server_args.py 126 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
Lianmin Zheng's avatar
Lianmin Zheng committed
14
15
"""The arguments of the server."""

Lianmin Zheng's avatar
Lianmin Zheng committed
16
17
import argparse
import dataclasses
18
import json
19
import logging
20
import os
21
import random
22
import tempfile
23
from typing import List, Literal, Optional, Union
Lianmin Zheng's avatar
Lianmin Zheng committed
24

25
from sglang.srt.connector import ConnectorType
26
from sglang.srt.function_call.function_call_parser import FunctionCallParser
27
from sglang.srt.hf_transformers_utils import check_gguf_file, get_config
28
from sglang.srt.lora.lora_registry import LoRARef
29
from sglang.srt.parser.reasoning_parser import ReasoningParser
30
from sglang.srt.utils import (
31
32
    LORA_TARGET_ALL_MODULES,
    SUPPORTED_LORA_TARGET_MODULES,
Vincent's avatar
Vincent committed
33
    configure_ipv6,
34
    get_device,
Lianmin Zheng's avatar
Lianmin Zheng committed
35
    get_device_memory_capacity,
36
    is_cuda,
37
    is_flashinfer_available,
HAI's avatar
HAI committed
38
    is_hip,
39
    is_npu,
40
    is_port_available,
41
    is_remote_url,
42
43
    is_sm90_supported,
    is_sm100_supported,
44
    is_triton_kernels_available,
45
    is_valid_ipv6_address,
46
    json_list_type,
bjmsong's avatar
bjmsong committed
47
    nullable_str,
48
    parse_connector_type,
49
)
50
from sglang.utils import is_in_ci
51

52
53
logger = logging.getLogger(__name__)

Lianmin Zheng's avatar
Lianmin Zheng committed
54

55
56
57
58
59
60
61
62
63
64
65
66
# Define constants
LOAD_FORMAT_CHOICES = [
    "auto",
    "pt",
    "safetensors",
    "npcache",
    "dummy",
    "sharded_state",
    "gguf",
    "bitsandbytes",
    "layered",
    "remote",
67
    "remote_instance",
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
]

QUANTIZATION_CHOICES = [
    "awq",
    "fp8",
    "gptq",
    "marlin",
    "gptq_marlin",
    "awq_marlin",
    "bitsandbytes",
    "gguf",
    "modelopt",
    "modelopt_fp4",
    "petit_nvfp4",
    "w8a8_int8",
    "w8a8_fp8",
    "moe_wna16",
    "qoq",
    "w4afp8",
    "mxfp4",
]

ATTENTION_BACKEND_CHOICES = [
    # Common
    "triton",
    "torch_native",
94
    "flex_attention",
95
96
97
    # NVIDIA specific
    "cutlass_mla",
    "fa3",
98
    "fa4",
99
100
101
102
103
    "flashinfer",
    "flashmla",
    "trtllm_mla",
    "trtllm_mha",
    "dual_chunk_flash_attn",
Yi Zhang's avatar
Yi Zhang committed
104
    "hybrid_linear_attn",
105
106
107
108
109
110
111
112
    # AMD specific
    "aiter",
    "wave",
    # Other platforms
    "intel_amx",
    "ascend",
]

113
114
LORA_BACKEND_CHOICES = ["triton", "csgmv"]

115
116
DISAGG_TRANSFER_BACKEND_CHOICES = ["mooncake", "nixl", "ascend", "fake"]

117
118
GRAMMAR_BACKEND_CHOICES = ["xgrammar", "outlines", "llguidance", "none"]

119
DETERMINISTIC_ATTENTION_BACKEND_CHOICES = ["flashinfer", "fa3", "triton"]
120

121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138

# Allow external code to add more choices
def add_load_format_choices(choices):
    LOAD_FORMAT_CHOICES.extend(choices)


def add_quantization_method_choices(choices):
    QUANTIZATION_CHOICES.extend(choices)


def add_attention_backend_choices(choices):
    ATTENTION_BACKEND_CHOICES.extend(choices)


def add_disagg_transfer_backend_choices(choices):
    DISAGG_TRANSFER_BACKEND_CHOICES.extend(choices)


139
140
141
142
def add_grammar_backend_choices(choices):
    GRAMMAR_BACKEND_CHOICES.extend(choices)


Lianmin Zheng's avatar
Lianmin Zheng committed
143
144
@dataclasses.dataclass
class ServerArgs:
Lianmin Zheng's avatar
Lianmin Zheng committed
145
    # Model and tokenizer
Lianmin Zheng's avatar
Lianmin Zheng committed
146
147
148
    model_path: str
    tokenizer_path: Optional[str] = None
    tokenizer_mode: str = "auto"
149
    tokenizer_worker_num: int = 1
150
    skip_tokenizer_init: bool = False
Lianmin Zheng's avatar
Lianmin Zheng committed
151
    load_format: str = "auto"
152
    model_loader_extra_config: str = "{}"
153
    trust_remote_code: bool = False
154
    context_length: Optional[int] = None
155
    is_embedding: bool = False
156
    enable_multimodal: Optional[bool] = None
157
    revision: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
158
    model_impl: str = "auto"
Lianmin Zheng's avatar
Lianmin Zheng committed
159

Lianmin Zheng's avatar
Lianmin Zheng committed
160
    # HTTP server
Lianmin Zheng's avatar
Lianmin Zheng committed
161
162
    host: str = "127.0.0.1"
    port: int = 30000
Lianmin Zheng's avatar
Lianmin Zheng committed
163
164
    skip_server_warmup: bool = False
    warmups: Optional[str] = None
165
    nccl_port: Optional[int] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
166

Lianmin Zheng's avatar
Lianmin Zheng committed
167
168
169
170
171
172
    # Quantization and data type
    dtype: str = "auto"
    quantization: Optional[str] = None
    quantization_param_path: Optional[str] = None
    kv_cache_dtype: str = "auto"

Lianmin Zheng's avatar
Lianmin Zheng committed
173
    # Memory and scheduling
Lianmin Zheng's avatar
Lianmin Zheng committed
174
    mem_fraction_static: Optional[float] = None
175
    max_running_requests: Optional[int] = None
176
    max_queued_requests: Optional[int] = None
177
    max_total_tokens: Optional[int] = None
178
    chunked_prefill_size: Optional[int] = None
179
    max_prefill_tokens: int = 16384
180
    schedule_policy: str = "fcfs"
181
182
183
    enable_priority_scheduling: bool = False
    schedule_low_priority_values_first: bool = False
    priority_scheduling_preemption_threshold: int = 10
184
    schedule_conservativeness: float = 1.0
185
    page_size: Optional[int] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
186
187
188
    hybrid_kvcache_ratio: Optional[float] = None
    swa_full_tokens_ratio: float = 0.8
    disable_hybrid_swa_memory: bool = False
189
    radix_eviction_policy: str = "lru"
Lianmin Zheng's avatar
Lianmin Zheng committed
190

Lianmin Zheng's avatar
Lianmin Zheng committed
191
192
    # Runtime options
    device: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
193
    tp_size: int = 1
194
195
    pp_size: int = 1
    max_micro_batch_size: Optional[int] = None
196
    stream_interval: int = 1
197
    stream_output: bool = False
198
    random_seed: Optional[int] = None
199
    constrained_json_whitespace_pattern: Optional[str] = None
200
    watchdog_timeout: float = 300
201
    dist_timeout: Optional[int] = None  # timeout for torch.distributed
202
    download_dir: Optional[str] = None
203
    base_gpu_id: int = 0
204
    gpu_id_step: int = 1
205
    sleep_on_idle: bool = False
Lianmin Zheng's avatar
Lianmin Zheng committed
206
207
208

    # Logging
    log_level: str = "info"
209
    log_level_http: Optional[str] = None
210
    log_requests: bool = False
211
    log_requests_level: int = 2
212
    crash_dump_folder: Optional[str] = None
Liangsheng Yin's avatar
Liangsheng Yin committed
213
    show_time_cost: bool = False
214
    enable_metrics: bool = False
215
    enable_metrics_for_all_schedulers: bool = False
216
217
    tokenizer_metrics_custom_labels_header: str = "x-custom-labels"
    tokenizer_metrics_allowed_custom_labels: Optional[List[str]] = None
218
219
    bucket_time_to_first_token: Optional[List[float]] = None
    bucket_inter_token_latency: Optional[List[float]] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
220
    bucket_e2e_request_latency: Optional[List[float]] = None
221
    collect_tokens_histogram: bool = False
222
223
    prompt_tokens_buckets: Optional[List[str]] = None
    generation_tokens_buckets: Optional[List[str]] = None
224
    decode_log_interval: int = 40
225
    enable_request_time_stats_logging: bool = False
226
    kv_events_config: Optional[str] = None
227
    gc_warning_threshold_secs: float = 0.0
228
229
    enable_trace: bool = False
    oltp_traces_endpoint: str = "localhost:4317"
Liangsheng Yin's avatar
Liangsheng Yin committed
230

231
    # API related
232
    api_key: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
233
    served_model_name: Optional[str] = None
234
    weight_version: str = "default"
Lianmin Zheng's avatar
Lianmin Zheng committed
235
236
    chat_template: Optional[str] = None
    completion_template: Optional[str] = None
237
    file_storage_path: str = "sglang_storage"
238
    enable_cache_report: bool = False
Xihuai Wang's avatar
Xihuai Wang committed
239
    reasoning_parser: Optional[str] = None
240
    tool_call_parser: Optional[str] = None
241
    tool_server: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
242

243
244
245
    # Data parallelism
    dp_size: int = 1
    load_balance_method: str = "round_robin"
246
    load_watch_interval: float = 0.1
247
248
    # FIXME: remove this after dp rank scheduling is fully supported with PD-Disaggregation
    prefill_round_robin_balance: bool = False
249

250
    # Multi-node distributed serving
251
    dist_init_addr: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
252
    nnodes: int = 1
253
    node_rank: int = 0
Lianmin Zheng's avatar
Lianmin Zheng committed
254
255
256

    # Model override args in JSON
    json_model_override_args: str = "{}"
257
    preferred_sampling_params: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
258

259
    # LoRA
260
    enable_lora: Optional[bool] = None
261
    max_lora_rank: Optional[int] = None
262
    lora_target_modules: Optional[Union[set[str], List[str]]] = None
263
264
265
    lora_paths: Optional[
        Union[dict[str, str], List[dict[str, str]], List[str], List[LoRARef]]
    ] = None
266
    max_loaded_loras: Optional[int] = None
267
    max_loras_per_batch: int = 8
268
    lora_backend: str = "triton"
269
    max_lora_chunk_size: Optional[int] = 16
270
271

    # Kernel backend
272
    attention_backend: Optional[str] = None
273
274
    decode_attention_backend: Optional[str] = None
    prefill_attention_backend: Optional[str] = None
275
    sampling_backend: Optional[str] = None
276
    grammar_backend: Optional[str] = None
277
    mm_attention_backend: Optional[str] = None
278

279
280
    # Speculative decoding
    speculative_algorithm: Optional[str] = None
281
    speculative_draft_model_path: Optional[str] = None
282
    speculative_draft_model_revision: Optional[str] = None
283
284
285
    speculative_num_steps: Optional[int] = None
    speculative_eagle_topk: Optional[int] = None
    speculative_num_draft_tokens: Optional[int] = None
286
287
    speculative_accept_threshold_single: float = 1.0
    speculative_accept_threshold_acc: float = 1.0
288
    speculative_token_map: Optional[str] = None
289
    speculative_attention_mode: str = "prefill"
290
291
292
293
294
295
296
297
    # For lookahead only
    speculative_lookahead_min_match_window_size: int = 1
    speculative_lookahead_max_match_window_size: int = 12
    speculative_lookahead_min_bfs_breadth: int = 1
    speculative_lookahead_max_bfs_breadth: int = 10
    speculative_lookahead_match_type: Literal["BFS", "PROB"] = "BFS"
    speculative_lookahead_branch_length: int = 18
    speculative_lookahead_capacity: int = 10 * 1000 * 1000
298

299
300
    # Expert parallelism
    ep_size: int = 1
301
302
303
304
305
306
307
308
309
    moe_a2a_backend: Literal["none", "deepep"] = "none"
    moe_runner_backend: Literal[
        "auto",
        "triton",
        "triton_kernel",
        "flashinfer_trtllm",
        "flashinfer_cutlass",
        "flashinfer_mxfp4",
    ] = "auto"
310
    flashinfer_mxfp4_moe_precision: Literal["default", "bf16"] = "default"
311
    enable_flashinfer_allreduce_fusion: bool = False
312
    deepep_mode: Literal["auto", "normal", "low_latency"] = "auto"
313
314
315
316
317
318
319
    ep_num_redundant_experts: int = 0
    ep_dispatch_algorithm: Optional[Literal["static", "dynamic", "fake"]] = None
    init_expert_location: str = "trivial"
    enable_eplb: bool = False
    eplb_algorithm: str = "auto"
    eplb_rebalance_num_iterations: int = 1000
    eplb_rebalance_layers_per_chunk: Optional[int] = None
320
    eplb_min_rebalancing_utilization_threshold: float = 1.0
321
322
323
324
325
326
327
328
    expert_distribution_recorder_mode: Optional[
        Literal["stat", "stat_approx", "per_pass", "per_token"]
    ] = None
    expert_distribution_recorder_buffer_size: Optional[int] = None
    enable_expert_distribution_metrics: bool = False
    deepep_config: Optional[str] = None
    moe_dense_tp_size: Optional[int] = None

Lianmin Zheng's avatar
Lianmin Zheng committed
329
330
331
332
    # Mamba cache
    max_mamba_cache_size: Optional[int] = None
    mamba_ssm_dtype: str = "float32"

Lianmin Zheng's avatar
Lianmin Zheng committed
333
334
335
336
    # Hierarchical cache
    enable_hierarchical_cache: bool = False
    hicache_ratio: float = 2.0
    hicache_size: int = 0
337
    hicache_write_policy: str = "write_through"
338
339
    hicache_io_backend: str = "kernel"
    hicache_mem_layout: str = "layer_first"
Lianmin Zheng's avatar
Lianmin Zheng committed
340
    hicache_storage_backend: Optional[str] = None
pansicheng's avatar
pansicheng committed
341
    hicache_storage_prefetch_policy: str = "best_effort"
342
    hicache_storage_backend_extra_config: Optional[str] = None
343
344
    # LMCache
    enable_lmcache: bool = False
Lianmin Zheng's avatar
Lianmin Zheng committed
345

346
347
    # Double Sparsity
    enable_double_sparsity: bool = False
Vincent's avatar
Vincent committed
348
    ds_channel_config_path: Optional[str] = None
349
350
351
352
353
    ds_heavy_channel_num: int = 32
    ds_heavy_token_num: int = 256
    ds_heavy_channel_type: str = "qk"
    ds_sparse_decode_threshold: int = 4096

fzyzcjy's avatar
fzyzcjy committed
354
355
356
357
358
359
360
    # Offloading
    cpu_offload_gb: int = 0
    offload_group_size: int = -1
    offload_num_in_group: int = 1
    offload_prefetch_step: int = 1
    offload_mode: str = "cpu"

361
    # Optimization/debug options
Lianmin Zheng's avatar
Lianmin Zheng committed
362
    disable_radix_cache: bool = False
363
364
    cuda_graph_max_bs: Optional[int] = None
    cuda_graph_bs: Optional[List[int]] = None
365
    disable_cuda_graph: bool = False
366
    disable_cuda_graph_padding: bool = False
367
    enable_profile_cuda_graph: bool = False
368
    enable_cudagraph_gc: bool = False
369
    enable_nccl_nvls: bool = False
370
    enable_symm_mem: bool = False
371
    disable_flashinfer_cutlass_moe_fp4_allgather: bool = False
372
    enable_tokenizer_batch_encode: bool = False
373
    disable_outlines_disk_cache: bool = False
374
    disable_custom_all_reduce: bool = False
375
    enable_mscclpp: bool = False
376
    disable_overlap_schedule: bool = False
377
    enable_mixed_chunk: bool = False
Ke Bao's avatar
Ke Bao committed
378
    enable_dp_attention: bool = False
379
    enable_dp_lm_head: bool = False
380
    enable_two_batch_overlap: bool = False
381
    tbo_token_distribution_threshold: float = 0.48
382
    enable_torch_compile: bool = False
383
    torch_compile_max_bs: int = 32
384
    torchao_config: str = ""
385
    enable_nan_detection: bool = False
386
    enable_p2p_check: bool = False
387
    triton_attention_reduce_in_fp32: bool = False
388
    triton_attention_num_kv_splits: int = 8
389
    triton_attention_split_tile_size: Optional[int] = None
390
    num_continuous_decode_steps: int = 1
391
    delete_ckpt_after_loading: bool = False
392
    enable_memory_saver: bool = False
393
    allow_auto_truncate: bool = False
394
    enable_custom_logit_processor: bool = False
395
    flashinfer_mla_disable_ragged: bool = False
396
    disable_shared_experts_fusion: bool = False
397
    disable_chunked_prefix_cache: bool = False
Lianmin Zheng's avatar
Lianmin Zheng committed
398
    disable_fast_image_processor: bool = False
399
    keep_mm_feature_on_device: bool = False
400
    enable_return_hidden_states: bool = False
401
    scheduler_recv_interval: int = 1
402
    numa_node: Optional[List[int]] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
403
    enable_deterministic_inference: bool = False
404

