"examples/vscode:/vscode.git/clone" did not exist on "d49e6e454eca30912b06f0af7e2d5357afe430ec"
server_args.py 129 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
Lianmin Zheng's avatar
Lianmin Zheng committed
14
15
"""The arguments of the server."""

Lianmin Zheng's avatar
Lianmin Zheng committed
16
17
import argparse
import dataclasses
18
import json
19
import logging
20
import os
21
import random
22
import tempfile
23
from typing import List, Literal, Optional, Union
Lianmin Zheng's avatar
Lianmin Zheng committed
24

25
from sglang.srt.connector import ConnectorType
26
from sglang.srt.function_call.function_call_parser import FunctionCallParser
27
from sglang.srt.hf_transformers_utils import check_gguf_file, get_config
28
from sglang.srt.lora.lora_registry import LoRARef
29
from sglang.srt.parser.reasoning_parser import ReasoningParser
30
from sglang.srt.utils import (
31
32
    LORA_TARGET_ALL_MODULES,
    SUPPORTED_LORA_TARGET_MODULES,
Vincent's avatar
Vincent committed
33
    configure_ipv6,
34
    get_device,
Lianmin Zheng's avatar
Lianmin Zheng committed
35
    get_device_memory_capacity,
36
    is_cuda,
37
    is_flashinfer_available,
HAI's avatar
HAI committed
38
    is_hip,
39
    is_npu,
40
    is_port_available,
41
    is_remote_url,
42
43
    is_sm90_supported,
    is_sm100_supported,
44
    is_triton_kernels_available,
45
    is_valid_ipv6_address,
46
    json_list_type,
bjmsong's avatar
bjmsong committed
47
    nullable_str,
48
    parse_connector_type,
49
)
50
from sglang.utils import is_in_ci
51

52
53
logger = logging.getLogger(__name__)

Lianmin Zheng's avatar
Lianmin Zheng committed
54

55
56
57
58
59
60
61
62
63
64
65
66
# Define constants
LOAD_FORMAT_CHOICES = [
    "auto",
    "pt",
    "safetensors",
    "npcache",
    "dummy",
    "sharded_state",
    "gguf",
    "bitsandbytes",
    "layered",
    "remote",
67
    "remote_instance",
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
]

QUANTIZATION_CHOICES = [
    "awq",
    "fp8",
    "gptq",
    "marlin",
    "gptq_marlin",
    "awq_marlin",
    "bitsandbytes",
    "gguf",
    "modelopt",
    "modelopt_fp4",
    "petit_nvfp4",
    "w8a8_int8",
    "w8a8_fp8",
    "moe_wna16",
    "qoq",
    "w4afp8",
    "mxfp4",
]

ATTENTION_BACKEND_CHOICES = [
    # Common
    "triton",
    "torch_native",
94
    "flex_attention",
95
96
97
    # NVIDIA specific
    "cutlass_mla",
    "fa3",
98
    "fa4",
99
100
101
102
103
    "flashinfer",
    "flashmla",
    "trtllm_mla",
    "trtllm_mha",
    "dual_chunk_flash_attn",
Yi Zhang's avatar
Yi Zhang committed
104
    "hybrid_linear_attn",
105
106
107
108
109
110
111
112
    # AMD specific
    "aiter",
    "wave",
    # Other platforms
    "intel_amx",
    "ascend",
]

113
114
LORA_BACKEND_CHOICES = ["triton", "csgmv"]

115
116
DISAGG_TRANSFER_BACKEND_CHOICES = ["mooncake", "nixl", "ascend", "fake"]

117
118
GRAMMAR_BACKEND_CHOICES = ["xgrammar", "outlines", "llguidance", "none"]

119
DETERMINISTIC_ATTENTION_BACKEND_CHOICES = ["flashinfer", "fa3", "triton"]
120

121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138

# Allow external code to add more choices
def add_load_format_choices(choices):
    LOAD_FORMAT_CHOICES.extend(choices)


def add_quantization_method_choices(choices):
    QUANTIZATION_CHOICES.extend(choices)


def add_attention_backend_choices(choices):
    ATTENTION_BACKEND_CHOICES.extend(choices)


def add_disagg_transfer_backend_choices(choices):
    DISAGG_TRANSFER_BACKEND_CHOICES.extend(choices)


139
140
141
142
def add_grammar_backend_choices(choices):
    GRAMMAR_BACKEND_CHOICES.extend(choices)


Lianmin Zheng's avatar
Lianmin Zheng committed
143
144
@dataclasses.dataclass
class ServerArgs:
Lianmin Zheng's avatar
Lianmin Zheng committed
145
    # Model and tokenizer
Lianmin Zheng's avatar
Lianmin Zheng committed
146
147
148
    model_path: str
    tokenizer_path: Optional[str] = None
    tokenizer_mode: str = "auto"
149
    tokenizer_worker_num: int = 1
150
    skip_tokenizer_init: bool = False
Lianmin Zheng's avatar
Lianmin Zheng committed
151
    load_format: str = "auto"
152
    model_loader_extra_config: str = "{}"
153
    trust_remote_code: bool = False
154
    context_length: Optional[int] = None
155
    is_embedding: bool = False
156
    enable_multimodal: Optional[bool] = None
157
    revision: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
158
    model_impl: str = "auto"
Lianmin Zheng's avatar
Lianmin Zheng committed
159

Lianmin Zheng's avatar
Lianmin Zheng committed
160
    # HTTP server
Lianmin Zheng's avatar
Lianmin Zheng committed
161
162
    host: str = "127.0.0.1"
    port: int = 30000
Lianmin Zheng's avatar
Lianmin Zheng committed
163
164
    skip_server_warmup: bool = False
    warmups: Optional[str] = None
165
    nccl_port: Optional[int] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
166

Lianmin Zheng's avatar
Lianmin Zheng committed
167
168
169
170
171
172
    # Quantization and data type
    dtype: str = "auto"
    quantization: Optional[str] = None
    quantization_param_path: Optional[str] = None
    kv_cache_dtype: str = "auto"

Lianmin Zheng's avatar
Lianmin Zheng committed
173
    # Memory and scheduling
Lianmin Zheng's avatar
Lianmin Zheng committed
174
    mem_fraction_static: Optional[float] = None
175
    max_running_requests: Optional[int] = None
176
    max_queued_requests: Optional[int] = None
177
    max_total_tokens: Optional[int] = None
178
    chunked_prefill_size: Optional[int] = None
179
    max_prefill_tokens: int = 16384
180
    schedule_policy: str = "fcfs"
181
182
183
    enable_priority_scheduling: bool = False
    schedule_low_priority_values_first: bool = False
    priority_scheduling_preemption_threshold: int = 10
184
    schedule_conservativeness: float = 1.0
185
    page_size: Optional[int] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
186
187
188
    hybrid_kvcache_ratio: Optional[float] = None
    swa_full_tokens_ratio: float = 0.8
    disable_hybrid_swa_memory: bool = False
189
    radix_eviction_policy: str = "lru"
Lianmin Zheng's avatar
Lianmin Zheng committed
190

Lianmin Zheng's avatar
Lianmin Zheng committed
191
192
    # Runtime options
    device: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
193
    tp_size: int = 1
194
195
    pp_size: int = 1
    max_micro_batch_size: Optional[int] = None
196
    stream_interval: int = 1
197
    stream_output: bool = False
198
    random_seed: Optional[int] = None
199
    constrained_json_whitespace_pattern: Optional[str] = None
200
    watchdog_timeout: float = 300
201
    dist_timeout: Optional[int] = None  # timeout for torch.distributed
202
    download_dir: Optional[str] = None
203
    base_gpu_id: int = 0
204
    gpu_id_step: int = 1
205
    sleep_on_idle: bool = False
Lianmin Zheng's avatar
Lianmin Zheng committed
206
207
208

    # Logging
    log_level: str = "info"
209
    log_level_http: Optional[str] = None
210
    log_requests: bool = False
211
    log_requests_level: int = 2
212
    crash_dump_folder: Optional[str] = None
Liangsheng Yin's avatar
Liangsheng Yin committed
213
    show_time_cost: bool = False
214
    enable_metrics: bool = False
215
    enable_metrics_for_all_schedulers: bool = False
216
217
    tokenizer_metrics_custom_labels_header: str = "x-custom-labels"
    tokenizer_metrics_allowed_custom_labels: Optional[List[str]] = None
218
219
    bucket_time_to_first_token: Optional[List[float]] = None
    bucket_inter_token_latency: Optional[List[float]] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
220
    bucket_e2e_request_latency: Optional[List[float]] = None
221
    collect_tokens_histogram: bool = False
222
223
    prompt_tokens_buckets: Optional[List[str]] = None
    generation_tokens_buckets: Optional[List[str]] = None
224
    decode_log_interval: int = 40
225
    enable_request_time_stats_logging: bool = False
226
    kv_events_config: Optional[str] = None
227
    gc_warning_threshold_secs: float = 0.0
228
229
    enable_trace: bool = False
    oltp_traces_endpoint: str = "localhost:4317"
Liangsheng Yin's avatar
Liangsheng Yin committed
230

231
    # API related
232
    api_key: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
233
    served_model_name: Optional[str] = None
234
    weight_version: str = "default"
Lianmin Zheng's avatar
Lianmin Zheng committed
235
236
    chat_template: Optional[str] = None
    completion_template: Optional[str] = None
237
    file_storage_path: str = "sglang_storage"
238
    enable_cache_report: bool = False
Xihuai Wang's avatar
Xihuai Wang committed
239
    reasoning_parser: Optional[str] = None
240
    tool_call_parser: Optional[str] = None
241
    tool_server: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
242

243
244
245
    # Data parallelism
    dp_size: int = 1
    load_balance_method: str = "round_robin"
246
    load_watch_interval: float = 0.1
247
248
    # FIXME: remove this after dp rank scheduling is fully supported with PD-Disaggregation
    prefill_round_robin_balance: bool = False
249

250
    # Multi-node distributed serving
251
    dist_init_addr: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
252
    nnodes: int = 1
253
    node_rank: int = 0
Lianmin Zheng's avatar
Lianmin Zheng committed
254
255
256

    # Model override args in JSON
    json_model_override_args: str = "{}"
257
    preferred_sampling_params: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
258

259
    # LoRA
260
    enable_lora: Optional[bool] = None
261
    max_lora_rank: Optional[int] = None
262
    lora_target_modules: Optional[Union[set[str], List[str]]] = None
263
264
265
    lora_paths: Optional[
        Union[dict[str, str], List[dict[str, str]], List[str], List[LoRARef]]
    ] = None
266
    max_loaded_loras: Optional[int] = None
267
    max_loras_per_batch: int = 8
268
    lora_backend: str = "triton"
269
    max_lora_chunk_size: Optional[int] = 16
270
271

    # Kernel backend
272
    attention_backend: Optional[str] = None
273
274
    decode_attention_backend: Optional[str] = None
    prefill_attention_backend: Optional[str] = None
275
    sampling_backend: Optional[str] = None
276
    grammar_backend: Optional[str] = None
277
    mm_attention_backend: Optional[str] = None
278

279
280
    # Speculative decoding
    speculative_algorithm: Optional[str] = None
281
    speculative_draft_model_path: Optional[str] = None
282
    speculative_draft_model_revision: Optional[str] = None
283
284
285
    speculative_num_steps: Optional[int] = None
    speculative_eagle_topk: Optional[int] = None
    speculative_num_draft_tokens: Optional[int] = None
286
287
    speculative_accept_threshold_single: float = 1.0
    speculative_accept_threshold_acc: float = 1.0
288
    speculative_token_map: Optional[str] = None
289
    speculative_attention_mode: str = "prefill"
290
291
292
293
294
295
296
297
    # For lookahead only
    speculative_lookahead_min_match_window_size: int = 1
    speculative_lookahead_max_match_window_size: int = 12
    speculative_lookahead_min_bfs_breadth: int = 1
    speculative_lookahead_max_bfs_breadth: int = 10
    speculative_lookahead_match_type: Literal["BFS", "PROB"] = "BFS"
    speculative_lookahead_branch_length: int = 18
    speculative_lookahead_capacity: int = 10 * 1000 * 1000
298

299
300
    # Expert parallelism
    ep_size: int = 1
301
302
303
304
305
306
307
308
309
    moe_a2a_backend: Literal["none", "deepep"] = "none"
    moe_runner_backend: Literal[
        "auto",
        "triton",
        "triton_kernel",
        "flashinfer_trtllm",
        "flashinfer_cutlass",
        "flashinfer_mxfp4",
    ] = "auto"
310
    flashinfer_mxfp4_moe_precision: Literal["default", "bf16"] = "default"
311
    enable_flashinfer_allreduce_fusion: bool = False
312
    deepep_mode: Literal["auto", "normal", "low_latency"] = "auto"
313
314
315
316
317
318
319
    ep_num_redundant_experts: int = 0
    ep_dispatch_algorithm: Optional[Literal["static", "dynamic", "fake"]] = None
    init_expert_location: str = "trivial"
    enable_eplb: bool = False
    eplb_algorithm: str = "auto"
    eplb_rebalance_num_iterations: int = 1000
    eplb_rebalance_layers_per_chunk: Optional[int] = None
320
    eplb_min_rebalancing_utilization_threshold: float = 1.0
321
322
323
324
325
326
327
328
    expert_distribution_recorder_mode: Optional[
        Literal["stat", "stat_approx", "per_pass", "per_token"]
    ] = None
    expert_distribution_recorder_buffer_size: Optional[int] = None
    enable_expert_distribution_metrics: bool = False
    deepep_config: Optional[str] = None
    moe_dense_tp_size: Optional[int] = None

Lianmin Zheng's avatar
Lianmin Zheng committed
329
330
331
332
    # Mamba cache
    max_mamba_cache_size: Optional[int] = None
    mamba_ssm_dtype: str = "float32"

Lianmin Zheng's avatar
Lianmin Zheng committed
333
334
335
336
    # Hierarchical cache
    enable_hierarchical_cache: bool = False
    hicache_ratio: float = 2.0
    hicache_size: int = 0
337
    hicache_write_policy: str = "write_through"
338
339
    hicache_io_backend: str = "kernel"
    hicache_mem_layout: str = "layer_first"
Lianmin Zheng's avatar
Lianmin Zheng committed
340
    hicache_storage_backend: Optional[str] = None
pansicheng's avatar
pansicheng committed
341
    hicache_storage_prefetch_policy: str = "best_effort"
342
    hicache_storage_backend_extra_config: Optional[str] = None
343
344
    # LMCache
    enable_lmcache: bool = False
Lianmin Zheng's avatar
Lianmin Zheng committed
345

346
347
    # Double Sparsity
    enable_double_sparsity: bool = False
Vincent's avatar
Vincent committed
348
    ds_channel_config_path: Optional[str] = None
349
350
351
352
353
    ds_heavy_channel_num: int = 32
    ds_heavy_token_num: int = 256
    ds_heavy_channel_type: str = "qk"
    ds_sparse_decode_threshold: int = 4096

fzyzcjy's avatar
fzyzcjy committed
354
355
356
357
358
359
360
    # Offloading
    cpu_offload_gb: int = 0
    offload_group_size: int = -1
    offload_num_in_group: int = 1
    offload_prefetch_step: int = 1
    offload_mode: str = "cpu"

361
    # Optimization/debug options
Lianmin Zheng's avatar
Lianmin Zheng committed
362
    disable_radix_cache: bool = False
363
364
    cuda_graph_max_bs: Optional[int] = None
    cuda_graph_bs: Optional[List[int]] = None
365
    disable_cuda_graph: bool = False
366
    disable_cuda_graph_padding: bool = False
367
    enable_profile_cuda_graph: bool = False
368
    enable_cudagraph_gc: bool = False
369
    enable_nccl_nvls: bool = False
370
    enable_symm_mem: bool = False
371
    disable_flashinfer_cutlass_moe_fp4_allgather: bool = False
372
    enable_tokenizer_batch_encode: bool = False
373
    disable_outlines_disk_cache: bool = False
374
    disable_custom_all_reduce: bool = False
375
    enable_mscclpp: bool = False
376
    disable_overlap_schedule: bool = False
377
    enable_mixed_chunk: bool = False
Ke Bao's avatar
Ke Bao committed
378
    enable_dp_attention: bool = False
379
    enable_dp_lm_head: bool = False
380
    enable_two_batch_overlap: bool = False
381
    tbo_token_distribution_threshold: float = 0.48
382
    enable_torch_compile: bool = False
383
    torch_compile_max_bs: int = 32
384
    torchao_config: str = ""
385
    enable_nan_detection: bool = False
386
    enable_p2p_check: bool = False
387
    triton_attention_reduce_in_fp32: bool = False
388
    triton_attention_num_kv_splits: int = 8
389
    triton_attention_split_tile_size: Optional[int] = None
390
    num_continuous_decode_steps: int = 1
391
    delete_ckpt_after_loading: bool = False
392
    enable_memory_saver: bool = False
393
    allow_auto_truncate: bool = False
394
    enable_custom_logit_processor: bool = False
395
    flashinfer_mla_disable_ragged: bool = False
396
    disable_shared_experts_fusion: bool = False
397
    disable_chunked_prefix_cache: bool = False
Lianmin Zheng's avatar
Lianmin Zheng committed
398
    disable_fast_image_processor: bool = False
399
    keep_mm_feature_on_device: bool = False
400
    enable_return_hidden_states: bool = False
401
    scheduler_recv_interval: int = 1
402
    numa_node: Optional[List[int]] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
403
    enable_deterministic_inference: bool = False
404

