Unverified Commit 9a5c42f9 authored by yuk.igalaxy's avatar yuk.igalaxy Committed by GitHub
Browse files

feat: Add FlexAttention Backend for Efficient Sparse Attention (#9947)


Co-authored-by: default avatarBaizhou Zhang <sobereddiezhang@gmail.com>
parent 388c05d5
from __future__ import annotations
from typing import TYPE_CHECKING
import torch
from torch.nn.attention.flex_attention import create_block_mask, flex_attention
from sglang.srt.layers.attention.base_attn_backend import AttentionBackend
from sglang.srt.layers.radix_attention import AttentionType
from sglang.srt.model_executor.forward_batch_info import ForwardBatch
if TYPE_CHECKING:
from sglang.srt.layers.radix_attention import RadixAttention
from sglang.srt.model_executor.model_runner import ModelRunner
class TorchFlexAttnBackend(AttentionBackend):
def __init__(self, model_runner: ModelRunner):
super().__init__()
self.forward_metadata = None
self.device = model_runner.device
self.flex_attention = torch.compile(flex_attention, dynamic=True)
torch._dynamo.config.cache_size_limit = 1024
torch._dynamo.config.accumulated_cache_size_limit = 1024
def init_forward_metadata(self, forward_batch: ForwardBatch):
"""Init the metadata for a forward pass."""
# TODO: find a more elegant way to save memory
# Currently maintain the same memory as torch_native_backend
torch.cuda.empty_cache()
# Provide two block_mask Lists per seq_idx for lower latency, later will support per layer level mask generation
self.extend_block_masks = []
self.decode_block_masks = []
if forward_batch.forward_mode.is_extend():
for seq_idx in range(forward_batch.seq_lens.shape[0]):
seq_len_kv = forward_batch.seq_lens[seq_idx]
seq_len_q = seq_len_kv
self.extend_block_masks.append(
create_block_mask(
self._causal_mask,
None,
None,
seq_len_q,
seq_len_kv,
device=self.device,
_compile=False,
)
)
elif forward_batch.forward_mode.is_decode():
for seq_idx in range(forward_batch.seq_lens.shape[0]):
seq_len_q = 1
seq_len_kv = forward_batch.seq_lens[seq_idx]
self.decode_block_masks.append(
create_block_mask(
self._decode_mask,
None,
None,
seq_len_q,
seq_len_kv,
device=self.device,
_compile=False,
)
)
def _causal_mask(self, b, h, q_idx, kv_idx):
return q_idx >= kv_idx
def _decode_mask(self, b, h, q_idx, kv_idx):
return q_idx <= kv_idx
def _run_flex_forward_extend(
self,
query: torch.Tensor,
output: torch.Tensor,
k_cache: torch.Tensor,
v_cache: torch.Tensor,
req_to_token: torch.Tensor,
req_pool_indices: torch.Tensor,
seq_lens: torch.Tensor,
extend_prefix_lens: torch.Tensor,
extend_seq_lens: torch.Tensor,
scaling=None,
enable_gqa=False,
causal=False,
):
"""Run the extend forward by using torch flex attention op.
Args:
query: [num_tokens, num_heads, head_size]
output: [num_tokens, num_heads, head_size]
k_cache: [max_total_num_tokens, num_heads, head_size]
v_cache: [max_total_num_tokens, num_heads, head_size]
req_to_token: [max_num_reqs, max_context_len]
req_pool_indices: [num_seqs]
seq_lens: [num_seqs]
extend_prefix_lens: [num_seqs]
extend_seq_lens: [num_seqs]
scaling: float or None
enable_gqa: bool
causal: bool
Returns:
output: [num_tokens, num_heads, head_size]
"""
assert seq_lens.shape[0] == extend_prefix_lens.shape[0]
assert seq_lens.shape[0] == extend_seq_lens.shape[0]
# [num_tokens, num_heads, head_size] -> [num_heads, num_tokens, head_size]
query = query.movedim(0, query.dim() - 2)
start_q, start_kv = 0, 0
for seq_idx in range(seq_lens.shape[0]):