405
406
407
408
409
    # Dynamic batch tokenizer
    enable_dynamic_batch_tokenizer: bool = False
    dynamic_batch_tokenizer_batch_size: int = 32
    dynamic_batch_tokenizer_batch_timeout: float = 0.002

410
411
412
413
    # Debug tensor dumps
    debug_tensor_dump_output_folder: Optional[str] = None
    debug_tensor_dump_input_file: Optional[str] = None
    debug_tensor_dump_inject: bool = False
414
    debug_tensor_dump_prefill_only: bool = False
415

Lianmin Zheng's avatar
Lianmin Zheng committed
416
    # PD disaggregation: can be "null" (not disaggregated), "prefill" (prefill-only), or "decode" (decode-only)
417
    disaggregation_mode: Literal["null", "prefill", "decode"] = "null"
418
    disaggregation_transfer_backend: str = "mooncake"
419
    disaggregation_bootstrap_port: int = 8998
Byron Hsu's avatar
Byron Hsu committed
420
421
422
    disaggregation_decode_tp: Optional[int] = None
    disaggregation_decode_dp: Optional[int] = None
    disaggregation_prefill_pp: Optional[int] = 1
423
    disaggregation_ib_device: Optional[str] = None
424
    num_reserved_decode_tokens: int = 512  # used for decode kv cache offload in PD
425
426
427
    # FIXME: hack to reduce ITL when decode bs is small
    disaggregation_decode_polling_interval: int = 1

Lianmin Zheng's avatar
Lianmin Zheng committed
428
    # For model weight update and weight loading
429
    custom_weight_loader: Optional[List[str]] = None
430
    weight_loader_disable_mmap: bool = False
431
432
433
434
    remote_instance_weight_loader_seed_instance_ip: Optional[str] = None
    remote_instance_weight_loader_seed_instance_service_port: Optional[int] = None
    remote_instance_weight_loader_send_weights_group_ports: Optional[List[int]] = None

435
436
437
438
    # For PD-Multiplexing
    enable_pdmux: bool = False
    sm_group_num: int = 3

Lianmin Zheng's avatar
Lianmin Zheng committed
439
440
441
442
443
444
    def __post_init__(self):
        """
        Orchestrates the handling of various server arguments, ensuring proper configuration and validation.
        """
        # Handle deprecated arguments.
        self._handle_deprecated_args()
Yi Zhang's avatar
Yi Zhang committed
445

Lianmin Zheng's avatar
Lianmin Zheng committed
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
        # Set missing default values.
        self._handle_missing_default_values()

        # Get GPU memory capacity, which is a common dependency for several configuration steps.
        gpu_mem = get_device_memory_capacity(self.device)

        # Handle memory-related configurations.
        self._handle_mem_fraction_static(gpu_mem)
        self._handle_chunked_prefill_size(gpu_mem)

        # Handle CUDA graph settings.
        self._handle_cuda_graph_max_bs(gpu_mem)

        # Handle device-specific backends.
        self._handle_hpu_backends()
        self._handle_cpu_backends()

        # Apply model-specific adjustments.
        self._handle_model_specific_adjustments()

        # Set kernel backends.
        self._handle_sampling_backend()
        self._handle_attention_backend_compatibility()
        self._handle_page_size()
        self._handle_amd_specifics()
        self._handle_grammar_backend()

        # Handle data parallelism.
        self._handle_data_parallelism()

        # Handle MoE configurations.
        self._handle_moe_kernel_config()
        self._handle_deepep_moe()
        self._handle_eplb_and_dispatch()
        self._handle_expert_distribution_metrics()

        # Handle pipeline parallelism.
        self._handle_pipeline_parallelism()

        # Handle Hicache settings.
        self._handle_hicache()

        # Handle speculative decoding logic.
        self._handle_speculative_decoding()

        # Handle model loading format.
        self._handle_load_format()

        # Handle PD disaggregation.
        self._handle_disaggregation()

        # Validate tokenizer settings.
        self._handle_tokenizer_batching()

        # Propagate environment variables.
        self._handle_environment_variables()

        # Validate cache settings.
        self._handle_cache_compatibility()

        # Validate metrics labels.
        self._handle_metrics_labels()
508

Lianmin Zheng's avatar
Lianmin Zheng committed
509
510
511
512
513
        # Handle deterministic inference.
        self._handle_deterministic_inference()

        # Handle any other necessary validations.
        self._handle_other_validations()
514

515
    def _handle_deprecated_args(self):
Lianmin Zheng's avatar
Lianmin Zheng committed
516
        pass
517

518
    def _handle_missing_default_values(self):
Lianmin Zheng's avatar
Lianmin Zheng committed
519
520
        if self.tokenizer_path is None:
            self.tokenizer_path = self.model_path
521
522
        if self.served_model_name is None:
            self.served_model_name = self.model_path
523
524
        if self.device is None:
            self.device = get_device()
525
526
527
        if self.random_seed is None:
            self.random_seed = random.randint(0, 1 << 30)

528
    def _handle_mem_fraction_static(self, gpu_mem):
Lianmin Zheng's avatar
Lianmin Zheng committed
529
        if self.mem_fraction_static is None:
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
            if gpu_mem is not None:
                # GPU memory capacity = model weights + KV cache pool + activations + cuda graph buffers
                # mem_fraction_static = (model weights + KV cache pool) / GPU memory capacity.

                # We want mem_fraction_static to be as large as possible but still has enough room
                # for activations and cuda graph buffers. We use the following heuristic to
                # compute the needed size for activations and cuda graph buffers:
                # - The size of the activation depends on the chunked_prefill_size and model size.
                # - The size of cuda graph buffers depends on the cuda graph capture range and model size.
                # For GPUs with more memory, we use a larger chunked_prefill_size and
                # capture more cuda graphs, so they need to reserve more memory.
                parallel_size = self.tp_size * self.pp_size

                if gpu_mem < 20 * 1024:
                    # T4, 4080. (chunked_prefill_size 2k, cuda_graph_max_bs 8)
                    reserved_mem = (2.8 + parallel_size / 10) * 1024
                elif gpu_mem < 35 * 1024:
                    # A10, L40, 4090, 5090. (chunked_prefill_size 2k, cuda_graph_max_bs 8)
                    reserved_mem = (2.8 + parallel_size / 10) * 1024
                elif gpu_mem < 90 * 1024:
                    # H100, A100. (chunked_prefill_size 8k, cuda_graph_max_bs 160)
                    reserved_mem = (9.5 + parallel_size / 2) * 1024
                elif gpu_mem < 100 * 1024:
                    # H20. (chunked_prefill_size 8k, cuda_graph_max_bs 256)
                    reserved_mem = (12 + parallel_size / 2) * 1024
                elif gpu_mem < 160 * 1024:
                    # H200. (chunked_prefill_size 8k, cuda_graph_max_bs 256)
                    reserved_mem = (12 + parallel_size / 2) * 1024
558
                else:
559
560
561
                    # B200, MI300. (chunked_prefill_size 16k, cuda_graph_max_bs 512)
                    reserved_mem = 32 * 1024

562
                # draft model and larger cuda graph buffers
563
                if self.speculative_algorithm is not None:
564
565
566
567
                    if self.speculative_algorithm == "STANDALONE":
                        # Standalone speculative decoding needs more memory than other speculative
                        # decoding algorithms since the draft model is typically larger.
                        reserved_mem += 6 * 1024
568
                    elif self.speculative_algorithm != "LOOKAHEAD":
569
                        reserved_mem += 2 * 1024
570
571
572
573
                if self.enable_dp_attention:
                    reserved_mem += 4 * 1024

                self.mem_fraction_static = round((gpu_mem - reserved_mem) / gpu_mem, 3)
574
            else:
575
                self.mem_fraction_static = 0.88
576

577
            # Lazy init to avoid circular import.
578
579
580
            from sglang.srt.configs.model_config import ModelConfig

            model_config = ModelConfig.from_server_args(self)
Lianmin Zheng's avatar
Lianmin Zheng committed
581
582
            if model_config.is_multimodal:
                self.adjust_mem_fraction_for_vlm(model_config)
583

584
    def _handle_chunked_prefill_size(self, gpu_mem):
585
        if self.chunked_prefill_size is None:
586
            if gpu_mem is not None:
587
588
                # A10, L40, 4090
                if gpu_mem < 35 * 1024:
589
                    self.chunked_prefill_size = 2048
590
591
                # H100, H200, A100, H20
                elif gpu_mem < 160 * 1024:
592
                    self.chunked_prefill_size = 8192
593
594
                # B200, MI300
                else:
595
                    self.chunked_prefill_size = 16384
596
            else:
597
                self.chunked_prefill_size = 4096
Lianmin Zheng's avatar
Lianmin Zheng committed
598

599
600
    def _handle_cuda_graph_max_bs(self, gpu_mem):
        # Based on detailed statistics, when serving TP1/TP2 models on lower-end GPUs with HBM<25G, you can either disable cuda graph or set `cuda_graph_max_bs` to a very small value to reduce the memory overhead of creating cuda graphs, with almost no impact on performance. However, when serving models with TP4 or TP8, we need to enable cuda graph to maintain high performance. In this case, we can set `cuda_graph_max_bs` to 80 (half of the default value 160) to reduce the memory overhead of creating cuda graphs. Looking at the logs from TP4 serving of qwen2-72b, a value of 80 is sufficient and can reduce the memory overhead of creating cuda graphs on lower-end GPUs compared to the original 160, avoiding OOM issues.
601
602
603
604
605
606
607
        if self.cuda_graph_max_bs is None:
            if gpu_mem is not None and gpu_mem < 35 * 1024:
                if self.tp_size < 4:
                    self.cuda_graph_max_bs = 8
                else:
                    self.cuda_graph_max_bs = 80

608
    def _handle_hpu_backends(self):
609
610
611
612
        if self.device == "hpu":
            self.attention_backend = "torch_native"
            self.sampling_backend = "pytorch"

613
    def _handle_cpu_backends(self):
614
615
616
617
618
        if self.device == "cpu":
            if self.attention_backend is None:
                self.attention_backend = "intel_amx"
            self.sampling_backend = "pytorch"

Lianmin Zheng's avatar
Lianmin Zheng committed
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
    def _handle_model_specific_adjustments(self):
        if parse_connector_type(self.model_path) == ConnectorType.INSTANCE:
            return

        hf_config = self.get_hf_config()
        model_arch = hf_config.architectures[0]
        if model_arch in ["GptOssForCausalLM"]:
            if self.attention_backend is None:
                if is_cuda() and is_sm100_supported():
                    self.attention_backend = "trtllm_mha"
                elif is_cuda() and is_sm90_supported():
                    self.attention_backend = "fa3"
                else:
                    self.attention_backend = "triton"
            supported_backends = ["triton", "trtllm_mha", "fa3"]
            logger.info(
                f"Use {self.attention_backend} as attention backend for GptOssForCausalLM"
            )
            assert (
                self.attention_backend in supported_backends
            ), f"GptOssForCausalLM requires one of {supported_backends} attention backend, but got '{self.attention_backend}'"

            if is_sm100_supported():
                if not self.enable_dp_attention:
                    self.enable_flashinfer_allreduce_fusion = True
                    logger.info(
                        "Enable FlashInfer AllReduce Fusion on sm100 for GptOssForCausalLM"
                    )
            quantization_config = getattr(hf_config, "quantization_config", None)
            is_mxfp4_quant_format = (
                quantization_config is not None
                and quantization_config.get("quant_method") == "mxfp4"
            )

            if is_sm100_supported() and is_mxfp4_quant_format:
                self.moe_runner_backend = "flashinfer_mxfp4"
                logger.warning(
                    "Detected SM100 and MXFP4 quantization format for GPT-OSS model, enabling FlashInfer MXFP4 MOE kernel."
                )
            else:
                if self.moe_runner_backend == "triton_kernel":
                    assert (
                        self.ep_size == 1
                    ), "Triton kernel MoE is only supported when ep_size == 1"
                if (
                    self.moe_runner_backend == "auto"
                    and self.ep_size == 1
                    and is_triton_kernels_available()
                ):
                    self.moe_runner_backend = "triton_kernel"
                    logger.warning(
                        "Detected GPT-OSS model, enabling triton_kernels MOE kernel."
                    )
            self.disable_hybrid_swa_memory = True
            if is_mxfp4_quant_format:
                # use bf16 for mxfp4 triton kernels
                self.dtype = "bfloat16"

        elif "Llama4" in model_arch and self.device != "cpu":
            assert self.attention_backend in {
                "fa3",
                "aiter",
                "triton",
            }, "fa3, aiter, or triton is required for Llama4 model"
        elif model_arch in [
            "Gemma2ForCausalLM",
            "Gemma3ForCausalLM",
            "Gemma3ForConditionalGeneration",
            "Gemma3nForCausalLM",
            "Gemma3nForConditionalGeneration",
        ]:
            # FIXME: https://github.com/sgl-project/sglang/pull/7367 is not compatible with gemma2 model.
            # It failed at this test: https://github.com/sgl-project/sglang/actions/runs/16255155597/job/45890331952#step:4:736
            logger.warning(
                f"Disable hybrid SWA memory for {model_arch} as it is not yet supported."
            )
            self.disable_hybrid_swa_memory = True

697
    def _handle_sampling_backend(self):
698
        if self.sampling_backend is None:
699
700
701
702
            self.sampling_backend = (
                "flashinfer" if is_flashinfer_available() else "pytorch"
            )

703
    def _handle_attention_backend_compatibility(self):
704
        if self.attention_backend == "torch_native":
705
            logger.warning(
706
707
708
                "Cuda graph is disabled because of using torch native attention backend"
            )
            self.disable_cuda_graph = True
709

710
711
712
713
714
715
716
717
718
        if self.attention_backend == "flex_attention":
            logger.warning(
                "Cuda graph is disabled because of using torch Flex Attention backend"
            )
            self.disable_cuda_graph = True
            assert (
                self.speculative_algorithm is None
            ), "Speculative decoding is currently not supported with Flex Attention backend"

719
        if is_npu() and self.attention_backend in ["ascend", "hybrid_linear_attn"]:
720
721
722
723
724
            logger.warning(
                "At this moment Ascend attention backend only supports a page_size of 128, change page_size to 128."
            )
            self.page_size = 128

725
726
727
728
        if (
            self.attention_backend == "flashmla"
            or self.decode_attention_backend == "flashmla"
        ):
Lianmin Zheng's avatar
Lianmin Zheng committed
729
730
731
732
733
            logger.warning(
                "FlashMLA only supports a page_size of 64, change page_size to 64."
            )
            self.page_size = 64

734
735
736
737
        if (
            self.attention_backend == "cutlass_mla"
            or self.decode_attention_backend == "cutlass_mla"
        ):
Lianmin Zheng's avatar
Lianmin Zheng committed
738
739
740
741
742
            logger.warning(
                "Cutlass MLA only supports a page_size of 128, change page_size to 128."
            )
            self.page_size = 128

Faraz's avatar
Faraz committed
743
744
745
746
        if (
            self.attention_backend == "trtllm_mla"
            or self.decode_attention_backend == "trtllm_mla"
        ):
747
748
749
750
751
752
753
754
755
756
            if not is_sm100_supported():
                raise ValueError(
                    "TRTLLM MLA backend is only supported on Blackwell GPUs (SM100). Please use a different backend."
                )

            if self.page_size not in [32, 64]:
                logger.warning(
                    f"TensorRT-LLM MLA only supports page_size of 32 or 64, changing page_size from {self.page_size} to 64."
                )
                self.page_size = 64
Faraz's avatar
Faraz committed
757
758
759
760
761

            if self.kv_cache_dtype not in ["fp8_e4m3", "auto"]:
                raise ValueError(
                    "TensorRT-LLM MLA backend only supports kv-cache-dtype of fp8_e4m3 or auto."
                )
762

763
764
765
766
767
        if (
            self.attention_backend == "trtllm_mha"
            or self.decode_attention_backend == "trtllm_mha"
            or self.prefill_attention_backend == "trtllm_mha"
        ):
768
769
770
771
772
773
774
775
776
777
778
            if not is_sm100_supported():
                raise ValueError(
                    "TRTLLM MHA backend is only supported on Blackwell GPUs (SM100). Please use a different backend."
                )

            if self.page_size not in [16, 32, 64]:
                logger.warning(
                    f"TensorRT-LLM MHA only supports page_size of 16, 32 or 64, changing page_size from {self.page_size} to 64."
                )
                self.page_size = 64