405
406
407
408
409
    # Dynamic batch tokenizer
    enable_dynamic_batch_tokenizer: bool = False
    dynamic_batch_tokenizer_batch_size: int = 32
    dynamic_batch_tokenizer_batch_timeout: float = 0.002

410
411
412
413
    # Debug tensor dumps
    debug_tensor_dump_output_folder: Optional[str] = None
    debug_tensor_dump_input_file: Optional[str] = None
    debug_tensor_dump_inject: bool = False
414
    debug_tensor_dump_prefill_only: bool = False
415

Lianmin Zheng's avatar
Lianmin Zheng committed
416
    # PD disaggregation: can be "null" (not disaggregated), "prefill" (prefill-only), or "decode" (decode-only)
417
    disaggregation_mode: Literal["null", "prefill", "decode"] = "null"
418
    disaggregation_transfer_backend: str = "mooncake"
419
    disaggregation_bootstrap_port: int = 8998
Byron Hsu's avatar
Byron Hsu committed
420
421
422
    disaggregation_decode_tp: Optional[int] = None
    disaggregation_decode_dp: Optional[int] = None
    disaggregation_prefill_pp: Optional[int] = 1
423
    disaggregation_ib_device: Optional[str] = None
424
    disaggregation_decode_enable_offload_kvcache: bool = False
425
    num_reserved_decode_tokens: int = 512  # used for decode kv cache offload in PD
426
427
428
    # FIXME: hack to reduce ITL when decode bs is small
    disaggregation_decode_polling_interval: int = 1

Lianmin Zheng's avatar
Lianmin Zheng committed
429
    # For model weight update and weight loading
430
    custom_weight_loader: Optional[List[str]] = None
431
    weight_loader_disable_mmap: bool = False
432
433
434
435
    remote_instance_weight_loader_seed_instance_ip: Optional[str] = None
    remote_instance_weight_loader_seed_instance_service_port: Optional[int] = None
    remote_instance_weight_loader_send_weights_group_ports: Optional[List[int]] = None

436
437
438
439
    # For PD-Multiplexing
    enable_pdmux: bool = False
    sm_group_num: int = 3

Lianmin Zheng's avatar
Lianmin Zheng committed
440
441
442
443
444
445
    def __post_init__(self):
        """
        Orchestrates the handling of various server arguments, ensuring proper configuration and validation.
        """
        # Handle deprecated arguments.
        self._handle_deprecated_args()
Yi Zhang's avatar
Yi Zhang committed
446

Lianmin Zheng's avatar
Lianmin Zheng committed
447
448
449
450
451
452
        # Set missing default values.
        self._handle_missing_default_values()

        # Get GPU memory capacity, which is a common dependency for several configuration steps.
        gpu_mem = get_device_memory_capacity(self.device)

453
454
        # Handle memory-related, chunked prefill, and CUDA graph batch size configurations.
        self._handle_gpu_memory_settings(gpu_mem)
Lianmin Zheng's avatar
Lianmin Zheng committed
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504

        # Handle device-specific backends.
        self._handle_hpu_backends()
        self._handle_cpu_backends()

        # Apply model-specific adjustments.
        self._handle_model_specific_adjustments()

        # Set kernel backends.
        self._handle_sampling_backend()
        self._handle_attention_backend_compatibility()
        self._handle_page_size()
        self._handle_amd_specifics()
        self._handle_grammar_backend()

        # Handle data parallelism.
        self._handle_data_parallelism()

        # Handle MoE configurations.
        self._handle_moe_kernel_config()
        self._handle_deepep_moe()
        self._handle_eplb_and_dispatch()
        self._handle_expert_distribution_metrics()

        # Handle pipeline parallelism.
        self._handle_pipeline_parallelism()

        # Handle Hicache settings.
        self._handle_hicache()

        # Handle speculative decoding logic.
        self._handle_speculative_decoding()

        # Handle model loading format.
        self._handle_load_format()

        # Handle PD disaggregation.
        self._handle_disaggregation()

        # Validate tokenizer settings.
        self._handle_tokenizer_batching()

        # Propagate environment variables.
        self._handle_environment_variables()

        # Validate cache settings.
        self._handle_cache_compatibility()

        # Validate metrics labels.
        self._handle_metrics_labels()
505

Lianmin Zheng's avatar
Lianmin Zheng committed
506
507
508
509
510
        # Handle deterministic inference.
        self._handle_deterministic_inference()

        # Handle any other necessary validations.
        self._handle_other_validations()
511

512
    def _handle_deprecated_args(self):
Lianmin Zheng's avatar
Lianmin Zheng committed
513
        pass
514

515
    def _handle_missing_default_values(self):
Lianmin Zheng's avatar
Lianmin Zheng committed
516
517
        if self.tokenizer_path is None:
            self.tokenizer_path = self.model_path
518
519
        if self.served_model_name is None:
            self.served_model_name = self.model_path
520
521
        if self.device is None:
            self.device = get_device()
522
523
524
        if self.random_seed is None:
            self.random_seed = random.randint(0, 1 << 30)

525
526
527
528
529
530
    def _handle_gpu_memory_settings(self, gpu_mem):
        """
        Configure GPU memory-dependent settings including mem_fraction_static,
        chunked_prefill_size, cuda_graph_max_bs, and cuda_graph_bs.
        """
        # Set mem fraction static
Lianmin Zheng's avatar
Lianmin Zheng committed
531
        if self.mem_fraction_static is None:
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
            if gpu_mem is not None:
                # GPU memory capacity = model weights + KV cache pool + activations + cuda graph buffers
                # mem_fraction_static = (model weights + KV cache pool) / GPU memory capacity.

                # We want mem_fraction_static to be as large as possible but still has enough room
                # for activations and cuda graph buffers. We use the following heuristic to
                # compute the needed size for activations and cuda graph buffers:
                # - The size of the activation depends on the chunked_prefill_size and model size.
                # - The size of cuda graph buffers depends on the cuda graph capture range and model size.
                # For GPUs with more memory, we use a larger chunked_prefill_size and
                # capture more cuda graphs, so they need to reserve more memory.
                parallel_size = self.tp_size * self.pp_size

                if gpu_mem < 20 * 1024:
                    # T4, 4080. (chunked_prefill_size 2k, cuda_graph_max_bs 8)
                    reserved_mem = (2.8 + parallel_size / 10) * 1024
548
549
                elif gpu_mem < 50 * 1024:
                    # A10, L40, 4090, 5090. (chunked_prefill_size 2k, cuda_graph_max_bs 16 if tp < 4 else 80)
550
551
                    reserved_mem = (2.8 + parallel_size / 10) * 1024
                elif gpu_mem < 90 * 1024:
552
                    # H100, A100. (chunked_prefill_size 8k, cuda_graph_max_bs 256 if tp < 4 else 512)
553
                    reserved_mem = (12 + parallel_size / 2) * 1024
554
555
556
                elif gpu_mem < 100 * 1024:
                    # H20. (chunked_prefill_size 8k, cuda_graph_max_bs 512)
                    reserved_mem = (15 + parallel_size / 2) * 1024
557
                elif gpu_mem < 160 * 1024:
558
559
                    # H200. (chunked_prefill_size 8k, cuda_graph_max_bs 512)
                    reserved_mem = (15 + parallel_size / 2) * 1024
560
                else:
561
562
563
                    # B200, MI300. (chunked_prefill_size 16k, cuda_graph_max_bs 512)
                    reserved_mem = 32 * 1024

564
                # draft model and larger cuda graph buffers
565
                if self.speculative_algorithm is not None:
566
567
568
569
                    if self.speculative_algorithm == "STANDALONE":
                        # Standalone speculative decoding needs more memory than other speculative
                        # decoding algorithms since the draft model is typically larger.
                        reserved_mem += 6 * 1024
570
                    elif self.speculative_algorithm != "LOOKAHEAD":
571
                        reserved_mem += 2 * 1024
572
573
574
575
                if self.enable_dp_attention:
                    reserved_mem += 4 * 1024

                self.mem_fraction_static = round((gpu_mem - reserved_mem) / gpu_mem, 3)
576
            else:
577
                self.mem_fraction_static = 0.88
578

579
580
            # Lazy init to avoid circular import
            # Multimodal models need more memory for the image processor
581
582
583
            from sglang.srt.configs.model_config import ModelConfig

            model_config = ModelConfig.from_server_args(self)
Lianmin Zheng's avatar
Lianmin Zheng committed
584
585
            if model_config.is_multimodal:
                self.adjust_mem_fraction_for_vlm(model_config)
586

587
        # Set chunked prefill size, which depends on the gpu memory capacity
588
        if self.chunked_prefill_size is None:
589
            if gpu_mem is not None:
590
                if gpu_mem < 50 * 1024:  # T4, 4080, A10, L40, 4090, 5090
591
                    self.chunked_prefill_size = 2048
592
                elif gpu_mem < 160 * 1024:  # H100, H200, A100, H20
593
                    self.chunked_prefill_size = 8192
594
                else:  # B200, MI300
595
                    self.chunked_prefill_size = 16384
596
            else:
597
                self.chunked_prefill_size = 4096
Lianmin Zheng's avatar
Lianmin Zheng committed
598

599
        # Set cuda graph max batch size and cuda graph batch sizes
600
        if self.cuda_graph_max_bs is None:
601
602
603
            if gpu_mem is not None:
                if gpu_mem < 20 * 1024:
                    # T4, 4080
604
                    self.cuda_graph_max_bs = 8
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
                elif gpu_mem < 50 * 1024:
                    # A10, L40, 4090, 5090
                    # Based on detailed statistics, when serving TP1/TP2 models on lower-end GPUs with HBM<25G, you can either disable cuda graph or set `cuda_graph_max_bs` to a very small value to reduce the memory overhead of creating cuda graphs, with almost no impact on performance.
                    # However, when serving models with TP4 or TP8, we need to enable cuda graph to maintain high performance. In this case, we can set `cuda_graph_max_bs` to 80 (half of the default value 160) to reduce the memory overhead of creating cuda graphs. Looking at the logs
                    # from TP4 serving of qwen2-72b, a value of 80 is sufficient and can reduce the memory overhead of creating cuda graphs on lower-end GPUs compared to the original 160, avoiding OOM issues.
                    if self.tp_size < 4:
                        self.cuda_graph_max_bs = 16
                    else:
                        self.cuda_graph_max_bs = 80
                elif gpu_mem < 90 * 1024:
                    # H100, A100
                    if self.tp_size < 4:
                        self.cuda_graph_max_bs = 256
                    else:
                        self.cuda_graph_max_bs = 512
620
                else:
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
                    # H20, H200, B200, MI300
                    self.cuda_graph_max_bs = 512
            else:
                # Default fallback
                self.cuda_graph_max_bs = 160

        if self.cuda_graph_bs is None:
            self.cuda_graph_bs = self._generate_cuda_graph_batch_sizes()

    def _generate_cuda_graph_batch_sizes(self):
        """
        Generate the list of batch sizes for CUDA graph capture based on cuda_graph_max_bs.
        This integrates the logic from cuda_graph_runner.py.
        """
        # Handle disable_cuda_graph_padding as the first condition for both spec and non-spec
        if self.disable_cuda_graph_padding:
            capture_bs = list(range(1, self.cuda_graph_max_bs + 1))
        elif self.speculative_algorithm is None:
            # Normal case: [1, 2, 4, 8, 12] + list(range(16, 257, 8)) + list(range(272, 512, 16)) + list(range(512, cuda_graph_max_bs + 1))
            capture_bs = (
                [1, 2, 4, 8, 12]
                + list(range(16, 257, 8))
                + list(range(272, 512, 16))
                + list(range(512, self.cuda_graph_max_bs + 1))
            )
        else:
            # Spec decoding case: list(range(1, 9, 1)) + list(range(10, 33, 2)) + list(range(40, 64, 4)) + list(range(72, 257, 8))
            capture_bs = (
                list(range(1, 9, 1))
                + list(range(10, 33, 2))
                + list(range(40, 64, 4))
                + list(range(72, 257, 8))
                + list(range(272, self.cuda_graph_max_bs + 1, 16))
            )

        capture_bs = [bs for bs in capture_bs if bs <= self.cuda_graph_max_bs]

        return capture_bs
659

660
    def _handle_hpu_backends(self):
661
662
663
664
        if self.device == "hpu":
            self.attention_backend = "torch_native"
            self.sampling_backend = "pytorch"

665
    def _handle_cpu_backends(self):
666
667
668
669
670
        if self.device == "cpu":
            if self.attention_backend is None:
                self.attention_backend = "intel_amx"
            self.sampling_backend = "pytorch"

Lianmin Zheng's avatar
Lianmin Zheng committed
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
    def _handle_model_specific_adjustments(self):
        if parse_connector_type(self.model_path) == ConnectorType.INSTANCE:
            return

        hf_config = self.get_hf_config()
        model_arch = hf_config.architectures[0]
        if model_arch in ["GptOssForCausalLM"]:
            if self.attention_backend is None:
                if is_cuda() and is_sm100_supported():
                    self.attention_backend = "trtllm_mha"
                elif is_cuda() and is_sm90_supported():
                    self.attention_backend = "fa3"
                else:
                    self.attention_backend = "triton"
            supported_backends = ["triton", "trtllm_mha", "fa3"]
            logger.info(
                f"Use {self.attention_backend} as attention backend for GptOssForCausalLM"
            )
            assert (
                self.attention_backend in supported_backends
            ), f"GptOssForCausalLM requires one of {supported_backends} attention backend, but got '{self.attention_backend}'"

            if is_sm100_supported():
                if not self.enable_dp_attention:
                    self.enable_flashinfer_allreduce_fusion = True
                    logger.info(
                        "Enable FlashInfer AllReduce Fusion on sm100 for GptOssForCausalLM"
                    )
            quantization_config = getattr(hf_config, "quantization_config", None)
            is_mxfp4_quant_format = (
                quantization_config is not None
                and quantization_config.get("quant_method") == "mxfp4"
            )

            if is_sm100_supported() and is_mxfp4_quant_format:
                self.moe_runner_backend = "flashinfer_mxfp4"
                logger.warning(
                    "Detected SM100 and MXFP4 quantization format for GPT-OSS model, enabling FlashInfer MXFP4 MOE kernel."
                )
            else:
                if self.moe_runner_backend == "triton_kernel":
                    assert (
                        self.ep_size == 1
                    ), "Triton kernel MoE is only supported when ep_size == 1"
                if (
                    self.moe_runner_backend == "auto"
                    and self.ep_size == 1
                    and is_triton_kernels_available()
                ):
                    self.moe_runner_backend = "triton_kernel"
                    logger.warning(
                        "Detected GPT-OSS model, enabling triton_kernels MOE kernel."
                    )
            self.disable_hybrid_swa_memory = True
            if is_mxfp4_quant_format:
                # use bf16 for mxfp4 triton kernels
                self.dtype = "bfloat16"

        elif "Llama4" in model_arch and self.device != "cpu":
            assert self.attention_backend in {
                "fa3",
                "aiter",
                "triton",
            }, "fa3, aiter, or triton is required for Llama4 model"
        elif model_arch in [
            "Gemma2ForCausalLM",
            "Gemma3ForCausalLM",
            "Gemma3ForConditionalGeneration",
            "Gemma3nForCausalLM",
            "Gemma3nForConditionalGeneration",
        ]:
            # FIXME: https://github.com/sgl-project/sglang/pull/7367 is not compatible with gemma2 model.
            # It failed at this test: https://github.com/sgl-project/sglang/actions/runs/16255155597/job/45890331952#step:4:736
            logger.warning(
                f"Disable hybrid SWA memory for {model_arch} as it is not yet supported."
            )
            self.disable_hybrid_swa_memory = True

749
    def _handle_sampling_backend(self):
750
        if self.sampling_backend is None:
751
752
753
754
            self.sampling_backend = (
                "flashinfer" if is_flashinfer_available() else "pytorch"
            )

755
    def _handle_attention_backend_compatibility(self):
756
        if self.attention_backend == "torch_native":
757
            logger.warning(
758
759
760
                "Cuda graph is disabled because of using torch native attention backend"
            )
            self.disable_cuda_graph = True
761

762
763
764
765
766
767
768
769
770
        if self.attention_backend == "flex_attention":
            logger.warning(
                "Cuda graph is disabled because of using torch Flex Attention backend"
            )
            self.disable_cuda_graph = True
            assert (
                self.speculative_algorithm is None
            ), "Speculative decoding is currently not supported with Flex Attention backend"

771
        if is_npu() and self.attention_backend in ["ascend", "hybrid_linear_attn"]:
772
773
774
775
776
            logger.warning(
                "At this moment Ascend attention backend only supports a page_size of 128, change page_size to 128."
            )
            self.page_size = 128

777
778
779
780
        if (
            self.attention_backend == "flashmla"
            or self.decode_attention_backend == "flashmla"
        ):
Lianmin Zheng's avatar
Lianmin Zheng committed
781
782
783
784
785
            logger.warning(
                "FlashMLA only supports a page_size of 64, change page_size to 64."
            )
            self.page_size = 64

786
787
788
789
        if (
            self.attention_backend == "cutlass_mla"
            or self.decode_attention_backend == "cutlass_mla"
        ):
Lianmin Zheng's avatar
Lianmin Zheng committed
790
791
792
793
794
            logger.warning(
                "Cutlass MLA only supports a page_size of 128, change page_size to 128."
            )
            self.page_size = 128

