Triton attention kernels.",
2289
        )
2290
2291
2292
2293
2294
2295
        parser.add_argument(
            "--triton-attention-num-kv-splits",
            type=int,
            default=ServerArgs.triton_attention_num_kv_splits,
            help="The number of KV splits in flash decoding Triton kernel. Larger value is better in longer context scenarios. The default value is 8.",
        )
2296
2297
2298
2299
2300
2301
        parser.add_argument(
            "--triton-attention-split-tile-size",
            type=int,
            default=ServerArgs.triton_attention_split_tile_size,
            help="The size of split KV tile in flash decoding Triton kernel. Used for deterministic inference.",
        )
2302
2303
2304
2305
2306
2307
2308
2309
        parser.add_argument(
            "--num-continuous-decode-steps",
            type=int,
            default=ServerArgs.num_continuous_decode_steps,
            help="Run multiple continuous decoding steps to reduce scheduling overhead. "
            "This can potentially increase throughput but may also increase time-to-first-token latency. "
            "The default value is 1, meaning only run one decoding step at a time.",
        )
2310
2311
2312
2313
2314
        parser.add_argument(
            "--delete-ckpt-after-loading",
            action="store_true",
            help="Delete the model checkpoint after loading the model.",
        )
2315
2316
2317
2318
2319
        parser.add_argument(
            "--enable-memory-saver",
            action="store_true",
            help="Allow saving memory using release_memory_occupation and resume_memory_occupation",
        )
2320
2321
2322
2323
2324
        parser.add_argument(
            "--allow-auto-truncate",
            action="store_true",
            help="Allow automatically truncating requests that exceed the maximum input length instead of returning an error.",
        )
2325
2326
2327
2328
2329
        parser.add_argument(
            "--enable-custom-logit-processor",
            action="store_true",
            help="Enable users to pass custom logit processors to the server (disabled by default for security)",
        )
2330
        parser.add_argument(
2331
            "--flashinfer-mla-disable-ragged",
2332
            action="store_true",
2333
            help="Not using ragged prefill wrapper when running flashinfer mla",
2334
        )
2335
        parser.add_argument(
2336
2337
2338
            "--disable-shared-experts-fusion",
            action="store_true",
            help="Disable shared experts fusion optimization for deepseek v3/r1.",
2339
        )
2340
2341
2342
2343
2344
        parser.add_argument(
            "--disable-chunked-prefix-cache",
            action="store_true",
            help="Disable chunked prefix cache feature for deepseek, which should save overhead for short sequences.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
2345
2346
2347
2348
2349
        parser.add_argument(
            "--disable-fast-image-processor",
            action="store_true",
            help="Adopt base image processor instead of fast image processor.",
        )
2350
2351
2352
2353
2354
        parser.add_argument(
            "--keep-mm-feature-on-device",
            action="store_true",
            help="Keep multimodal feature tensors on device after processing to save D2H copy.",
        )
2355
2356
2357
2358
2359
        parser.add_argument(
            "--enable-return-hidden-states",
            action="store_true",
            help="Enable returning hidden states with responses.",
        )
2360
2361
2362
2363
2364
2365
        parser.add_argument(
            "--scheduler-recv-interval",
            type=int,
            default=ServerArgs.scheduler_recv_interval,
            help="The interval to poll requests in scheduler. Can be set to >1 to reduce the overhead of this.",
        )
2366
2367
2368
2369
2370
2371
        parser.add_argument(
            "--numa-node",
            type=int,
            nargs="+",
            help="Sets the numa node for the subprocesses. i-th element corresponds to i-th subprocess.",
        )
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391