779
780
        if self.attention_backend == "dual_chunk_flash_attn":
            logger.warning(
781
                "Mixed chunk, radix cache, and cuda graphs are disabled because of using dual chunk flash attention backend"
782
783
784
785
786
            )
            self.enable_mixed_chunk = False
            self.disable_cuda_graph = True
            self.disable_radix_cache = True

787
    def _handle_page_size(self):
788
789
790
        if self.page_size is None:
            self.page_size = 1

791
    def _handle_amd_specifics(self):
792
793
794
        if is_hip():
            self.triton_attention_num_kv_splits = 16

795
    def _handle_grammar_backend(self):
796
797
        if self.grammar_backend is None:
            self.grammar_backend = "xgrammar"
798

799
    def _handle_data_parallelism(self):
800
801
        if self.dp_size == 1:
            self.enable_dp_attention = False
802
            self.enable_dp_lm_head = False
803

Ke Bao's avatar
Ke Bao committed
804
        if self.enable_dp_attention:
805
            self.schedule_conservativeness = self.schedule_conservativeness * 0.3
Lianmin Zheng's avatar
Lianmin Zheng committed
806
807
            assert self.tp_size % self.dp_size == 0
            self.chunked_prefill_size = self.chunked_prefill_size // self.dp_size
808
            logger.warning(
809
                f"DP attention is enabled. The chunked prefill size is adjusted to {self.chunked_prefill_size} to avoid MoE kernel issues. "
810
            )
811

812
813
814
        if self.enable_dp_lm_head:
            assert (
                self.enable_dp_attention
815
            ), "Please enable dp attention when setting enable_dp_lm_head. "
816

817
    def _handle_moe_kernel_config(self):
818
        if self.moe_runner_backend == "flashinfer_cutlass":
819
820
821
            assert (
                self.quantization == "modelopt_fp4"
            ), "modelopt_fp4 quantization is required for Flashinfer MOE"
822
823
824
825
            assert self.ep_size in [
                1,
                self.tp_size,
            ], "The expert parallel size must be 1 or the same as the tensor parallel size"
826

827
        if self.moe_runner_backend == "flashinfer_trtllm":
828
829
830
831
832
833
834
            assert (
                self.quantization == "modelopt_fp4" or self.quantization == "fp8"
            ), "modelopt_fp4 quantization is required for Flashinfer TRTLLM MoE"
            self.disable_shared_experts_fusion = True
            logger.warning(
                "FlashInfer TRTLLM MoE is enabled. --disable-shared-experts-fusion is automatically set."
            )
835

836
    def _handle_deepep_moe(self):
837
        if self.moe_a2a_backend == "deepep":
838
839
840
            if self.deepep_mode == "normal":
                logger.warning("Cuda graph is disabled because deepep_mode=`normal`")
                self.disable_cuda_graph = True
841
            self.ep_size = self.tp_size
Lianmin Zheng's avatar
Lianmin Zheng committed
842
            logger.warning(
843
844
                f"DeepEP MoE is enabled. The expert parallel size is adjusted to be the same as the tensor parallel size[{self.tp_size}]."
            )
845

846
    def _handle_eplb_and_dispatch(self):
847
848
        if self.enable_eplb and (self.expert_distribution_recorder_mode is None):
            self.expert_distribution_recorder_mode = "stat"
849
            logger.warning(
850
                "EPLB is enabled. The expert_distribution_recorder_mode is automatically set."
851
852
853
854
855
856
857
            )

        if (self.enable_eplb or (self.init_expert_location is not None)) and (
            self.ep_dispatch_algorithm is None
        ):
            self.ep_dispatch_algorithm = "static"

858
        if self.enable_eplb:
859
            assert self.ep_size > 1
860

861
    def _handle_expert_distribution_metrics(self):
862
863
864
865
866
        if self.enable_expert_distribution_metrics and (
            self.expert_distribution_recorder_mode is None
        ):
            self.expert_distribution_recorder_mode = "stat"

867
        if self.expert_distribution_recorder_buffer_size is None:
868
869
            if (x := self.eplb_rebalance_num_iterations) is not None:
                self.expert_distribution_recorder_buffer_size = x
870
871
872
            elif self.expert_distribution_recorder_mode is not None:
                self.expert_distribution_recorder_buffer_size = 1000

873
    def _handle_pipeline_parallelism(self):
Lianmin Zheng's avatar
Lianmin Zheng committed
874
875
876
877
878
879
        if self.pp_size > 1:
            self.disable_overlap_schedule = True
            logger.warning(
                "Pipeline parallelism is incompatible with overlap schedule."
            )

880
    def _handle_hicache(self):
881
882
883
884
        if self.hicache_storage_backend == "mooncake":
            self.hicache_io_backend = "kernel"
            self.hicache_mem_layout = "page_first"

885
886
887
888
889
890
891
        if self.hicache_mem_layout == "page_first_direct":
            if self.hicache_io_backend != "direct":
                self.hicache_io_backend = "direct"
                logger.warning(
                    "Page first direct layout only support direct io backend"
                )

892
    def _handle_speculative_decoding(self):
893
894
895
        if self.speculative_algorithm == "NEXTN":
            self.speculative_algorithm = "EAGLE"

896
        if self.speculative_algorithm in ("EAGLE", "EAGLE3", "STANDALONE"):
897
            if self.speculative_algorithm == "STANDALONE" and self.enable_dp_attention:
898
                # TODO: support dp attention for standalone speculative decoding
899
900
901
                raise ValueError(
                    "Currently standalone speculative decoding does not support dp attention."
                )
902
            if self.max_running_requests is None:
903
                self.max_running_requests = 48
904
            self.disable_overlap_schedule = True
Lianmin Zheng's avatar
Lianmin Zheng committed
905
            logger.warning(
906
                "Overlap scheduler is disabled because of using "
907
                "eagle speculative decoding."
908
            )
909
910
911
912
913
914
            if self.enable_mixed_chunk:
                self.enable_mixed_chunk = False
                logger.warning(
                    "Mixed chunked prefill is disabled because of using "
                    "eagle speculative decoding."
                )
915

Lianmin Zheng's avatar
Lianmin Zheng committed
916
            model_arch = self.get_hf_config().architectures[0]
strgrb's avatar
strgrb committed
917
918
919
            if model_arch in [
                "DeepseekV3ForCausalLM",
                "Glm4MoeForCausalLM",
Yuan Luo's avatar
Yuan Luo committed
920
                "BailingMoeForCausalLM",
strgrb's avatar
strgrb committed
921
922
                "BailingMoeV2ForCausalLM",
            ]:
923
924
925
926
927
928
                if self.speculative_draft_model_path is None:
                    self.speculative_draft_model_path = self.model_path
                else:
                    logger.warning(
                        "DeepSeek MTP does not require setting speculative_draft_model_path."
                    )
929

930
931
932
933
934
935
936
937
938
            if self.speculative_num_steps is None:
                assert (
                    self.speculative_eagle_topk is None
                    and self.speculative_num_draft_tokens is None
                )
                (
                    self.speculative_num_steps,
                    self.speculative_eagle_topk,
                    self.speculative_num_draft_tokens,
939
                ) = auto_choose_speculative_params(self)
940

941
942
943
944
945
946
947
948
949
950
            if (
                self.attention_backend == "trtllm_mha"
                or self.decode_attention_backend == "trtllm_mha"
                or self.prefill_attention_backend == "trtllm_mha"
            ):
                if self.speculative_eagle_topk > 1:
                    raise ValueError(
                        "trtllm_mha backend only supports topk = 1 for speculative decoding."
                    )

951
952
953
954
            if (
                self.speculative_eagle_topk == 1
                and self.speculative_num_draft_tokens != self.speculative_num_steps + 1
            ):
Lianmin Zheng's avatar
Lianmin Zheng committed
955
                logger.warning(
956
957
958
                    "speculative_num_draft_tokens is adjusted to speculative_num_steps + 1 when speculative_eagle_topk == 1"
                )
                self.speculative_num_draft_tokens = self.speculative_num_steps + 1
959

960
961
962
963
964
965
966
967
968
            if (
                self.speculative_eagle_topk > 1
                and self.page_size > 1
                and self.attention_backend != "flashinfer"
            ):
                raise ValueError(
                    "speculative_eagle_topk > 1 with page_size > 1 is unstable and produces incorrect results for paged attention backends. This combination is only supported for the 'flashinfer' backend."
                )

969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
        if self.speculative_algorithm == "LOOKAHEAD":
            if not self.device.startswith("cuda"):
                raise ValueError(
                    "Lookahead speculative decoding only supports CUDA device."
                )
            if self.max_running_requests is None:
                self.max_running_requests = 48
            self.disable_overlap_schedule = True
            self.enable_mixed_chunk = False
            self.speculative_eagle_topk = self.speculative_lookahead_max_bfs_breadth
            if self.speculative_num_draft_tokens is None:
                self.speculative_num_draft_tokens = (
                    self.speculative_lookahead_max_match_window_size
                )
            logger.warning(
                "The overlap scheduler and mixed chunked prefill are disabled because of "
                "using lookahead speculative decoding."
            )
987

988
989
990
991
992
993
994
995
996
997
998
999
1000
            if (
                self.speculative_eagle_topk > 1
                and self.page_size > 1
                and self.attention_backend != "flashinfer"
            ):
                raise ValueError(
                    "speculative_eagle_topk > 1 with page_size > 1 is unstable and produces incorrect results for paged attention backends. This combination is only supported for the 'flashinfer' backend."
                )
            if self.enable_dp_attention:
                # TODO: support dp attention for lookahead speculative decoding
                raise ValueError(
                    "Currently lookahead speculative decoding does not support dp attention."
                )
1001
1002

    def _handle_load_format(self):
1003
1004
1005
1006
1007
        if (
            self.load_format == "auto" or self.load_format == "gguf"
        ) and check_gguf_file(self.model_path):
            self.quantization = self.load_format = "gguf"

1008
1009
        if is_remote_url(self.model_path):
            self.load_format = "remote"
1010

1011
1012
        if self.custom_weight_loader is None:
            self.custom_weight_loader = []
1013

1014
1015
1016
1017
1018
1019
1020
1021
        if self.load_format == "remote_instance":
            if (
                self.remote_instance_weight_loader_seed_instance_ip is None
                or self.remote_instance_weight_loader_seed_instance_service_port is None
                or self.remote_instance_weight_loader_send_weights_group_ports is None
            ):
                self.load_format = "auto"

1022
    def _handle_disaggregation(self):
Byron Hsu's avatar
Byron Hsu committed
1023
1024
1025
1026
1027
1028
1029
1030
        if self.disaggregation_mode == "decode":
            assert (
                self.disaggregation_decode_tp is None
            ), "Cannot set --disaggregation-decode-tp for the decode engine."
            assert (
                self.disaggregation_decode_dp is None
            ), "Cannot set --disaggregation-decode-dp for the decode engine."

Byron Hsu's avatar
Byron Hsu committed
1031
            self.disable_radix_cache = True
1032
            logger.warning("KV cache is forced as chunk cache for decode server")
1033
1034
1035
1036
1037
1038
1039

            if self.dp_size > 1 and not is_in_ci():
                assert self.prefill_round_robin_balance, (
                    "Prefill round robin balance is required when dp size > 1. "
                    "Please make sure that the prefill instance is launched with `--load-balance-method round_robin`"
                    " and `--prefill-round-robin-balance` is set for decode server."
                )
Byron Hsu's avatar
Byron Hsu committed
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
        elif self.disaggregation_mode == "prefill":
            if self.disaggregation_decode_tp is None:
                self.disaggregation_decode_tp = self.tp_size
            if self.disaggregation_decode_dp is None:
                self.disaggregation_decode_dp = self.dp_size

            self.disaggregation_prefill_pp = self.pp_size
            self.validate_disagg_tp_size(self.tp_size, self.disaggregation_decode_tp)
            self.disable_cuda_graph = True
            logger.warning("Cuda graph is disabled for prefill server")
Byron Hsu's avatar
Byron Hsu committed
1050

1051
    def _handle_tokenizer_batching(self):
1052
1053
1054
1055
1056
1057
        if self.enable_tokenizer_batch_encode and self.enable_dynamic_batch_tokenizer:
            raise ValueError(
                "Cannot enable both --enable-tokenizer-batch-encode and --enable-dynamic-batch-tokenizer. "
                "Please choose one tokenizer batching approach."
            )

1058
    def _handle_environment_variables(self):
1059
1060
1061
        os.environ["SGLANG_ENABLE_TORCH_COMPILE"] = (
            "1" if self.enable_torch_compile else "0"
        )
Yi Zhang's avatar
Yi Zhang committed
1062
        os.environ["SGLANG_MAMBA_SSM_DTYPE"] = self.mamba_ssm_dtype
1063
1064
1065
        os.environ["SGLANG_DISABLE_OUTLINES_DISK_CACHE"] = (
            "1" if self.disable_outlines_disk_cache else "0"
        )
1066
1067
1068
        os.environ["SGLANG_ENABLE_DETERMINISTIC_INFERENCE"] = (
            "1" if self.enable_deterministic_inference else "0"
        )
1069

1070
    def _handle_cache_compatibility(self):
1071
1072
1073
1074
1075
1076
        if self.enable_hierarchical_cache and self.disable_radix_cache:
            raise ValueError(
                "The arguments enable-hierarchical-cache and disable-radix-cache are mutually exclusive "
                "and cannot be used at the same time. Please use only one of them."
            )

1077
    def _handle_metrics_labels(self):
1078
1079
        if (
            not self.tokenizer_metrics_custom_labels_header
1080
            and self.tokenizer_metrics_allowed_custom_labels
1081
1082
        ):
            raise ValueError(
1083
                "Please set --tokenizer-metrics-custom-labels-header when setting --tokenizer-metrics-allowed-custom-labels."
1084
1085
            )

1086
    def _handle_deterministic_inference(self):
1087
        if self.enable_deterministic_inference:
1088
            # Check sampling backend
1089
1090
1091
1092
            self.sampling_backend = "pytorch"
            logger.warning(
                "Sampling backend is set to pytorch for deterministic inference."
            )
1093
1094
1095
1096
1097
1098
1099

            # Check attention backend
            if self.attention_backend not in DETERMINISTIC_ATTENTION_BACKEND_CHOICES:
                raise ValueError(
                    f"Currently only {DETERMINISTIC_ATTENTION_BACKEND_CHOICES} attention backends are supported for deterministic inference."
                )

1100
            # Currently, only FA3 supports radix cache. Support for other backends is in progress
1101
1102
1103
            if self.attention_backend != "fa3":
                self.disable_radix_cache = True
                logger.warning(
1104
                    f"Currently radix cache is not compatible with {self.attention_backend} attention backend for deterministic inference. It will be supported in the future."
1105
                )
1106
1107
1108

            # Check TP size
            if self.tp_size > 1:
1109
                raise ValueError(
1110
                    "Currently only TP size 1 is supported for deterministic inference."
1111
1112
                )

1113
1114
1115
1116
1117
            # Warnings on MoE models
            logger.warning(
                "Currently deterministic inference is only tested on dense models. Please be cautious when using it on MoE models."
            )

1118
    def _handle_other_validations(self):
fzyzcjy's avatar
fzyzcjy committed
1119
        pass
1120