Faraz's avatar
Faraz committed
795
796
797
798
        if (
            self.attention_backend == "trtllm_mla"
            or self.decode_attention_backend == "trtllm_mla"
        ):
799
800
801
802
803
804
805
806
807
808
            if not is_sm100_supported():
                raise ValueError(
                    "TRTLLM MLA backend is only supported on Blackwell GPUs (SM100). Please use a different backend."
                )

            if self.page_size not in [32, 64]:
                logger.warning(
                    f"TensorRT-LLM MLA only supports page_size of 32 or 64, changing page_size from {self.page_size} to 64."
                )
                self.page_size = 64
Faraz's avatar
Faraz committed
809
810
811
812
813

            if self.kv_cache_dtype not in ["fp8_e4m3", "auto"]:
                raise ValueError(
                    "TensorRT-LLM MLA backend only supports kv-cache-dtype of fp8_e4m3 or auto."
                )
814

815
816
817
818
819
        if (
            self.attention_backend == "trtllm_mha"
            or self.decode_attention_backend == "trtllm_mha"
            or self.prefill_attention_backend == "trtllm_mha"
        ):
820
821
822
823
824
825
826
827
828
829
830
            if not is_sm100_supported():
                raise ValueError(
                    "TRTLLM MHA backend is only supported on Blackwell GPUs (SM100). Please use a different backend."
                )

            if self.page_size not in [16, 32, 64]:
                logger.warning(
                    f"TensorRT-LLM MHA only supports page_size of 16, 32 or 64, changing page_size from {self.page_size} to 64."
                )
                self.page_size = 64

831
832
        if self.attention_backend == "dual_chunk_flash_attn":
            logger.warning(
833
                "Mixed chunk, radix cache, and cuda graphs are disabled because of using dual chunk flash attention backend"
834
835
836
837
838
            )
            self.enable_mixed_chunk = False
            self.disable_cuda_graph = True
            self.disable_radix_cache = True

839
    def _handle_page_size(self):
840
841
842
        if self.page_size is None:
            self.page_size = 1

843
    def _handle_amd_specifics(self):
844
845
846
        if is_hip():
            self.triton_attention_num_kv_splits = 16

847
    def _handle_grammar_backend(self):
848
849
        if self.grammar_backend is None:
            self.grammar_backend = "xgrammar"
850

851
    def _handle_data_parallelism(self):
852
853
        if self.dp_size == 1:
            self.enable_dp_attention = False
854
            self.enable_dp_lm_head = False
855

Ke Bao's avatar
Ke Bao committed
856
        if self.enable_dp_attention:
857
            self.schedule_conservativeness = self.schedule_conservativeness * 0.3
Lianmin Zheng's avatar
Lianmin Zheng committed
858
859
            assert self.tp_size % self.dp_size == 0
            self.chunked_prefill_size = self.chunked_prefill_size // self.dp_size
860
            logger.warning(
861
                f"DP attention is enabled. The chunked prefill size is adjusted to {self.chunked_prefill_size} to avoid MoE kernel issues. "
862
            )
863

864
865
866
        if self.enable_dp_lm_head:
            assert (
                self.enable_dp_attention
867
            ), "Please enable dp attention when setting enable_dp_lm_head. "
868

869
    def _handle_moe_kernel_config(self):
870
        if self.moe_runner_backend == "flashinfer_cutlass":
871
872
873
            assert (
                self.quantization == "modelopt_fp4"
            ), "modelopt_fp4 quantization is required for Flashinfer MOE"
874
875
876
877
            assert self.ep_size in [
                1,
                self.tp_size,
            ], "The expert parallel size must be 1 or the same as the tensor parallel size"
878

879
        if self.moe_runner_backend == "flashinfer_trtllm":
880
881
882
883
884
885
886
            assert (
                self.quantization == "modelopt_fp4" or self.quantization == "fp8"
            ), "modelopt_fp4 quantization is required for Flashinfer TRTLLM MoE"
            self.disable_shared_experts_fusion = True
            logger.warning(
                "FlashInfer TRTLLM MoE is enabled. --disable-shared-experts-fusion is automatically set."
            )
887

888
    def _handle_deepep_moe(self):
889
        if self.moe_a2a_backend == "deepep":
890
891
892
            if self.deepep_mode == "normal":
                logger.warning("Cuda graph is disabled because deepep_mode=`normal`")
                self.disable_cuda_graph = True
893
            self.ep_size = self.tp_size
Lianmin Zheng's avatar
Lianmin Zheng committed
894
            logger.warning(
895
896
                f"DeepEP MoE is enabled. The expert parallel size is adjusted to be the same as the tensor parallel size[{self.tp_size}]."
            )
897

898
    def _handle_eplb_and_dispatch(self):
899
900
        if self.enable_eplb and (self.expert_distribution_recorder_mode is None):
            self.expert_distribution_recorder_mode = "stat"
901
            logger.warning(
902
                "EPLB is enabled. The expert_distribution_recorder_mode is automatically set."
903
904
905
906
907
908
909
            )

        if (self.enable_eplb or (self.init_expert_location is not None)) and (
            self.ep_dispatch_algorithm is None
        ):
            self.ep_dispatch_algorithm = "static"

910
        if self.enable_eplb:
911
            assert self.ep_size > 1
912

913
    def _handle_expert_distribution_metrics(self):
914
915
916
917
918
        if self.enable_expert_distribution_metrics and (
            self.expert_distribution_recorder_mode is None
        ):
            self.expert_distribution_recorder_mode = "stat"

919
        if self.expert_distribution_recorder_buffer_size is None:
920
921
            if (x := self.eplb_rebalance_num_iterations) is not None:
                self.expert_distribution_recorder_buffer_size = x
922
923
924
            elif self.expert_distribution_recorder_mode is not None:
                self.expert_distribution_recorder_buffer_size = 1000

925
    def _handle_pipeline_parallelism(self):
Lianmin Zheng's avatar
Lianmin Zheng committed
926
927
928
929
930
931
        if self.pp_size > 1:
            self.disable_overlap_schedule = True
            logger.warning(
                "Pipeline parallelism is incompatible with overlap schedule."
            )

932
    def _handle_hicache(self):
933
934
935
936
        if self.hicache_storage_backend == "mooncake":
            self.hicache_io_backend = "kernel"
            self.hicache_mem_layout = "page_first"

937
938
939
940
941
942
943
        if self.hicache_mem_layout == "page_first_direct":
            if self.hicache_io_backend != "direct":
                self.hicache_io_backend = "direct"
                logger.warning(
                    "Page first direct layout only support direct io backend"
                )

944
    def _handle_speculative_decoding(self):
945
946
947
        if self.speculative_algorithm == "NEXTN":
            self.speculative_algorithm = "EAGLE"

948
        if self.speculative_algorithm in ("EAGLE", "EAGLE3", "STANDALONE"):
949
            if self.speculative_algorithm == "STANDALONE" and self.enable_dp_attention:
950
                # TODO: support dp attention for standalone speculative decoding
951
952
953
                raise ValueError(
                    "Currently standalone speculative decoding does not support dp attention."
                )
954
            if self.max_running_requests is None:
955
                self.max_running_requests = 48
956
            self.disable_overlap_schedule = True
Lianmin Zheng's avatar
Lianmin Zheng committed
957
            logger.warning(
958
                "Overlap scheduler is disabled because of using "
959
                "eagle speculative decoding."
960
            )
961
962
963
964
965
966
            if self.enable_mixed_chunk:
                self.enable_mixed_chunk = False
                logger.warning(
                    "Mixed chunked prefill is disabled because of using "
                    "eagle speculative decoding."
                )
967

Lianmin Zheng's avatar
Lianmin Zheng committed
968
            model_arch = self.get_hf_config().architectures[0]
strgrb's avatar
strgrb committed
969
970
971
            if model_arch in [
                "DeepseekV3ForCausalLM",
                "Glm4MoeForCausalLM",
Yuan Luo's avatar
Yuan Luo committed
972
                "BailingMoeForCausalLM",
strgrb's avatar
strgrb committed
973
974
                "BailingMoeV2ForCausalLM",
            ]:
975
976
977
978
979
980
                if self.speculative_draft_model_path is None:
                    self.speculative_draft_model_path = self.model_path
                else:
                    logger.warning(
                        "DeepSeek MTP does not require setting speculative_draft_model_path."
                    )
981

982
983
984
985
986
987
988
989
990
            if self.speculative_num_steps is None:
                assert (
                    self.speculative_eagle_topk is None
                    and self.speculative_num_draft_tokens is None
                )
                (
                    self.speculative_num_steps,
                    self.speculative_eagle_topk,
                    self.speculative_num_draft_tokens,
991
                ) = auto_choose_speculative_params(self)
992

993
994
995
996
997
998
999
1000
1001
1002
            if (
                self.attention_backend == "trtllm_mha"
                or self.decode_attention_backend == "trtllm_mha"
                or self.prefill_attention_backend == "trtllm_mha"
            ):
                if self.speculative_eagle_topk > 1:
                    raise ValueError(
                        "trtllm_mha backend only supports topk = 1 for speculative decoding."
                    )

1003
1004
1005
1006
            if (
                self.speculative_eagle_topk == 1
                and self.speculative_num_draft_tokens != self.speculative_num_steps + 1
            ):
Lianmin Zheng's avatar
Lianmin Zheng committed
1007
                logger.warning(
1008
1009
1010
                    "speculative_num_draft_tokens is adjusted to speculative_num_steps + 1 when speculative_eagle_topk == 1"
                )
                self.speculative_num_draft_tokens = self.speculative_num_steps + 1
1011

1012
1013
1014
1015
1016
1017
1018
1019
1020
            if (
                self.speculative_eagle_topk > 1
                and self.page_size > 1
                and self.attention_backend != "flashinfer"
            ):
                raise ValueError(
                    "speculative_eagle_topk > 1 with page_size > 1 is unstable and produces incorrect results for paged attention backends. This combination is only supported for the 'flashinfer' backend."
                )

1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
        if self.speculative_algorithm == "LOOKAHEAD":
            if not self.device.startswith("cuda"):
                raise ValueError(
                    "Lookahead speculative decoding only supports CUDA device."
                )
            if self.max_running_requests is None:
                self.max_running_requests = 48
            self.disable_overlap_schedule = True
            self.enable_mixed_chunk = False
            self.speculative_eagle_topk = self.speculative_lookahead_max_bfs_breadth
            if self.speculative_num_draft_tokens is None:
                self.speculative_num_draft_tokens = (
                    self.speculative_lookahead_max_match_window_size
                )
            logger.warning(
                "The overlap scheduler and mixed chunked prefill are disabled because of "
                "using lookahead speculative decoding."
            )
1039

1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
            if (
                self.speculative_eagle_topk > 1
                and self.page_size > 1
                and self.attention_backend != "flashinfer"
            ):
                raise ValueError(
                    "speculative_eagle_topk > 1 with page_size > 1 is unstable and produces incorrect results for paged attention backends. This combination is only supported for the 'flashinfer' backend."
                )
            if self.enable_dp_attention:
                # TODO: support dp attention for lookahead speculative decoding
                raise ValueError(
                    "Currently lookahead speculative decoding does not support dp attention."
                )
1053
1054

    def _handle_load_format(self):
1055
1056
1057
1058
1059
        if (
            self.load_format == "auto" or self.load_format == "gguf"
        ) and check_gguf_file(self.model_path):
            self.quantization = self.load_format = "gguf"

1060
1061
        if is_remote_url(self.model_path):
            self.load_format = "remote"
1062

1063
1064
        if self.custom_weight_loader is None:
            self.custom_weight_loader = []
1065

1066
1067
1068
1069
1070
1071
1072
1073
        if self.load_format == "remote_instance":
            if (
                self.remote_instance_weight_loader_seed_instance_ip is None
                or self.remote_instance_weight_loader_seed_instance_service_port is None
                or self.remote_instance_weight_loader_send_weights_group_ports is None
            ):
                self.load_format = "auto"

1074
    def _handle_disaggregation(self):
Byron Hsu's avatar
Byron Hsu committed
1075
1076
1077
1078
1079
1080
1081
1082
        if self.disaggregation_mode == "decode":
            assert (
                self.disaggregation_decode_tp is None
            ), "Cannot set --disaggregation-decode-tp for the decode engine."
            assert (
                self.disaggregation_decode_dp is None
            ), "Cannot set --disaggregation-decode-dp for the decode engine."

Byron Hsu's avatar
Byron Hsu committed
1083
            self.disable_radix_cache = True
1084
            logger.warning("KV cache is forced as chunk cache for decode server")
1085
1086
1087
1088
1089
1090
1091

            if self.dp_size > 1 and not is_in_ci():
                assert self.prefill_round_robin_balance, (
                    "Prefill round robin balance is required when dp size > 1. "
                    "Please make sure that the prefill instance is launched with `--load-balance-method round_robin`"
                    " and `--prefill-round-robin-balance` is set for decode server."
                )
Byron Hsu's avatar
Byron Hsu committed
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
        elif self.disaggregation_mode == "prefill":
            if self.disaggregation_decode_tp is None:
                self.disaggregation_decode_tp = self.tp_size
            if self.disaggregation_decode_dp is None:
                self.disaggregation_decode_dp = self.dp_size

            self.disaggregation_prefill_pp = self.pp_size
            self.validate_disagg_tp_size(self.tp_size, self.disaggregation_decode_tp)
            self.disable_cuda_graph = True
            logger.warning("Cuda graph is disabled for prefill server")
Byron Hsu's avatar
Byron Hsu committed
1102

1103
    def _handle_tokenizer_batching(self):
1104
1105
1106
1107
1108
1109
        if self.enable_tokenizer_batch_encode and self.enable_dynamic_batch_tokenizer:
            raise ValueError(
                "Cannot enable both --enable-tokenizer-batch-encode and --enable-dynamic-batch-tokenizer. "
                "Please choose one tokenizer batching approach."
            )

1110
    def _handle_environment_variables(self):
1111
1112
1113
        os.environ["SGLANG_ENABLE_TORCH_COMPILE"] = (
            "1" if self.enable_torch_compile else "0"
        )
Yi Zhang's avatar
Yi Zhang committed
1114
        os.environ["SGLANG_MAMBA_SSM_DTYPE"] = self.mamba_ssm_dtype
1115
1116
1117
        os.environ["SGLANG_DISABLE_OUTLINES_DISK_CACHE"] = (
            "1" if self.disable_outlines_disk_cache else "0"
        )
1118
1119
1120
        os.environ["SGLANG_ENABLE_DETERMINISTIC_INFERENCE"] = (
            "1" if self.enable_deterministic_inference else "0"
        )
1121

1122
    def _handle_cache_compatibility(self):
1123
1124
1125
1126
1127
1128
        if self.enable_hierarchical_cache and self.disable_radix_cache:
            raise ValueError(
                "The arguments enable-hierarchical-cache and disable-radix-cache are mutually exclusive "
                "and cannot be used at the same time. Please use only one of them."
            )

1129
1130
1131
1132
1133
1134
1135
1136
        if (
            self.disaggregation_decode_enable_offload_kvcache
            and self.disaggregation_mode != "decode"
        ):
            raise ValueError(
                "The argument disaggregation-decode-enable-offload-kvcache is only supported for decode side."
            )

1137
    def _handle_metrics_labels(self):
1138
1139
        if (
            not self.tokenizer_metrics_custom_labels_header
1140
            and self.tokenizer_metrics_allowed_custom_labels
1141
1142
        ):
            raise ValueError(
1143
                "Please set --tokenizer-metrics-custom-labels-header when setting --tokenizer-metrics-allowed-custom-labels."
1144
1145
            )

1146
    def _handle_deterministic_inference(self):
1147
        if self.enable_deterministic_inference:
1148
            # Check sampling backend
1149
1150
1151
1152
            self.sampling_backend = "pytorch"
            logger.warning(
                "Sampling backend is set to pytorch for deterministic inference."
            )
1153
1154
1155
1156
1157
1158
1159

            # Check attention backend
            if self.attention_backend not in DETERMINISTIC_ATTENTION_BACKEND_CHOICES:
                raise ValueError(
                    f"Currently only {DETERMINISTIC_ATTENTION_BACKEND_CHOICES} attention backends are supported for deterministic inference."
                )

1160
            # Currently, only FA3 supports radix cache. Support for other backends is in progress
1161
1162
1163
            if self.attention_backend != "fa3":
                self.disable_radix_cache = True
                logger.warning(
1164
                    f"Currently radix cache is not compatible with {self.attention_backend} attention backend for deterministic inference. It will be supported in the future."
1165
                )
1166
1167
1168

            # Check TP size
            if self.tp_size > 1:
1169
                raise ValueError(
1170
                    "Currently only TP size 1 is supported for deterministic inference."
1171
1172
                )

1173
1174
1175
1176
1177
            # Warnings on MoE models
            logger.warning(
                "Currently deterministic inference is only tested on dense models. Please be cautious when using it on MoE models."
            )

1178
    def _handle_other_validations(self):
fzyzcjy's avatar
fzyzcjy committed
1179
        pass
1180