        # Debug tensor dumps
        parser.add_argument(
            "--debug-tensor-dump-output-folder",
            type=str,
            default=ServerArgs.debug_tensor_dump_output_folder,
            help="The output folder for dumping tensors.",
        )
        parser.add_argument(
            "--debug-tensor-dump-input-file",
            type=str,
            default=ServerArgs.debug_tensor_dump_input_file,
            help="The input filename for dumping tensors",
        )
        parser.add_argument(
            "--debug-tensor-dump-inject",
            type=str,
            default=ServerArgs.debug_tensor_dump_inject,
            help="Inject the outputs from jax as the input of every layer.",
        )
2392
2393
2394
2395
2396
        parser.add_argument(
            "--debug-tensor-dump-prefill-only",
            action="store_true",
            help="Only dump the tensors for prefill requests (i.e. batch size > 1).",
        )
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
        parser.add_argument(
            "--enable-dynamic-batch-tokenizer",
            action="store_true",
            help="Enable async dynamic batch tokenizer for improved performance when multiple requests arrive concurrently.",
        )
        parser.add_argument(
            "--dynamic-batch-tokenizer-batch-size",
            type=int,
            default=ServerArgs.dynamic_batch_tokenizer_batch_size,
            help="[Only used if --enable-dynamic-batch-tokenizer is set] Maximum batch size for dynamic batch tokenizer.",
        )
        parser.add_argument(
            "--dynamic-batch-tokenizer-batch-timeout",
            type=float,
            default=ServerArgs.dynamic_batch_tokenizer_batch_timeout,
            help="[Only used if --enable-dynamic-batch-tokenizer is set] Timeout in seconds for batching tokenization requests.",
        )
2414

Lianmin Zheng's avatar
Lianmin Zheng committed
2415
        # PD disaggregation
Byron Hsu's avatar
Byron Hsu committed
2416
2417
2418
        parser.add_argument(
            "--disaggregation-mode",
            type=str,
2419
            default=ServerArgs.disaggregation_mode,
Byron Hsu's avatar
Byron Hsu committed
2420
2421
2422
            choices=["null", "prefill", "decode"],
            help='Only used for PD disaggregation. "prefill" for prefill-only server, and "decode" for decode-only server. If not specified, it is not PD disaggregated',
        )
2423
2424
2425
2426
        parser.add_argument(
            "--disaggregation-transfer-backend",
            type=str,
            default=ServerArgs.disaggregation_transfer_backend,
2427
            choices=DISAGG_TRANSFER_BACKEND_CHOICES,
2428
2429
            help="The backend for disaggregation transfer. Default is mooncake.",
        )
2430
2431
2432
2433
2434
2435
        parser.add_argument(
            "--disaggregation-bootstrap-port",
            type=int,
            default=ServerArgs.disaggregation_bootstrap_port,
            help="Bootstrap server port on the prefill server. Default is 8998.",
        )
Byron Hsu's avatar
Byron Hsu committed
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
        parser.add_argument(
            "--disaggregation-decode-tp",
            type=int,
            default=ServerArgs.disaggregation_decode_tp,
            help="Decode tp size. If not set, it matches the tp size of the current engine. This is only set on the prefill server.",
        )
        parser.add_argument(
            "--disaggregation-decode-dp",
            type=int,
            default=ServerArgs.disaggregation_decode_dp,
            help="Decode dp size. If not set, it matches the dp size of the current engine. This is only set on the prefill server.",
        )
        parser.add_argument(
            "--disaggregation-prefill-pp",
            type=int,
            default=ServerArgs.disaggregation_prefill_pp,
            help="Prefill pp size. If not set, it is default to 1. This is only set on the decode server.",
        )
2454
2455
2456
2457
        parser.add_argument(
            "--disaggregation-ib-device",
            type=str,
            default=ServerArgs.disaggregation_ib_device,
2458
2459
2460
            help="The InfiniBand devices for disaggregation transfer, accepts single device (e.g., --disaggregation-ib-device mlx5_0) "
            "or multiple comma-separated devices (e.g., --disaggregation-ib-device mlx5_0,mlx5_1). "
            "Default is None, which triggers automatic device detection when mooncake backend is enabled.",
2461
        )
2462
2463
2464
2465
2466
2467
        parser.add_argument(
            "--num-reserved-decode-tokens",
            type=int,
            default=ServerArgs.num_reserved_decode_tokens,
            help="Number of decode tokens that will have memory reserved when adding new request to the running batch.",
        )
2468
2469
2470
2471
2472
2473
        parser.add_argument(
            "--disaggregation-decode-polling-interval",
            type=int,
            default=ServerArgs.disaggregation_decode_polling_interval,
            help="The interval to poll requests in decode server. Can be set to >1 to reduce the overhead of this.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
2474
2475

        # Custom weight loader
2476
2477
2478
2479
2480
2481
2482
        parser.add_argument(
            "--custom-weight-loader",
            type=str,
            nargs="*",
            default=None,
            help="The custom dataloader which used to update the model. Should be set with a valid import path, such as my_package.weight_load_func",
        )
2483
2484
2485
2486
2487
2488
2489
        parser.add_argument(
            "--weight-loader-disable-mmap",
            action="store_true",
            help="Disable mmap while loading weight using safetensors.",
        )