# TODO: this loop process a sequence per iter, this is inefficient.
# Need optimize the performance later.
extend_seq_len_q = extend_seq_lens[seq_idx]
prefill_seq_len_q = extend_prefix_lens[seq_idx]
seq_len_kv = seq_lens[seq_idx]
end_q = start_q + extend_seq_len_q
end_kv = start_kv + seq_len_kv
per_req_query = query[:, start_q:end_q, :]
per_req_query_redundant = torch.empty(
(per_req_query.shape[0], seq_len_kv, per_req_query.shape[2]),
dtype=per_req_query.dtype,
device=per_req_query.device,
)
per_req_query_redundant[:, prefill_seq_len_q:, :] = per_req_query
# get key and value from cache. per_req_tokens contains the kv cache
# index for each token in the sequence.
req_pool_idx = req_pool_indices[seq_idx]
per_req_tokens = req_to_token[req_pool_idx, :seq_len_kv]
per_req_key = k_cache[per_req_tokens].movedim(0, query.dim() - 2)
per_req_value = v_cache[per_req_tokens].movedim(0, query.dim() - 2)
if not causal:
raise NotImplementedError("Non-causal mode is not yet implemented.")
per_req_out_redundant = (
self.flex_attention(
per_req_query_redundant.unsqueeze(0),
per_req_key.unsqueeze(0),
per_req_value.unsqueeze(0),
block_mask=self.extend_block_masks[seq_idx],
scale=scaling,
enable_gqa=enable_gqa,
)
.squeeze(0)
.movedim(query.dim() - 2, 0)
)
output[start_q:end_q, :, :] = per_req_out_redundant[
prefill_seq_len_q:, :, :
]
start_q, start_kv = end_q, end_kv
return output
def _run_flex_forward_decode(
self,
query: torch.Tensor,
output: torch.Tensor,
k_cache: torch.Tensor,
v_cache: torch.Tensor,
req_to_token: torch.Tensor,
req_pool_indices: torch.Tensor,
seq_lens: torch.Tensor,
scaling=None,
enable_gqa=False,
causal=False,
):
"""Run the decode forward by using torch flex attention op.
Args:
query: [num_tokens, num_heads, head_size]
output: [num_tokens, num_heads, head_size]
k_cache: [max_total_num_tokens, num_heads, head_size]
v_cache: [max_total_num_tokens, num_heads, head_size]
req_to_token: [max_num_reqs, max_context_len]
req_pool_indices: [num_seqs]
seq_lens: [num_seqs]
scaling: float or None
enable_gqa: bool
causal: bool
Returns:
output: [num_tokens, num_heads, head_size]
"""
# [num_tokens, num_heads, head_size] -> [num_heads, num_tokens, head_size]
query = query.movedim(0, query.dim() - 2)
start_q, start_kv = 0, 0
for seq_idx in range(seq_lens.shape[0]):
# TODO: this loop process a sequence per iter, this is inefficient.
# Need optimize the performance later.
seq_len_q = 1
seq_len_kv = seq_lens[seq_idx]
end_q = start_q + seq_len_q
end_kv = start_kv + seq_len_kv
per_req_query = query[:, start_q:end_q, :]
# get key and value from cache. per_req_tokens contains the kv cache
# index for each token in the sequence.
req_pool_idx = req_pool_indices[seq_idx]
per_req_tokens = req_to_token[req_pool_idx, :seq_len_kv]
per_req_key = k_cache[per_req_tokens].movedim(0, query.dim() - 2)
per_req_value = v_cache[per_req_tokens].movedim(0, query.dim() - 2)
per_req_out = (
self.flex_attention(
per_req_query.unsqueeze(0),
per_req_key.unsqueeze(0),
per_req_value.unsqueeze(0),
block_mask=self.decode_block_masks[seq_idx],
scale=scaling,
enable_gqa=enable_gqa,
)
.squeeze(0)
.movedim(query.dim() - 2, 0)
)
output[start_q:end_q, :, :] = per_req_out
start_q, start_kv = end_q, end_kv
return output
def forward_extend(
self,
q,
k,
v,
layer: RadixAttention,
forward_batch: ForwardBatch,
save_kv_cache=True,
):
if layer.qk_head_dim != layer.v_head_dim:
o = q.new_empty((q.shape[0], layer.tp_q_head_num * layer.v_head_dim))
else:
o = torch.empty_like(q)
if save_kv_cache:
forward_batch.token_to_kv_pool.set_kv_buffer(
layer, forward_batch.out_cache_loc, k, v
)
use_gqa = layer.tp_q_head_num != layer.tp_k_head_num
q_ = q.view(-1, layer.tp_q_head_num, layer.qk_head_dim)
o_ = o.view(-1, layer.tp_q_head_num, layer.v_head_dim)
causal = True
if layer.is_cross_attention or layer.attn_type == AttentionType.ENCODER_ONLY:
raise NotImplementedError(
"TorchFlexAttnBackend does not support non-causal attention for now."