Lianmin Zheng's avatar
Lianmin Zheng committed
1181
1182
    @staticmethod
    def add_cli_args(parser: argparse.ArgumentParser):
Lianmin Zheng's avatar
Lianmin Zheng committed
1183
        # Model and tokenizer
Lianmin Zheng's avatar
Lianmin Zheng committed
1184
1185
        parser.add_argument(
            "--model-path",
1186
            "--model",
Lianmin Zheng's avatar
Lianmin Zheng committed
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
            type=str,
            help="The path of the model weights. This can be a local folder or a Hugging Face repo ID.",
            required=True,
        )
        parser.add_argument(
            "--tokenizer-path",
            type=str,
            default=ServerArgs.tokenizer_path,
            help="The path of the tokenizer.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1197
1198
1199
1200
1201
1202
1203
1204
1205
        parser.add_argument(
            "--tokenizer-mode",
            type=str,
            default=ServerArgs.tokenizer_mode,
            choices=["auto", "slow"],
            help="Tokenizer mode. 'auto' will use the fast "
            "tokenizer if available, and 'slow' will "
            "always use the slow tokenizer.",
        )
1206
1207
1208
1209
1210
1211
        parser.add_argument(
            "--tokenizer-worker-num",
            type=int,
            default=ServerArgs.tokenizer_worker_num,
            help="The worker num of the tokenizer manager.",
        )
1212
1213
1214
        parser.add_argument(
            "--skip-tokenizer-init",
            action="store_true",
1215
            help="If set, skip init tokenizer and pass input_ids in generate request.",
1216
        )
1217
        parser.add_argument(
Lianmin Zheng's avatar
Lianmin Zheng committed
1218
1219
1220
            "--load-format",
            type=str,
            default=ServerArgs.load_format,
1221
            choices=LOAD_FORMAT_CHOICES,
Lianmin Zheng's avatar
Lianmin Zheng committed
1222
1223
1224
1225
1226
1227
1228
1229
1230
            help="The format of the model weights to load. "
            '"auto" will try to load the weights in the safetensors format '
            "and fall back to the pytorch bin format if safetensors format "
            "is not available. "
            '"pt" will load the weights in the pytorch bin format. '
            '"safetensors" will load the weights in the safetensors format. '
            '"npcache" will load the weights in pytorch format and store '
            "a numpy cache to speed up the loading. "
            '"dummy" will initialize the weights with random values, '
1231
            "which is mainly for profiling."
1232
1233
            '"gguf" will load the weights in the gguf format. '
            '"bitsandbytes" will load the weights using bitsandbytes '
1234
1235
1236
1237
            "quantization."
            '"layered" loads weights layer by layer so that one can quantize a '
            "layer before loading another to make the peak memory envelope "
            "smaller.",
Lianmin Zheng's avatar
Lianmin Zheng committed
1238
        )
1239
1240
1241
1242
1243
1244
1245
        parser.add_argument(
            "--model-loader-extra-config",
            type=str,
            help="Extra config for model loader. "
            "This will be passed to the model loader corresponding to the chosen load_format.",
            default=ServerArgs.model_loader_extra_config,
        )
1246
1247
1248
1249
1250
        parser.add_argument(
            "--trust-remote-code",
            action="store_true",
            help="Whether or not to allow for custom models defined on the Hub in their own modeling files.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
        parser.add_argument(
            "--context-length",
            type=int,
            default=ServerArgs.context_length,
            help="The model's maximum context length. Defaults to None (will use the value from the model's config.json instead).",
        )
        parser.add_argument(
            "--is-embedding",
            action="store_true",
            help="Whether to use a CausalLM as an embedding model.",
        )
        parser.add_argument(
            "--enable-multimodal",
            default=ServerArgs.enable_multimodal,
            action="store_true",
            help="Enable the multimodal functionality for the served model. If the model being served is not multimodal, nothing will happen",
        )
        parser.add_argument(
            "--revision",
            type=str,
            default=None,
            help="The specific model version to use. It can be a branch "
            "name, a tag name, or a commit id. If unspecified, will use "
            "the default version.",
        )
        parser.add_argument(
            "--model-impl",
            type=str,
            default=ServerArgs.model_impl,
            help="Which implementation of the model to use.\n\n"
            '* "auto" will try to use the SGLang implementation if it exists '
            "and fall back to the Transformers implementation if no SGLang "
            "implementation is available.\n"
            '* "sglang" will use the SGLang model implementation.\n'
            '* "transformers" will use the Transformers model '
            "implementation.\n",
        )

        # HTTP server
        parser.add_argument(
            "--host",
            type=str,
            default=ServerArgs.host,
            help="The host of the HTTP server.",
        )
        parser.add_argument(
            "--port",
            type=int,
            default=ServerArgs.port,
            help="The port of the HTTP server.",
        )
        parser.add_argument(
            "--skip-server-warmup",
            action="store_true",
            help="If set, skip warmup.",
        )
        parser.add_argument(
            "--warmups",
            type=str,
            required=False,
            help="Specify custom warmup functions (csv) to run before server starts eg. --warmups=warmup_name1,warmup_name2 "
            "will run the functions `warmup_name1` and `warmup_name2` specified in warmup.py before the server starts listening for requests",
        )
        parser.add_argument(
            "--nccl-port",
            type=int,
            default=ServerArgs.nccl_port,
            help="The port for NCCL distributed environment setup. Defaults to a random port.",
        )

        # Quantization and data type
Lianmin Zheng's avatar
Lianmin Zheng committed
1322
        parser.add_argument(
Lianmin Zheng's avatar
Lianmin Zheng committed
1323
            "--dtype",
Cody Yu's avatar
Cody Yu committed
1324
            type=str,
Lianmin Zheng's avatar
Lianmin Zheng committed
1325
            default=ServerArgs.dtype,
Ying Sheng's avatar
Ying Sheng committed
1326
1327
            choices=["auto", "half", "float16", "bfloat16", "float", "float32"],
            help="Data type for model weights and activations.\n\n"
Lianmin Zheng's avatar
Lianmin Zheng committed
1328
            '* "auto" will use FP16 precision for FP32 and FP16 models, and '
Ying Sheng's avatar
Ying Sheng committed
1329
            "BF16 precision for BF16 models.\n"
Lianmin Zheng's avatar
Lianmin Zheng committed
1330
1331
1332
1333
            '* "half" for FP16. Recommended for AWQ quantization.\n'
            '* "float16" is the same as "half".\n'
            '* "bfloat16" for a balance between precision and range.\n'
            '* "float" is shorthand for FP32 precision.\n'
Ying Sheng's avatar
Ying Sheng committed
1334
1335
            '* "float32" for FP32 precision.',
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1336
1337
1338
1339
        parser.add_argument(
            "--quantization",
            type=str,
            default=ServerArgs.quantization,
1340
            choices=QUANTIZATION_CHOICES,
Lianmin Zheng's avatar
Lianmin Zheng committed
1341
1342
            help="The quantization method.",
        )
1343
1344
1345
1346
1347
1348
1349
1350
1351
        parser.add_argument(
            "--quantization-param-path",
            type=nullable_str,
            default=None,
            help="Path to the JSON file containing the KV cache "
            "scaling factors. This should generally be supplied, when "
            "KV cache dtype is FP8. Otherwise, KV cache scaling factors "
            "default to 1.0, which may cause accuracy issues. ",
        )
1352
        parser.add_argument(
Lianmin Zheng's avatar
Lianmin Zheng committed
1353
            "--kv-cache-dtype",
1354
            type=str,
Lianmin Zheng's avatar
Lianmin Zheng committed
1355
1356
1357
            default=ServerArgs.kv_cache_dtype,
            choices=["auto", "fp8_e5m2", "fp8_e4m3"],
            help='Data type for kv cache storage. "auto" will use model data type. "fp8_e5m2" and "fp8_e4m3" is supported for CUDA 11.8+.',
1358
        )
1359

1360
        # Memory and scheduling
Lianmin Zheng's avatar
Lianmin Zheng committed
1361
1362
1363
1364
        parser.add_argument(
            "--mem-fraction-static",
            type=float,
            default=ServerArgs.mem_fraction_static,
1365
            help="The fraction of the memory used for static allocation (model weights and KV cache memory pool). Use a smaller value if you see out-of-memory errors.",
Lianmin Zheng's avatar
Lianmin Zheng committed
1366
        )
1367
1368
1369
1370
1371
1372
        parser.add_argument(
            "--max-running-requests",
            type=int,
            default=ServerArgs.max_running_requests,
            help="The maximum number of running requests.",
        )
1373
1374
1375
1376
1377
1378
        parser.add_argument(
            "--max-queued-requests",
            type=int,
            default=ServerArgs.max_queued_requests,
            help="The maximum number of queued requests. This option is ignored when using disaggregation-mode.",
        )
1379
1380
1381
1382
        parser.add_argument(
            "--max-total-tokens",
            type=int,
            default=ServerArgs.max_total_tokens,
1383
1384
            help="The maximum number of tokens in the memory pool. If not specified, it will be automatically calculated based on the memory usage fraction. "
            "This option is typically used for development and debugging purposes.",
1385
        )
1386
1387
1388
1389
        parser.add_argument(
            "--chunked-prefill-size",
            type=int,
            default=ServerArgs.chunked_prefill_size,
1390
            help="The maximum number of tokens in a chunk for the chunked prefill. Setting this to -1 means disabling chunked prefill.",
1391
1392
1393
1394
1395
1396
1397
        )
        parser.add_argument(
            "--max-prefill-tokens",
            type=int,
            default=ServerArgs.max_prefill_tokens,
            help="The maximum number of tokens in a prefill batch. The real bound will be the maximum of this value and the model's maximum context length.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1398
        parser.add_argument(
1399
            "--schedule-policy",
Lianmin Zheng's avatar
Lianmin Zheng committed
1400
            type=str,
1401
            default=ServerArgs.schedule_policy,
1402
            choices=["lpm", "random", "fcfs", "dfs-weight", "lof", "priority"],
1403
            help="The scheduling policy of the requests.",
Lianmin Zheng's avatar
Lianmin Zheng committed
1404
        )
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
        parser.add_argument(
            "--enable-priority-scheduling",
            action="store_true",
            default=ServerArgs.enable_priority_scheduling,
            help="Enable priority scheduling. Requests with higher priority integer values will be scheduled first by default.",
        )
        parser.add_argument(
            "--schedule-low-priority-values-first",
            action="store_true",
            default=ServerArgs.schedule_low_priority_values_first,
            help="If specified with --enable-priority-scheduling, the scheduler will schedule requests with lower priority integer values first.",
        )
        parser.add_argument(
            "--priority-scheduling-preemption-threshold",
            type=int,
            default=ServerArgs.priority_scheduling_preemption_threshold,
            help="Minimum difference in priorities for an incoming request to have to preempt running request(s).",
        )
1423
1424
1425
1426
        parser.add_argument(
            "--schedule-conservativeness",
            type=float,
            default=ServerArgs.schedule_conservativeness,
1427
            help="How conservative the schedule policy is. A larger value means more conservative scheduling. Use a larger value if you see requests being retracted frequently.",
1428
        )
1429
1430
1431
1432
1433
1434
        parser.add_argument(
            "--page-size",
            type=int,
            default=ServerArgs.page_size,
            help="The number of tokens in a page.",
        )
tarinkk's avatar
tarinkk committed
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
        parser.add_argument(
            "--hybrid-kvcache-ratio",
            nargs="?",
            const=0.5,
            type=float,
            default=ServerArgs.hybrid_kvcache_ratio,
            help=(
                "Mix ratio in [0,1] between uniform and hybrid kv buffers "
                "(0.0 = pure uniform: swa_size / full_size = 1)"
                "(1.0 = pure hybrid: swa_size / full_size = local_attention_size / context_length)"
            ),
        )
Hanming Lu's avatar
Hanming Lu committed
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
        parser.add_argument(
            "--swa-full-tokens-ratio",
            type=float,
            default=ServerArgs.swa_full_tokens_ratio,
            help="The ratio of SWA layer KV tokens / full layer KV tokens, regardless of the number of swa:full layers. It should be between 0 and 1. "
            "E.g. 0.5 means if each swa layer has 50 tokens, then each full layer has 100 tokens.",
        )
        parser.add_argument(
            "--disable-hybrid-swa-memory",
            action="store_true",
            help="Disable the hybrid SWA memory.",
        )
1459

Lianmin Zheng's avatar
Lianmin Zheng committed
1460
1461
1462
1463
1464
1465
1466
        # Runtime options
        parser.add_argument(
            "--device",
            type=str,
            default=ServerArgs.device,
            help="The device to use ('cuda', 'xpu', 'hpu', 'npu', 'cpu'). Defaults to auto-detection if not specified.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1467
        parser.add_argument(
1468
            "--tensor-parallel-size",
Lianmin Zheng's avatar
Lianmin Zheng committed
1469
            "--tp-size",
Lianmin Zheng's avatar
Lianmin Zheng committed
1470
            type=int,
Lianmin Zheng's avatar
Lianmin Zheng committed
1471
            default=ServerArgs.tp_size,
1472
            help="The tensor parallelism size.",
1473
        )
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
        parser.add_argument(
            "--pipeline-parallel-size",
            "--pp-size",
            type=int,
            default=ServerArgs.pp_size,
            help="The pipeline parallelism size.",
        )
        parser.add_argument(
            "--max-micro-batch-size",
            type=int,
            default=ServerArgs.max_micro_batch_size,
            help="The maximum micro batch size in pipeline parallelism.",
        )
1487
1488
1489
        parser.add_argument(
            "--stream-interval",
            type=int,
Lianmin Zheng's avatar
Lianmin Zheng committed
1490
            default=ServerArgs.stream_interval,
1491
            help="The interval (or buffer size) for streaming in terms of the token length. A smaller value makes streaming smoother, while a larger value makes the throughput higher",
1492
        )
1493
1494
1495
1496
1497
        parser.add_argument(
            "--stream-output",
            action="store_true",
            help="Whether to output as a sequence of disjoint segments.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1498
1499
1500
1501
        parser.add_argument(
            "--random-seed",
            type=int,
            default=ServerArgs.random_seed,
1502
            help="The random seed.",
Lianmin Zheng's avatar
Lianmin Zheng committed
1503
        )
1504
1505
1506
1507
        parser.add_argument(
            "--constrained-json-whitespace-pattern",
            type=str,
            default=ServerArgs.constrained_json_whitespace_pattern,
Lianmin Zheng's avatar
Lianmin Zheng committed
1508
            help="(outlines backend only) Regex pattern for syntactic whitespaces allowed in JSON constrained output. For example, to allow the model generate consecutive whitespaces, set the pattern to [\n\t ]*",
1509
        )
1510
1511
1512
1513
1514
1515
        parser.add_argument(
            "--watchdog-timeout",
            type=float,
            default=ServerArgs.watchdog_timeout,
            help="Set watchdog timeout in seconds. If a forward batch takes longer than this, the server will crash to prevent hanging.",
        )
1516
1517
1518
1519
1520
1521
        parser.add_argument(
            "--dist-timeout",
            type=int,
            default=ServerArgs.dist_timeout,
            help="Set timeout for torch.distributed initialization.",
        )
1522
1523
1524
1525
        parser.add_argument(
            "--download-dir",
            type=str,
            default=ServerArgs.download_dir,
1526
            help="Model download directory for huggingface.",
1527
        )
1528
1529
1530
1531
1532
1533
        parser.add_argument(
            "--base-gpu-id",
            type=int,
            default=ServerArgs.base_gpu_id,
            help="The base GPU ID to start allocating GPUs from. Useful when running multiple instances on the same machine.",
        )
1534
1535
1536
1537
1538
1539
        parser.add_argument(
            "--gpu-id-step",
            type=int,
            default=ServerArgs.gpu_id_step,
            help="The delta between consecutive GPU IDs that are used. For example, setting it to 2 will use GPU 0,2,4,...",
        )
1540
1541
1542
1543
1544
        parser.add_argument(
            "--sleep-on-idle",
            action="store_true",
            help="Reduce CPU usage when sglang is idle.",
        )
1545
1546

        # Logging
Lianmin Zheng's avatar
Lianmin Zheng committed
1547
1548
1549
1550
        parser.add_argument(
            "--log-level",
            type=str,
            default=ServerArgs.log_level,
1551
            help="The logging level of all loggers.",
Lianmin Zheng's avatar
Lianmin Zheng committed
1552
        )
1553
        parser.add_argument(
1554
1555
1556
1557
            "--log-level-http",
            type=str,
            default=ServerArgs.log_level_http,
            help="The logging level of HTTP server. If not set, reuse --log-level by default.",
1558
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1559
        parser.add_argument(
1560
            "--log-requests",
Lianmin Zheng's avatar
Lianmin Zheng committed
1561
            action="store_true",
1562
1563
1564
1565
1566
            help="Log metadata, inputs, outputs of all requests. The verbosity is decided by --log-requests-level",
        )
        parser.add_argument(
            "--log-requests-level",
            type=int,
1567
            default=ServerArgs.log_requests_level,
1568
1569
1570
1571
1572
1573
1574
1575
            help="0: Log metadata (no sampling parameters). 1: Log metadata and sampling parameters. 2: Log metadata, sampling parameters and partial input/output. 3: Log every input/output.",
            choices=[0, 1, 2, 3],
        )
        parser.add_argument(
            "--crash-dump-folder",
            type=str,
            default=ServerArgs.crash_dump_folder,
            help="Folder path to dump requests from the last 5 min before a crash (if any). If not specified, crash dumping is disabled.",
Lianmin Zheng's avatar
Lianmin Zheng committed
1576
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1577
1578
1579
        parser.add_argument(
            "--show-time-cost",
            action="store_true",
Ying Sheng's avatar
Ying Sheng committed
1580
            help="Show time cost of custom marks.",
Lianmin Zheng's avatar
Lianmin Zheng committed
1581
        )
1582
1583
1584
1585
1586
        parser.add_argument(
            "--enable-metrics",
            action="store_true",
            help="Enable log prometheus metrics.",
        )
1587
1588
1589
1590
1591
1592
1593
        parser.add_argument(
            "--enable-metrics-for-all-schedulers",
            action="store_true",
            help="Enable --enable-metrics-for-all-schedulers when you want schedulers on all TP ranks (not just TP 0) "
            "to record request metrics separately. This is especially useful when dp_attention is enabled, as "
            "otherwise all metrics appear to come from TP 0.",
        )
1594
1595
1596
1597
        parser.add_argument(
            "--tokenizer-metrics-custom-labels-header",
            type=str,
            default=ServerArgs.tokenizer_metrics_custom_labels_header,
1598
            help="Specify the HTTP header for passing custom labels for tokenizer metrics.",
1599
1600
        )
        parser.add_argument(
1601
            "--tokenizer-metrics-allowed-custom-labels",
1602
1603
            type=str,
            nargs="+",
1604
1605
            default=ServerArgs.tokenizer_metrics_allowed_custom_labels,
            help="The custom labels allowed for tokenizer metrics. The labels are specified via a dict in "
1606
            "'--tokenizer-metrics-custom-labels-header' field in HTTP requests, e.g., {'label1': 'value1', 'label2': "
1607
            "'value2'} is allowed if '--tokenizer-metrics-allowed-custom-labels label1 label2' is set.",
1608
        )
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
        parser.add_argument(
            "--bucket-time-to-first-token",
            type=float,
            nargs="+",
            default=ServerArgs.bucket_time_to_first_token,
            help="The buckets of time to first token, specified as a list of floats.",
        )
        parser.add_argument(
            "--bucket-inter-token-latency",
            type=float,
            nargs="+",
            default=ServerArgs.bucket_inter_token_latency,
            help="The buckets of inter-token latency, specified as a list of floats.",
        )
        parser.add_argument(
            "--bucket-e2e-request-latency",
            type=float,
            nargs="+",
            default=ServerArgs.bucket_e2e_request_latency,
            help="The buckets of end-to-end request latency, specified as a list of floats.",
        )
        parser.add_argument(
            "--collect-tokens-histogram",
            action="store_true",
            default=ServerArgs.collect_tokens_histogram,
            help="Collect prompt/generation tokens histogram.",
        )
1636
1637
1638
        bucket_rule = (
            "Supports 3 rule types: 'default' uses predefined buckets; 'tse <middle> <base> <count>' "
            "generates two sides exponential distributed buckets (e.g., 'tse 1000 2 8' generates buckets "
1639
1640
            "[984.0, 992.0, 996.0, 998.0, 1000.0, 1002.0, 1004.0, 1008.0, 1016.0]).); 'custom <value1> "
            "<value2> ...' uses custom bucket values (e.g., 'custom 10 50 100 500')."
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
        )
        parser.add_argument(
            "--prompt-tokens-buckets",
            type=str,
            nargs="+",
            default=ServerArgs.prompt_tokens_buckets,
            help=f"The buckets rule of prompt tokens. {bucket_rule}",
        )
        parser.add_argument(
            "--generation-tokens-buckets",
            type=str,
            nargs="+",
            default=ServerArgs.generation_tokens_buckets,
            help=f"The buckets rule for generation tokens histogram. {bucket_rule}",
        )
1656
1657
1658
1659
1660
1661
        parser.add_argument(
            "--gc-warning-threshold-secs",
            type=float,
            default=ServerArgs.gc_warning_threshold_secs,
            help="The threshold for long GC warning. If a GC takes longer than this, a warning will be logged. Set to 0 to disable.",
        )
1662
1663
1664
1665
        parser.add_argument(
            "--decode-log-interval",
            type=int,
            default=ServerArgs.decode_log_interval,
1666
            help="The log interval of decode batch.",
1667
        )
1668
1669
1670
1671
1672
1673
        parser.add_argument(
            "--enable-request-time-stats-logging",
            action="store_true",
            default=ServerArgs.enable_request_time_stats_logging,
            help="Enable per request time stats logging",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1674
1675
1676
1677
1678
        parser.add_argument(
            "--kv-events-config",
            type=str,
            default=None,
            help="Config in json format for NVIDIA dynamo KV event publishing. Publishing will be enabled if this flag is used.",
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
        )
        parser.add_argument(
            "--enable-trace",
            action="store_true",
            help="Enable opentelemetry trace",
        )
        parser.add_argument(
            "--oltp-traces-endpoint",
            type=str,
            default="localhost:4317",
            help="Config opentelemetry collector endpoint if --enable-trace is set. format: <ip>:<port>",
Lianmin Zheng's avatar
Lianmin Zheng committed
1690
        )
1691

1692
        # API related
Liangsheng Yin's avatar
Liangsheng Yin committed
1693
1694
1695
1696
        parser.add_argument(
            "--api-key",
            type=str,
            default=ServerArgs.api_key,
1697
            help="Set API key of the server. It is also used in the OpenAI API compatible server.",
Liangsheng Yin's avatar
Liangsheng Yin committed
1698
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1699
1700
1701
1702
1703
1704
        parser.add_argument(
            "--served-model-name",
            type=str,
            default=ServerArgs.served_model_name,
            help="Override the model name returned by the v1/models endpoint in OpenAI API server.",
        )
1705
1706
1707
1708
1709
1710
        parser.add_argument(
            "--weight-version",
            type=str,
            default=ServerArgs.weight_version,
            help="Version identifier for the model weights. Defaults to 'default' if not specified.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
        parser.add_argument(
            "--chat-template",
            type=str,
            default=ServerArgs.chat_template,
            help="The buliltin chat template name or the path of the chat template file. This is only used for OpenAI-compatible API server.",
        )
        parser.add_argument(
            "--completion-template",
            type=str,
            default=ServerArgs.completion_template,
            help="The buliltin completion template name or the path of the completion template file. This is only used for OpenAI-compatible API server. only for code completion currently.",
        )
1723
        parser.add_argument(
1724
            "--file-storage-path",
1725
            type=str,
1726
            default=ServerArgs.file_storage_path,
1727
1728
            help="The path of the file storage in backend.",
        )
1729
1730
1731
1732
1733
        parser.add_argument(
            "--enable-cache-report",
            action="store_true",
            help="Return number of cached tokens in usage.prompt_tokens_details for each openai request.",
        )
Xihuai Wang's avatar
Xihuai Wang committed
1734
1735
1736
1737
1738
1739
1740
        parser.add_argument(
            "--reasoning-parser",
            type=str,
            choices=list(ReasoningParser.DetectorMap.keys()),
            default=ServerArgs.reasoning_parser,
            help=f"Specify the parser for reasoning models, supported parsers are: {list(ReasoningParser.DetectorMap.keys())}.",
        )
1741
        tool_call_parser_choices = list(FunctionCallParser.ToolCallParserEnum.keys())
1742
1743
1744
        parser.add_argument(
            "--tool-call-parser",
            type=str,
1745
            choices=tool_call_parser_choices,
1746
            default=ServerArgs.tool_call_parser,
1747
            help=f"Specify the parser for handling tool-call interactions. Options include: {tool_call_parser_choices}.",
1748
        )
1749
1750
1751
1752
1753
1754
        parser.add_argument(
            "--tool-server",
            type=str,
            default=None,
            help="Either 'demo' or a comma-separated list of tool server urls to use for the model. If not specified, no tool server will be used.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1755

1756
1757
        # Data parallelism
        parser.add_argument(
1758
            "--data-parallel-size",
1759
1760
1761
            "--dp-size",
            type=int,
            default=ServerArgs.dp_size,
1762
            help="The data parallelism size.",
1763
1764
1765
1766
1767
        )
        parser.add_argument(
            "--load-balance-method",
            type=str,
            default=ServerArgs.load_balance_method,
1768
            help="The load balancing strategy for data parallelism.",
1769
1770
1771
            choices=[
                "round_robin",
                "shortest_queue",
1772
                "minimum_tokens",
1773
1774
            ],
        )
1775
1776
1777
1778
1779
1780
        parser.add_argument(
            "--load-watch-interval",
            type=float,
            default=ServerArgs.load_watch_interval,
            help="The interval of load watching in seconds.",
        )
1781
1782
1783
1784
1785
1786
        parser.add_argument(
            "--prefill-round-robin-balance",
            default=ServerArgs.prefill_round_robin_balance,
            action="store_true",
            help="Prefill is round robin balanced. This is used to promise decode server can get the correct dp rank.",
        )
1787

1788
        # Multi-node distributed serving
1789
        parser.add_argument(
1790
            "--dist-init-addr",
1791
            "--nccl-init-addr",  # For backward compatibility. This will be removed in the future.
1792
            type=str,
1793
            help="The host address for initializing distributed backend (e.g., `192.168.0.2:25000`).",
1794
1795
        )
        parser.add_argument(
Liangsheng Yin's avatar
Liangsheng Yin committed
1796
            "--nnodes", type=int, default=ServerArgs.nnodes, help="The number of nodes."
1797
        )
1798
1799
1800
        parser.add_argument(
            "--node-rank", type=int, default=ServerArgs.node_rank, help="The node rank."
        )
1801

Lianmin Zheng's avatar
Lianmin Zheng committed
1802
1803
1804
1805
1806
1807
1808
        # Model override args
        parser.add_argument(
            "--json-model-override-args",
            type=str,
            help="A dictionary in JSON string format used to override default model configurations.",
            default=ServerArgs.json_model_override_args,
        )
1809
1810
1811
1812
1813
        parser.add_argument(
            "--preferred-sampling-params",
            type=str,
            help="json-formatted sampling settings that will be returned in /get_model_info",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1814

1815
        # LoRA
1816
1817
1818
1819
1820
1821
        parser.add_argument(
            "--enable-lora",
            default=ServerArgs.enable_lora,
            action="store_true",
            help="Enable LoRA support for the model. This argument is automatically set to True if `--lora-paths` is provided for backward compatibility.",
        )
1822
1823
1824
1825
1826
1827
1828
1829
1830
        parser.add_argument(
            "--max-lora-rank",
            default=ServerArgs.max_lora_rank,
            type=int,
            help="The maximum rank of LoRA adapters. If not specified, it will be automatically inferred from the adapters provided in --lora-paths.",
        )
        parser.add_argument(
            "--lora-target-modules",
            type=str,
1831
            choices=SUPPORTED_LORA_TARGET_MODULES + [LORA_TARGET_ALL_MODULES],
1832
1833
            nargs="*",
            default=None,
1834
1835
1836
            help="The union set of all target modules where LoRA should be applied. If not specified, "
            "it will be automatically inferred from the adapters provided in --lora-paths. If 'all' is specified, "
            "all supported modules will be targeted.",
1837
        )
1838
1839
1840
1841
1842
1843
        parser.add_argument(
            "--lora-paths",
            type=str,
            nargs="*",
            default=None,
            action=LoRAPathAction,
1844
            help='The list of LoRA adapters to load. Each adapter must be specified in one of the following formats: <PATH> | <NAME>=<PATH> | JSON with schema {"lora_name":str,"lora_path":str,"pinned":bool}',
1845
1846
1847
1848
1849
        )
        parser.add_argument(
            "--max-loras-per-batch",
            type=int,
            default=8,
1850
1851
            help="Maximum number of adapters for a running batch, include base-only request.",
        )
1852
1853
1854
1855
1856
1857
        parser.add_argument(
            "--max-loaded-loras",
            type=int,
            default=ServerArgs.max_loaded_loras,
            help="If specified, it limits the maximum number of LoRA adapters loaded in CPU memory at a time. The value must be greater than or equal to `--max-loras-per-batch`.",
        )
1858
1859
1860
        parser.add_argument(
            "--lora-backend",
            type=str,
1861
1862
            choices=LORA_BACKEND_CHOICES,
            default=ServerArgs.lora_backend,
1863
            help="Choose the kernel backend for multi-LoRA serving.",
1864
        )
1865
1866
1867
1868
1869
1870
1871
        parser.add_argument(
            "--max-lora-chunk-size",
            type=int,
            default=ServerArgs.max_lora_chunk_size,
            choices=[16, 32, 64, 128],
            help="Maximum chunk size for the ChunkedSGMV LoRA backend. Only used when --lora-backend is 'csgmv'. Choosing a larger value might improve performance.",
        )
1872
1873

        # Kernel backend
1874
1875
1876
        parser.add_argument(
            "--attention-backend",
            type=str,
1877
            choices=ATTENTION_BACKEND_CHOICES,
1878
1879
1880
            default=ServerArgs.attention_backend,
            help="Choose the kernels for attention layers.",
        )
1881
1882
1883
        parser.add_argument(
            "--prefill-attention-backend",
            type=str,
1884
            choices=ATTENTION_BACKEND_CHOICES,
1885
1886
1887
            default=ServerArgs.prefill_attention_backend,
            help="Choose the kernels for prefill attention layers (have priority over --attention-backend).",
        )
1888
1889
1890
        parser.add_argument(
            "--decode-attention-backend",
            type=str,
1891
            choices=ATTENTION_BACKEND_CHOICES,
1892
1893
1894
            default=ServerArgs.decode_attention_backend,
            help="Choose the kernels for decode attention layers (have priority over --attention-backend).",
        )
1895
1896
1897
1898
1899
1900
1901
        parser.add_argument(
            "--sampling-backend",
            type=str,
            choices=["flashinfer", "pytorch"],
            default=ServerArgs.sampling_backend,
            help="Choose the kernels for sampling layers.",
        )
1902
1903
1904
        parser.add_argument(
            "--grammar-backend",
            type=str,
1905
            choices=GRAMMAR_BACKEND_CHOICES,
1906
            default=ServerArgs.grammar_backend,
Lianmin Zheng's avatar
Lianmin Zheng committed
1907
            help="Choose the backend for grammar-guided decoding.",
1908
        )
1909
1910
1911
        parser.add_argument(
            "--mm-attention-backend",
            type=str,
1912
            choices=["sdpa", "fa3", "triton_attn", "ascend_attn"],
1913
1914
1915
            default=ServerArgs.mm_attention_backend,
            help="Set multimodal attention backend.",
        )
1916

1917
1918
1919
1920
        # Speculative decoding
        parser.add_argument(
            "--speculative-algorithm",
            type=str,
1921
            choices=["EAGLE", "EAGLE3", "NEXTN", "STANDALONE", "LOOKAHEAD"],
1922
1923
1924
1925
            help="Speculative algorithm.",
        )
        parser.add_argument(
            "--speculative-draft-model-path",
1926
            "--speculative-draft-model",
1927
1928
1929
            type=str,
            help="The path of the draft model weights. This can be a local folder or a Hugging Face repo ID.",
        )
1930
1931
1932
1933
1934
1935
1936
1937
        parser.add_argument(
            "--speculative-draft-model-revision",
            type=str,
            default=None,
            help="The specific draft model version to use. It can be a branch "
            "name, a tag name, or a commit id. If unspecified, will use "
            "the default version.",
        )
1938
1939
1940
1941
1942
1943
1944
1945
1946
        parser.add_argument(
            "--speculative-num-steps",
            type=int,
            help="The number of steps sampled from draft model in Speculative Decoding.",
            default=ServerArgs.speculative_num_steps,
        )
        parser.add_argument(
            "--speculative-eagle-topk",
            type=int,
1947
            help="The number of tokens sampled from the draft model in eagle2 each step.",
1948
1949
            default=ServerArgs.speculative_eagle_topk,
        )
1950
1951
1952
        parser.add_argument(
            "--speculative-num-draft-tokens",
            type=int,
1953
            help="The number of tokens sampled from the draft model in Speculative Decoding.",
1954
1955
            default=ServerArgs.speculative_num_draft_tokens,
        )
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
        parser.add_argument(
            "--speculative-accept-threshold-single",
            type=float,
            help="Accept a draft token if its probability in the target model is greater than this threshold.",
            default=ServerArgs.speculative_accept_threshold_single,
        )
        parser.add_argument(
            "--speculative-accept-threshold-acc",
            type=float,
            help="The accept probability of a draft token is raised from its target probability p to min(1, p / threshold_acc).",
            default=ServerArgs.speculative_accept_threshold_acc,
        )
1968
1969
1970
1971
1972
1973
        parser.add_argument(
            "--speculative-token-map",
            type=str,
            help="The path of the draft model's small vocab table.",
            default=ServerArgs.speculative_token_map,
        )
1974
        parser.add_argument(
1975
            "--speculative-attention-mode",
1976
1977
            type=str,
            choices=["prefill", "decode"],
1978
1979
            help="Attention backend for speculative decoding operations (both target verify and draft extend). Can be one of 'prefill' (default) or 'decode'.",
            default=ServerArgs.speculative_attention_mode,
1980
        )
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
        # Lookahead speculative decoding
        parser.add_argument(
            "--speculative-lookahead-min-match-window-size",
            type=int,
            default=ServerArgs.speculative_lookahead_min_match_window_size,
            help="The minimum window size for pattern matching in lookahead speculative decoding.",
        )
        parser.add_argument(
            "--speculative-lookahead-max-match-window-size",
            type=int,
            default=ServerArgs.speculative_lookahead_max_match_window_size,
            help="The maximum window size for pattern matching in lookahead speculative decoding.",
        )
        parser.add_argument(
            "--speculative-lookahead-min-bfs-breadth",
            type=int,
            default=ServerArgs.speculative_lookahead_min_bfs_breadth,
            help="The minimum breadth for BFS (Breadth-First Search) in lookahead speculative decoding.",
        )
        parser.add_argument(
            "--speculative-lookahead-max-bfs-breadth",
            type=int,
            default=ServerArgs.speculative_lookahead_max_bfs_breadth,
            help="The maximum breadth for BFS (Breadth-First Search) in lookahead speculative decoding.",
        )
        parser.add_argument(
            "--speculative-lookahead-match-type",
            type=str,
            choices=["BFS", "PROB"],
            default=ServerArgs.speculative_lookahead_match_type,
            help="The match type for cache tree.",
        )
        parser.add_argument(
            "--speculative-lookahead-branch-length",
            type=int,
            default=ServerArgs.speculative_lookahead_branch_length,
            help="The branch length for lookahead speculative decoding.",
        )
        parser.add_argument(
            "--speculative-lookahead-capacity",
            type=int,
            default=ServerArgs.speculative_lookahead_capacity,
            help="The cache capacity for lookahead speculative decoding.",
        )
2025
2026
2027
2028
2029

        # Expert parallelism
        parser.add_argument(
            "--expert-parallel-size",
            "--ep-size",
Cheng Wan's avatar
Cheng Wan committed
2030
            "--ep",
2031
2032
2033
2034
2035
            type=int,
            default=ServerArgs.ep_size,
            help="The expert parallelism size.",
        )
        parser.add_argument(
2036
2037
            "--moe-a2a-backend",
            type=str,
2038
            choices=["none", "deepep"],
2039
2040
            default=ServerArgs.moe_a2a_backend,
            help="Choose the backend for MoE A2A.",
2041
        )
2042
        parser.add_argument(
2043
2044
2045
2046
2047
2048
2049
2050
            "--moe-runner-backend",
            type=str,
            choices=[
                "auto",
                "triton",
                "triton_kernel",
                "flashinfer_trtllm",
                "flashinfer_cutlass",
2051
                "flashinfer_mxfp4",
2052
                "flashinfer_cutedsl",
2053
2054
2055
            ],
            default=ServerArgs.moe_runner_backend,
            help="Choose the runner backend for MoE.",
2056
2057
        )
        parser.add_argument(
2058
2059
            "--flashinfer-mxfp4-moe-precision",
            type=str,
2060
            choices=["default", "bf16"],
2061
2062
2063
2064
            default=ServerArgs.flashinfer_mxfp4_moe_precision,
            help="Choose the computation precision of flashinfer mxfp4 moe",
        )
        parser.add_argument(
2065
2066
            "--enable-flashinfer-allreduce-fusion",
            action="store_true",
2067
            help="Enable FlashInfer allreduce fusion with Residual RMSNorm.",
2068
        )
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
        parser.add_argument(
            "--deepep-mode",
            type=str,
            choices=["normal", "low_latency", "auto"],
            default="auto",
            help="Select the mode when enable DeepEP MoE, could be `normal`, `low_latency` or `auto`. Default is `auto`, which means `low_latency` for decode batch and `normal` for prefill batch.",
        )
        parser.add_argument(
            "--ep-num-redundant-experts",
            type=int,
            default=ServerArgs.ep_num_redundant_experts,
            help="Allocate this number of redundant experts in expert parallel.",
        )
        parser.add_argument(
            "--ep-dispatch-algorithm",
            type=str,
            default=ServerArgs.ep_dispatch_algorithm,
            help="The algorithm to choose ranks for redundant experts in expert parallel.",
        )
        parser.add_argument(
            "--init-expert-location",
            type=str,
            default=ServerArgs.init_expert_location,
            help="Initial location of EP experts.",
        )
        parser.add_argument(
            "--enable-eplb",
            action="store_true",
            help="Enable EPLB algorithm",
        )
        parser.add_argument(
            "--eplb-algorithm",
            type=str,
            default=ServerArgs.eplb_algorithm,
            help="Chosen EPLB algorithm",
        )
        parser.add_argument(
            "--eplb-rebalance-num-iterations",
            type=int,
            default=ServerArgs.eplb_rebalance_num_iterations,
            help="Number of iterations to automatically trigger a EPLB re-balance.",
        )
        parser.add_argument(
            "--eplb-rebalance-layers-per-chunk",
            type=int,
            default=ServerArgs.eplb_rebalance_layers_per_chunk,
            help="Number of layers to rebalance per forward pass.",
        )
2117
2118
2119
2120
2121
2122
        parser.add_argument(
            "--eplb-min-rebalancing-utilization-threshold",
            type=float,
            default=ServerArgs.eplb_min_rebalancing_utilization_threshold,
            help="Minimum threshold for GPU average utilization to trigger EPLB rebalancing. Must be in the range [0.0, 1.0].",
        )
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
        parser.add_argument(
            "--expert-distribution-recorder-mode",
            type=str,
            default=ServerArgs.expert_distribution_recorder_mode,
            help="Mode of expert distribution recorder.",
        )
        parser.add_argument(
            "--expert-distribution-recorder-buffer-size",
            type=int,
            default=ServerArgs.expert_distribution_recorder_buffer_size,
            help="Circular buffer size of expert distribution recorder. Set to -1 to denote infinite buffer.",
        )
        parser.add_argument(
            "--enable-expert-distribution-metrics",
            action="store_true",
            help="Enable logging metrics for expert balancedness",
        )
        parser.add_argument(
            "--deepep-config",
            type=str,
            default=ServerArgs.deepep_config,
            help="Tuned DeepEP config suitable for your own cluster. It can be either a string with JSON content or a file path.",
        )
        parser.add_argument(
            "--moe-dense-tp-size",
            type=int,
            default=ServerArgs.moe_dense_tp_size,
            help="TP size for MoE dense MLP layers. This flag is useful when, with large TP size, there are errors caused by weights in MLP layers having dimension smaller than the min dimension GEMM supports.",
        )
2152

Yi Zhang's avatar
Yi Zhang committed
2153
2154
2155
2156
2157
        # Mamba Cache
        parser.add_argument(
            "--max-mamba-cache-size",
            type=int,
            default=ServerArgs.max_mamba_cache_size,
2158
            help="The maximum size of the mamba cache.",
Yi Zhang's avatar
Yi Zhang committed
2159
2160
2161
2162
2163
2164
        )
        parser.add_argument(
            "--mamba-ssm-dtype",
            type=str,
            default=ServerArgs.mamba_ssm_dtype,
            choices=["float32", "bfloat16"],
2165
            help="The data type of the SSM states in mamba cache.",
Yi Zhang's avatar
Yi Zhang committed
2166
        )
2167

Lianmin Zheng's avatar
Lianmin Zheng committed
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
        # Hierarchical cache
        parser.add_argument(
            "--enable-hierarchical-cache",
            action="store_true",
            help="Enable hierarchical cache",
        )
        parser.add_argument(
            "--hicache-ratio",
            type=float,
            default=ServerArgs.hicache_ratio,
            help="The ratio of the size of host KV cache memory pool to the size of device pool.",
        )
        parser.add_argument(
            "--hicache-size",
            type=int,
            default=ServerArgs.hicache_size,
            help="The size of host KV cache memory pool in gigabytes, which will override the hicache_ratio if set.",
        )
        parser.add_argument(
            "--hicache-write-policy",
            type=str,
            choices=["write_back", "write_through", "write_through_selective"],
            default=ServerArgs.hicache_write_policy,
            help="The write policy of hierarchical cache.",
        )
2193
2194
2195
2196
2197
2198
2199
        parser.add_argument(
            "--radix-eviction-policy",
            type=str,
            choices=["lru", "lfu"],
            default=ServerArgs.radix_eviction_policy,
            help="The eviction policy of radix trees. 'lru' stands for Least Recently Used, 'lfu' stands for Least Frequently Used.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
2200
2201
2202
2203
2204
2205
2206
        parser.add_argument(
            "--hicache-io-backend",
            type=str,
            choices=["direct", "kernel"],
            default=ServerArgs.hicache_io_backend,
            help="The IO backend for KV cache transfer between CPU and GPU",
        )
2207
2208
2209
        parser.add_argument(
            "--hicache-mem-layout",
            type=str,
2210
            choices=["layer_first", "page_first", "page_first_direct"],
2211
2212
2213
            default=ServerArgs.hicache_mem_layout,
            help="The layout of host memory pool for hierarchical cache.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
2214
2215
2216
        parser.add_argument(
            "--hicache-storage-backend",
            type=str,
yi wang's avatar
yi wang committed
2217
            choices=["file", "mooncake", "hf3fs", "nixl", "aibrix"],
Lianmin Zheng's avatar
Lianmin Zheng committed
2218
2219
2220
            default=ServerArgs.hicache_storage_backend,
            help="The storage backend for hierarchical KV cache.",
        )
pansicheng's avatar
pansicheng committed
2221
2222
2223
2224
2225
2226
2227
        parser.add_argument(
            "--hicache-storage-prefetch-policy",
            type=str,
            choices=["best_effort", "wait_complete", "timeout"],
            default=ServerArgs.hicache_storage_prefetch_policy,
            help="Control when prefetching from the storage backend should stop.",
        )
2228
2229
2230
2231
2232
2233
        parser.add_argument(
            "--hicache-storage-backend-extra-config",
            type=str,
            default=ServerArgs.hicache_storage_backend_extra_config,
            help="A dictionary in JSON string format containing extra configuration for the storage backend.",
        )
2234
2235
2236
2237
2238
2239
        # LMCache
        parser.add_argument(
            "--enable-lmcache",
            action="store_true",
            help="Using LMCache as an alternative hierarchical cache solution",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
2240

2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
        # Double Sparsity
        parser.add_argument(
            "--enable-double-sparsity",
            action="store_true",
            help="Enable double sparsity attention",
        )
        parser.add_argument(
            "--ds-channel-config-path",
            type=str,
            default=ServerArgs.ds_channel_config_path,
            help="The path of the double sparsity channel config",
        )
        parser.add_argument(
            "--ds-heavy-channel-num",
            type=int,
            default=ServerArgs.ds_heavy_channel_num,
            help="The number of heavy channels in double sparsity attention",
        )
        parser.add_argument(
            "--ds-heavy-token-num",
            type=int,
            default=ServerArgs.ds_heavy_token_num,
            help="The number of heavy tokens in double sparsity attention",
        )
        parser.add_argument(
            "--ds-heavy-channel-type",
            type=str,
            default=ServerArgs.ds_heavy_channel_type,
            help="The type of heavy channels in double sparsity attention",
        )
        parser.add_argument(
            "--ds-sparse-decode-threshold",
            type=int,
            default=ServerArgs.ds_sparse_decode_threshold,
            help="The type of heavy channels in double sparsity attention",
        )

fzyzcjy's avatar
fzyzcjy committed
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
        # Offloading
        parser.add_argument(
            "--cpu-offload-gb",
            type=int,
            default=ServerArgs.cpu_offload_gb,
            help="How many GBs of RAM to reserve for CPU offloading.",
        )
        parser.add_argument(
            "--offload-group-size",
            type=int,
            default=ServerArgs.offload_group_size,
            help="Number of layers per group in offloading.",
        )
        parser.add_argument(
            "--offload-num-in-group",
            type=int,
            default=ServerArgs.offload_num_in_group,
            help="Number of layers to be offloaded within a group.",
        )
        parser.add_argument(
            "--offload-prefetch-step",
            type=int,
            default=ServerArgs.offload_prefetch_step,
            help="Steps to prefetch in offloading.",
        )
        parser.add_argument(
            "--offload-mode",
            type=str,
            default=ServerArgs.offload_mode,
            help="Mode of offloading.",
        )

2310
        # Optimization/debug options
Liangsheng Yin's avatar
Liangsheng Yin committed
2311
        parser.add_argument(
Lianmin Zheng's avatar
Lianmin Zheng committed
2312
            "--disable-radix-cache",
Liangsheng Yin's avatar
Liangsheng Yin committed
2313
            action="store_true",
Ying Sheng's avatar
Ying Sheng committed
2314
            help="Disable RadixAttention for prefix caching.",
Liangsheng Yin's avatar
Liangsheng Yin committed
2315
        )
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
        parser.add_argument(
            "--cuda-graph-max-bs",
            type=int,
            default=ServerArgs.cuda_graph_max_bs,
            help="Set the maximum batch size for cuda graph. It will extend the cuda graph capture batch size to this value.",
        )
        parser.add_argument(
            "--cuda-graph-bs",
            type=int,
            nargs="+",
            help="Set the list of batch sizes for cuda graph.",
        )
2328
2329
2330
        parser.add_argument(
            "--disable-cuda-graph",
            action="store_true",
2331
            help="Disable cuda graph.",
2332
        )
2333
        parser.add_argument(
2334
2335
            "--disable-cuda-graph-padding",
            action="store_true",
2336
            help="Disable cuda graph when padding is needed. Still uses cuda graph when padding is not needed.",
2337
        )
2338
2339
2340
2341
2342
        parser.add_argument(
            "--enable-profile-cuda-graph",
            action="store_true",
            help="Enable profiling of cuda graph capture.",
        )
2343
2344
2345
2346
2347
        parser.add_argument(
            "--enable-cudagraph-gc",
            action="store_true",
            help="Enable garbage collection during CUDA graph capture. If disabled (default), GC is frozen during capture to speed up the process.",
        )
2348
2349
2350
2351
2352
        parser.add_argument(
            "--enable-nccl-nvls",
            action="store_true",
            help="Enable NCCL NVLS for prefill heavy requests when available.",
        )
2353
2354
2355
2356
2357
        parser.add_argument(
            "--enable-symm-mem",
            action="store_true",
            help="Enable NCCL symmetric memory for fast collectives.",
        )
2358
2359
2360
2361
2362
        parser.add_argument(
            "--disable-flashinfer-cutlass-moe-fp4-allgather",
            action="store_true",
            help="Disables quantize before all-gather for flashinfer cutlass moe.",
        )
2363
2364
2365
2366
2367
        parser.add_argument(
            "--enable-tokenizer-batch-encode",
            action="store_true",
            help="Enable batch tokenization for improved performance when processing multiple text inputs. Do not use with image inputs, pre-tokenized input_ids, or input_embeds.",
        )
2368
        parser.add_argument(
2369
            "--disable-outlines-disk-cache",
2370
            action="store_true",
2371
            help="Disable disk cache of outlines to avoid possible crashes related to file system or high concurrency.",
2372
        )
2373
2374
2375
2376
2377
        parser.add_argument(
            "--disable-custom-all-reduce",
            action="store_true",
            help="Disable the custom all-reduce kernel and fall back to NCCL.",
        )
2378
2379
2380
2381
2382
        parser.add_argument(
            "--enable-mscclpp",
            action="store_true",
            help="Enable using mscclpp for small messages for all-reduce kernel and fall back to NCCL.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
2383
        parser.add_argument(
2384
            "--disable-overlap-schedule",
Lianmin Zheng's avatar
Lianmin Zheng committed
2385
            action="store_true",
2386
            help="Disable the overlap scheduler, which overlaps the CPU scheduler with GPU model worker.",
Lianmin Zheng's avatar
Lianmin Zheng committed
2387
        )
2388
2389
2390
        parser.add_argument(
            "--enable-mixed-chunk",
            action="store_true",
2391
            help="Enabling mixing prefill and decode in a batch when using chunked prefill.",
2392
        )
Ke Bao's avatar
Ke Bao committed
2393
2394
2395
        parser.add_argument(
            "--enable-dp-attention",
            action="store_true",
2396
            help="Enabling data parallelism for attention and tensor parallelism for FFN. The dp size should be equal to the tp size. Currently DeepSeek-V2 and Qwen 2/3 MoE models are supported.",
Ke Bao's avatar
Ke Bao committed
2397
        )
2398
2399
2400
2401
2402
        parser.add_argument(
            "--enable-dp-lm-head",
            action="store_true",
            help="Enable vocabulary parallel across the attention TP group to avoid all-gather across DP groups, optimizing performance under DP attention.",
        )
2403
2404
2405
2406
2407
        parser.add_argument(
            "--enable-two-batch-overlap",
            action="store_true",
            help="Enabling two micro batches to overlap.",
        )
2408
2409
2410
2411
2412
2413
        parser.add_argument(
            "--tbo-token-distribution-threshold",
            type=float,
            default=ServerArgs.tbo_token_distribution_threshold,
            help="The threshold of token distribution between two batches in micro-batch-overlap, determines whether to two-batch-overlap or two-chunk-overlap. Set to 0 denote disable two-chunk-overlap.",
        )
2414
2415
2416
        parser.add_argument(
            "--enable-torch-compile",
            action="store_true",
2417
2418
            help="Optimize the model with torch.compile. Experimental feature.",
        )
2419
        parser.add_argument(
2420
            "--torch-compile-max-bs",
2421
            type=int,
2422
            default=ServerArgs.torch_compile_max_bs,
2423
2424
            help="Set the maximum batch size when using torch compile.",
        )
2425
2426
2427
2428
        parser.add_argument(
            "--torchao-config",
            type=str,
            default=ServerArgs.torchao_config,
2429
            help="Optimize the model with torchao. Experimental feature. Current choices are: int8dq, int8wo, int4wo-<group_size>, fp8wo, fp8dq-per_tensor, fp8dq-per_row",
2430
        )
2431
2432
2433
2434
2435
        parser.add_argument(
            "--enable-nan-detection",
            action="store_true",
            help="Enable the NaN detection for debugging purposes.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
2436
        parser.add_argument(
2437
            "--enable-p2p-check",
Lianmin Zheng's avatar
Lianmin Zheng committed
2438
            action="store_true",
2439
            help="Enable P2P check for GPU access, otherwise the p2p access is allowed by default.",
Lianmin Zheng's avatar
Lianmin Zheng committed
2440
        )
2441
        parser.add_argument(
2442
            "--triton-attention-reduce-in-fp32",
2443
            action="store_true",
2444
            help="Cast the intermediate attention results to fp32 to avoid possible crashes related to fp16."
2445
            "This only affects Triton attention kernels.",
2446
        )
2447
2448
2449
2450
2451
2452
        parser.add_argument(
            "--triton-attention-num-kv-splits",
            type=int,
            default=ServerArgs.triton_attention_num_kv_splits,
            help="The number of KV splits in flash decoding Triton kernel. Larger value is better in longer context scenarios. The default value is 8.",
        )
2453
2454
2455
2456
2457
2458
        parser.add_argument(
            "--triton-attention-split-tile-size",
            type=int,
            default=ServerArgs.triton_attention_split_tile_size,
            help="The size of split KV tile in flash decoding Triton kernel. Used for deterministic inference.",
        )
2459
2460
2461
2462
2463
2464
2465
2466
        parser.add_argument(
            "--num-continuous-decode-steps",
            type=int,
            default=ServerArgs.num_continuous_decode_steps,
            help="Run multiple continuous decoding steps to reduce scheduling overhead. "
            "This can potentially increase throughput but may also increase time-to-first-token latency. "
            "The default value is 1, meaning only run one decoding step at a time.",
        )
2467
2468
2469
2470
2471
        parser.add_argument(
            "--delete-ckpt-after-loading",
            action="store_true",
            help="Delete the model checkpoint after loading the model.",
        )
2472
2473
2474
2475
2476
        parser.add_argument(
            "--enable-memory-saver",
            action="store_true",
            help="Allow saving memory using release_memory_occupation and resume_memory_occupation",
        )
2477
2478
2479
2480
2481
        parser.add_argument(
            "--allow-auto-truncate",
            action="store_true",
            help="Allow automatically truncating requests that exceed the maximum input length instead of returning an error.",
        )
2482
2483
2484
2485
2486
        parser.add_argument(
            "--enable-custom-logit-processor",
            action="store_true",
            help="Enable users to pass custom logit processors to the server (disabled by default for security)",
        )
2487
        parser.add_argument(
2488
            "--flashinfer-mla-disable-ragged",
2489
            action="store_true",
2490
            help="Not using ragged prefill wrapper when running flashinfer mla",
2491
        )
2492
        parser.add_argument(
2493
2494
2495
            "--disable-shared-experts-fusion",
            action="store_true",
            help="Disable shared experts fusion optimization for deepseek v3/r1.",
2496
        )
2497
2498
2499
2500
2501
        parser.add_argument(
            "--disable-chunked-prefix-cache",
            action="store_true",
            help="Disable chunked prefix cache feature for deepseek, which should save overhead for short sequences.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
2502
2503
2504
2505
2506
        parser.add_argument(
            "--disable-fast-image-processor",
            action="store_true",
            help="Adopt base image processor instead of fast image processor.",
        )
2507
2508
2509
2510
2511
        parser.add_argument(
            "--keep-mm-feature-on-device",
            action="store_true",
            help="Keep multimodal feature tensors on device after processing to save D2H copy.",
        )
2512
2513
2514
2515
2516
        parser.add_argument(
            "--enable-return-hidden-states",
            action="store_true",
            help="Enable returning hidden states with responses.",
        )
2517
2518
2519
2520
2521
2522
        parser.add_argument(
            "--scheduler-recv-interval",
            type=int,
            default=ServerArgs.scheduler_recv_interval,
            help="The interval to poll requests in scheduler. Can be set to >1 to reduce the overhead of this.",
        )
2523
2524
2525
2526
2527
2528
        parser.add_argument(
            "--numa-node",
            type=int,
            nargs="+",
            help="Sets the numa node for the subprocesses. i-th element corresponds to i-th subprocess.",
        )
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548

        # Debug tensor dumps
        parser.add_argument(
            "--debug-tensor-dump-output-folder",
            type=str,
            default=ServerArgs.debug_tensor_dump_output_folder,
            help="The output folder for dumping tensors.",
        )
        parser.add_argument(
            "--debug-tensor-dump-input-file",
            type=str,
            default=ServerArgs.debug_tensor_dump_input_file,
            help="The input filename for dumping tensors",
        )
        parser.add_argument(
            "--debug-tensor-dump-inject",
            type=str,
            default=ServerArgs.debug_tensor_dump_inject,
            help="Inject the outputs from jax as the input of every layer.",
        )
2549
2550
2551
2552
2553
        parser.add_argument(
            "--debug-tensor-dump-prefill-only",
            action="store_true",
            help="Only dump the tensors for prefill requests (i.e. batch size > 1).",
        )
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
        parser.add_argument(
            "--enable-dynamic-batch-tokenizer",
            action="store_true",
            help="Enable async dynamic batch tokenizer for improved performance when multiple requests arrive concurrently.",
        )
        parser.add_argument(
            "--dynamic-batch-tokenizer-batch-size",
            type=int,
            default=ServerArgs.dynamic_batch_tokenizer_batch_size,
            help="[Only used if --enable-dynamic-batch-tokenizer is set] Maximum batch size for dynamic batch tokenizer.",
        )
        parser.add_argument(
            "--dynamic-batch-tokenizer-batch-timeout",
            type=float,
            default=ServerArgs.dynamic_batch_tokenizer_batch_timeout,
            help="[Only used if --enable-dynamic-batch-tokenizer is set] Timeout in seconds for batching tokenization requests.",
        )
2571

Lianmin Zheng's avatar
Lianmin Zheng committed
2572
        # PD disaggregation
Byron Hsu's avatar
Byron Hsu committed
2573
2574
2575
        parser.add_argument(
            "--disaggregation-mode",
            type=str,
2576
            default=ServerArgs.disaggregation_mode,
Byron Hsu's avatar
Byron Hsu committed
2577
2578
2579
            choices=["null", "prefill", "decode"],
            help='Only used for PD disaggregation. "prefill" for prefill-only server, and "decode" for decode-only server. If not specified, it is not PD disaggregated',
        )
2580
2581
2582
2583
        parser.add_argument(
            "--disaggregation-transfer-backend",
            type=str,
            default=ServerArgs.disaggregation_transfer_backend,
2584
            choices=DISAGG_TRANSFER_BACKEND_CHOICES,
2585
2586
            help="The backend for disaggregation transfer. Default is mooncake.",
        )
2587
2588
2589
2590
2591
2592
        parser.add_argument(
            "--disaggregation-bootstrap-port",
            type=int,
            default=ServerArgs.disaggregation_bootstrap_port,
            help="Bootstrap server port on the prefill server. Default is 8998.",
        )
Byron Hsu's avatar
Byron Hsu committed
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
        parser.add_argument(
            "--disaggregation-decode-tp",
            type=int,
            default=ServerArgs.disaggregation_decode_tp,
            help="Decode tp size. If not set, it matches the tp size of the current engine. This is only set on the prefill server.",
        )
        parser.add_argument(
            "--disaggregation-decode-dp",
            type=int,
            default=ServerArgs.disaggregation_decode_dp,
            help="Decode dp size. If not set, it matches the dp size of the current engine. This is only set on the prefill server.",
        )
        parser.add_argument(
            "--disaggregation-prefill-pp",
            type=int,
            default=ServerArgs.disaggregation_prefill_pp,
            help="Prefill pp size. If not set, it is default to 1. This is only set on the decode server.",
        )
2611
2612
2613
2614
        parser.add_argument(
            "--disaggregation-ib-device",
            type=str,
            default=ServerArgs.disaggregation_ib_device,
2615
2616
2617
            help="The InfiniBand devices for disaggregation transfer, accepts single device (e.g., --disaggregation-ib-device mlx5_0) "
            "or multiple comma-separated devices (e.g., --disaggregation-ib-device mlx5_0,mlx5_1). "
            "Default is None, which triggers automatic device detection when mooncake backend is enabled.",
2618
        )
2619
2620
2621
2622
2623
        parser.add_argument(
            "--disaggregation-decode-enable-offload-kvcache",
            action="store_true",
            help="Enable async KV cache offloading on decode server (PD mode).",
        )
2624
2625
2626
2627
2628
2629
        parser.add_argument(
            "--num-reserved-decode-tokens",
            type=int,
            default=ServerArgs.num_reserved_decode_tokens,
            help="Number of decode tokens that will have memory reserved when adding new request to the running batch.",
        )
2630
2631
2632
2633
2634
2635
        parser.add_argument(
            "--disaggregation-decode-polling-interval",
            type=int,
            default=ServerArgs.disaggregation_decode_polling_interval,
            help="The interval to poll requests in decode server. Can be set to >1 to reduce the overhead of this.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
2636
2637

        # Custom weight loader
2638
2639
2640
2641
2642
2643
2644
        parser.add_argument(
            "--custom-weight-loader",
            type=str,
            nargs="*",
            default=None,
            help="The custom dataloader which used to update the model. Should be set with a valid import path, such as my_package.weight_load_func",
        )
2645
2646
2647
2648
2649
        parser.add_argument(
            "--weight-loader-disable-mmap",
            action="store_true",
            help="Disable mmap while loading weight using safetensors.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
        parser.add_argument(
            "--remote-instance-weight-loader-seed-instance-ip",
            type=str,
            default=ServerArgs.remote_instance_weight_loader_seed_instance_ip,
            help="The ip of the seed instance for loading weights from remote instance.",
        )
        parser.add_argument(
            "--remote-instance-weight-loader-seed-instance-service-port",
            type=int,
            default=ServerArgs.remote_instance_weight_loader_seed_instance_service_port,
            help="The service port of the seed instance for loading weights from remote instance.",
        )
        parser.add_argument(
            "--remote-instance-weight-loader-send-weights-group-ports",
            type=json_list_type,
            default=ServerArgs.remote_instance_weight_loader_send_weights_group_ports,
            help="The communication group ports for loading weights from remote instance.",
        )
2668
2669

        # For PD-Multiplexing
2670
2671
2672
2673
2674
        parser.add_argument(
            "--enable-pdmux",
            action="store_true",
            help="Enable PD-Multiplexing, PD running on greenctx stream.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
2675

2676
2677
2678
2679
2680
2681
        parser.add_argument(
            "--sm-group-num",
            type=int,
            default=ServerArgs.sm_group_num,
            help="Number of sm partition groups.",
        )
Byron Hsu's avatar
Byron Hsu committed
2682

2683
2684
2685
2686
2687
2688
2689
        # For deterministic inference
        parser.add_argument(
            "--enable-deterministic-inference",
            action="store_true",
            help="Enable deterministic inference mode with batch invariant ops.",
        )

2690
2691
2692
        # Deprecated arguments
        parser.add_argument(
            "--enable-ep-moe",
Lianmin Zheng's avatar
Lianmin Zheng committed
2693
2694
            action=DeprecatedAction,
            help="NOTE: --enable-ep-moe is deprecated. Please set `--ep-size` to the same value as `--tp-size` instead.",
2695
2696
2697
        )
        parser.add_argument(
            "--enable-deepep-moe",
Lianmin Zheng's avatar
Lianmin Zheng committed
2698
2699
            action=DeprecatedAction,
            help="NOTE: --enable-deepep-moe is deprecated. Please set `--moe-a2a-backend` to 'deepep' instead.",
2700
        )
2701
2702
        parser.add_argument(
            "--enable-flashinfer-cutlass-moe",
Lianmin Zheng's avatar
Lianmin Zheng committed
2703
2704
            action=DeprecatedAction,
            help="NOTE: --enable-flashinfer-cutlass-moe is deprecated. Please set `--moe-runner-backend` to 'flashinfer_cutlass' instead.",
2705
        )
2706
2707
        parser.add_argument(
            "--enable-flashinfer-cutedsl-moe",
Lianmin Zheng's avatar
Lianmin Zheng committed
2708
2709
            action=DeprecatedAction,
            help="NOTE: --enable-flashinfer-cutedsl-moe is deprecated. Please set `--moe-runner-backend` to 'flashinfer_cutedsl' instead.",
2710
        )
2711
2712
        parser.add_argument(
            "--enable-flashinfer-trtllm-moe",
Lianmin Zheng's avatar
Lianmin Zheng committed
2713
2714
            action=DeprecatedAction,
            help="NOTE: --enable-flashinfer-trtllm-moe is deprecated. Please set `--moe-runner-backend` to 'flashinfer_trtllm' instead.",
2715
2716
2717
        )
        parser.add_argument(
            "--enable-triton-kernel-moe",
Lianmin Zheng's avatar
Lianmin Zheng committed
2718
2719
            action=DeprecatedAction,
            help="NOTE: --enable-triton-kernel-moe is deprecated. Please set `--moe-runner-backend` to 'triton_kernel' instead.",
2720
        )
2721
2722
        parser.add_argument(
            "--enable-flashinfer-mxfp4-moe",
Lianmin Zheng's avatar
Lianmin Zheng committed
2723
2724
            action=DeprecatedAction,
            help="NOTE: --enable-flashinfer-mxfp4-moe is deprecated. Please set `--moe-runner-backend` to 'flashinfer_mxfp4' instead.",
2725
        )
2726

2727
2728
2729
2730
2731
2732
2733
        # Configuration file support
        parser.add_argument(
            "--config",
            type=str,
            help="Read CLI options from a config file. Must be a YAML file with configuration options.",
        )

Lianmin Zheng's avatar
Lianmin Zheng committed
2734
2735
    @classmethod
    def from_cli_args(cls, args: argparse.Namespace):
2736
        args.tp_size = args.tensor_parallel_size
2737
        args.pp_size = args.pipeline_parallel_size
2738
        args.dp_size = args.data_parallel_size
xiaobochen's avatar
xiaobochen committed
2739
        args.ep_size = args.expert_parallel_size
2740

Lianmin Zheng's avatar
Lianmin Zheng committed
2741
2742
2743
2744
        attrs = [attr.name for attr in dataclasses.fields(cls)]
        return cls(**{attr: getattr(args, attr) for attr in attrs})

    def url(self):
2745
        if is_valid_ipv6_address(self.host):
2746
2747
2748
            return f"http://[{self.host}]:{self.port}"
        else:
            return f"http://{self.host}:{self.port}"
Lianmin Zheng's avatar
Lianmin Zheng committed
2749

Lianmin Zheng's avatar
Lianmin Zheng committed
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
    def get_hf_config(self):
        kwargs = {}
        hf_config = get_config(
            self.model_path,
            trust_remote_code=self.trust_remote_code,
            revision=self.revision,
            model_override_args=json.loads(self.json_model_override_args),
            **kwargs,
        )
        return hf_config

2761
    def check_server_args(self):
2762
        # Check parallel size constraints
2763
        assert (
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
            self.tp_size * self.pp_size
        ) % self.nnodes == 0, "tp_size must be divisible by number of nodes"

        if self.pp_size > 1:
            assert (
                self.disable_overlap_schedule
                and self.speculative_algorithm is None
                and not self.enable_mixed_chunk
            ), "Pipeline parallelism is not compatible with overlap schedule, speculative decoding, mixed chunked prefill."

2774
        assert not (
2775
2776
            self.dp_size > 1 and self.nnodes != 1 and not self.enable_dp_attention
        ), "multi-node data parallel is not supported unless dp attention!"
2777

2778
        assert self.base_gpu_id >= 0, "base_gpu_id must be non-negative"
2779
        assert self.gpu_id_step >= 1, "gpu_id_step must be positive"
2780

Lianmin Zheng's avatar
Lianmin Zheng committed
2781
2782
2783
2784
2785
        assert self.moe_dense_tp_size in {
            1,
            None,
        }, "moe_dense_tp_size only support 1 and None currently"

2786
        # Check LoRA
2787
2788
        self.check_lora_server_args()

2789
2790
2791
2792
2793
2794
2795
        # Check speculative decoding
        if self.speculative_algorithm is not None:
            assert (
                not self.enable_mixed_chunk
            ), "enable_mixed_chunk is required for speculative decoding"

        # Check chunked prefill
2796
        # Skip validation if chunked prefill is disabled (i.e., size <= 0).
2797
2798
        # Skip validation if disaggregation mode is decode.
        if self.chunked_prefill_size > 0 and self.disaggregation_mode != "decode":
2799
2800
2801
            assert (
                self.chunked_prefill_size % self.page_size == 0
            ), "chunked_prefill_size must be divisible by page_size"
2802

2803
2804
        # Check multi tokenizer
        assert self.tokenizer_worker_num > 0, "Tokenizer worker num must >= 1"
2805
2806
2807
2808
2809
2810
        self.validate_buckets_rule(
            "--prompt-tokens-buckets", self.prompt_tokens_buckets
        )
        self.validate_buckets_rule(
            "--generation-tokens-buckets", self.generation_tokens_buckets
        )
2811

2812
2813
2814
2815
2816
2817
2818
        # Check scheduling policy
        if self.enable_priority_scheduling:
            assert self.schedule_policy in [
                "fcfs",
                "lof",
            ], f"To use priority scheduling, schedule_policy must be 'fcfs' or 'lof'. '{self.schedule_policy}' is not supported."

2819
    def check_lora_server_args(self):
2820
        assert self.max_loras_per_batch > 0, "max_loras_per_batch must be positive"
2821

2822
2823
2824
2825
        # Enable LoRA if any LoRA paths are provided for backward compatibility.
        if self.lora_paths:
            if self.enable_lora is None:
                self.enable_lora = True
2826
                logger.warning(
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
                    "--enable-lora is set to True because --lora-paths is provided."
                )
            elif self.enable_lora is False:
                logger.warning(
                    "--enable-lora is set to False, any provided lora_paths will be ignored."
                )

        if self.enable_lora:
            if isinstance(self.lora_paths, list):
                lora_paths = self.lora_paths
2837
                self.lora_paths = []
2838
                for lora_path in lora_paths:
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
                    if isinstance(lora_path, str):
                        if "=" in lora_path:
                            name, path = lora_path.split("=", 1)
                            lora_ref = LoRARef(
                                lora_name=name, lora_path=path, pinned=False
                            )
                        else:
                            lora_ref = LoRARef(
                                lora_name=lora_path, lora_path=lora_path, pinned=False
                            )
                    elif isinstance(lora_path, dict):
                        assert (
                            "lora_name" in lora_path and "lora_path" in lora_path
                        ), f"When providing LoRA paths as a list of dict, each dict should contain 'lora_name' and 'lora_path' keys. Got: {lora_path}"
                        lora_ref = LoRARef(
                            lora_name=lora_path["lora_name"],
                            lora_path=lora_path["lora_path"],
                            pinned=lora_path.get("pinned", False),
2857
                        )
2858
                    else:
2859
2860
2861
                        raise ValueError(
                            f"Invalid type for item in --lora-paths list: {type(lora_path)}. "
                            "Expected a string or a dictionary."
2862
                        )
2863
                    self.lora_paths.append(lora_ref)
2864
            elif isinstance(self.lora_paths, dict):
2865
2866
                self.lora_paths = [
                    LoRARef(lora_name=k, lora_path=v, pinned=False)
2867
                    for k, v in self.lora_paths.items()
2868
                ]
2869
            elif self.lora_paths is None:
2870
                self.lora_paths = []
2871
2872
2873
2874
2875
            else:
                raise ValueError(
                    f"Invalid type for --lora-paths: {type(self.lora_paths)}. "
                    "Expected a list or a dictionary."
                )
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889

            # Expand target modules
            if self.lora_target_modules:
                self.lora_target_modules = set(self.lora_target_modules)
                if "all" in self.lora_target_modules:
                    assert (
                        len(self.lora_target_modules) == 1
                    ), "If 'all' is specified in --lora-target-modules, it should be the only module specified."
                    self.lora_target_modules = set(SUPPORTED_LORA_TARGET_MODULES)

            # Ensure sufficient information is provided for LoRA initialization.
            assert self.lora_paths or (
                self.max_lora_rank and self.lora_target_modules
            ), "When no initial --lora-paths is provided, you need to specify both --max-lora-rank and --lora-target-modules for LoRA initialization."
2890

2891
2892
2893
2894
2895
2896
            # Validate max_loaded_loras
            if self.max_loaded_loras is not None:
                assert self.max_loaded_loras >= self.max_loras_per_batch, (
                    "max_loaded_loras should be greater than or equal to max_loras_per_batch. "
                    f"max_loaded_loras={self.max_loaded_loras}, max_loras_per_batch={self.max_loras_per_batch}"
                )
2897
                assert len(self.lora_paths) <= self.max_loaded_loras, (
2898
2899
2900
2901
                    "The number of LoRA paths should not exceed max_loaded_loras. "
                    f"max_loaded_loras={self.max_loaded_loras}, lora_paths={len(self.lora_paths)}"
                )

2902
2903
2904
2905
2906
2907
            if self.max_lora_chunk_size is not None:
                assert (
                    16 <= self.max_lora_chunk_size <= 128
                    and (self.max_lora_chunk_size & (self.max_lora_chunk_size - 1)) == 0
                ), "--max-lora-chunk-size must be a power of 2 between 16 and 128."

Lianmin Zheng's avatar
Lianmin Zheng committed
2908
2909
2910
2911
2912
2913
2914
2915
    def validate_disagg_tp_size(self, prefill_tp: int, decode_tp: int):
        larger_tp = max(decode_tp, prefill_tp)
        smaller_tp = min(decode_tp, prefill_tp)
        assert larger_tp % smaller_tp == 0, (
            "Different tp size is supported only when one tp is multiple of the other. "
            f"decode_tp={decode_tp}, prefill_tp={prefill_tp}"
        )

2916
2917
2918
2919
2920
2921
2922
2923
2924
    def validate_buckets_rule(self, arg_name: str, buckets_rule: List[str]):
        if not buckets_rule:
            return

        assert len(buckets_rule) > 0, f"{arg_name} cannot be empty list"
        rule = buckets_rule[0]
        assert rule in [
            "tse",
            "default",
2925
2926
            "custom",
        ], f"Unsupported {arg_name} rule type: '{rule}'. Must be one of: 'tse', 'default', 'custom'"
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948

        if rule == "tse":
            assert (
                len(buckets_rule) == 4
            ), f"{arg_name} TSE rule requires exactly 4 parameters: ['tse', middle, base, count], got {len(buckets_rule)}"
            try:
                middle = float(buckets_rule[1])
                base = float(buckets_rule[2])
                count = int(buckets_rule[3])
            except (ValueError, IndexError):
                assert (
                    False
                ), f"{arg_name} TSE rule parameters must be: ['tse', <float:middle>, <float:base>, <int:count>]"
            assert base > 1, f"{arg_name} TSE base must be larger than 1, got: {base}"
            assert count > 0, f"{arg_name} TSE count must be positive, got: {count}"
            assert middle > 0, f"{arg_name} TSE middle must be positive, got: {middle}"

        elif rule == "default":
            assert (
                len(buckets_rule) == 1
            ), f"{arg_name} default rule should only have one parameter: ['default'], got {len(buckets_rule)}"

2949
        elif rule == "custom":
2950
2951
            assert (
                len(buckets_rule) >= 2
2952
            ), f"{arg_name} custom rule requires at least one bucket value: ['custom', value1, ...]"
2953
2954
2955
            try:
                bucket_values = [float(x) for x in buckets_rule[1:]]
            except ValueError:
2956
                assert False, f"{arg_name} custom rule bucket values must be numeric"
2957
2958
            assert len(set(bucket_values)) == len(
                bucket_values
2959
            ), f"{arg_name} custom rule bucket values should not contain duplicates"
2960
2961
            assert all(
                val >= 0 for val in bucket_values
2962
            ), f"{arg_name} custom rule bucket values should be non-negative"
2963

Lianmin Zheng's avatar
Lianmin Zheng committed
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
    def adjust_mem_fraction_for_vlm(self, model_config):
        vision_config = getattr(model_config.hf_config, "vision_config", None)
        if vision_config is None:
            return

        # roughly reduce the mem_fraction_static base on params of Vit
        original_server_arg_mem_fraction = self.mem_fraction_static
        # a base mem_fraction_static factor for regular Vit
        base_mem_fraction_reduction_ratio = 0.95

        vit_num_layers = getattr(vision_config, "num_hidden_layers", 24)
        vit_hidden_size = getattr(vision_config, "hidden_size", 1024)

        # baseline ViT params (ViT-L/14)
        baseline_vit_layers = 24
        baseline_vit_hidden_size = 1024

        # weight params count
        current_complexity_score = vit_num_layers * (vit_hidden_size**2)
        baseline_complexity_score = baseline_vit_layers * (baseline_vit_hidden_size**2)
        complexity_ratio = (
            current_complexity_score / baseline_complexity_score
            if baseline_complexity_score > 0
            else 1.0
        )

        # every time the complexity grows 100%, adjust final factor for 10%
        sensitivity_scale = 0.1
        dynamic_adjustment_factor = 1.0 - sensitivity_scale * (complexity_ratio - 1.0)
        dynamic_adjustment_factor = max(0.8, min(1.05, dynamic_adjustment_factor))

        final_overall_factor = (
            base_mem_fraction_reduction_ratio * dynamic_adjustment_factor
        )
        self.mem_fraction_static = (
            original_server_arg_mem_fraction * final_overall_factor
        )

Lianmin Zheng's avatar
Lianmin Zheng committed
3002

Lianmin Zheng's avatar
Lianmin Zheng committed
3003
def prepare_server_args(argv: List[str]) -> ServerArgs:
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
    """
    Prepare the server arguments from the command line arguments.

    Args:
        args: The command line arguments. Typically, it should be `sys.argv[1:]`
            to ensure compatibility with `parse_args` when no arguments are passed.

    Returns:
        The server arguments.
    """
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
    # Import here to avoid circular imports
    from sglang.srt.server_args_config_parser import ConfigArgumentMerger

    # Check for config file and merge arguments if present
    if "--config" in argv:
        # Extract boolean actions from the parser to handle them correctly
        parser = argparse.ArgumentParser()
        ServerArgs.add_cli_args(parser)

        # Get boolean action destinations
        boolean_actions = []
        for action in parser._actions:
            if hasattr(action, "dest") and hasattr(action, "action"):
                if action.action in ["store_true", "store_false"]:
                    boolean_actions.append(action.dest)

        # Merge config file arguments with CLI arguments
        config_merger = ConfigArgumentMerger(boolean_actions=boolean_actions)
        argv = config_merger.merge_config_with_args(argv)

3034
3035
    parser = argparse.ArgumentParser()
    ServerArgs.add_cli_args(parser)
Lianmin Zheng's avatar
Lianmin Zheng committed
3036
    raw_args = parser.parse_args(argv)
3037
3038
3039
3040
    server_args = ServerArgs.from_cli_args(raw_args)
    return server_args


3041
3042
3043
ZMQ_TCP_PORT_DELTA = 233


Lianmin Zheng's avatar
Lianmin Zheng committed
3044
3045
@dataclasses.dataclass
class PortArgs:
3046
3047
3048
3049
3050
3051
    # The ipc filename for tokenizer to receive inputs from detokenizer (zmq)
    tokenizer_ipc_name: str
    # The ipc filename for scheduler (rank 0) to receive inputs from tokenizer (zmq)
    scheduler_input_ipc_name: str
    # The ipc filename for detokenizer to receive inputs from scheduler (zmq)
    detokenizer_ipc_name: str
3052

3053
3054
    # The port for nccl initialization (torch.dist)
    nccl_port: int
3055

3056
3057
3058
    # The ipc filename for rpc call between Engine and Scheduler
    rpc_ipc_name: str

3059
3060
3061
    # The ipc filename for Scheduler to send metrics
    metrics_ipc_name: str

3062
3063
3064
    # The ipc filename for Tokenizer and worker tokenizer
    tokenizer_worker_ipc_name: Optional[str]

3065
    @staticmethod
3066
    def init_new(server_args, dp_rank: Optional[int] = None) -> "PortArgs":
3067
        if server_args.nccl_port is None:
Lianmin Zheng's avatar
Lianmin Zheng committed
3068
            nccl_port = server_args.port + random.randint(100, 1000)
3069
            while True:
Lianmin Zheng's avatar
Lianmin Zheng committed
3070
                if is_port_available(nccl_port):
3071
                    break
Lianmin Zheng's avatar
Lianmin Zheng committed
3072
3073
                if nccl_port < 60000:
                    nccl_port += 42
3074
                else:
Lianmin Zheng's avatar
Lianmin Zheng committed
3075
                    nccl_port -= 43
3076
        else:
Lianmin Zheng's avatar
Lianmin Zheng committed
3077
            nccl_port = server_args.nccl_port
3078

3079
3080
3081
3082
3083
3084
        if not server_args.enable_dp_attention:
            # Normal case, use IPC within a single node
            return PortArgs(
                tokenizer_ipc_name=f"ipc://{tempfile.NamedTemporaryFile(delete=False).name}",
                scheduler_input_ipc_name=f"ipc://{tempfile.NamedTemporaryFile(delete=False).name}",
                detokenizer_ipc_name=f"ipc://{tempfile.NamedTemporaryFile(delete=False).name}",
Lianmin Zheng's avatar
Lianmin Zheng committed
3085
                nccl_port=nccl_port,
3086
                rpc_ipc_name=f"ipc://{tempfile.NamedTemporaryFile(delete=False).name}",
3087
                metrics_ipc_name=f"ipc://{tempfile.NamedTemporaryFile(delete=False).name}",
3088
                tokenizer_worker_ipc_name=None,
3089
3090
3091
3092
3093
            )
        else:
            # DP attention. Use TCP + port to handle both single-node and multi-node.
            if server_args.nnodes == 1 and server_args.dist_init_addr is None:
                dist_init_addr = ("127.0.0.1", server_args.port + ZMQ_TCP_PORT_DELTA)
Vincent's avatar
Vincent committed
3094
3095
3096
            elif server_args.dist_init_addr.startswith("["):  # ipv6 address
                port_num, host = configure_ipv6(server_args.dist_init_addr)
                dist_init_addr = (host, str(port_num))
3097
3098
            else:
                dist_init_addr = server_args.dist_init_addr.split(":")
Vincent's avatar
Vincent committed
3099

3100
3101
3102
3103
3104
3105
            assert (
                len(dist_init_addr) == 2
            ), "please provide --dist-init-addr as host:port of head node"

            dist_init_host, dist_init_port = dist_init_addr
            port_base = int(dist_init_port) + 1
3106
3107
3108
            detokenizer_port = port_base + 1
            rpc_port = port_base + 2
            metrics_ipc_name = port_base + 3
3109
            if dp_rank is None:
3110
                # TokenizerManager to DataParallelController
3111
                scheduler_input_port = port_base + 4
3112
            else:
3113
                scheduler_input_port = port_base + 4 + 1 + dp_rank
3114
3115
3116
3117

            return PortArgs(
                tokenizer_ipc_name=f"tcp://{dist_init_host}:{port_base}",
                scheduler_input_ipc_name=f"tcp://{dist_init_host}:{scheduler_input_port}",
3118
                detokenizer_ipc_name=f"tcp://{dist_init_host}:{detokenizer_port}",
Lianmin Zheng's avatar
Lianmin Zheng committed
3119
                nccl_port=nccl_port,
3120
3121
                rpc_ipc_name=f"tcp://{dist_init_host}:{rpc_port}",
                metrics_ipc_name=f"tcp://{dist_init_host}:{metrics_ipc_name}",
3122
                tokenizer_worker_ipc_name=None,
3123
            )
3124

3125
3126
3127

class LoRAPathAction(argparse.Action):
    def __call__(self, parser, namespace, values, option_string=None):
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
        lora_paths = []
        if values:
            assert isinstance(values, list), "Expected a list of LoRA paths."
            for lora_path in values:
                lora_path = lora_path.strip()
                if lora_path.startswith("{") and lora_path.endswith("}"):
                    obj = json.loads(lora_path)
                    assert "lora_path" in obj and "lora_name" in obj, (
                        f"{repr(lora_path)} looks like a JSON str, "
                        "but it does not contain 'lora_name' and 'lora_path' keys."
                    )
                    lora_paths.append(obj)
                else:
                    lora_paths.append(lora_path)

        setattr(namespace, self.dest, lora_paths)
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153


class DeprecatedAction(argparse.Action):
    def __init__(self, option_strings, dest, nargs=0, **kwargs):
        super(DeprecatedAction, self).__init__(
            option_strings, dest, nargs=nargs, **kwargs
        )

    def __call__(self, parser, namespace, values, option_string=None):
        raise ValueError(self.help)
3154
3155


3156
3157
3158
3159
def print_deprecated_warning(message: str):
    logger.warning(f"\033[33m{message}\033[0m")


3160
def auto_choose_speculative_params(self: ServerArgs):
3161
3162
3163
3164
3165
    """
    Automatically choose the parameters for speculative decoding.

    You can tune them on your own models and prompts with scripts/playground/bench_speculative.py
    """
Lianmin Zheng's avatar
Lianmin Zheng committed
3166
    hf_config = self.get_hf_config()
3167
    arch = hf_config.architectures[0]
3168
3169
3170
    if self.speculative_algorithm == "STANDALONE":
        # The default value for standalone speculative decoding
        return (3, 1, 4)
3171
3172
3173
    if arch in ["LlamaForCausalLM"]:
        # The default value for llama
        return (5, 4, 8)
3174
3175
3176
3177
    elif arch in [
        "DeepseekV3ForCausalLM",
        "DeepseekV2ForCausalLM",
        "GptOssForCausalLM",
strgrb's avatar
strgrb committed
3178
3179
        "BailingMoeForCausalLM",
        "BailingMoeV2ForCausalLM",
3180
3181
    ]:
        # The default value for deepseek and gpt-oss
3182
        return (3, 1, 4)
3183
3184
3185
3186
3187
    elif arch in ["Grok1ForCausalLM", "Grok1VForCausalLM"]:
        return (5, 4, 8)
    else:
        # The default value for all other models
        return (5, 4, 8)