        # For PD-Multiplexing
2490
2491
2492
2493
2494
        parser.add_argument(
            "--enable-pdmux",
            action="store_true",
            help="Enable PD-Multiplexing, PD running on greenctx stream.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
2495

2496
2497
2498
2499
2500
2501
        parser.add_argument(
            "--sm-group-num",
            type=int,
            default=ServerArgs.sm_group_num,
            help="Number of sm partition groups.",
        )
Byron Hsu's avatar
Byron Hsu committed
2502

2503
2504
2505
2506
2507
2508
2509
        # For deterministic inference
        parser.add_argument(
            "--enable-deterministic-inference",
            action="store_true",
            help="Enable deterministic inference mode with batch invariant ops.",
        )

2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
        # Deprecated arguments
        parser.add_argument(
            "--enable-ep-moe",
            action="store_true",
            help="(Deprecated) Enabling expert parallelism for moe. The ep size is equal to the tp size.",
        )
        parser.add_argument(
            "--enable-deepep-moe",
            action="store_true",
            help="(Deprecated) Enabling DeepEP MoE implementation for EP MoE.",
        )
2521
2522
2523
2524
2525
        parser.add_argument(
            "--enable-flashinfer-cutlass-moe",
            action="store_true",
            help="(Deprecated) Enable FlashInfer CUTLASS MoE backend for modelopt_fp4 quant on Blackwell. Supports MoE-EP",
        )
2526
2527
2528
2529
2530
        parser.add_argument(
            "--enable-flashinfer-cutedsl-moe",
            action="store_true",
            help="(Deprecated) Enable FlashInfer CuteDSL MoE backend for modelopt_fp4 quant on Blackwell. Supports MoE-EP",
        )
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
        parser.add_argument(
            "--enable-flashinfer-trtllm-moe",
            action="store_true",
            help="(Deprecated) Enable FlashInfer TRTLLM MoE backend on Blackwell. Supports BlockScale FP8 MoE-EP",
        )
        parser.add_argument(
            "--enable-triton-kernel-moe",
            action="store_true",
            help="(Deprecated) Use triton moe grouped gemm kernel.",
        )
2541
2542
2543
2544
2545
        parser.add_argument(
            "--enable-flashinfer-mxfp4-moe",
            action="store_true",
            help="(Deprecated) Enable FlashInfer MXFP4 MoE backend for modelopt_fp4 quant on Blackwell.",
        )
2546

Lianmin Zheng's avatar
Lianmin Zheng committed
2547
2548
    @classmethod
    def from_cli_args(cls, args: argparse.Namespace):
2549
        args.tp_size = args.tensor_parallel_size
2550
        args.pp_size = args.pipeline_parallel_size
2551
        args.dp_size = args.data_parallel_size
xiaobochen's avatar
xiaobochen committed
2552
        args.ep_size = args.expert_parallel_size
2553

Lianmin Zheng's avatar
Lianmin Zheng committed
2554
2555
2556
2557
        attrs = [attr.name for attr in dataclasses.fields(cls)]
        return cls(**{attr: getattr(args, attr) for attr in attrs})

    def url(self):
2558
        if is_valid_ipv6_address(self.host):
2559
2560
2561
            return f"http://[{self.host}]:{self.port}"
        else:
            return f"http://{self.host}:{self.port}"
Lianmin Zheng's avatar
Lianmin Zheng committed
2562

Lianmin Zheng's avatar
Lianmin Zheng committed
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
    def get_hf_config(self):
        kwargs = {}
        hf_config = get_config(
            self.model_path,
            trust_remote_code=self.trust_remote_code,
            revision=self.revision,
            model_override_args=json.loads(self.json_model_override_args),
            **kwargs,
        )
        return hf_config

2574
    def check_server_args(self):
2575
        # Check parallel size constraints
2576
        assert (
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
            self.tp_size * self.pp_size
        ) % self.nnodes == 0, "tp_size must be divisible by number of nodes"

        if self.pp_size > 1:
            assert (
                self.disable_overlap_schedule
                and self.speculative_algorithm is None
                and not self.enable_mixed_chunk
            ), "Pipeline parallelism is not compatible with overlap schedule, speculative decoding, mixed chunked prefill."

2587
        assert not (
2588
2589
            self.dp_size > 1 and self.nnodes != 1 and not self.enable_dp_attention
        ), "multi-node data parallel is not supported unless dp attention!"
2590

2591
        assert self.base_gpu_id >= 0, "base_gpu_id must be non-negative"
2592
        assert self.gpu_id_step >= 1, "gpu_id_step must be positive"
2593

Lianmin Zheng's avatar
Lianmin Zheng committed
2594
2595
2596
2597
2598
        assert self.moe_dense_tp_size in {
            1,
            None,
        }, "moe_dense_tp_size only support 1 and None currently"

2599
        # Check LoRA
2600
2601
        self.check_lora_server_args()

2602
2603
2604
2605
2606
2607
2608
        # Check speculative decoding
        if self.speculative_algorithm is not None:
            assert (
                not self.enable_mixed_chunk
            ), "enable_mixed_chunk is required for speculative decoding"

        # Check chunked prefill
2609
        # Skip validation if chunked prefill is disabled (i.e., size <= 0).
2610
2611
        # Skip validation if disaggregation mode is decode.
        if self.chunked_prefill_size > 0 and self.disaggregation_mode != "decode":
2612
2613
2614
            assert (
                self.chunked_prefill_size % self.page_size == 0
            ), "chunked_prefill_size must be divisible by page_size"
2615

2616
2617
        # Check multi tokenizer
        assert self.tokenizer_worker_num > 0, "Tokenizer worker num must >= 1"
2618
2619
2620
2621
2622
2623
        self.validate_buckets_rule(
            "--prompt-tokens-buckets", self.prompt_tokens_buckets
        )
        self.validate_buckets_rule(
            "--generation-tokens-buckets", self.generation_tokens_buckets
        )
2624

2625
2626
2627
2628
2629
2630
2631
        # Check scheduling policy
        if self.enable_priority_scheduling:
            assert self.schedule_policy in [
                "fcfs",
                "lof",
            ], f"To use priority scheduling, schedule_policy must be 'fcfs' or 'lof'. '{self.schedule_policy}' is not supported."

2632
    def check_lora_server_args(self):
2633
        assert self.max_loras_per_batch > 0, "max_loras_per_batch must be positive"
2634

2635
2636
2637
2638
        # Enable LoRA if any LoRA paths are provided for backward compatibility.
        if self.lora_paths:
            if self.enable_lora is None:
                self.enable_lora = True
2639
                logger.warning(
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
                    "--enable-lora is set to True because --lora-paths is provided."
                )
            elif self.enable_lora is False:
                logger.warning(
                    "--enable-lora is set to False, any provided lora_paths will be ignored."
                )

        if self.enable_lora:
            if isinstance(self.lora_paths, list):
                lora_paths = self.lora_paths
2650
                self.lora_paths = []
2651
                for lora_path in lora_paths:
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
                    if isinstance(lora_path, str):
                        if "=" in lora_path:
                            name, path = lora_path.split("=", 1)
                            lora_ref = LoRARef(
                                lora_name=name, lora_path=path, pinned=False
                            )
                        else:
                            lora_ref = LoRARef(
                                lora_name=lora_path, lora_path=lora_path, pinned=False
                            )
                    elif isinstance(lora_path, dict):
                        assert (
                            "lora_name" in lora_path and "lora_path" in lora_path
                        ), f"When providing LoRA paths as a list of dict, each dict should contain 'lora_name' and 'lora_path' keys. Got: {lora_path}"
                        lora_ref = LoRARef(
                            lora_name=lora_path["lora_name"],
                            lora_path=lora_path["lora_path"],
                            pinned=lora_path.get("pinned", False),
2670
                        )
2671
                    else:
2672
2673
2674
                        raise ValueError(
                            f"Invalid type for item in --lora-paths list: {type(lora_path)}. "
                            "Expected a string or a dictionary."
2675
                        )
2676
                    self.lora_paths.append(lora_ref)
2677
            elif isinstance(self.lora_paths, dict):
2678
2679
                self.lora_paths = [
                    LoRARef(lora_name=k, lora_path=v, pinned=False)
2680
                    for k, v in self.lora_paths.items()
2681
                ]
2682
            elif self.lora_paths is None:
2683
                self.lora_paths = []
2684
2685
2686
2687
2688
            else:
                raise ValueError(
                    f"Invalid type for --lora-paths: {type(self.lora_paths)}. "
                    "Expected a list or a dictionary."
                )
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702