Lianmin Zheng's avatar
Lianmin Zheng committed
1121
1122
    @staticmethod
    def add_cli_args(parser: argparse.ArgumentParser):
Lianmin Zheng's avatar
Lianmin Zheng committed
1123
        # Model and tokenizer
Lianmin Zheng's avatar
Lianmin Zheng committed
1124
1125
        parser.add_argument(
            "--model-path",
1126
            "--model",
Lianmin Zheng's avatar
Lianmin Zheng committed
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
            type=str,
            help="The path of the model weights. This can be a local folder or a Hugging Face repo ID.",
            required=True,
        )
        parser.add_argument(
            "--tokenizer-path",
            type=str,
            default=ServerArgs.tokenizer_path,
            help="The path of the tokenizer.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1137
1138
1139
1140
1141
1142
1143
1144
1145
        parser.add_argument(
            "--tokenizer-mode",
            type=str,
            default=ServerArgs.tokenizer_mode,
            choices=["auto", "slow"],
            help="Tokenizer mode. 'auto' will use the fast "
            "tokenizer if available, and 'slow' will "
            "always use the slow tokenizer.",
        )
1146
1147
1148
1149
1150
1151
        parser.add_argument(
            "--tokenizer-worker-num",
            type=int,
            default=ServerArgs.tokenizer_worker_num,
            help="The worker num of the tokenizer manager.",
        )
1152
1153
1154
        parser.add_argument(
            "--skip-tokenizer-init",
            action="store_true",
1155
            help="If set, skip init tokenizer and pass input_ids in generate request.",
1156
        )
1157
        parser.add_argument(
Lianmin Zheng's avatar
Lianmin Zheng committed
1158
1159
1160
            "--load-format",
            type=str,
            default=ServerArgs.load_format,
1161
            choices=LOAD_FORMAT_CHOICES,
Lianmin Zheng's avatar
Lianmin Zheng committed
1162
1163
1164
1165
1166
1167
1168
1169
1170
            help="The format of the model weights to load. "
            '"auto" will try to load the weights in the safetensors format '
            "and fall back to the pytorch bin format if safetensors format "
            "is not available. "
            '"pt" will load the weights in the pytorch bin format. '
            '"safetensors" will load the weights in the safetensors format. '
            '"npcache" will load the weights in pytorch format and store '
            "a numpy cache to speed up the loading. "
            '"dummy" will initialize the weights with random values, '
1171
            "which is mainly for profiling."
1172
1173
            '"gguf" will load the weights in the gguf format. '
            '"bitsandbytes" will load the weights using bitsandbytes '
1174
1175
1176
1177
            "quantization."
            '"layered" loads weights layer by layer so that one can quantize a '
            "layer before loading another to make the peak memory envelope "
            "smaller.",
Lianmin Zheng's avatar
Lianmin Zheng committed
1178
        )
1179
1180
1181
1182
1183
1184
1185
        parser.add_argument(
            "--model-loader-extra-config",
            type=str,
            help="Extra config for model loader. "
            "This will be passed to the model loader corresponding to the chosen load_format.",
            default=ServerArgs.model_loader_extra_config,
        )
1186
1187
1188
1189
1190
        parser.add_argument(
            "--trust-remote-code",
            action="store_true",
            help="Whether or not to allow for custom models defined on the Hub in their own modeling files.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
        parser.add_argument(
            "--context-length",
            type=int,
            default=ServerArgs.context_length,
            help="The model's maximum context length. Defaults to None (will use the value from the model's config.json instead).",
        )
        parser.add_argument(
            "--is-embedding",
            action="store_true",
            help="Whether to use a CausalLM as an embedding model.",
        )
        parser.add_argument(
            "--enable-multimodal",
            default=ServerArgs.enable_multimodal,
            action="store_true",
            help="Enable the multimodal functionality for the served model. If the model being served is not multimodal, nothing will happen",
        )
        parser.add_argument(
            "--revision",
            type=str,
            default=None,
            help="The specific model version to use. It can be a branch "
            "name, a tag name, or a commit id. If unspecified, will use "
            "the default version.",
        )
        parser.add_argument(
            "--model-impl",
            type=str,
            default=ServerArgs.model_impl,
            help="Which implementation of the model to use.\n\n"
            '* "auto" will try to use the SGLang implementation if it exists '
            "and fall back to the Transformers implementation if no SGLang "
            "implementation is available.\n"
            '* "sglang" will use the SGLang model implementation.\n'
            '* "transformers" will use the Transformers model '
            "implementation.\n",
        )

        # HTTP server
        parser.add_argument(
            "--host",
            type=str,
            default=ServerArgs.host,
            help="The host of the HTTP server.",
        )
        parser.add_argument(
            "--port",
            type=int,
            default=ServerArgs.port,
            help="The port of the HTTP server.",
        )
        parser.add_argument(
            "--skip-server-warmup",
            action="store_true",
            help="If set, skip warmup.",
        )
        parser.add_argument(
            "--warmups",
            type=str,
            required=False,
            help="Specify custom warmup functions (csv) to run before server starts eg. --warmups=warmup_name1,warmup_name2 "
            "will run the functions `warmup_name1` and `warmup_name2` specified in warmup.py before the server starts listening for requests",
        )
        parser.add_argument(
            "--nccl-port",
            type=int,
            default=ServerArgs.nccl_port,
            help="The port for NCCL distributed environment setup. Defaults to a random port.",
        )

        # Quantization and data type
Lianmin Zheng's avatar
Lianmin Zheng committed
1262
        parser.add_argument(
Lianmin Zheng's avatar
Lianmin Zheng committed
1263
            "--dtype",
Cody Yu's avatar
Cody Yu committed
1264
            type=str,
Lianmin Zheng's avatar
Lianmin Zheng committed
1265
            default=ServerArgs.dtype,
Ying Sheng's avatar
Ying Sheng committed
1266
1267
            choices=["auto", "half", "float16", "bfloat16", "float", "float32"],
            help="Data type for model weights and activations.\n\n"
Lianmin Zheng's avatar
Lianmin Zheng committed
1268
            '* "auto" will use FP16 precision for FP32 and FP16 models, and '
Ying Sheng's avatar
Ying Sheng committed
1269
            "BF16 precision for BF16 models.\n"
Lianmin Zheng's avatar
Lianmin Zheng committed
1270
1271
1272
1273
            '* "half" for FP16. Recommended for AWQ quantization.\n'
            '* "float16" is the same as "half".\n'
            '* "bfloat16" for a balance between precision and range.\n'
            '* "float" is shorthand for FP32 precision.\n'
Ying Sheng's avatar
Ying Sheng committed
1274
1275
            '* "float32" for FP32 precision.',
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1276
1277
1278
1279
        parser.add_argument(
            "--quantization",
            type=str,
            default=ServerArgs.quantization,
1280
            choices=QUANTIZATION_CHOICES,
Lianmin Zheng's avatar
Lianmin Zheng committed
1281
1282
            help="The quantization method.",
        )
1283
1284
1285
1286
1287
1288
1289
1290
1291
        parser.add_argument(
            "--quantization-param-path",
            type=nullable_str,
            default=None,
            help="Path to the JSON file containing the KV cache "
            "scaling factors. This should generally be supplied, when "
            "KV cache dtype is FP8. Otherwise, KV cache scaling factors "
            "default to 1.0, which may cause accuracy issues. ",
        )
1292
        parser.add_argument(
Lianmin Zheng's avatar
Lianmin Zheng committed
1293
            "--kv-cache-dtype",
1294
            type=str,
Lianmin Zheng's avatar
Lianmin Zheng committed
1295
1296
1297
            default=ServerArgs.kv_cache_dtype,
            choices=["auto", "fp8_e5m2", "fp8_e4m3"],
            help='Data type for kv cache storage. "auto" will use model data type. "fp8_e5m2" and "fp8_e4m3" is supported for CUDA 11.8+.',
1298
        )
1299

1300
        # Memory and scheduling
Lianmin Zheng's avatar
Lianmin Zheng committed
1301
1302
1303
1304
        parser.add_argument(
            "--mem-fraction-static",
            type=float,
            default=ServerArgs.mem_fraction_static,
1305
            help="The fraction of the memory used for static allocation (model weights and KV cache memory pool). Use a smaller value if you see out-of-memory errors.",
Lianmin Zheng's avatar
Lianmin Zheng committed
1306
        )
1307
1308
1309
1310
1311
1312
        parser.add_argument(
            "--max-running-requests",
            type=int,
            default=ServerArgs.max_running_requests,
            help="The maximum number of running requests.",
        )
1313
1314
1315
1316
1317
1318
        parser.add_argument(
            "--max-queued-requests",
            type=int,
            default=ServerArgs.max_queued_requests,
            help="The maximum number of queued requests. This option is ignored when using disaggregation-mode.",
        )
1319
1320
1321
1322
        parser.add_argument(
            "--max-total-tokens",
            type=int,
            default=ServerArgs.max_total_tokens,
1323
1324
            help="The maximum number of tokens in the memory pool. If not specified, it will be automatically calculated based on the memory usage fraction. "
            "This option is typically used for development and debugging purposes.",
1325
        )
1326
1327
1328
1329
        parser.add_argument(
            "--chunked-prefill-size",
            type=int,
            default=ServerArgs.chunked_prefill_size,
1330
            help="The maximum number of tokens in a chunk for the chunked prefill. Setting this to -1 means disabling chunked prefill.",
1331
1332
1333
1334
1335
1336
1337
        )
        parser.add_argument(
            "--max-prefill-tokens",
            type=int,
            default=ServerArgs.max_prefill_tokens,
            help="The maximum number of tokens in a prefill batch. The real bound will be the maximum of this value and the model's maximum context length.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1338
        parser.add_argument(
1339
            "--schedule-policy",
Lianmin Zheng's avatar
Lianmin Zheng committed
1340
            type=str,
1341
            default=ServerArgs.schedule_policy,
1342
            choices=["lpm", "random", "fcfs", "dfs-weight", "lof", "priority"],
1343
            help="The scheduling policy of the requests.",
Lianmin Zheng's avatar
Lianmin Zheng committed
1344
        )
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
        parser.add_argument(
            "--enable-priority-scheduling",
            action="store_true",
            default=ServerArgs.enable_priority_scheduling,
            help="Enable priority scheduling. Requests with higher priority integer values will be scheduled first by default.",
        )
        parser.add_argument(
            "--schedule-low-priority-values-first",
            action="store_true",
            default=ServerArgs.schedule_low_priority_values_first,
            help="If specified with --enable-priority-scheduling, the scheduler will schedule requests with lower priority integer values first.",
        )
        parser.add_argument(
            "--priority-scheduling-preemption-threshold",
            type=int,
            default=ServerArgs.priority_scheduling_preemption_threshold,
            help="Minimum difference in priorities for an incoming request to have to preempt running request(s).",
        )
1363
1364
1365
1366
        parser.add_argument(
            "--schedule-conservativeness",
            type=float,
            default=ServerArgs.schedule_conservativeness,
1367
            help="How conservative the schedule policy is. A larger value means more conservative scheduling. Use a larger value if you see requests being retracted frequently.",
1368
        )
1369
1370
1371
1372
1373
1374
        parser.add_argument(
            "--page-size",
            type=int,
            default=ServerArgs.page_size,
            help="The number of tokens in a page.",
        )
tarinkk's avatar
tarinkk committed
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
        parser.add_argument(
            "--hybrid-kvcache-ratio",
            nargs="?",
            const=0.5,
            type=float,
            default=ServerArgs.hybrid_kvcache_ratio,
            help=(
                "Mix ratio in [0,1] between uniform and hybrid kv buffers "
                "(0.0 = pure uniform: swa_size / full_size = 1)"
                "(1.0 = pure hybrid: swa_size / full_size = local_attention_size / context_length)"
            ),
        )
Hanming Lu's avatar
Hanming Lu committed
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
        parser.add_argument(
            "--swa-full-tokens-ratio",
            type=float,
            default=ServerArgs.swa_full_tokens_ratio,
            help="The ratio of SWA layer KV tokens / full layer KV tokens, regardless of the number of swa:full layers. It should be between 0 and 1. "
            "E.g. 0.5 means if each swa layer has 50 tokens, then each full layer has 100 tokens.",
        )
        parser.add_argument(
            "--disable-hybrid-swa-memory",
            action="store_true",
            help="Disable the hybrid SWA memory.",
        )
1399

Lianmin Zheng's avatar
Lianmin Zheng committed
1400
1401
1402
1403
1404
1405
1406
        # Runtime options
        parser.add_argument(
            "--device",
            type=str,
            default=ServerArgs.device,
            help="The device to use ('cuda', 'xpu', 'hpu', 'npu', 'cpu'). Defaults to auto-detection if not specified.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1407
        parser.add_argument(
1408
            "--tensor-parallel-size",
Lianmin Zheng's avatar
Lianmin Zheng committed
1409
            "--tp-size",
Lianmin Zheng's avatar
Lianmin Zheng committed
1410
            type=int,
Lianmin Zheng's avatar
Lianmin Zheng committed
1411
            default=ServerArgs.tp_size,
1412
            help="The tensor parallelism size.",
1413
        )
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
        parser.add_argument(
            "--pipeline-parallel-size",
            "--pp-size",
            type=int,
            default=ServerArgs.pp_size,
            help="The pipeline parallelism size.",
        )
        parser.add_argument(
            "--max-micro-batch-size",
            type=int,
            default=ServerArgs.max_micro_batch_size,
            help="The maximum micro batch size in pipeline parallelism.",
        )
1427
1428
1429
        parser.add_argument(
            "--stream-interval",
            type=int,
Lianmin Zheng's avatar
Lianmin Zheng committed
1430
            default=ServerArgs.stream_interval,
1431
            help="The interval (or buffer size) for streaming in terms of the token length. A smaller value makes streaming smoother, while a larger value makes the throughput higher",
1432
        )
1433
1434
1435
1436
1437
        parser.add_argument(
            "--stream-output",
            action="store_true",
            help="Whether to output as a sequence of disjoint segments.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1438
1439
1440
1441
        parser.add_argument(
            "--random-seed",
            type=int,
            default=ServerArgs.random_seed,
1442
            help="The random seed.",
Lianmin Zheng's avatar
Lianmin Zheng committed
1443
        )
1444
1445
1446
1447
        parser.add_argument(
            "--constrained-json-whitespace-pattern",
            type=str,
            default=ServerArgs.constrained_json_whitespace_pattern,
Lianmin Zheng's avatar
Lianmin Zheng committed
1448
            help="(outlines backend only) Regex pattern for syntactic whitespaces allowed in JSON constrained output. For example, to allow the model generate consecutive whitespaces, set the pattern to [\n\t ]*",
1449
        )
1450
1451
1452
1453
1454
1455
        parser.add_argument(
            "--watchdog-timeout",
            type=float,
            default=ServerArgs.watchdog_timeout,
            help="Set watchdog timeout in seconds. If a forward batch takes longer than this, the server will crash to prevent hanging.",
        )
1456
1457
1458
1459
1460
1461
        parser.add_argument(
            "--dist-timeout",
            type=int,
            default=ServerArgs.dist_timeout,
            help="Set timeout for torch.distributed initialization.",
        )
1462
1463
1464
1465
        parser.add_argument(
            "--download-dir",
            type=str,
            default=ServerArgs.download_dir,
1466
            help="Model download directory for huggingface.",
1467
        )
1468
1469
1470
1471
1472
1473
        parser.add_argument(
            "--base-gpu-id",
            type=int,
            default=ServerArgs.base_gpu_id,
            help="The base GPU ID to start allocating GPUs from. Useful when running multiple instances on the same machine.",
        )
1474
1475
1476
1477
1478
1479
        parser.add_argument(
            "--gpu-id-step",
            type=int,
            default=ServerArgs.gpu_id_step,
            help="The delta between consecutive GPU IDs that are used. For example, setting it to 2 will use GPU 0,2,4,...",
        )
1480
1481
1482
1483
1484
        parser.add_argument(
            "--sleep-on-idle",
            action="store_true",
            help="Reduce CPU usage when sglang is idle.",
        )
1485
1486