)
self._run_flex_forward_extend(
q_,
o_,
forward_batch.token_to_kv_pool.get_key_buffer(layer.layer_id),
forward_batch.token_to_kv_pool.get_value_buffer(layer.layer_id),
forward_batch.req_to_token_pool.req_to_token,
forward_batch.req_pool_indices,
forward_batch.seq_lens,
forward_batch.extend_prefix_lens,
forward_batch.extend_seq_lens,
scaling=layer.scaling,
enable_gqa=use_gqa,
causal=causal,
)
return o
def forward_decode(
self,
q,
k,
v,
layer: RadixAttention,
forward_batch: ForwardBatch,
save_kv_cache=True,
):
# During torch.compile, there is a bug in rotary_emb that causes the
# output value to have a 3D tensor shape. This reshapes the output correctly.
q = q.reshape(-1, layer.tp_q_head_num * layer.qk_head_dim)
if layer.qk_head_dim != layer.v_head_dim:
o = q.new_empty((q.shape[0], layer.tp_q_head_num * layer.v_head_dim))
else:
o = torch.empty_like(q)
if save_kv_cache:
forward_batch.token_to_kv_pool.set_kv_buffer(
layer, forward_batch.out_cache_loc, k, v
)
use_gqa = layer.tp_q_head_num != layer.tp_k_head_num
q_ = q.view(-1, layer.tp_q_head_num, layer.qk_head_dim)
o_ = o.view(-1, layer.tp_q_head_num, layer.v_head_dim)
self._run_flex_forward_decode(
q_,
o_,
forward_batch.token_to_kv_pool.get_key_buffer(layer.layer_id),
forward_batch.token_to_kv_pool.get_value_buffer(layer.layer_id),
forward_batch.req_to_token_pool.req_to_token,
forward_batch.req_pool_indices,
forward_batch.seq_lens,
scaling=layer.scaling,
enable_gqa=use_gqa,
causal=False,
)
return o
def support_triton(self):
return False
......@@ -1786,6 +1786,12 @@ class ModelRunner:
)
return TorchNativeAttnBackend(self)
elif backend_str == "flex_attention":
from sglang.srt.layers.attention.torch_flex_backend import (
TorchFlexAttnBackend,
)
return TorchFlexAttnBackend(self)
elif backend_str == "flashmla":
from sglang.srt.layers.attention.flashmla_backend import FlashMLABackend
......
......@@ -93,6 +93,7 @@ ATTENTION_BACKEND_CHOICES = [
# Common
"triton",
"torch_native",
"flex_attention",
# NVIDIA specific
"cutlass_mla",
"fa3",
......@@ -592,6 +593,15 @@ class ServerArgs:
)
self.disable_cuda_graph = True
if self.attention_backend == "flex_attention":
logger.warning(
"Cuda graph is disabled because of using torch Flex Attention backend"
)
self.disable_cuda_graph = True
assert (
self.speculative_algorithm is None
), "Speculative decoding is currently not supported with Flex Attention backend"
if is_npu() and self.attention_backend in ["ascend", "hybrid_linear_attn"]:
logger.warning(
"At this moment Ascend attention backend only supports a page_size of 128, change page_size to 128."
......
"""
Usage:
python3 -m unittest test_torch_flex_attention_backend.TestTorchFlexAttnBackend.test_gsm8k
"""
import unittest
from types import SimpleNamespace
from sglang.srt.utils import kill_process_tree
from sglang.test.few_shot_gsm8k import run_eval as run_eval_few_shot_gsm8k
from sglang.test.test_utils import (
DEFAULT_MODEL_NAME_FOR_TEST,
DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
DEFAULT_URL_FOR_TEST,
CustomTestCase,
popen_launch_server,
)
class TestTorchFlexAttnBackend(CustomTestCase):
def test_gsm8k(self):
model = DEFAULT_MODEL_NAME_FOR_TEST
base_url = DEFAULT_URL_FOR_TEST
process = popen_launch_server(
model,
base_url,
timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
other_args=["--attention-backend", "flex_attention"],
)
try:
args = SimpleNamespace(
num_shots=8,
data_path=None,
num_questions=100,
parallel=10,
max_new_tokens=512,
host="http://127.0.0.1",
port=int(base_url.split(":")[-1]),
)
metrics = run_eval_few_shot_gsm8k(args)
print(f"{metrics=}")
self.assertGreater(metrics["accuracy"], 0.62)
finally:
kill_process_tree(process.pid)
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment