server_args.py 111 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
Lianmin Zheng's avatar
Lianmin Zheng committed
14
15
"""The arguments of the server."""

Lianmin Zheng's avatar
Lianmin Zheng committed
16
17
import argparse
import dataclasses
18
import json
19
import logging
20
import os
21
import random
22
import socket
23
import sys
24
import tempfile
25
from typing import List, Literal, Optional, Union
Lianmin Zheng's avatar
Lianmin Zheng committed
26

27
from sglang.srt.connector import ConnectorType
28
from sglang.srt.function_call.function_call_parser import FunctionCallParser
29
from sglang.srt.hf_transformers_utils import check_gguf_file, get_config
30
from sglang.srt.lora.lora_registry import LoRARef
31
from sglang.srt.parser.reasoning_parser import ReasoningParser
32
from sglang.srt.utils import (
33
34
    LORA_TARGET_ALL_MODULES,
    SUPPORTED_LORA_TARGET_MODULES,
Vincent's avatar
Vincent committed
35
    configure_ipv6,
36
    get_device,
Lianmin Zheng's avatar
Lianmin Zheng committed
37
    get_device_memory_capacity,
38
    is_cuda,
39
    is_flashinfer_available,
HAI's avatar
HAI committed
40
    is_hip,
41
    is_port_available,
42
    is_remote_url,
43
44
    is_sm90_supported,
    is_sm100_supported,
45
    is_triton_kernels_available,
46
    is_valid_ipv6_address,
47
    json_list_type,
bjmsong's avatar
bjmsong committed
48
    nullable_str,
49
    parse_connector_type,
50
)
51
from sglang.utils import is_in_ci
52

53
54
logger = logging.getLogger(__name__)

Lianmin Zheng's avatar
Lianmin Zheng committed
55

56
57
58
59
60
61
62
63
64
65
66
67
# Define constants
LOAD_FORMAT_CHOICES = [
    "auto",
    "pt",
    "safetensors",
    "npcache",
    "dummy",
    "sharded_state",
    "gguf",
    "bitsandbytes",
    "layered",
    "remote",
68
    "remote_instance",
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
]

QUANTIZATION_CHOICES = [
    "awq",
    "fp8",
    "gptq",
    "marlin",
    "gptq_marlin",
    "awq_marlin",
    "bitsandbytes",
    "gguf",
    "modelopt",
    "modelopt_fp4",
    "petit_nvfp4",
    "w8a8_int8",
    "w8a8_fp8",
    "moe_wna16",
    "qoq",
    "w4afp8",
    "mxfp4",
]

ATTENTION_BACKEND_CHOICES = [
    # Common
    "triton",
    "torch_native",
    # NVIDIA specific
    "cutlass_mla",
    "fa3",
    "flashinfer",
    "flashmla",
    "trtllm_mla",
    "trtllm_mha",
    "dual_chunk_flash_attn",
Yi Zhang's avatar
Yi Zhang committed
103
    "hybrid_linear_attn",
104
105
106
107
108
109
110
111
112
113
    # AMD specific
    "aiter",
    "wave",
    # Other platforms
    "intel_amx",
    "ascend",
]

DISAGG_TRANSFER_BACKEND_CHOICES = ["mooncake", "nixl", "ascend", "fake"]

114
115
GRAMMAR_BACKEND_CHOICES = ["xgrammar", "outlines", "llguidance", "none"]

116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133

# Allow external code to add more choices
def add_load_format_choices(choices):
    LOAD_FORMAT_CHOICES.extend(choices)


def add_quantization_method_choices(choices):
    QUANTIZATION_CHOICES.extend(choices)


def add_attention_backend_choices(choices):
    ATTENTION_BACKEND_CHOICES.extend(choices)


def add_disagg_transfer_backend_choices(choices):
    DISAGG_TRANSFER_BACKEND_CHOICES.extend(choices)


134
135
136
137
def add_grammar_backend_choices(choices):
    GRAMMAR_BACKEND_CHOICES.extend(choices)


Lianmin Zheng's avatar
Lianmin Zheng committed
138
139
@dataclasses.dataclass
class ServerArgs:
Lianmin Zheng's avatar
Lianmin Zheng committed
140
    # Model and tokenizer
Lianmin Zheng's avatar
Lianmin Zheng committed
141
142
143
    model_path: str
    tokenizer_path: Optional[str] = None
    tokenizer_mode: str = "auto"
144
    tokenizer_worker_num: int = 1
145
    skip_tokenizer_init: bool = False
Lianmin Zheng's avatar
Lianmin Zheng committed
146
    load_format: str = "auto"
147
    model_loader_extra_config: str = "{}"
148
    trust_remote_code: bool = False
149
    context_length: Optional[int] = None
150
    is_embedding: bool = False
151
    enable_multimodal: Optional[bool] = None
152
    revision: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
153
    model_impl: str = "auto"
Lianmin Zheng's avatar
Lianmin Zheng committed
154