        # Logging
Lianmin Zheng's avatar
Lianmin Zheng committed
1487
1488
1489
1490
        parser.add_argument(
            "--log-level",
            type=str,
            default=ServerArgs.log_level,
1491
            help="The logging level of all loggers.",
Lianmin Zheng's avatar
Lianmin Zheng committed
1492
        )
1493
        parser.add_argument(
1494
1495
1496
1497
            "--log-level-http",
            type=str,
            default=ServerArgs.log_level_http,
            help="The logging level of HTTP server. If not set, reuse --log-level by default.",
1498
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1499
        parser.add_argument(
1500
            "--log-requests",
Lianmin Zheng's avatar
Lianmin Zheng committed
1501
            action="store_true",
1502
1503
1504
1505
1506
            help="Log metadata, inputs, outputs of all requests. The verbosity is decided by --log-requests-level",
        )
        parser.add_argument(
            "--log-requests-level",
            type=int,
1507
            default=ServerArgs.log_requests_level,
1508
1509
1510
1511
1512
1513
1514
1515
            help="0: Log metadata (no sampling parameters). 1: Log metadata and sampling parameters. 2: Log metadata, sampling parameters and partial input/output. 3: Log every input/output.",
            choices=[0, 1, 2, 3],
        )
        parser.add_argument(
            "--crash-dump-folder",
            type=str,
            default=ServerArgs.crash_dump_folder,
            help="Folder path to dump requests from the last 5 min before a crash (if any). If not specified, crash dumping is disabled.",
Lianmin Zheng's avatar
Lianmin Zheng committed
1516
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1517
1518
1519
        parser.add_argument(
            "--show-time-cost",
            action="store_true",
Ying Sheng's avatar
Ying Sheng committed
1520
            help="Show time cost of custom marks.",
Lianmin Zheng's avatar
Lianmin Zheng committed
1521
        )
1522
1523
1524
1525
1526
        parser.add_argument(
            "--enable-metrics",
            action="store_true",
            help="Enable log prometheus metrics.",
        )
1527
1528
1529
1530
1531
1532
1533
        parser.add_argument(
            "--enable-metrics-for-all-schedulers",
            action="store_true",
            help="Enable --enable-metrics-for-all-schedulers when you want schedulers on all TP ranks (not just TP 0) "
            "to record request metrics separately. This is especially useful when dp_attention is enabled, as "
            "otherwise all metrics appear to come from TP 0.",
        )
1534
1535
1536
1537
        parser.add_argument(
            "--tokenizer-metrics-custom-labels-header",
            type=str,
            default=ServerArgs.tokenizer_metrics_custom_labels_header,
1538
            help="Specify the HTTP header for passing custom labels for tokenizer metrics.",
1539
1540
        )
        parser.add_argument(
1541
            "--tokenizer-metrics-allowed-custom-labels",
1542
1543
            type=str,
            nargs="+",
1544
1545
            default=ServerArgs.tokenizer_metrics_allowed_custom_labels,
            help="The custom labels allowed for tokenizer metrics. The labels are specified via a dict in "
1546
            "'--tokenizer-metrics-custom-labels-header' field in HTTP requests, e.g., {'label1': 'value1', 'label2': "
1547
            "'value2'} is allowed if '--tokenizer-metrics-allowed-custom-labels label1 label2' is set.",
1548
        )
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
        parser.add_argument(
            "--bucket-time-to-first-token",
            type=float,
            nargs="+",
            default=ServerArgs.bucket_time_to_first_token,
            help="The buckets of time to first token, specified as a list of floats.",
        )
        parser.add_argument(
            "--bucket-inter-token-latency",
            type=float,
            nargs="+",
            default=ServerArgs.bucket_inter_token_latency,
            help="The buckets of inter-token latency, specified as a list of floats.",
        )
        parser.add_argument(
            "--bucket-e2e-request-latency",
            type=float,
            nargs="+",
            default=ServerArgs.bucket_e2e_request_latency,
            help="The buckets of end-to-end request latency, specified as a list of floats.",
        )
        parser.add_argument(
            "--collect-tokens-histogram",
            action="store_true",
            default=ServerArgs.collect_tokens_histogram,
            help="Collect prompt/generation tokens histogram.",
        )
1576
1577
1578
        bucket_rule = (
            "Supports 3 rule types: 'default' uses predefined buckets; 'tse <middle> <base> <count>' "
            "generates two sides exponential distributed buckets (e.g., 'tse 1000 2 8' generates buckets "
1579
1580
            "[984.0, 992.0, 996.0, 998.0, 1000.0, 1002.0, 1004.0, 1008.0, 1016.0]).); 'custom <value1> "
            "<value2> ...' uses custom bucket values (e.g., 'custom 10 50 100 500')."
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
        )
        parser.add_argument(
            "--prompt-tokens-buckets",
            type=str,
            nargs="+",
            default=ServerArgs.prompt_tokens_buckets,
            help=f"The buckets rule of prompt tokens. {bucket_rule}",
        )
        parser.add_argument(
            "--generation-tokens-buckets",
            type=str,
            nargs="+",
            default=ServerArgs.generation_tokens_buckets,
            help=f"The buckets rule for generation tokens histogram. {bucket_rule}",
        )
1596
1597
1598
1599
1600
1601
        parser.add_argument(
            "--gc-warning-threshold-secs",
            type=float,
            default=ServerArgs.gc_warning_threshold_secs,
            help="The threshold for long GC warning. If a GC takes longer than this, a warning will be logged. Set to 0 to disable.",
        )
1602
1603
1604
1605
        parser.add_argument(
            "--decode-log-interval",
            type=int,
            default=ServerArgs.decode_log_interval,
1606
            help="The log interval of decode batch.",
1607
        )
1608
1609
1610
1611
1612
1613
        parser.add_argument(
            "--enable-request-time-stats-logging",
            action="store_true",
            default=ServerArgs.enable_request_time_stats_logging,
            help="Enable per request time stats logging",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1614
1615
1616
1617
1618
        parser.add_argument(
            "--kv-events-config",
            type=str,
            default=None,
            help="Config in json format for NVIDIA dynamo KV event publishing. Publishing will be enabled if this flag is used.",
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
        )
        parser.add_argument(
            "--enable-trace",
            action="store_true",
            help="Enable opentelemetry trace",
        )
        parser.add_argument(
            "--oltp-traces-endpoint",
            type=str,
            default="localhost:4317",
            help="Config opentelemetry collector endpoint if --enable-trace is set. format: <ip>:<port>",
Lianmin Zheng's avatar
Lianmin Zheng committed
1630
        )
1631

1632
        # API related
Liangsheng Yin's avatar
Liangsheng Yin committed
1633
1634
1635
1636
        parser.add_argument(
            "--api-key",
            type=str,
            default=ServerArgs.api_key,
1637
            help="Set API key of the server. It is also used in the OpenAI API compatible server.",
Liangsheng Yin's avatar
Liangsheng Yin committed
1638
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1639
1640
1641
1642
1643
1644
        parser.add_argument(
            "--served-model-name",
            type=str,
            default=ServerArgs.served_model_name,
            help="Override the model name returned by the v1/models endpoint in OpenAI API server.",
        )
1645
1646
1647
1648
1649
1650
        parser.add_argument(
            "--weight-version",
            type=str,
            default=ServerArgs.weight_version,
            help="Version identifier for the model weights. Defaults to 'default' if not specified.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
        parser.add_argument(
            "--chat-template",
            type=str,
            default=ServerArgs.chat_template,
            help="The buliltin chat template name or the path of the chat template file. This is only used for OpenAI-compatible API server.",
        )
        parser.add_argument(
            "--completion-template",
            type=str,
            default=ServerArgs.completion_template,
            help="The buliltin completion template name or the path of the completion template file. This is only used for OpenAI-compatible API server. only for code completion currently.",
        )
1663
        parser.add_argument(
1664
            "--file-storage-path",
1665
            type=str,
1666
            default=ServerArgs.file_storage_path,
1667
1668
            help="The path of the file storage in backend.",
        )
1669
1670
1671
1672
1673
        parser.add_argument(
            "--enable-cache-report",
            action="store_true",
            help="Return number of cached tokens in usage.prompt_tokens_details for each openai request.",
        )
Xihuai Wang's avatar
Xihuai Wang committed
1674
1675
1676
1677
1678
1679
1680
        parser.add_argument(
            "--reasoning-parser",
            type=str,
            choices=list(ReasoningParser.DetectorMap.keys()),
            default=ServerArgs.reasoning_parser,
            help=f"Specify the parser for reasoning models, supported parsers are: {list(ReasoningParser.DetectorMap.keys())}.",
        )
1681
        tool_call_parser_choices = list(FunctionCallParser.ToolCallParserEnum.keys())
1682
1683
1684
        parser.add_argument(
            "--tool-call-parser",
            type=str,
1685
            choices=tool_call_parser_choices,
1686
            default=ServerArgs.tool_call_parser,
1687
            help=f"Specify the parser for handling tool-call interactions. Options include: {tool_call_parser_choices}.",
1688
        )
1689
1690
1691
1692
1693
1694
        parser.add_argument(
            "--tool-server",
            type=str,
            default=None,
            help="Either 'demo' or a comma-separated list of tool server urls to use for the model. If not specified, no tool server will be used.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1695

1696
1697
        # Data parallelism
        parser.add_argument(
1698
            "--data-parallel-size",
1699
1700
1701
            "--dp-size",
            type=int,
            default=ServerArgs.dp_size,
1702
            help="The data parallelism size.",
1703
1704
1705
1706
1707
        )
        parser.add_argument(
            "--load-balance-method",
            type=str,
            default=ServerArgs.load_balance_method,
1708
            help="The load balancing strategy for data parallelism.",
1709
1710
1711
            choices=[
                "round_robin",
                "shortest_queue",
1712
                "minimum_tokens",
1713
1714
            ],
        )
1715
1716
1717
1718
1719
1720
        parser.add_argument(
            "--load-watch-interval",
            type=float,
            default=ServerArgs.load_watch_interval,
            help="The interval of load watching in seconds.",
        )
1721
1722
1723
1724
1725
1726
        parser.add_argument(
            "--prefill-round-robin-balance",
            default=ServerArgs.prefill_round_robin_balance,
            action="store_true",
            help="Prefill is round robin balanced. This is used to promise decode server can get the correct dp rank.",
        )
1727

1728
        # Multi-node distributed serving
1729
        parser.add_argument(
1730
            "--dist-init-addr",
1731
            "--nccl-init-addr",  # For backward compatibility. This will be removed in the future.
1732
            type=str,
1733
            help="The host address for initializing distributed backend (e.g., `192.168.0.2:25000`).",
1734
1735
        )
        parser.add_argument(
Liangsheng Yin's avatar
Liangsheng Yin committed
1736
            "--nnodes", type=int, default=ServerArgs.nnodes, help="The number of nodes."
1737
        )
1738
1739
1740
        parser.add_argument(
            "--node-rank", type=int, default=ServerArgs.node_rank, help="The node rank."
        )
1741

Lianmin Zheng's avatar
Lianmin Zheng committed
1742
1743
1744
1745
1746
1747
1748
        # Model override args
        parser.add_argument(
            "--json-model-override-args",
            type=str,
            help="A dictionary in JSON string format used to override default model configurations.",
            default=ServerArgs.json_model_override_args,
        )
1749
1750
1751
1752
1753
        parser.add_argument(
            "--preferred-sampling-params",
            type=str,
            help="json-formatted sampling settings that will be returned in /get_model_info",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1754

1755
        # LoRA
1756
1757
1758
1759
1760
1761
        parser.add_argument(
            "--enable-lora",
            default=ServerArgs.enable_lora,
            action="store_true",
            help="Enable LoRA support for the model. This argument is automatically set to True if `--lora-paths` is provided for backward compatibility.",
        )
1762
1763
1764
1765
1766
1767
1768
1769
1770
        parser.add_argument(
            "--max-lora-rank",
            default=ServerArgs.max_lora_rank,
            type=int,
            help="The maximum rank of LoRA adapters. If not specified, it will be automatically inferred from the adapters provided in --lora-paths.",
        )
        parser.add_argument(
            "--lora-target-modules",
            type=str,
1771
            choices=SUPPORTED_LORA_TARGET_MODULES + [LORA_TARGET_ALL_MODULES],
1772
1773
            nargs="*",
            default=None,
1774
1775
1776
            help="The union set of all target modules where LoRA should be applied. If not specified, "
            "it will be automatically inferred from the adapters provided in --lora-paths. If 'all' is specified, "
            "all supported modules will be targeted.",
1777
        )
1778
1779
1780
1781
1782
1783
        parser.add_argument(
            "--lora-paths",
            type=str,
            nargs="*",
            default=None,
            action=LoRAPathAction,
1784
            help='The list of LoRA adapters to load. Each adapter must be specified in one of the following formats: <PATH> | <NAME>=<PATH> | JSON with schema {"lora_name":str,"lora_path":str,"pinned":bool}',
1785
1786
1787
1788
1789
        )
        parser.add_argument(
            "--max-loras-per-batch",
            type=int,
            default=8,
1790
1791
            help="Maximum number of adapters for a running batch, include base-only request.",
        )
1792
1793
1794
1795
1796
1797
        parser.add_argument(
            "--max-loaded-loras",
            type=int,
            default=ServerArgs.max_loaded_loras,
            help="If specified, it limits the maximum number of LoRA adapters loaded in CPU memory at a time. The value must be greater than or equal to `--max-loras-per-batch`.",
        )
1798
1799
1800
        parser.add_argument(
            "--lora-backend",
            type=str,
1801
1802
            choices=LORA_BACKEND_CHOICES,
            default=ServerArgs.lora_backend,
1803
            help="Choose the kernel backend for multi-LoRA serving.",
1804
        )
1805
1806
1807
1808
1809
1810
1811
        parser.add_argument(
            "--max-lora-chunk-size",
            type=int,
            default=ServerArgs.max_lora_chunk_size,
            choices=[16, 32, 64, 128],
            help="Maximum chunk size for the ChunkedSGMV LoRA backend. Only used when --lora-backend is 'csgmv'. Choosing a larger value might improve performance.",
        )
1812
1813

        # Kernel backend
1814
1815
1816
        parser.add_argument(
            "--attention-backend",
            type=str,
1817
            choices=ATTENTION_BACKEND_CHOICES,
1818
1819
1820
            default=ServerArgs.attention_backend,
            help="Choose the kernels for attention layers.",
        )
1821
1822
1823
        parser.add_argument(
            "--prefill-attention-backend",
            type=str,
1824
            choices=ATTENTION_BACKEND_CHOICES,
1825
1826
1827
            default=ServerArgs.prefill_attention_backend,
            help="Choose the kernels for prefill attention layers (have priority over --attention-backend).",
        )
1828
1829
1830
        parser.add_argument(
            "--decode-attention-backend",
            type=str,
1831
            choices=ATTENTION_BACKEND_CHOICES,
1832
1833
1834
            default=ServerArgs.decode_attention_backend,
            help="Choose the kernels for decode attention layers (have priority over --attention-backend).",
        )
1835
1836
1837
1838
1839
1840
1841
        parser.add_argument(
            "--sampling-backend",
            type=str,
            choices=["flashinfer", "pytorch"],
            default=ServerArgs.sampling_backend,
            help="Choose the kernels for sampling layers.",
        )
1842
1843
1844
        parser.add_argument(
            "--grammar-backend",
            type=str,
1845
            choices=GRAMMAR_BACKEND_CHOICES,
1846
            default=ServerArgs.grammar_backend,
Lianmin Zheng's avatar
Lianmin Zheng committed
1847
            help="Choose the backend for grammar-guided decoding.",
1848
        )
1849
1850
1851
        parser.add_argument(
            "--mm-attention-backend",
            type=str,
1852
            choices=["sdpa", "fa3", "triton_attn", "ascend_attn"],
1853
1854
1855
            default=ServerArgs.mm_attention_backend,
            help="Set multimodal attention backend.",
        )
1856

1857
1858
1859
1860
        # Speculative decoding
        parser.add_argument(
            "--speculative-algorithm",
            type=str,
1861
            choices=["EAGLE", "EAGLE3", "NEXTN", "STANDALONE", "LOOKAHEAD"],
1862
1863
1864
1865
            help="Speculative algorithm.",
        )
        parser.add_argument(
            "--speculative-draft-model-path",
1866
            "--speculative-draft-model",
1867
1868
1869
            type=str,
            help="The path of the draft model weights. This can be a local folder or a Hugging Face repo ID.",
        )
1870
1871
1872
1873
1874
1875
1876
1877
        parser.add_argument(
            "--speculative-draft-model-revision",
            type=str,
            default=None,
            help="The specific draft model version to use. It can be a branch "
            "name, a tag name, or a commit id. If unspecified, will use "
            "the default version.",
        )
1878
1879
1880
1881
1882
1883
1884
1885
1886
        parser.add_argument(
            "--speculative-num-steps",
            type=int,
            help="The number of steps sampled from draft model in Speculative Decoding.",
            default=ServerArgs.speculative_num_steps,
        )
        parser.add_argument(
            "--speculative-eagle-topk",
            type=int,
1887
            help="The number of tokens sampled from the draft model in eagle2 each step.",
1888
1889
            default=ServerArgs.speculative_eagle_topk,
        )
1890
1891
1892
        parser.add_argument(
            "--speculative-num-draft-tokens",
            type=int,
1893
            help="The number of tokens sampled from the draft model in Speculative Decoding.",
1894
1895
            default=ServerArgs.speculative_num_draft_tokens,
        )
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
        parser.add_argument(
            "--speculative-accept-threshold-single",
            type=float,
            help="Accept a draft token if its probability in the target model is greater than this threshold.",
            default=ServerArgs.speculative_accept_threshold_single,
        )
        parser.add_argument(
            "--speculative-accept-threshold-acc",
            type=float,
            help="The accept probability of a draft token is raised from its target probability p to min(1, p / threshold_acc).",
            default=ServerArgs.speculative_accept_threshold_acc,
        )
1908
1909
1910
1911
1912
1913
        parser.add_argument(
            "--speculative-token-map",
            type=str,
            help="The path of the draft model's small vocab table.",
            default=ServerArgs.speculative_token_map,
        )
1914
        parser.add_argument(
1915
            "--speculative-attention-mode",
1916
1917
            type=str,
            choices=["prefill", "decode"],
1918
1919
            help="Attention backend for speculative decoding operations (both target verify and draft extend). Can be one of 'prefill' (default) or 'decode'.",
            default=ServerArgs.speculative_attention_mode,
1920
        )
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
        # Lookahead speculative decoding
        parser.add_argument(
            "--speculative-lookahead-min-match-window-size",
            type=int,
            default=ServerArgs.speculative_lookahead_min_match_window_size,
            help="The minimum window size for pattern matching in lookahead speculative decoding.",
        )
        parser.add_argument(
            "--speculative-lookahead-max-match-window-size",
            type=int,
            default=ServerArgs.speculative_lookahead_max_match_window_size,
            help="The maximum window size for pattern matching in lookahead speculative decoding.",
        )
        parser.add_argument(
            "--speculative-lookahead-min-bfs-breadth",
            type=int,
            default=ServerArgs.speculative_lookahead_min_bfs_breadth,
            help="The minimum breadth for BFS (Breadth-First Search) in lookahead speculative decoding.",
        )
        parser.add_argument(
            "--speculative-lookahead-max-bfs-breadth",
            type=int,
            default=ServerArgs.speculative_lookahead_max_bfs_breadth,
            help="The maximum breadth for BFS (Breadth-First Search) in lookahead speculative decoding.",
        )
        parser.add_argument(
            "--speculative-lookahead-match-type",
            type=str,
            choices=["BFS", "PROB"],
            default=ServerArgs.speculative_lookahead_match_type,
            help="The match type for cache tree.",
        )
        parser.add_argument(
            "--speculative-lookahead-branch-length",
            type=int,
            default=ServerArgs.speculative_lookahead_branch_length,
            help="The branch length for lookahead speculative decoding.",
        )
        parser.add_argument(
            "--speculative-lookahead-capacity",
            type=int,
            default=ServerArgs.speculative_lookahead_capacity,
            help="The cache capacity for lookahead speculative decoding.",
        )
1965
1966
1967
1968
1969

        # Expert parallelism
        parser.add_argument(
            "--expert-parallel-size",
            "--ep-size",
Cheng Wan's avatar
Cheng Wan committed
1970
            "--ep",
1971
1972
1973
1974
1975
            type=int,
            default=ServerArgs.ep_size,
            help="The expert parallelism size.",
        )
        parser.add_argument(
1976
1977
            "--moe-a2a-backend",
            type=str,
1978
            choices=["none", "deepep"],
1979
1980
            default=ServerArgs.moe_a2a_backend,
            help="Choose the backend for MoE A2A.",
1981
        )
1982
        parser.add_argument(
1983
1984
1985
1986
1987
1988
1989
1990
            "--moe-runner-backend",
            type=str,
            choices=[
                "auto",
                "triton",
                "triton_kernel",
                "flashinfer_trtllm",
                "flashinfer_cutlass",
1991
                "flashinfer_mxfp4",
1992
                "flashinfer_cutedsl",
1993
1994
1995
            ],
            default=ServerArgs.moe_runner_backend,
            help="Choose the runner backend for MoE.",
1996
1997
        )
        parser.add_argument(
1998
1999
            "--flashinfer-mxfp4-moe-precision",
            type=str,
2000
            choices=["default", "bf16"],
2001
2002
2003
2004
            default=ServerArgs.flashinfer_mxfp4_moe_precision,
            help="Choose the computation precision of flashinfer mxfp4 moe",
        )
        parser.add_argument(
2005
2006
            "--enable-flashinfer-allreduce-fusion",
            action="store_true",
2007
            help="Enable FlashInfer allreduce fusion with Residual RMSNorm.",
2008
        )
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
        parser.add_argument(
            "--deepep-mode",
            type=str,
            choices=["normal", "low_latency", "auto"],
            default="auto",
            help="Select the mode when enable DeepEP MoE, could be `normal`, `low_latency` or `auto`. Default is `auto`, which means `low_latency` for decode batch and `normal` for prefill batch.",
        )
        parser.add_argument(
            "--ep-num-redundant-experts",
            type=int,
            default=ServerArgs.ep_num_redundant_experts,
            help="Allocate this number of redundant experts in expert parallel.",
        )
        parser.add_argument(
            "--ep-dispatch-algorithm",
            type=str,
            default=ServerArgs.ep_dispatch_algorithm,
            help="The algorithm to choose ranks for redundant experts in expert parallel.",
        )
        parser.add_argument(
            "--init-expert-location",
            type=str,
            default=ServerArgs.init_expert_location,
            help="Initial location of EP experts.",
        )
        parser.add_argument(
            "--enable-eplb",
            action="store_true",
            help="Enable EPLB algorithm",
        )
        parser.add_argument(
            "--eplb-algorithm",
            type=str,
            default=ServerArgs.eplb_algorithm,
            help="Chosen EPLB algorithm",
        )
        parser.add_argument(
            "--eplb-rebalance-num-iterations",
            type=int,
            default=ServerArgs.eplb_rebalance_num_iterations,
            help="Number of iterations to automatically trigger a EPLB re-balance.",
        )
        parser.add_argument(
            "--eplb-rebalance-layers-per-chunk",
            type=int,
            default=ServerArgs.eplb_rebalance_layers_per_chunk,
            help="Number of layers to rebalance per forward pass.",
        )
2057
2058
2059
2060
2061
2062
        parser.add_argument(
            "--eplb-min-rebalancing-utilization-threshold",
            type=float,
            default=ServerArgs.eplb_min_rebalancing_utilization_threshold,
            help="Minimum threshold for GPU average utilization to trigger EPLB rebalancing. Must be in the range [0.0, 1.0].",
        )
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
        parser.add_argument(
            "--expert-distribution-recorder-mode",
            type=str,
            default=ServerArgs.expert_distribution_recorder_mode,
            help="Mode of expert distribution recorder.",
        )
        parser.add_argument(
            "--expert-distribution-recorder-buffer-size",
            type=int,
            default=ServerArgs.expert_distribution_recorder_buffer_size,
            help="Circular buffer size of expert distribution recorder. Set to -1 to denote infinite buffer.",
        )
        parser.add_argument(
            "--enable-expert-distribution-metrics",
            action="store_true",
            help="Enable logging metrics for expert balancedness",
        )
        parser.add_argument(
            "--deepep-config",
            type=str,
            default=ServerArgs.deepep_config,
            help="Tuned DeepEP config suitable for your own cluster. It can be either a string with JSON content or a file path.",
        )
        parser.add_argument(
            "--moe-dense-tp-size",
            type=int,
            default=ServerArgs.moe_dense_tp_size,
            help="TP size for MoE dense MLP layers. This flag is useful when, with large TP size, there are errors caused by weights in MLP layers having dimension smaller than the min dimension GEMM supports.",
        )
2092

Yi Zhang's avatar
Yi Zhang committed
2093
2094
2095
2096
2097
        # Mamba Cache
        parser.add_argument(
            "--max-mamba-cache-size",
            type=int,
            default=ServerArgs.max_mamba_cache_size,
2098
            help="The maximum size of the mamba cache.",
Yi Zhang's avatar
Yi Zhang committed
2099
2100
2101
2102
2103
2104
        )
        parser.add_argument(
            "--mamba-ssm-dtype",
            type=str,
            default=ServerArgs.mamba_ssm_dtype,
            choices=["float32", "bfloat16"],
2105
            help="The data type of the SSM states in mamba cache.",
Yi Zhang's avatar
Yi Zhang committed
2106
        )
2107

Lianmin Zheng's avatar
Lianmin Zheng committed
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
        # Hierarchical cache
        parser.add_argument(
            "--enable-hierarchical-cache",
            action="store_true",
            help="Enable hierarchical cache",
        )
        parser.add_argument(
            "--hicache-ratio",
            type=float,
            default=ServerArgs.hicache_ratio,
            help="The ratio of the size of host KV cache memory pool to the size of device pool.",
        )
        parser.add_argument(
            "--hicache-size",
            type=int,
            default=ServerArgs.hicache_size,
            help="The size of host KV cache memory pool in gigabytes, which will override the hicache_ratio if set.",
        )
        parser.add_argument(
            "--hicache-write-policy",
            type=str,
            choices=["write_back", "write_through", "write_through_selective"],
            default=ServerArgs.hicache_write_policy,
            help="The write policy of hierarchical cache.",
        )
2133
2134
2135
2136
2137
2138
2139
        parser.add_argument(
            "--radix-eviction-policy",
            type=str,
            choices=["lru", "lfu"],
            default=ServerArgs.radix_eviction_policy,
            help="The eviction policy of radix trees. 'lru' stands for Least Recently Used, 'lfu' stands for Least Frequently Used.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
2140
2141
2142
2143
2144
2145
2146
        parser.add_argument(
            "--hicache-io-backend",
            type=str,
            choices=["direct", "kernel"],
            default=ServerArgs.hicache_io_backend,
            help="The IO backend for KV cache transfer between CPU and GPU",
        )
2147
2148
2149
        parser.add_argument(
            "--hicache-mem-layout",
            type=str,
2150
            choices=["layer_first", "page_first", "page_first_direct"],
2151
2152
2153
            default=ServerArgs.hicache_mem_layout,
            help="The layout of host memory pool for hierarchical cache.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
2154
2155
2156
        parser.add_argument(
            "--hicache-storage-backend",
            type=str,
yi wang's avatar
yi wang committed
2157
            choices=["file", "mooncake", "hf3fs", "nixl", "aibrix"],
Lianmin Zheng's avatar
Lianmin Zheng committed
2158
2159
2160
            default=ServerArgs.hicache_storage_backend,
            help="The storage backend for hierarchical KV cache.",
        )
pansicheng's avatar
pansicheng committed
2161
2162
2163
2164
2165
2166
2167
        parser.add_argument(
            "--hicache-storage-prefetch-policy",
            type=str,
            choices=["best_effort", "wait_complete", "timeout"],
            default=ServerArgs.hicache_storage_prefetch_policy,
            help="Control when prefetching from the storage backend should stop.",
        )
2168
2169
2170
2171
2172
2173
        parser.add_argument(
            "--hicache-storage-backend-extra-config",
            type=str,
            default=ServerArgs.hicache_storage_backend_extra_config,
            help="A dictionary in JSON string format containing extra configuration for the storage backend.",
        )
2174
2175
2176
2177
2178
2179
        # LMCache
        parser.add_argument(
            "--enable-lmcache",
            action="store_true",
            help="Using LMCache as an alternative hierarchical cache solution",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
2180

2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
        # Double Sparsity
        parser.add_argument(
            "--enable-double-sparsity",
            action="store_true",
            help="Enable double sparsity attention",
        )
        parser.add_argument(
            "--ds-channel-config-path",
            type=str,
            default=ServerArgs.ds_channel_config_path,
            help="The path of the double sparsity channel config",
        )
        parser.add_argument(
            "--ds-heavy-channel-num",
            type=int,
            default=ServerArgs.ds_heavy_channel_num,
            help="The number of heavy channels in double sparsity attention",
        )
        parser.add_argument(
            "--ds-heavy-token-num",
            type=int,
            default=ServerArgs.ds_heavy_token_num,
            help="The number of heavy tokens in double sparsity attention",
        )
        parser.add_argument(
            "--ds-heavy-channel-type",
            type=str,
            default=ServerArgs.ds_heavy_channel_type,
            help="The type of heavy channels in double sparsity attention",
        )
        parser.add_argument(
            "--ds-sparse-decode-threshold",
            type=int,
            default=ServerArgs.ds_sparse_decode_threshold,
            help="The type of heavy channels in double sparsity attention",
        )

fzyzcjy's avatar
fzyzcjy committed
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
        # Offloading
        parser.add_argument(
            "--cpu-offload-gb",
            type=int,
            default=ServerArgs.cpu_offload_gb,
            help="How many GBs of RAM to reserve for CPU offloading.",
        )
        parser.add_argument(
            "--offload-group-size",
            type=int,
            default=ServerArgs.offload_group_size,
            help="Number of layers per group in offloading.",
        )
        parser.add_argument(
            "--offload-num-in-group",
            type=int,
            default=ServerArgs.offload_num_in_group,
            help="Number of layers to be offloaded within a group.",
        )
        parser.add_argument(
            "--offload-prefetch-step",
            type=int,
            default=ServerArgs.offload_prefetch_step,
            help="Steps to prefetch in offloading.",
        )
        parser.add_argument(
            "--offload-mode",
            type=str,
            default=ServerArgs.offload_mode,
            help="Mode of offloading.",
        )

2250
        # Optimization/debug options
Liangsheng Yin's avatar
Liangsheng Yin committed
2251
        parser.add_argument(
Lianmin Zheng's avatar
Lianmin Zheng committed
2252
            "--disable-radix-cache",
Liangsheng Yin's avatar
Liangsheng Yin committed
2253
            action="store_true",
Ying Sheng's avatar
Ying Sheng committed
2254
            help="Disable RadixAttention for prefix caching.",
Liangsheng Yin's avatar
Liangsheng Yin committed
2255
        )
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
        parser.add_argument(
            "--cuda-graph-max-bs",
            type=int,
            default=ServerArgs.cuda_graph_max_bs,
            help="Set the maximum batch size for cuda graph. It will extend the cuda graph capture batch size to this value.",
        )
        parser.add_argument(
            "--cuda-graph-bs",
            type=int,
            nargs="+",
            help="Set the list of batch sizes for cuda graph.",
        )
2268
2269
2270
        parser.add_argument(
            "--disable-cuda-graph",
            action="store_true",
2271
            help="Disable cuda graph.",
2272
        )
2273
        parser.add_argument(
2274
2275
            "--disable-cuda-graph-padding",
            action="store_true",
2276
            help="Disable cuda graph when padding is needed. Still uses cuda graph when padding is not needed.",
2277
        )
2278
2279
2280
2281
2282
        parser.add_argument(
            "--enable-profile-cuda-graph",
            action="store_true",
            help="Enable profiling of cuda graph capture.",
        )
2283
2284
2285
2286
2287
        parser.add_argument(
            "--enable-cudagraph-gc",
            action="store_true",
            help="Enable garbage collection during CUDA graph capture. If disabled (default), GC is frozen during capture to speed up the process.",
        )
2288
2289
2290
2291
2292
        parser.add_argument(
            "--enable-nccl-nvls",
            action="store_true",
            help="Enable NCCL NVLS for prefill heavy requests when available.",
        )
2293
2294
2295
2296
2297
        parser.add_argument(
            "--enable-symm-mem",
            action="store_true",
            help="Enable NCCL symmetric memory for fast collectives.",
        )
2298
2299
2300
2301
2302
        parser.add_argument(
            "--disable-flashinfer-cutlass-moe-fp4-allgather",
            action="store_true",
            help="Disables quantize before all-gather for flashinfer cutlass moe.",
        )
2303
2304
2305
2306
2307
        parser.add_argument(
            "--enable-tokenizer-batch-encode",
            action="store_true",
            help="Enable batch tokenization for improved performance when processing multiple text inputs. Do not use with image inputs, pre-tokenized input_ids, or input_embeds.",
        )
2308
        parser.add_argument(
2309
            "--disable-outlines-disk-cache",
2310
            action="store_true",
2311
            help="Disable disk cache of outlines to avoid possible crashes related to file system or high concurrency.",
2312
        )
2313
2314
2315
2316
2317
        parser.add_argument(
            "--disable-custom-all-reduce",
            action="store_true",
            help="Disable the custom all-reduce kernel and fall back to NCCL.",
        )
2318
2319
2320
2321
2322
        parser.add_argument(
            "--enable-mscclpp",
            action="store_true",
            help="Enable using mscclpp for small messages for all-reduce kernel and fall back to NCCL.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
2323
        parser.add_argument(
2324
            "--disable-overlap-schedule",
Lianmin Zheng's avatar
Lianmin Zheng committed
2325
            action="store_true",
2326
            help="Disable the overlap scheduler, which overlaps the CPU scheduler with GPU model worker.",
Lianmin Zheng's avatar
Lianmin Zheng committed
2327
        )
2328
2329
2330
        parser.add_argument(
            "--enable-mixed-chunk",
            action="store_true",
2331
            help="Enabling mixing prefill and decode in a batch when using chunked prefill.",
2332
        )
Ke Bao's avatar
Ke Bao committed
2333
2334
2335
        parser.add_argument(
            "--enable-dp-attention",
            action="store_true",
2336
            help="Enabling data parallelism for attention and tensor parallelism for FFN. The dp size should be equal to the tp size. Currently DeepSeek-V2 and Qwen 2/3 MoE models are supported.",
Ke Bao's avatar
Ke Bao committed
2337
        )
2338
2339
2340
2341
2342
        parser.add_argument(
            "--enable-dp-lm-head",
            action="store_true",
            help="Enable vocabulary parallel across the attention TP group to avoid all-gather across DP groups, optimizing performance under DP attention.",
        )
2343
2344
2345
2346
2347
        parser.add_argument(
            "--enable-two-batch-overlap",
            action="store_true",
            help="Enabling two micro batches to overlap.",
        )
2348
2349
2350
2351
2352
2353
        parser.add_argument(
            "--tbo-token-distribution-threshold",
            type=float,
            default=ServerArgs.tbo_token_distribution_threshold,
            help="The threshold of token distribution between two batches in micro-batch-overlap, determines whether to two-batch-overlap or two-chunk-overlap. Set to 0 denote disable two-chunk-overlap.",
        )
2354
2355
2356
        parser.add_argument(
            "--enable-torch-compile",
            action="store_true",
2357
2358
            help="Optimize the model with torch.compile. Experimental feature.",
        )
2359
        parser.add_argument(
2360
            "--torch-compile-max-bs",
2361
            type=int,
2362
            default=ServerArgs.torch_compile_max_bs,
2363
2364
            help="Set the maximum batch size when using torch compile.",
        )
2365
2366
2367
2368
        parser.add_argument(
            "--torchao-config",
            type=str,
            default=ServerArgs.torchao_config,
2369
            help="Optimize the model with torchao. Experimental feature. Current choices are: int8dq, int8wo, int4wo-<group_size>, fp8wo, fp8dq-per_tensor, fp8dq-per_row",
2370
        )
2371
2372
2373
2374
2375
        parser.add_argument(
            "--enable-nan-detection",
            action="store_true",
            help="Enable the NaN detection for debugging purposes.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
2376
        parser.add_argument(
2377
            "--enable-p2p-check",
Lianmin Zheng's avatar
Lianmin Zheng committed
2378
            action="store_true",
2379
            help="Enable P2P check for GPU access, otherwise the p2p access is allowed by default.",
Lianmin Zheng's avatar
Lianmin Zheng committed
2380
        )
2381
        parser.add_argument(
2382
            "--triton-attention-reduce-in-fp32",
2383
            action="store_true",
2384
            help="Cast the intermediate attention results to fp32 to avoid possible crashes related to fp16."
2385
            "This only affects Triton attention kernels.",
2386
        )
2387
2388
2389
2390
2391
2392
        parser.add_argument(
            "--triton-attention-num-kv-splits",
            type=int,
            default=ServerArgs.triton_attention_num_kv_splits,
            help="The number of KV splits in flash decoding Triton kernel. Larger value is better in longer context scenarios. The default value is 8.",
        )
2393
2394
2395
2396
2397
2398
        parser.add_argument(
            "--triton-attention-split-tile-size",
            type=int,
            default=ServerArgs.triton_attention_split_tile_size,
            help="The size of split KV tile in flash decoding Triton kernel. Used for deterministic inference.",
        )
2399
2400
2401
2402
2403
2404
2405
2406
        parser.add_argument(
            "--num-continuous-decode-steps",
            type=int,
            default=ServerArgs.num_continuous_decode_steps,
            help="Run multiple continuous decoding steps to reduce scheduling overhead. "
            "This can potentially increase throughput but may also increase time-to-first-token latency. "
            "The default value is 1, meaning only run one decoding step at a time.",
        )
2407
2408
2409
2410
2411
        parser.add_argument(
            "--delete-ckpt-after-loading",
            action="store_true",
            help="Delete the model checkpoint after loading the model.",
        )
2412
2413
2414
2415
2416
        parser.add_argument(
            "--enable-memory-saver",
            action="store_true",
            help="Allow saving memory using release_memory_occupation and resume_memory_occupation",
        )
2417
2418
2419
2420
2421
        parser.add_argument(
            "--allow-auto-truncate",
            action="store_true",
            help="Allow automatically truncating requests that exceed the maximum input length instead of returning an error.",
        )
2422
2423
2424
2425
2426
        parser.add_argument(
            "--enable-custom-logit-processor",
            action="store_true",
            help="Enable users to pass custom logit processors to the server (disabled by default for security)",
        )
2427
        parser.add_argument(
2428
            "--flashinfer-mla-disable-ragged",
2429
            action="store_true",
2430
            help="Not using ragged prefill wrapper when running flashinfer mla",
2431
        )
2432
        parser.add_argument(
2433
2434
2435
            "--disable-shared-experts-fusion",
            action="store_true",
            help="Disable shared experts fusion optimization for deepseek v3/r1.",
2436
        )
2437
2438
2439
2440
2441
        parser.add_argument(
            "--disable-chunked-prefix-cache",
            action="store_true",
            help="Disable chunked prefix cache feature for deepseek, which should save overhead for short sequences.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
2442
2443
2444
2445
2446
        parser.add_argument(
            "--disable-fast-image-processor",
            action="store_true",
            help="Adopt base image processor instead of fast image processor.",
        )
2447
2448
2449
2450
2451
        parser.add_argument(
            "--keep-mm-feature-on-device",
            action="store_true",
            help="Keep multimodal feature tensors on device after processing to save D2H copy.",
        )
2452
2453
2454
2455
2456
        parser.add_argument(
            "--enable-return-hidden-states",
            action="store_true",
            help="Enable returning hidden states with responses.",
        )
2457
2458
2459
2460
2461
2462
        parser.add_argument(
            "--scheduler-recv-interval",
            type=int,
            default=ServerArgs.scheduler_recv_interval,
            help="The interval to poll requests in scheduler. Can be set to >1 to reduce the overhead of this.",
        )
2463
2464
2465
2466
2467
2468
        parser.add_argument(
            "--numa-node",
            type=int,
            nargs="+",
            help="Sets the numa node for the subprocesses. i-th element corresponds to i-th subprocess.",
        )
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488

        # Debug tensor dumps
        parser.add_argument(
            "--debug-tensor-dump-output-folder",
            type=str,
            default=ServerArgs.debug_tensor_dump_output_folder,
            help="The output folder for dumping tensors.",
        )
        parser.add_argument(
            "--debug-tensor-dump-input-file",
            type=str,
            default=ServerArgs.debug_tensor_dump_input_file,
            help="The input filename for dumping tensors",
        )
        parser.add_argument(
            "--debug-tensor-dump-inject",
            type=str,
            default=ServerArgs.debug_tensor_dump_inject,
            help="Inject the outputs from jax as the input of every layer.",
        )
2489
2490
2491
2492
2493
        parser.add_argument(
            "--debug-tensor-dump-prefill-only",
            action="store_true",
            help="Only dump the tensors for prefill requests (i.e. batch size > 1).",
        )
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
        parser.add_argument(
            "--enable-dynamic-batch-tokenizer",
            action="store_true",
            help="Enable async dynamic batch tokenizer for improved performance when multiple requests arrive concurrently.",
        )
        parser.add_argument(
            "--dynamic-batch-tokenizer-batch-size",
            type=int,
            default=ServerArgs.dynamic_batch_tokenizer_batch_size,
            help="[Only used if --enable-dynamic-batch-tokenizer is set] Maximum batch size for dynamic batch tokenizer.",
        )
        parser.add_argument(
            "--dynamic-batch-tokenizer-batch-timeout",
            type=float,
            default=ServerArgs.dynamic_batch_tokenizer_batch_timeout,
            help="[Only used if --enable-dynamic-batch-tokenizer is set] Timeout in seconds for batching tokenization requests.",
        )
2511

Lianmin Zheng's avatar
Lianmin Zheng committed
2512
        # PD disaggregation
Byron Hsu's avatar
Byron Hsu committed
2513
2514
2515
        parser.add_argument(
            "--disaggregation-mode",
            type=str,
2516
            default=ServerArgs.disaggregation_mode,
Byron Hsu's avatar
Byron Hsu committed
2517
2518
2519
            choices=["null", "prefill", "decode"],
            help='Only used for PD disaggregation. "prefill" for prefill-only server, and "decode" for decode-only server. If not specified, it is not PD disaggregated',
        )
2520
2521
2522
2523
        parser.add_argument(
            "--disaggregation-transfer-backend",
            type=str,
            default=ServerArgs.disaggregation_transfer_backend,
2524
            choices=DISAGG_TRANSFER_BACKEND_CHOICES,
2525
2526
            help="The backend for disaggregation transfer. Default is mooncake.",
        )
2527
2528
2529
2530
2531
2532
        parser.add_argument(
            "--disaggregation-bootstrap-port",
            type=int,
            default=ServerArgs.disaggregation_bootstrap_port,
            help="Bootstrap server port on the prefill server. Default is 8998.",
        )
Byron Hsu's avatar
Byron Hsu committed
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
        parser.add_argument(
            "--disaggregation-decode-tp",
            type=int,
            default=ServerArgs.disaggregation_decode_tp,
            help="Decode tp size. If not set, it matches the tp size of the current engine. This is only set on the prefill server.",
        )
        parser.add_argument(
            "--disaggregation-decode-dp",
            type=int,
            default=ServerArgs.disaggregation_decode_dp,
            help="Decode dp size. If not set, it matches the dp size of the current engine. This is only set on the prefill server.",
        )
        parser.add_argument(
            "--disaggregation-prefill-pp",
            type=int,
            default=ServerArgs.disaggregation_prefill_pp,
            help="Prefill pp size. If not set, it is default to 1. This is only set on the decode server.",
        )
2551
2552
2553
2554
        parser.add_argument(
            "--disaggregation-ib-device",
            type=str,
            default=ServerArgs.disaggregation_ib_device,
2555
2556
2557
            help="The InfiniBand devices for disaggregation transfer, accepts single device (e.g., --disaggregation-ib-device mlx5_0) "
            "or multiple comma-separated devices (e.g., --disaggregation-ib-device mlx5_0,mlx5_1). "
            "Default is None, which triggers automatic device detection when mooncake backend is enabled.",
2558
        )
2559
2560
2561
2562
2563
2564
        parser.add_argument(
            "--num-reserved-decode-tokens",
            type=int,
            default=ServerArgs.num_reserved_decode_tokens,
            help="Number of decode tokens that will have memory reserved when adding new request to the running batch.",
        )
2565
2566
2567
2568
2569
2570
        parser.add_argument(
            "--disaggregation-decode-polling-interval",
            type=int,
            default=ServerArgs.disaggregation_decode_polling_interval,
            help="The interval to poll requests in decode server. Can be set to >1 to reduce the overhead of this.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
2571
2572

        # Custom weight loader
2573
2574
2575
2576
2577
2578
2579
        parser.add_argument(
            "--custom-weight-loader",
            type=str,
            nargs="*",
            default=None,
            help="The custom dataloader which used to update the model. Should be set with a valid import path, such as my_package.weight_load_func",
        )
2580
2581
2582
2583
2584
        parser.add_argument(
            "--weight-loader-disable-mmap",
            action="store_true",
            help="Disable mmap while loading weight using safetensors.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
        parser.add_argument(
            "--remote-instance-weight-loader-seed-instance-ip",
            type=str,
            default=ServerArgs.remote_instance_weight_loader_seed_instance_ip,
            help="The ip of the seed instance for loading weights from remote instance.",
        )
        parser.add_argument(
            "--remote-instance-weight-loader-seed-instance-service-port",
            type=int,
            default=ServerArgs.remote_instance_weight_loader_seed_instance_service_port,
            help="The service port of the seed instance for loading weights from remote instance.",
        )
        parser.add_argument(
            "--remote-instance-weight-loader-send-weights-group-ports",
            type=json_list_type,
            default=ServerArgs.remote_instance_weight_loader_send_weights_group_ports,
            help="The communication group ports for loading weights from remote instance.",
        )
2603
2604

        # For PD-Multiplexing
2605
2606
2607
2608
2609
        parser.add_argument(
            "--enable-pdmux",
            action="store_true",
            help="Enable PD-Multiplexing, PD running on greenctx stream.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
2610

2611
2612
2613
2614
2615
2616
        parser.add_argument(
            "--sm-group-num",
            type=int,
            default=ServerArgs.sm_group_num,
            help="Number of sm partition groups.",
        )
Byron Hsu's avatar
Byron Hsu committed
2617

2618
2619
2620
2621
2622
2623
2624
        # For deterministic inference
        parser.add_argument(
            "--enable-deterministic-inference",
            action="store_true",
            help="Enable deterministic inference mode with batch invariant ops.",
        )

2625
2626
2627
        # Deprecated arguments
        parser.add_argument(
            "--enable-ep-moe",
Lianmin Zheng's avatar
Lianmin Zheng committed
2628
2629
            action=DeprecatedAction,
            help="NOTE: --enable-ep-moe is deprecated. Please set `--ep-size` to the same value as `--tp-size` instead.",
2630
2631
2632
        )
        parser.add_argument(
            "--enable-deepep-moe",
Lianmin Zheng's avatar
Lianmin Zheng committed
2633
2634
            action=DeprecatedAction,
            help="NOTE: --enable-deepep-moe is deprecated. Please set `--moe-a2a-backend` to 'deepep' instead.",
2635
        )
2636
2637
        parser.add_argument(
            "--enable-flashinfer-cutlass-moe",
Lianmin Zheng's avatar
Lianmin Zheng committed
2638
2639
            action=DeprecatedAction,
            help="NOTE: --enable-flashinfer-cutlass-moe is deprecated. Please set `--moe-runner-backend` to 'flashinfer_cutlass' instead.",
2640
        )
2641
2642
        parser.add_argument(
            "--enable-flashinfer-cutedsl-moe",
Lianmin Zheng's avatar
Lianmin Zheng committed
2643
2644
            action=DeprecatedAction,
            help="NOTE: --enable-flashinfer-cutedsl-moe is deprecated. Please set `--moe-runner-backend` to 'flashinfer_cutedsl' instead.",
2645
        )
2646
2647
        parser.add_argument(
            "--enable-flashinfer-trtllm-moe",
Lianmin Zheng's avatar
Lianmin Zheng committed
2648
2649
            action=DeprecatedAction,
            help="NOTE: --enable-flashinfer-trtllm-moe is deprecated. Please set `--moe-runner-backend` to 'flashinfer_trtllm' instead.",
2650
2651
2652
        )
        parser.add_argument(
            "--enable-triton-kernel-moe",
Lianmin Zheng's avatar
Lianmin Zheng committed
2653
2654
            action=DeprecatedAction,
            help="NOTE: --enable-triton-kernel-moe is deprecated. Please set `--moe-runner-backend` to 'triton_kernel' instead.",
2655
        )
2656
2657
        parser.add_argument(
            "--enable-flashinfer-mxfp4-moe",
Lianmin Zheng's avatar
Lianmin Zheng committed
2658
2659
            action=DeprecatedAction,
            help="NOTE: --enable-flashinfer-mxfp4-moe is deprecated. Please set `--moe-runner-backend` to 'flashinfer_mxfp4' instead.",
2660
        )
2661

2662
2663
2664
2665
2666
2667
2668
        # Configuration file support
        parser.add_argument(
            "--config",
            type=str,
            help="Read CLI options from a config file. Must be a YAML file with configuration options.",
        )

Lianmin Zheng's avatar
Lianmin Zheng committed
2669
2670
    @classmethod
    def from_cli_args(cls, args: argparse.Namespace):
2671
        args.tp_size = args.tensor_parallel_size
2672
        args.pp_size = args.pipeline_parallel_size
2673
        args.dp_size = args.data_parallel_size
xiaobochen's avatar
xiaobochen committed
2674
        args.ep_size = args.expert_parallel_size
2675

Lianmin Zheng's avatar
Lianmin Zheng committed
2676
2677
2678
2679
        attrs = [attr.name for attr in dataclasses.fields(cls)]
        return cls(**{attr: getattr(args, attr) for attr in attrs})

    def url(self):
2680
        if is_valid_ipv6_address(self.host):
2681
2682
2683
            return f"http://[{self.host}]:{self.port}"
        else:
            return f"http://{self.host}:{self.port}"
Lianmin Zheng's avatar
Lianmin Zheng committed
2684

Lianmin Zheng's avatar
Lianmin Zheng committed
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
    def get_hf_config(self):
        kwargs = {}
        hf_config = get_config(
            self.model_path,
            trust_remote_code=self.trust_remote_code,
            revision=self.revision,
            model_override_args=json.loads(self.json_model_override_args),
            **kwargs,
        )
        return hf_config

2696
    def check_server_args(self):
2697
        # Check parallel size constraints
2698
        assert (
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
            self.tp_size * self.pp_size
        ) % self.nnodes == 0, "tp_size must be divisible by number of nodes"

        if self.pp_size > 1:
            assert (
                self.disable_overlap_schedule
                and self.speculative_algorithm is None
                and not self.enable_mixed_chunk
            ), "Pipeline parallelism is not compatible with overlap schedule, speculative decoding, mixed chunked prefill."

2709
        assert not (
2710
2711
            self.dp_size > 1 and self.nnodes != 1 and not self.enable_dp_attention
        ), "multi-node data parallel is not supported unless dp attention!"
2712

2713
        assert self.base_gpu_id >= 0, "base_gpu_id must be non-negative"
2714
        assert self.gpu_id_step >= 1, "gpu_id_step must be positive"
2715

Lianmin Zheng's avatar
Lianmin Zheng committed
2716
2717
2718
2719
2720
        assert self.moe_dense_tp_size in {
            1,
            None,
        }, "moe_dense_tp_size only support 1 and None currently"

2721
        # Check LoRA
2722
2723
        self.check_lora_server_args()

2724
2725
2726
2727
2728
2729
2730
        # Check speculative decoding
        if self.speculative_algorithm is not None:
            assert (
                not self.enable_mixed_chunk
            ), "enable_mixed_chunk is required for speculative decoding"

        # Check chunked prefill
2731
        # Skip validation if chunked prefill is disabled (i.e., size <= 0).
2732
2733
        # Skip validation if disaggregation mode is decode.
        if self.chunked_prefill_size > 0 and self.disaggregation_mode != "decode":
2734
2735
2736
            assert (
                self.chunked_prefill_size % self.page_size == 0
            ), "chunked_prefill_size must be divisible by page_size"
2737

2738
2739
        # Check multi tokenizer
        assert self.tokenizer_worker_num > 0, "Tokenizer worker num must >= 1"
2740
2741
2742
2743
2744
2745
        self.validate_buckets_rule(
            "--prompt-tokens-buckets", self.prompt_tokens_buckets
        )
        self.validate_buckets_rule(
            "--generation-tokens-buckets", self.generation_tokens_buckets
        )
2746

2747
2748
2749
2750
2751
2752
2753
        # Check scheduling policy
        if self.enable_priority_scheduling:
            assert self.schedule_policy in [
                "fcfs",
                "lof",
            ], f"To use priority scheduling, schedule_policy must be 'fcfs' or 'lof'. '{self.schedule_policy}' is not supported."

2754
    def check_lora_server_args(self):
2755
        assert self.max_loras_per_batch > 0, "max_loras_per_batch must be positive"
2756

2757
2758
2759
2760
        # Enable LoRA if any LoRA paths are provided for backward compatibility.
        if self.lora_paths:
            if self.enable_lora is None:
                self.enable_lora = True
2761
                logger.warning(
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
                    "--enable-lora is set to True because --lora-paths is provided."
                )
            elif self.enable_lora is False:
                logger.warning(
                    "--enable-lora is set to False, any provided lora_paths will be ignored."
                )

        if self.enable_lora:
            if isinstance(self.lora_paths, list):
                lora_paths = self.lora_paths
2772
                self.lora_paths = []
2773
                for lora_path in lora_paths:
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
                    if isinstance(lora_path, str):
                        if "=" in lora_path:
                            name, path = lora_path.split("=", 1)
                            lora_ref = LoRARef(
                                lora_name=name, lora_path=path, pinned=False
                            )
                        else:
                            lora_ref = LoRARef(
                                lora_name=lora_path, lora_path=lora_path, pinned=False
                            )
                    elif isinstance(lora_path, dict):
                        assert (
                            "lora_name" in lora_path and "lora_path" in lora_path
                        ), f"When providing LoRA paths as a list of dict, each dict should contain 'lora_name' and 'lora_path' keys. Got: {lora_path}"
                        lora_ref = LoRARef(
                            lora_name=lora_path["lora_name"],
                            lora_path=lora_path["lora_path"],
                            pinned=lora_path.get("pinned", False),
2792
                        )
2793
                    else:
2794
2795
2796
                        raise ValueError(
                            f"Invalid type for item in --lora-paths list: {type(lora_path)}. "
                            "Expected a string or a dictionary."
2797
                        )
2798
                    self.lora_paths.append(lora_ref)
2799
            elif isinstance(self.lora_paths, dict):
2800
2801
                self.lora_paths = [
                    LoRARef(lora_name=k, lora_path=v, pinned=False)
2802
                    for k, v in self.lora_paths.items()
2803
                ]
2804
            elif self.lora_paths is None:
2805
                self.lora_paths = []
2806
2807
2808
2809
2810
            else:
                raise ValueError(
                    f"Invalid type for --lora-paths: {type(self.lora_paths)}. "
                    "Expected a list or a dictionary."
                )
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824

            # Expand target modules
            if self.lora_target_modules:
                self.lora_target_modules = set(self.lora_target_modules)
                if "all" in self.lora_target_modules:
                    assert (
                        len(self.lora_target_modules) == 1
                    ), "If 'all' is specified in --lora-target-modules, it should be the only module specified."
                    self.lora_target_modules = set(SUPPORTED_LORA_TARGET_MODULES)

            # Ensure sufficient information is provided for LoRA initialization.
            assert self.lora_paths or (
                self.max_lora_rank and self.lora_target_modules
            ), "When no initial --lora-paths is provided, you need to specify both --max-lora-rank and --lora-target-modules for LoRA initialization."
2825

2826
2827
2828
2829
2830
2831
            # Validate max_loaded_loras
            if self.max_loaded_loras is not None:
                assert self.max_loaded_loras >= self.max_loras_per_batch, (
                    "max_loaded_loras should be greater than or equal to max_loras_per_batch. "
                    f"max_loaded_loras={self.max_loaded_loras}, max_loras_per_batch={self.max_loras_per_batch}"
                )
2832
                assert len(self.lora_paths) <= self.max_loaded_loras, (
2833
2834
2835
2836
                    "The number of LoRA paths should not exceed max_loaded_loras. "
                    f"max_loaded_loras={self.max_loaded_loras}, lora_paths={len(self.lora_paths)}"
                )

2837
2838
2839
2840
2841
2842
            if self.max_lora_chunk_size is not None:
                assert (
                    16 <= self.max_lora_chunk_size <= 128
                    and (self.max_lora_chunk_size & (self.max_lora_chunk_size - 1)) == 0
                ), "--max-lora-chunk-size must be a power of 2 between 16 and 128."

Lianmin Zheng's avatar
Lianmin Zheng committed
2843
2844
2845
2846
2847
2848
2849
2850
    def validate_disagg_tp_size(self, prefill_tp: int, decode_tp: int):
        larger_tp = max(decode_tp, prefill_tp)
        smaller_tp = min(decode_tp, prefill_tp)
        assert larger_tp % smaller_tp == 0, (
            "Different tp size is supported only when one tp is multiple of the other. "
            f"decode_tp={decode_tp}, prefill_tp={prefill_tp}"
        )

2851
2852
2853
2854
2855
2856
2857
2858
2859
    def validate_buckets_rule(self, arg_name: str, buckets_rule: List[str]):
        if not buckets_rule:
            return

        assert len(buckets_rule) > 0, f"{arg_name} cannot be empty list"
        rule = buckets_rule[0]
        assert rule in [
            "tse",
            "default",
2860
2861
            "custom",
        ], f"Unsupported {arg_name} rule type: '{rule}'. Must be one of: 'tse', 'default', 'custom'"
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883

        if rule == "tse":
            assert (
                len(buckets_rule) == 4
            ), f"{arg_name} TSE rule requires exactly 4 parameters: ['tse', middle, base, count], got {len(buckets_rule)}"
            try:
                middle = float(buckets_rule[1])
                base = float(buckets_rule[2])
                count = int(buckets_rule[3])
            except (ValueError, IndexError):
                assert (
                    False
                ), f"{arg_name} TSE rule parameters must be: ['tse', <float:middle>, <float:base>, <int:count>]"
            assert base > 1, f"{arg_name} TSE base must be larger than 1, got: {base}"
            assert count > 0, f"{arg_name} TSE count must be positive, got: {count}"
            assert middle > 0, f"{arg_name} TSE middle must be positive, got: {middle}"

        elif rule == "default":
            assert (
                len(buckets_rule) == 1
            ), f"{arg_name} default rule should only have one parameter: ['default'], got {len(buckets_rule)}"

2884
        elif rule == "custom":
2885
2886
            assert (
                len(buckets_rule) >= 2
2887
            ), f"{arg_name} custom rule requires at least one bucket value: ['custom', value1, ...]"
2888
2889
2890
            try:
                bucket_values = [float(x) for x in buckets_rule[1:]]
            except ValueError:
2891
                assert False, f"{arg_name} custom rule bucket values must be numeric"
2892
2893
            assert len(set(bucket_values)) == len(
                bucket_values
2894
            ), f"{arg_name} custom rule bucket values should not contain duplicates"
2895
2896
            assert all(
                val >= 0 for val in bucket_values
2897
            ), f"{arg_name} custom rule bucket values should be non-negative"
2898

Lianmin Zheng's avatar
Lianmin Zheng committed
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
    def adjust_mem_fraction_for_vlm(self, model_config):
        vision_config = getattr(model_config.hf_config, "vision_config", None)
        if vision_config is None:
            return

        # roughly reduce the mem_fraction_static base on params of Vit
        original_server_arg_mem_fraction = self.mem_fraction_static
        # a base mem_fraction_static factor for regular Vit
        base_mem_fraction_reduction_ratio = 0.95

        vit_num_layers = getattr(vision_config, "num_hidden_layers", 24)
        vit_hidden_size = getattr(vision_config, "hidden_size", 1024)

        # baseline ViT params (ViT-L/14)
        baseline_vit_layers = 24
        baseline_vit_hidden_size = 1024

        # weight params count
        current_complexity_score = vit_num_layers * (vit_hidden_size**2)
        baseline_complexity_score = baseline_vit_layers * (baseline_vit_hidden_size**2)
        complexity_ratio = (
            current_complexity_score / baseline_complexity_score
            if baseline_complexity_score > 0
            else 1.0
        )

        # every time the complexity grows 100%, adjust final factor for 10%
        sensitivity_scale = 0.1
        dynamic_adjustment_factor = 1.0 - sensitivity_scale * (complexity_ratio - 1.0)
        dynamic_adjustment_factor = max(0.8, min(1.05, dynamic_adjustment_factor))

        final_overall_factor = (
            base_mem_fraction_reduction_ratio * dynamic_adjustment_factor
        )
        self.mem_fraction_static = (
            original_server_arg_mem_fraction * final_overall_factor
        )

Lianmin Zheng's avatar
Lianmin Zheng committed
2937

Lianmin Zheng's avatar
Lianmin Zheng committed
2938
def prepare_server_args(argv: List[str]) -> ServerArgs:
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
    """
    Prepare the server arguments from the command line arguments.

    Args:
        args: The command line arguments. Typically, it should be `sys.argv[1:]`
            to ensure compatibility with `parse_args` when no arguments are passed.

    Returns:
        The server arguments.
    """
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
    # Import here to avoid circular imports
    from sglang.srt.server_args_config_parser import ConfigArgumentMerger

    # Check for config file and merge arguments if present
    if "--config" in argv:
        # Extract boolean actions from the parser to handle them correctly
        parser = argparse.ArgumentParser()
        ServerArgs.add_cli_args(parser)

        # Get boolean action destinations
        boolean_actions = []
        for action in parser._actions:
            if hasattr(action, "dest") and hasattr(action, "action"):
                if action.action in ["store_true", "store_false"]:
                    boolean_actions.append(action.dest)

        # Merge config file arguments with CLI arguments
        config_merger = ConfigArgumentMerger(boolean_actions=boolean_actions)
        argv = config_merger.merge_config_with_args(argv)

2969
2970
    parser = argparse.ArgumentParser()
    ServerArgs.add_cli_args(parser)
Lianmin Zheng's avatar
Lianmin Zheng committed
2971
    raw_args = parser.parse_args(argv)
2972
2973
2974
2975
    server_args = ServerArgs.from_cli_args(raw_args)
    return server_args


2976
2977
2978
ZMQ_TCP_PORT_DELTA = 233


Lianmin Zheng's avatar
Lianmin Zheng committed
2979
2980
@dataclasses.dataclass
class PortArgs:
2981
2982
2983
2984
2985
2986
    # The ipc filename for tokenizer to receive inputs from detokenizer (zmq)
    tokenizer_ipc_name: str
    # The ipc filename for scheduler (rank 0) to receive inputs from tokenizer (zmq)
    scheduler_input_ipc_name: str
    # The ipc filename for detokenizer to receive inputs from scheduler (zmq)
    detokenizer_ipc_name: str
2987

2988
2989
    # The port for nccl initialization (torch.dist)
    nccl_port: int
2990

2991
2992
2993
    # The ipc filename for rpc call between Engine and Scheduler
    rpc_ipc_name: str

2994
2995
2996
    # The ipc filename for Scheduler to send metrics
    metrics_ipc_name: str

2997
2998
2999
    # The ipc filename for Tokenizer and worker tokenizer
    tokenizer_worker_ipc_name: Optional[str]

3000
    @staticmethod
3001
    def init_new(server_args, dp_rank: Optional[int] = None) -> "PortArgs":
3002
        if server_args.nccl_port is None:
Lianmin Zheng's avatar
Lianmin Zheng committed
3003
            nccl_port = server_args.port + random.randint(100, 1000)
3004
            while True:
Lianmin Zheng's avatar
Lianmin Zheng committed
3005
                if is_port_available(nccl_port):
3006
                    break
Lianmin Zheng's avatar
Lianmin Zheng committed
3007
3008
                if nccl_port < 60000:
                    nccl_port += 42
3009
                else:
Lianmin Zheng's avatar
Lianmin Zheng committed
3010
                    nccl_port -= 43
3011
        else:
Lianmin Zheng's avatar
Lianmin Zheng committed
3012
            nccl_port = server_args.nccl_port
3013

3014
3015
3016
3017
3018
3019
        if not server_args.enable_dp_attention:
            # Normal case, use IPC within a single node
            return PortArgs(
                tokenizer_ipc_name=f"ipc://{tempfile.NamedTemporaryFile(delete=False).name}",
                scheduler_input_ipc_name=f"ipc://{tempfile.NamedTemporaryFile(delete=False).name}",
                detokenizer_ipc_name=f"ipc://{tempfile.NamedTemporaryFile(delete=False).name}",
Lianmin Zheng's avatar
Lianmin Zheng committed
3020
                nccl_port=nccl_port,
3021
                rpc_ipc_name=f"ipc://{tempfile.NamedTemporaryFile(delete=False).name}",
3022
                metrics_ipc_name=f"ipc://{tempfile.NamedTemporaryFile(delete=False).name}",
3023
                tokenizer_worker_ipc_name=None,
3024
3025
3026
3027
3028
            )
        else:
            # DP attention. Use TCP + port to handle both single-node and multi-node.
            if server_args.nnodes == 1 and server_args.dist_init_addr is None:
                dist_init_addr = ("127.0.0.1", server_args.port + ZMQ_TCP_PORT_DELTA)
Vincent's avatar
Vincent committed
3029
3030
3031
            elif server_args.dist_init_addr.startswith("["):  # ipv6 address
                port_num, host = configure_ipv6(server_args.dist_init_addr)
                dist_init_addr = (host, str(port_num))
3032
3033
            else:
                dist_init_addr = server_args.dist_init_addr.split(":")
Vincent's avatar
Vincent committed
3034

3035
3036
3037
3038
3039
3040
            assert (
                len(dist_init_addr) == 2
            ), "please provide --dist-init-addr as host:port of head node"

            dist_init_host, dist_init_port = dist_init_addr
            port_base = int(dist_init_port) + 1
3041
3042
3043
            detokenizer_port = port_base + 1
            rpc_port = port_base + 2
            metrics_ipc_name = port_base + 3
3044
            if dp_rank is None:
3045
                # TokenizerManager to DataParallelController
3046
                scheduler_input_port = port_base + 4
3047
            else:
3048
                scheduler_input_port = port_base + 4 + 1 + dp_rank
3049
3050
3051
3052

            return PortArgs(
                tokenizer_ipc_name=f"tcp://{dist_init_host}:{port_base}",
                scheduler_input_ipc_name=f"tcp://{dist_init_host}:{scheduler_input_port}",
3053
                detokenizer_ipc_name=f"tcp://{dist_init_host}:{detokenizer_port}",
Lianmin Zheng's avatar
Lianmin Zheng committed
3054
                nccl_port=nccl_port,
3055
3056
                rpc_ipc_name=f"tcp://{dist_init_host}:{rpc_port}",
                metrics_ipc_name=f"tcp://{dist_init_host}:{metrics_ipc_name}",
3057
                tokenizer_worker_ipc_name=None,
3058
            )
3059

3060
3061
3062

class LoRAPathAction(argparse.Action):
    def __call__(self, parser, namespace, values, option_string=None):
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
        lora_paths = []
        if values:
            assert isinstance(values, list), "Expected a list of LoRA paths."
            for lora_path in values:
                lora_path = lora_path.strip()
                if lora_path.startswith("{") and lora_path.endswith("}"):
                    obj = json.loads(lora_path)
                    assert "lora_path" in obj and "lora_name" in obj, (
                        f"{repr(lora_path)} looks like a JSON str, "
                        "but it does not contain 'lora_name' and 'lora_path' keys."
                    )
                    lora_paths.append(obj)
                else:
                    lora_paths.append(lora_path)

        setattr(namespace, self.dest, lora_paths)
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088


class DeprecatedAction(argparse.Action):
    def __init__(self, option_strings, dest, nargs=0, **kwargs):
        super(DeprecatedAction, self).__init__(
            option_strings, dest, nargs=nargs, **kwargs
        )

    def __call__(self, parser, namespace, values, option_string=None):
        raise ValueError(self.help)
3089
3090


3091
3092
3093
3094
def print_deprecated_warning(message: str):
    logger.warning(f"\033[33m{message}\033[0m")


3095
def auto_choose_speculative_params(self: ServerArgs):
3096
3097
3098
3099
3100
    """
    Automatically choose the parameters for speculative decoding.

    You can tune them on your own models and prompts with scripts/playground/bench_speculative.py
    """
Lianmin Zheng's avatar
Lianmin Zheng committed
3101
    hf_config = self.get_hf_config()
3102
    arch = hf_config.architectures[0]
3103
3104
3105
    if self.speculative_algorithm == "STANDALONE":
        # The default value for standalone speculative decoding
        return (3, 1, 4)
3106
3107
3108
    if arch in ["LlamaForCausalLM"]:
        # The default value for llama
        return (5, 4, 8)
3109
3110
3111
3112
    elif arch in [
        "DeepseekV3ForCausalLM",
        "DeepseekV2ForCausalLM",
        "GptOssForCausalLM",
strgrb's avatar
strgrb committed
3113
3114
        "BailingMoeForCausalLM",
        "BailingMoeV2ForCausalLM",
3115
3116
    ]:
        # The default value for deepseek and gpt-oss
3117
        return (3, 1, 4)
3118
3119
3120
3121
3122
    elif arch in ["Grok1ForCausalLM", "Grok1VForCausalLM"]:
        return (5, 4, 8)
    else:
        # The default value for all other models
        return (5, 4, 8)