            # Expand target modules
            if self.lora_target_modules:
                self.lora_target_modules = set(self.lora_target_modules)
                if "all" in self.lora_target_modules:
                    assert (
                        len(self.lora_target_modules) == 1
                    ), "If 'all' is specified in --lora-target-modules, it should be the only module specified."
                    self.lora_target_modules = set(SUPPORTED_LORA_TARGET_MODULES)

            # Ensure sufficient information is provided for LoRA initialization.
            assert self.lora_paths or (
                self.max_lora_rank and self.lora_target_modules
            ), "When no initial --lora-paths is provided, you need to specify both --max-lora-rank and --lora-target-modules for LoRA initialization."
2703

2704
2705
2706
2707
2708
2709
            # Validate max_loaded_loras
            if self.max_loaded_loras is not None:
                assert self.max_loaded_loras >= self.max_loras_per_batch, (
                    "max_loaded_loras should be greater than or equal to max_loras_per_batch. "
                    f"max_loaded_loras={self.max_loaded_loras}, max_loras_per_batch={self.max_loras_per_batch}"
                )
2710
                assert len(self.lora_paths) <= self.max_loaded_loras, (
2711
2712
2713
2714
                    "The number of LoRA paths should not exceed max_loaded_loras. "
                    f"max_loaded_loras={self.max_loaded_loras}, lora_paths={len(self.lora_paths)}"
                )

Lianmin Zheng's avatar
Lianmin Zheng committed
2715
2716
2717
2718
2719
2720
2721
2722
    def validate_disagg_tp_size(self, prefill_tp: int, decode_tp: int):
        larger_tp = max(decode_tp, prefill_tp)
        smaller_tp = min(decode_tp, prefill_tp)
        assert larger_tp % smaller_tp == 0, (
            "Different tp size is supported only when one tp is multiple of the other. "
            f"decode_tp={decode_tp}, prefill_tp={prefill_tp}"
        )

2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
    def validate_buckets_rule(self, arg_name: str, buckets_rule: List[str]):
        if not buckets_rule:
            return

        assert len(buckets_rule) > 0, f"{arg_name} cannot be empty list"
        rule = buckets_rule[0]
        assert rule in [
            "tse",
            "default",
            "customer",
        ], f"Unsupported {arg_name} rule type: '{rule}'. Must be one of: 'tse', 'default', 'customer'"

        if rule == "tse":
            assert (
                len(buckets_rule) == 4
            ), f"{arg_name} TSE rule requires exactly 4 parameters: ['tse', middle, base, count], got {len(buckets_rule)}"
            try:
                middle = float(buckets_rule[1])
                base = float(buckets_rule[2])
                count = int(buckets_rule[3])
            except (ValueError, IndexError):
                assert (
                    False
                ), f"{arg_name} TSE rule parameters must be: ['tse', <float:middle>, <float:base>, <int:count>]"
            assert base > 1, f"{arg_name} TSE base must be larger than 1, got: {base}"
            assert count > 0, f"{arg_name} TSE count must be positive, got: {count}"
            assert middle > 0, f"{arg_name} TSE middle must be positive, got: {middle}"

        elif rule == "default":
            assert (
                len(buckets_rule) == 1
            ), f"{arg_name} default rule should only have one parameter: ['default'], got {len(buckets_rule)}"

        elif rule == "customer":
            assert (
                len(buckets_rule) >= 2
            ), f"{arg_name} customer rule requires at least one bucket value: ['customer', value1, ...]"
            try:
                bucket_values = [float(x) for x in buckets_rule[1:]]
            except ValueError:
                assert False, f"{arg_name} customer rule bucket values must be numeric"
            assert len(set(bucket_values)) == len(
                bucket_values
            ), f"{arg_name} customer rule bucket values should not contain duplicates"
            assert all(
                val >= 0 for val in bucket_values
            ), f"{arg_name} customer rule bucket values should be non-negative"

2771
2772
2773
2774
2775
    def model_specific_adjustments(self):
        hf_config = self.get_hf_config()
        model_arch = hf_config.architectures[0]
        if model_arch in ["GptOssForCausalLM"]:
            if self.attention_backend is None:
2776
                if is_cuda() and is_sm100_supported():
2777
                    self.attention_backend = "trtllm_mha"
2778
                elif is_cuda() and is_sm90_supported():
2779
2780
2781
                    self.attention_backend = "fa3"
                else:
                    self.attention_backend = "triton"
2782
            supported_backends = ["triton", "trtllm_mha", "fa3"]
2783
2784
2785
            logger.info(
                f"Use {self.attention_backend} as attention backend for GptOssForCausalLM"
            )
2786
2787
2788
            assert (
                self.attention_backend in supported_backends
            ), f"GptOssForCausalLM requires one of {supported_backends} attention backend, but got '{self.attention_backend}'"
2789
2790

            if is_sm100_supported():
2791
2792
2793
2794
2795
                if not self.enable_dp_attention:
                    self.enable_flashinfer_allreduce_fusion = True
                    logger.info(
                        "Enable FlashInfer AllReduce Fusion on sm100 for GptOssForCausalLM"
                    )
2796
2797
2798
2799
2800
2801
2802
            quantization_config = getattr(hf_config, "quantization_config", None)
            is_mxfp4_quant_format = (
                quantization_config is not None
                and quantization_config.get("quant_method") == "mxfp4"
            )

            if is_sm100_supported() and is_mxfp4_quant_format:
2803
                self.moe_runner_backend = "flashinfer_mxfp4"
2804
2805
2806
2807
                logger.warning(
                    "Detected SM100 and MXFP4 quantization format for GPT-OSS model, enabling FlashInfer MXFP4 MOE kernel."
                )
            else:
2808
                if self.moe_runner_backend == "triton_kernel":
2809
2810
2811
                    assert (
                        self.ep_size == 1
                    ), "Triton kernel MoE is only supported when ep_size == 1"
2812
2813
2814
2815
2816
2817
                if (
                    self.moe_runner_backend == "auto"
                    and self.ep_size == 1
                    and is_triton_kernels_available()
                ):
                    self.moe_runner_backend = "triton_kernel"
2818
2819
2820
2821
2822
2823
2824
                    logger.warning(
                        "Detected GPT-OSS model, enabling triton_kernels MOE kernel."
                    )
            self.disable_hybrid_swa_memory = True
            if is_mxfp4_quant_format:
                # use bf16 for mxfp4 triton kernels
                self.dtype = "bfloat16"
2825

2826
        elif "Llama4" in model_arch and self.device != "cpu":
2827
2828
2829
            assert self.attention_backend in {
                "fa3",
                "aiter",
2830
2831
                "triton",
            }, "fa3, aiter, or triton is required for Llama4 model"
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
        elif model_arch in [
            "Gemma2ForCausalLM",
            "Gemma3ForCausalLM",
            "Gemma3ForConditionalGeneration",
            "Gemma3nForCausalLM",
            "Gemma3nForConditionalGeneration",
        ]:
            # FIXME: https://github.com/sgl-project/sglang/pull/7367 is not compatible with gemma2 model.
            # It failed at this test: https://github.com/sgl-project/sglang/actions/runs/16255155597/job/45890331952#step:4:736
            logger.warning(
                f"Disable hybrid SWA memory for {model_arch} as it is not yet supported."
            )
            self.disable_hybrid_swa_memory = True

Lianmin Zheng's avatar
Lianmin Zheng committed
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
    def adjust_mem_fraction_for_vlm(self, model_config):
        vision_config = getattr(model_config.hf_config, "vision_config", None)
        if vision_config is None:
            return

        # roughly reduce the mem_fraction_static base on params of Vit
        original_server_arg_mem_fraction = self.mem_fraction_static
        # a base mem_fraction_static factor for regular Vit
        base_mem_fraction_reduction_ratio = 0.95

        vit_num_layers = getattr(vision_config, "num_hidden_layers", 24)
        vit_hidden_size = getattr(vision_config, "hidden_size", 1024)

        # baseline ViT params (ViT-L/14)
        baseline_vit_layers = 24
        baseline_vit_hidden_size = 1024

        # weight params count
        current_complexity_score = vit_num_layers * (vit_hidden_size**2)
        baseline_complexity_score = baseline_vit_layers * (baseline_vit_hidden_size**2)
        complexity_ratio = (
            current_complexity_score / baseline_complexity_score
            if baseline_complexity_score > 0
            else 1.0
        )

        # every time the complexity grows 100%, adjust final factor for 10%
        sensitivity_scale = 0.1
        dynamic_adjustment_factor = 1.0 - sensitivity_scale * (complexity_ratio - 1.0)
        dynamic_adjustment_factor = max(0.8, min(1.05, dynamic_adjustment_factor))

        final_overall_factor = (
            base_mem_fraction_reduction_ratio * dynamic_adjustment_factor
        )
        self.mem_fraction_static = (
            original_server_arg_mem_fraction * final_overall_factor
        )

Lianmin Zheng's avatar
Lianmin Zheng committed
2884

Lianmin Zheng's avatar
Lianmin Zheng committed
2885
def prepare_server_args(argv: List[str]) -> ServerArgs:
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
    """
    Prepare the server arguments from the command line arguments.

    Args:
        args: The command line arguments. Typically, it should be `sys.argv[1:]`
            to ensure compatibility with `parse_args` when no arguments are passed.

    Returns:
        The server arguments.
    """
    parser = argparse.ArgumentParser()
    ServerArgs.add_cli_args(parser)
Lianmin Zheng's avatar
Lianmin Zheng committed
2898
    raw_args = parser.parse_args(argv)
2899
2900
2901
2902
    server_args = ServerArgs.from_cli_args(raw_args)
    return server_args


2903
2904
2905
ZMQ_TCP_PORT_DELTA = 233


Lianmin Zheng's avatar
Lianmin Zheng committed
2906
2907
@dataclasses.dataclass
class PortArgs:
2908
2909
2910
2911
2912
2913
    # The ipc filename for tokenizer to receive inputs from detokenizer (zmq)
    tokenizer_ipc_name: str
    # The ipc filename for scheduler (rank 0) to receive inputs from tokenizer (zmq)
    scheduler_input_ipc_name: str
    # The ipc filename for detokenizer to receive inputs from scheduler (zmq)
    detokenizer_ipc_name: str
2914

2915
2916
    # The port for nccl initialization (torch.dist)
    nccl_port: int
2917

2918
2919
2920
    # The ipc filename for rpc call between Engine and Scheduler
    rpc_ipc_name: str

2921
2922
2923
    # The ipc filename for Scheduler to send metrics
    metrics_ipc_name: str

2924
2925
2926
    # The ipc filename for Tokenizer and worker tokenizer
    tokenizer_worker_ipc_name: Optional[str]

2927
    @staticmethod
2928
    def init_new(server_args, dp_rank: Optional[int] = None) -> "PortArgs":
2929
        if server_args.nccl_port is None:
Lianmin Zheng's avatar
Lianmin Zheng committed
2930
            nccl_port = server_args.port + random.randint(100, 1000)
2931
            while True:
Lianmin Zheng's avatar
Lianmin Zheng committed
2932
                if is_port_available(nccl_port):
2933
                    break
Lianmin Zheng's avatar
Lianmin Zheng committed
2934
2935
                if nccl_port < 60000:
                    nccl_port += 42
2936
                else:
Lianmin Zheng's avatar
Lianmin Zheng committed
2937
                    nccl_port -= 43
2938
        else:
Lianmin Zheng's avatar
Lianmin Zheng committed
2939
            nccl_port = server_args.nccl_port
2940

2941
2942
2943
2944
2945
2946
        if not server_args.enable_dp_attention:
            # Normal case, use IPC within a single node
            return PortArgs(
                tokenizer_ipc_name=f"ipc://{tempfile.NamedTemporaryFile(delete=False).name}",
                scheduler_input_ipc_name=f"ipc://{tempfile.NamedTemporaryFile(delete=False).name}",
                detokenizer_ipc_name=f"ipc://{tempfile.NamedTemporaryFile(delete=False).name}",
Lianmin Zheng's avatar
Lianmin Zheng committed
2947
                nccl_port=nccl_port,
2948
                rpc_ipc_name=f"ipc://{tempfile.NamedTemporaryFile(delete=False).name}",
2949
                metrics_ipc_name=f"ipc://{tempfile.NamedTemporaryFile(delete=False).name}",
2950
                tokenizer_worker_ipc_name=None,
2951
2952
2953
2954
2955
            )
        else:
            # DP attention. Use TCP + port to handle both single-node and multi-node.
            if server_args.nnodes == 1 and server_args.dist_init_addr is None:
                dist_init_addr = ("127.0.0.1", server_args.port + ZMQ_TCP_PORT_DELTA)
Vincent's avatar
Vincent committed
2956
2957
2958
            elif server_args.dist_init_addr.startswith("["):  # ipv6 address
                port_num, host = configure_ipv6(server_args.dist_init_addr)
                dist_init_addr = (host, str(port_num))
2959
2960
            else:
                dist_init_addr = server_args.dist_init_addr.split(":")
Vincent's avatar
Vincent committed
2961

2962
2963
2964
2965
2966
2967
            assert (
                len(dist_init_addr) == 2
            ), "please provide --dist-init-addr as host:port of head node"

            dist_init_host, dist_init_port = dist_init_addr
            port_base = int(dist_init_port) + 1
2968
2969
2970
            detokenizer_port = port_base + 1
            rpc_port = port_base + 2
            metrics_ipc_name = port_base + 3
2971
            if dp_rank is None:
2972
                # TokenizerManager to DataParallelController
2973
                scheduler_input_port = port_base + 4
2974
            else:
2975
                scheduler_input_port = port_base + 4 + 1 + dp_rank
2976
2977
2978
2979

            return PortArgs(
                tokenizer_ipc_name=f"tcp://{dist_init_host}:{port_base}",
                scheduler_input_ipc_name=f"tcp://{dist_init_host}:{scheduler_input_port}",
2980
                detokenizer_ipc_name=f"tcp://{dist_init_host}:{detokenizer_port}",
Lianmin Zheng's avatar
Lianmin Zheng committed
2981
                nccl_port=nccl_port,
2982
2983
                rpc_ipc_name=f"tcp://{dist_init_host}:{rpc_port}",
                metrics_ipc_name=f"tcp://{dist_init_host}:{metrics_ipc_name}",
2984
                tokenizer_worker_ipc_name=None,
2985
            )
2986

2987
2988
2989

class LoRAPathAction(argparse.Action):
    def __call__(self, parser, namespace, values, option_string=None):
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
        lora_paths = []
        if values:
            assert isinstance(values, list), "Expected a list of LoRA paths."
            for lora_path in values:
                lora_path = lora_path.strip()
                if lora_path.startswith("{") and lora_path.endswith("}"):
                    obj = json.loads(lora_path)
                    assert "lora_path" in obj and "lora_name" in obj, (
                        f"{repr(lora_path)} looks like a JSON str, "
                        "but it does not contain 'lora_name' and 'lora_path' keys."
                    )
                    lora_paths.append(obj)
                else:
                    lora_paths.append(lora_path)

        setattr(namespace, self.dest, lora_paths)
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015


class DeprecatedAction(argparse.Action):
    def __init__(self, option_strings, dest, nargs=0, **kwargs):
        super(DeprecatedAction, self).__init__(
            option_strings, dest, nargs=nargs, **kwargs
        )

    def __call__(self, parser, namespace, values, option_string=None):
        raise ValueError(self.help)
3016
3017


3018
3019
3020
3021
def print_deprecated_warning(message: str):
    logger.warning(f"\033[33m{message}\033[0m")


3022
def auto_choose_speculative_params(self: ServerArgs):
3023
3024
3025
3026
3027
    """
    Automatically choose the parameters for speculative decoding.

    You can tune them on your own models and prompts with scripts/playground/bench_speculative.py
    """
Lianmin Zheng's avatar
Lianmin Zheng committed
3028
    hf_config = self.get_hf_config()
3029
    arch = hf_config.architectures[0]
3030
3031
3032
    if self.speculative_algorithm == "STANDALONE":
        # The default value for standalone speculative decoding
        return (3, 1, 4)
3033
3034
3035
    if arch in ["LlamaForCausalLM"]:
        # The default value for llama
        return (5, 4, 8)
3036
3037
3038
3039
    elif arch in [
        "DeepseekV3ForCausalLM",
        "DeepseekV2ForCausalLM",
        "GptOssForCausalLM",
strgrb's avatar
strgrb committed
3040
3041
        "BailingMoeForCausalLM",
        "BailingMoeV2ForCausalLM",
3042
3043
    ]:
        # The default value for deepseek and gpt-oss
3044
        return (3, 1, 4)
3045
3046
3047
3048
3049
    elif arch in ["Grok1ForCausalLM", "Grok1VForCausalLM"]:
        return (5, 4, 8)
    else:
        # The default value for all other models
        return (5, 4, 8)