Lianmin Zheng's avatar
Lianmin Zheng committed
155
    # HTTP server
Lianmin Zheng's avatar
Lianmin Zheng committed
156
157
    host: str = "127.0.0.1"
    port: int = 30000
Lianmin Zheng's avatar
Lianmin Zheng committed
158
159
    skip_server_warmup: bool = False
    warmups: Optional[str] = None
160
    nccl_port: Optional[int] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
161

Lianmin Zheng's avatar
Lianmin Zheng committed
162
163
164
165
166
167
    # Quantization and data type
    dtype: str = "auto"
    quantization: Optional[str] = None
    quantization_param_path: Optional[str] = None
    kv_cache_dtype: str = "auto"

Lianmin Zheng's avatar
Lianmin Zheng committed
168
    # Memory and scheduling
Lianmin Zheng's avatar
Lianmin Zheng committed
169
    mem_fraction_static: Optional[float] = None
170
    max_running_requests: Optional[int] = None
171
    max_queued_requests: Optional[int] = sys.maxsize
172
    max_total_tokens: Optional[int] = None
173
    chunked_prefill_size: Optional[int] = None
174
    max_prefill_tokens: int = 16384
175
    schedule_policy: str = "fcfs"
176
    schedule_conservativeness: float = 1.0
177
    page_size: Optional[int] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
178
179
180
    hybrid_kvcache_ratio: Optional[float] = None
    swa_full_tokens_ratio: float = 0.8
    disable_hybrid_swa_memory: bool = False
Lianmin Zheng's avatar
Lianmin Zheng committed
181

Lianmin Zheng's avatar
Lianmin Zheng committed
182
183
    # Runtime options
    device: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
184
    tp_size: int = 1
185
186
    pp_size: int = 1
    max_micro_batch_size: Optional[int] = None
187
    stream_interval: int = 1
188
    stream_output: bool = False
189
    random_seed: Optional[int] = None
190
    constrained_json_whitespace_pattern: Optional[str] = None
191
    watchdog_timeout: float = 300
192
    dist_timeout: Optional[int] = None  # timeout for torch.distributed
193
    download_dir: Optional[str] = None
194
    base_gpu_id: int = 0
195
    gpu_id_step: int = 1
196
    sleep_on_idle: bool = False
Lianmin Zheng's avatar
Lianmin Zheng committed
197
198
199

    # Logging
    log_level: str = "info"
200
    log_level_http: Optional[str] = None
201
    log_requests: bool = False
202
    log_requests_level: int = 2
203
    crash_dump_folder: Optional[str] = None
Liangsheng Yin's avatar
Liangsheng Yin committed
204
    show_time_cost: bool = False
205
    enable_metrics: bool = False
206
    enable_metrics_for_all_schedulers: bool = False
207
208
    bucket_time_to_first_token: Optional[List[float]] = None
    bucket_inter_token_latency: Optional[List[float]] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
209
    bucket_e2e_request_latency: Optional[List[float]] = None
210
    collect_tokens_histogram: bool = False
211
212
    prompt_tokens_buckets: Optional[List[str]] = None
    generation_tokens_buckets: Optional[List[str]] = None
213
    decode_log_interval: int = 40
214
    enable_request_time_stats_logging: bool = False
215
    kv_events_config: Optional[str] = None
216
    gc_warning_threshold_secs: float = 0.0
Liangsheng Yin's avatar
Liangsheng Yin committed
217

218
    # API related
219
    api_key: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
220
    served_model_name: Optional[str] = None
221
    weight_version: str = "default"
Lianmin Zheng's avatar
Lianmin Zheng committed
222
223
    chat_template: Optional[str] = None
    completion_template: Optional[str] = None
224
    file_storage_path: str = "sglang_storage"
225
    enable_cache_report: bool = False
Xihuai Wang's avatar
Xihuai Wang committed
226
    reasoning_parser: Optional[str] = None
227
    tool_call_parser: Optional[str] = None
228
    tool_server: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
229

230
231
232
    # Data parallelism
    dp_size: int = 1
    load_balance_method: str = "round_robin"
233
234
    # FIXME: remove this after dp rank scheduling is fully supported with PD-Disaggregation
    prefill_round_robin_balance: bool = False
235

236
    # Multi-node distributed serving
237
    dist_init_addr: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
238
    nnodes: int = 1
239
    node_rank: int = 0
Lianmin Zheng's avatar
Lianmin Zheng committed
240
241
242

    # Model override args in JSON
    json_model_override_args: str = "{}"
243
    preferred_sampling_params: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
244

245
    # LoRA
246
    enable_lora: Optional[bool] = None
247
    max_lora_rank: Optional[int] = None
248
    lora_target_modules: Optional[Union[set[str], List[str]]] = None
249
250
251
    lora_paths: Optional[
        Union[dict[str, str], List[dict[str, str]], List[str], List[LoRARef]]
    ] = None
252
    max_loaded_loras: Optional[int] = None
253
    max_loras_per_batch: int = 8
254
    lora_backend: str = "triton"
255
256

    # Kernel backend
257
    attention_backend: Optional[str] = None
258
259
    decode_attention_backend: Optional[str] = None
    prefill_attention_backend: Optional[str] = None
260
    sampling_backend: Optional[str] = None
261
    grammar_backend: Optional[str] = None
262
    mm_attention_backend: Optional[str] = None
263

264
265
    # Speculative decoding
    speculative_algorithm: Optional[str] = None
266
    speculative_draft_model_path: Optional[str] = None
267
    speculative_draft_model_revision: Optional[str] = None
268
269
270
    speculative_num_steps: Optional[int] = None
    speculative_eagle_topk: Optional[int] = None
    speculative_num_draft_tokens: Optional[int] = None
271
272
    speculative_accept_threshold_single: float = 1.0
    speculative_accept_threshold_acc: float = 1.0
273
    speculative_token_map: Optional[str] = None
274
    speculative_attention_mode: str = "prefill"
275

276
277
    # Expert parallelism
    ep_size: int = 1
278
279
280
281
282
283
284
285
286
    moe_a2a_backend: Literal["none", "deepep"] = "none"
    moe_runner_backend: Literal[
        "auto",
        "triton",
        "triton_kernel",
        "flashinfer_trtllm",
        "flashinfer_cutlass",
        "flashinfer_mxfp4",
    ] = "auto"
287
    flashinfer_mxfp4_moe_precision: Literal["default", "bf16"] = "default"
288
    enable_flashinfer_allreduce_fusion: bool = False
289
    deepep_mode: Literal["auto", "normal", "low_latency"] = "auto"
290
291
292
293
294
295
296
    ep_num_redundant_experts: int = 0
    ep_dispatch_algorithm: Optional[Literal["static", "dynamic", "fake"]] = None
    init_expert_location: str = "trivial"
    enable_eplb: bool = False
    eplb_algorithm: str = "auto"
    eplb_rebalance_num_iterations: int = 1000
    eplb_rebalance_layers_per_chunk: Optional[int] = None
297
    eplb_min_rebalancing_utilization_threshold: float = 1.0
298
299
300
301
302
303
304
305
    expert_distribution_recorder_mode: Optional[
        Literal["stat", "stat_approx", "per_pass", "per_token"]
    ] = None
    expert_distribution_recorder_buffer_size: Optional[int] = None
    enable_expert_distribution_metrics: bool = False
    deepep_config: Optional[str] = None
    moe_dense_tp_size: Optional[int] = None

Lianmin Zheng's avatar
Lianmin Zheng committed
306
307
308
309
    # Hierarchical cache
    enable_hierarchical_cache: bool = False
    hicache_ratio: float = 2.0
    hicache_size: int = 0
310
    hicache_write_policy: str = "write_through"
311
312
    hicache_io_backend: str = "kernel"
    hicache_mem_layout: str = "layer_first"
Lianmin Zheng's avatar
Lianmin Zheng committed
313
    hicache_storage_backend: Optional[str] = None
pansicheng's avatar
pansicheng committed
314
    hicache_storage_prefetch_policy: str = "best_effort"
315
    hicache_storage_backend_extra_config: Optional[str] = None
316
317
    # LMCache
    enable_lmcache: bool = False
Lianmin Zheng's avatar
Lianmin Zheng committed
318

319
320
    # Double Sparsity
    enable_double_sparsity: bool = False
Vincent's avatar
Vincent committed
321
    ds_channel_config_path: Optional[str] = None
322
323
324
325
326
    ds_heavy_channel_num: int = 32
    ds_heavy_token_num: int = 256
    ds_heavy_channel_type: str = "qk"
    ds_sparse_decode_threshold: int = 4096

fzyzcjy's avatar
fzyzcjy committed
327
328
329
330
331
332
333
    # Offloading
    cpu_offload_gb: int = 0
    offload_group_size: int = -1
    offload_num_in_group: int = 1
    offload_prefetch_step: int = 1
    offload_mode: str = "cpu"

334
    # Optimization/debug options
Lianmin Zheng's avatar
Lianmin Zheng committed
335
    disable_radix_cache: bool = False
336
337
    cuda_graph_max_bs: Optional[int] = None
    cuda_graph_bs: Optional[List[int]] = None
338
    disable_cuda_graph: bool = False
339
    disable_cuda_graph_padding: bool = False
340
    enable_profile_cuda_graph: bool = False
341
    enable_cudagraph_gc: bool = False
342
    enable_nccl_nvls: bool = False
343
    enable_symm_mem: bool = False
344
    disable_flashinfer_cutlass_moe_fp4_allgather: bool = False
345
    enable_tokenizer_batch_encode: bool = False
346
    disable_outlines_disk_cache: bool = False
347
    disable_custom_all_reduce: bool = False
348
    enable_mscclpp: bool = False
349
    disable_overlap_schedule: bool = False
350
    enable_mixed_chunk: bool = False
Ke Bao's avatar
Ke Bao committed
351
    enable_dp_attention: bool = False
352
    enable_dp_lm_head: bool = False
353
    enable_two_batch_overlap: bool = False
354
    tbo_token_distribution_threshold: float = 0.48
355
    enable_torch_compile: bool = False
356
    torch_compile_max_bs: int = 32
357
    torchao_config: str = ""
358
    enable_nan_detection: bool = False
359
    enable_p2p_check: bool = False
360
    triton_attention_reduce_in_fp32: bool = False
361
    triton_attention_num_kv_splits: int = 8
362
    num_continuous_decode_steps: int = 1
363
    delete_ckpt_after_loading: bool = False
364
    enable_memory_saver: bool = False
365
    allow_auto_truncate: bool = False
366
    enable_custom_logit_processor: bool = False
367
    flashinfer_mla_disable_ragged: bool = False
368
    disable_shared_experts_fusion: bool = False
369
    disable_chunked_prefix_cache: bool = False
Lianmin Zheng's avatar
Lianmin Zheng committed
370
    disable_fast_image_processor: bool = False
371
    enable_return_hidden_states: bool = False
372
    scheduler_recv_interval: int = 1
373
    numa_node: Optional[List[int]] = None
374
375
376
377
378

    # Debug tensor dumps
    debug_tensor_dump_output_folder: Optional[str] = None
    debug_tensor_dump_input_file: Optional[str] = None
    debug_tensor_dump_inject: bool = False
379
    debug_tensor_dump_prefill_only: bool = False
380

Lianmin Zheng's avatar
Lianmin Zheng committed
381
    # PD disaggregation: can be "null" (not disaggregated), "prefill" (prefill-only), or "decode" (decode-only)
Byron Hsu's avatar
Byron Hsu committed
382
    disaggregation_mode: str = "null"
383
    disaggregation_transfer_backend: str = "mooncake"
384
    disaggregation_bootstrap_port: int = 8998
Byron Hsu's avatar
Byron Hsu committed
385
386
387
    disaggregation_decode_tp: Optional[int] = None
    disaggregation_decode_dp: Optional[int] = None
    disaggregation_prefill_pp: Optional[int] = 1
388
    disaggregation_ib_device: Optional[str] = None
389
    num_reserved_decode_tokens: int = 512  # used for decode kv cache offload in PD
Byron Hsu's avatar
Byron Hsu committed
390

391
392
    # For model weight update
    custom_weight_loader: Optional[List[str]] = None
393
    weight_loader_disable_mmap: bool = False
394

395
396
397
398
399
    # Remote instance weight loading
    remote_instance_weight_loader_seed_instance_ip: Optional[str] = None
    remote_instance_weight_loader_seed_instance_service_port: Optional[int] = None
    remote_instance_weight_loader_send_weights_group_ports: Optional[List[int]] = None

400
401
402
403
    # For PD-Multiplexing
    enable_pdmux: bool = False
    sm_group_num: int = 3

Yi Zhang's avatar
Yi Zhang committed
404
405
406
407
    # Mamba cache
    max_mamba_cache_size: Optional[int] = None
    mamba_ssm_dtype: str = "float32"

408
409
410
    # Deprecated arguments
    enable_ep_moe: bool = False
    enable_deepep_moe: bool = False
411
    enable_flashinfer_cutlass_moe: bool = False
412
    enable_flashinfer_cutedsl_moe: bool = False
413
414
    enable_flashinfer_trtllm_moe: bool = False
    enable_triton_kernel_moe: bool = False
415
    enable_flashinfer_mxfp4_moe: bool = False
416

Lianmin Zheng's avatar
Lianmin Zheng committed
417
    def __post_init__(self):
418
419
420
421
422
423
424
425
426
427
428
        # Check deprecated arguments
        if self.enable_ep_moe:
            self.ep_size = self.tp_size
            print_deprecated_warning(
                "NOTE: --enable-ep-moe is deprecated. Please set `--ep-size` to the same value as `--tp-size` instead."
            )
        if self.enable_deepep_moe:
            self.moe_a2a_backend = "deepep"
            print_deprecated_warning(
                "NOTE: --enable-deepep-moe is deprecated. Please set `--moe-a2a-backend` to 'deepep' instead."
            )
429
430
431
432
433
        if self.enable_triton_kernel_moe:
            self.moe_runner_backend = "triton_kernel"
            print_deprecated_warning(
                "NOTE: --enable-triton-kernel-moe is deprecated. Please set `--moe-runner-backend` to 'triton_kernel' instead."
            )
434
435
436
437
438
        if self.enable_flashinfer_cutedsl_moe:
            self.moe_runner_backend = "flashinfer_cutedsl"
            print_deprecated_warning(
                "NOTE: --enable-flashinfer-cutedsl-moe is deprecated. Please set `--moe-runner-backend` to 'flashinfer_cutedsl' instead."
            )
439
440
441
442
443
444
445
446
447
448
        if self.enable_flashinfer_cutlass_moe:
            self.moe_runner_backend = "flashinfer_cutlass"
            print_deprecated_warning(
                "NOTE: --enable-flashinfer-cutlass-moe is deprecated. Please set `--moe-runner-backend` to 'flashinfer_cutlass' instead."
            )
        if self.enable_flashinfer_trtllm_moe:
            self.moe_runner_backend = "flashinfer_trtllm"
            print_deprecated_warning(
                "NOTE: --enable-flashinfer-trtllm-moe is deprecated. Please set `--moe-runner-backend` to 'flashinfer_trtllm' instead."
            )
449
450
451
452
453
        if self.enable_flashinfer_mxfp4_moe:
            self.moe_runner_backend = "flashinfer_mxfp4"
            print_deprecated_warning(
                "NOTE: --enable-flashinfer-mxfp4-moe is deprecated. Please set `--moe-runner-backend` to 'flashinfer_mxfp4' instead."
            )
454

455
        # Set missing default values
Lianmin Zheng's avatar
Lianmin Zheng committed
456
457
        if self.tokenizer_path is None:
            self.tokenizer_path = self.model_path
458

459
460
        if self.served_model_name is None:
            self.served_model_name = self.model_path
461
462
        if self.device is None:
            self.device = get_device()
463
464
465
        if self.random_seed is None:
            self.random_seed = random.randint(0, 1 << 30)

Lianmin Zheng's avatar
Lianmin Zheng committed
466
        gpu_mem = get_device_memory_capacity(self.device)
467

468
        # Set mem fraction static
Lianmin Zheng's avatar
Lianmin Zheng committed
469
        if self.mem_fraction_static is None:
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
            if gpu_mem is not None:
                # GPU memory capacity = model weights + KV cache pool + activations + cuda graph buffers
                # mem_fraction_static = (model weights + KV cache pool) / GPU memory capacity.

                # We want mem_fraction_static to be as large as possible but still has enough room
                # for activations and cuda graph buffers. We use the following heuristic to
                # compute the needed size for activations and cuda graph buffers:
                # - The size of the activation depends on the chunked_prefill_size and model size.
                # - The size of cuda graph buffers depends on the cuda graph capture range and model size.
                # For GPUs with more memory, we use a larger chunked_prefill_size and
                # capture more cuda graphs, so they need to reserve more memory.
                parallel_size = self.tp_size * self.pp_size

                if gpu_mem < 20 * 1024:
                    # T4, 4080. (chunked_prefill_size 2k, cuda_graph_max_bs 8)
                    reserved_mem = (2.8 + parallel_size / 10) * 1024
                elif gpu_mem < 35 * 1024:
                    # A10, L40, 4090, 5090. (chunked_prefill_size 2k, cuda_graph_max_bs 8)
                    reserved_mem = (2.8 + parallel_size / 10) * 1024
                elif gpu_mem < 90 * 1024:
                    # H100, A100. (chunked_prefill_size 8k, cuda_graph_max_bs 160)
                    reserved_mem = (9.5 + parallel_size / 2) * 1024
                elif gpu_mem < 100 * 1024:
                    # H20. (chunked_prefill_size 8k, cuda_graph_max_bs 256)
                    reserved_mem = (12 + parallel_size / 2) * 1024
                elif gpu_mem < 160 * 1024:
                    # H200. (chunked_prefill_size 8k, cuda_graph_max_bs 256)
                    reserved_mem = (12 + parallel_size / 2) * 1024
498
                else:
499
500
501
                    # B200, MI300. (chunked_prefill_size 16k, cuda_graph_max_bs 512)
                    reserved_mem = 32 * 1024

502
                # draft model and larger cuda graph buffers
503
                if self.speculative_algorithm is not None:
504
505
506
507
508
509
                    if self.speculative_algorithm == "STANDALONE":
                        # Standalone speculative decoding needs more memory than other speculative
                        # decoding algorithms since the draft model is typically larger.
                        reserved_mem += 6 * 1024
                    else:
                        reserved_mem += 2 * 1024
510
511
512
513
                if self.enable_dp_attention:
                    reserved_mem += 4 * 1024

                self.mem_fraction_static = round((gpu_mem - reserved_mem) / gpu_mem, 3)
514
            else:
515
                self.mem_fraction_static = 0.88
516

517
            # Lazy init to avoid circular import
Lianmin Zheng's avatar
Lianmin Zheng committed
518
            # Multimodal models need more memory for the image processor
519
520
521
            from sglang.srt.configs.model_config import ModelConfig

            model_config = ModelConfig.from_server_args(self)
Lianmin Zheng's avatar
Lianmin Zheng committed
522
523
            if model_config.is_multimodal:
                self.adjust_mem_fraction_for_vlm(model_config)
524

525
526
        # Set chunked prefill size, which depends on the gpu memory capacity
        if self.chunked_prefill_size is None:
527
528
529
530
531
532
533
            if gpu_mem is not None:
                if gpu_mem < 35 * 1024:  # A10, L40, 4090
                    self.chunked_prefill_size = 2048
                elif gpu_mem < 160 * 1024:  # H100, H200, A100, H20
                    self.chunked_prefill_size = 8192
                else:  # B200, MI300
                    self.chunked_prefill_size = 16384
534
            else:
535
                self.chunked_prefill_size = 4096
Lianmin Zheng's avatar
Lianmin Zheng committed
536

537
538
539
540
541
542
543
544
545
        # Set cuda graph max batch size
        if self.cuda_graph_max_bs is None:
            # Based on detailed statistics, when serving TP1/TP2 models on lower-end GPUs with HBM<25G, you can either disable cuda graph or set `cuda_graph_max_bs` to a very small value to reduce the memory overhead of creating cuda graphs, with almost no impact on performance. However, when serving models with TP4 or TP8, we need to enable cuda graph to maintain high performance. In this case, we can set `cuda_graph_max_bs` to 80 (half of the default value 160) to reduce the memory overhead of creating cuda graphs. Looking at the logs from TP4 serving of qwen2-72b, a value of 80 is sufficient and can reduce the memory overhead of creating cuda graphs on lower-end GPUs compared to the original 160, avoiding OOM issues.
            if gpu_mem is not None and gpu_mem < 35 * 1024:
                if self.tp_size < 4:
                    self.cuda_graph_max_bs = 8
                else:
                    self.cuda_graph_max_bs = 80

546
        # Set kernel backends for hpu device
547
548
549
550
        if self.device == "hpu":
            self.attention_backend = "torch_native"
            self.sampling_backend = "pytorch"

551
        # Model-specific adjustments
552
553
        if parse_connector_type(self.model_path) != ConnectorType.INSTANCE:
            self.model_specific_adjustments()
554

Lianmin Zheng's avatar
Lianmin Zheng committed
555
        # Set kernel backends
556
557
558
559
560
        if self.device == "cpu":
            if self.attention_backend is None:
                self.attention_backend = "intel_amx"
            self.sampling_backend = "pytorch"

561
        if self.sampling_backend is None:
562
563
564
565
566
            self.sampling_backend = (
                "flashinfer" if is_flashinfer_available() else "pytorch"
            )

        if self.attention_backend == "torch_native":
567
            logger.warning(
568
569
570
                "Cuda graph is disabled because of using torch native attention backend"
            )
            self.disable_cuda_graph = True
571

572
573
574
575
576
577
        if self.attention_backend == "ascend":
            logger.warning(
                "At this moment Ascend attention backend only supports a page_size of 128, change page_size to 128."
            )
            self.page_size = 128

578
579
580
581
        if (
            self.attention_backend == "flashmla"
            or self.decode_attention_backend == "flashmla"
        ):
Lianmin Zheng's avatar
Lianmin Zheng committed
582
583
584
585
586
            logger.warning(
                "FlashMLA only supports a page_size of 64, change page_size to 64."
            )
            self.page_size = 64

587
588
589
590
        if (
            self.attention_backend == "cutlass_mla"
            or self.decode_attention_backend == "cutlass_mla"
        ):
Lianmin Zheng's avatar
Lianmin Zheng committed
591
592
593
594
595
            logger.warning(
                "Cutlass MLA only supports a page_size of 128, change page_size to 128."
            )
            self.page_size = 128

Faraz's avatar
Faraz committed
596
597
598
599
        if (
            self.attention_backend == "trtllm_mla"
            or self.decode_attention_backend == "trtllm_mla"
        ):
600
601
602
603
604
605
606
607
608
609
            if not is_sm100_supported():
                raise ValueError(
                    "TRTLLM MLA backend is only supported on Blackwell GPUs (SM100). Please use a different backend."
                )

            if self.page_size not in [32, 64]:
                logger.warning(
                    f"TensorRT-LLM MLA only supports page_size of 32 or 64, changing page_size from {self.page_size} to 64."
                )
                self.page_size = 64
Faraz's avatar
Faraz committed
610
611
612
613
614

            if self.kv_cache_dtype not in ["fp8_e4m3", "auto"]:
                raise ValueError(
                    "TensorRT-LLM MLA backend only supports kv-cache-dtype of fp8_e4m3 or auto."
                )
615

616
617
618
619
620
        if (
            self.attention_backend == "trtllm_mha"
            or self.decode_attention_backend == "trtllm_mha"
            or self.prefill_attention_backend == "trtllm_mha"
        ):
621
622
623
624
625
626
627
628
629
630
631
            if not is_sm100_supported():
                raise ValueError(
                    "TRTLLM MHA backend is only supported on Blackwell GPUs (SM100). Please use a different backend."
                )

            if self.page_size not in [16, 32, 64]:
                logger.warning(
                    f"TensorRT-LLM MHA only supports page_size of 16, 32 or 64, changing page_size from {self.page_size} to 64."
                )
                self.page_size = 64

632
633
        if self.attention_backend == "dual_chunk_flash_attn":
            logger.warning(
634
                "Mixed chunk, radix cache, and cuda graphs are disabled because of using dual chunk flash attention backend"
635
636
637
638
639
            )
            self.enable_mixed_chunk = False
            self.disable_cuda_graph = True
            self.disable_radix_cache = True

640
641
642
643
644
645
646
647
        # Set page size
        if self.page_size is None:
            self.page_size = 1

        # AMD-specific Triton attention KV splits default number
        if is_hip():
            self.triton_attention_num_kv_splits = 16

648
649
650
        # Choose grammar backend
        if self.grammar_backend is None:
            self.grammar_backend = "xgrammar"
651

652
653
654
        if self.dp_size == 1:
            self.enable_dp_attention = False

655
        # Data parallelism attention
Ke Bao's avatar
Ke Bao committed
656
        if self.enable_dp_attention:
657
            self.schedule_conservativeness = self.schedule_conservativeness * 0.3
Lianmin Zheng's avatar
Lianmin Zheng committed
658
659
            assert self.tp_size % self.dp_size == 0
            self.chunked_prefill_size = self.chunked_prefill_size // self.dp_size
660
            logger.warning(
661
                f"DP attention is enabled. The chunked prefill size is adjusted to {self.chunked_prefill_size} to avoid MoE kernel issues. "
662
            )
663

664
665
666
        if self.enable_dp_lm_head:
            assert (
                self.enable_dp_attention
667
            ), "Please enable dp attention when setting enable_dp_lm_head. "
668

669
        # MoE kernel
670
        if self.moe_runner_backend == "flashinfer_cutlass":
671
672
673
            assert (
                self.quantization == "modelopt_fp4"
            ), "modelopt_fp4 quantization is required for Flashinfer MOE"
674
675
676
677
            assert self.ep_size in [
                1,
                self.tp_size,
            ], "The expert parallel size must be 1 or the same as the tensor parallel size"
678

679
        if self.moe_runner_backend == "flashinfer_trtllm":
680
681
682
683
684
685
686
            assert (
                self.quantization == "modelopt_fp4" or self.quantization == "fp8"
            ), "modelopt_fp4 quantization is required for Flashinfer TRTLLM MoE"
            self.disable_shared_experts_fusion = True
            logger.warning(
                "FlashInfer TRTLLM MoE is enabled. --disable-shared-experts-fusion is automatically set."
            )
687

688
        # DeepEP MoE
689
        if self.moe_a2a_backend == "deepep":
690
691
692
            if self.deepep_mode == "normal":
                logger.warning("Cuda graph is disabled because deepep_mode=`normal`")
                self.disable_cuda_graph = True
693
            self.ep_size = self.tp_size
Lianmin Zheng's avatar
Lianmin Zheng committed
694
            logger.warning(
695
696
                f"DeepEP MoE is enabled. The expert parallel size is adjusted to be the same as the tensor parallel size[{self.tp_size}]."
            )
697

698
699
        if self.enable_eplb and (self.expert_distribution_recorder_mode is None):
            self.expert_distribution_recorder_mode = "stat"
700
            logger.warning(
701
                "EPLB is enabled. The expert_distribution_recorder_mode is automatically set."
702
703
704
705
706
707
708
            )

        if (self.enable_eplb or (self.init_expert_location is not None)) and (
            self.ep_dispatch_algorithm is None
        ):
            self.ep_dispatch_algorithm = "static"

709
        if self.enable_eplb:
710
            assert self.ep_size > 1
711

712
713
714
715
716
        if self.enable_expert_distribution_metrics and (
            self.expert_distribution_recorder_mode is None
        ):
            self.expert_distribution_recorder_mode = "stat"

717
        if self.expert_distribution_recorder_buffer_size is None:
718
719
            if (x := self.eplb_rebalance_num_iterations) is not None:
                self.expert_distribution_recorder_buffer_size = x
720
721
722
            elif self.expert_distribution_recorder_mode is not None:
                self.expert_distribution_recorder_buffer_size = 1000

Lianmin Zheng's avatar
Lianmin Zheng committed
723
724
725
726
727
728
729
        # Pipeline parallelism
        if self.pp_size > 1:
            self.disable_overlap_schedule = True
            logger.warning(
                "Pipeline parallelism is incompatible with overlap schedule."
            )

Lianmin Zheng's avatar
Lianmin Zheng committed
730
        # Hicache
731
732
733
734
735
        if self.hicache_storage_backend == "mooncake":
            # to use mooncake storage backend, the following conditions must be met:
            self.hicache_io_backend = "kernel"
            self.hicache_mem_layout = "page_first"

736
737
738
739
740
741
742
        if self.hicache_mem_layout == "page_first_direct":
            if self.hicache_io_backend != "direct":
                self.hicache_io_backend = "direct"
                logger.warning(
                    "Page first direct layout only support direct io backend"
                )

743
        # Speculative Decoding
744
745
746
747
        if self.speculative_algorithm == "NEXTN":
            # NEXTN shares the same implementation of EAGLE
            self.speculative_algorithm = "EAGLE"

748
749
750
751
752
753
        if self.speculative_algorithm in ("EAGLE", "EAGLE3", "STANDALONE"):
            if self.speculative_algorithm == "STANDALONE":
                # TODO: support dp attention for standalone speculative decoding
                assert (
                    self.enable_dp_attention is False
                ), "Currently standalone speculative decoding does not support dp attention."
754
            if self.max_running_requests is None:
755
                self.max_running_requests = 48
756
            self.disable_overlap_schedule = True
Lianmin Zheng's avatar
Lianmin Zheng committed
757
            logger.warning(
758
                "Overlap scheduler is disabled because of using "
759
                "eagle speculative decoding."
760
            )
761
762
763
764
765
766
            if self.enable_mixed_chunk:
                self.enable_mixed_chunk = False
                logger.warning(
                    "Mixed chunked prefill is disabled because of using "
                    "eagle speculative decoding."
                )
767

Lianmin Zheng's avatar
Lianmin Zheng committed
768
            model_arch = self.get_hf_config().architectures[0]
strgrb's avatar
strgrb committed
769
770
771
            if model_arch in [
                "DeepseekV3ForCausalLM",
                "Glm4MoeForCausalLM",
Yuan Luo's avatar
Yuan Luo committed
772
                "BailingMoeForCausalLM",
strgrb's avatar
strgrb committed
773
774
                "BailingMoeV2ForCausalLM",
            ]:
Hanming Lu's avatar
Hanming Lu committed
775
                # Auto set draft_model_path DeepSeek-V3/R1
776
777
778
779
780
781
                if self.speculative_draft_model_path is None:
                    self.speculative_draft_model_path = self.model_path
                else:
                    logger.warning(
                        "DeepSeek MTP does not require setting speculative_draft_model_path."
                    )
782

783
784
785
786
787
788
789
790
791
792
            # Auto choose parameters
            if self.speculative_num_steps is None:
                assert (
                    self.speculative_eagle_topk is None
                    and self.speculative_num_draft_tokens is None
                )
                (
                    self.speculative_num_steps,
                    self.speculative_eagle_topk,
                    self.speculative_num_draft_tokens,
793
                ) = auto_choose_speculative_params(self)
794

795
796
797
798
799
800
801
802
803
804
            if (
                self.attention_backend == "trtllm_mha"
                or self.decode_attention_backend == "trtllm_mha"
                or self.prefill_attention_backend == "trtllm_mha"
            ):
                if self.speculative_eagle_topk > 1:
                    raise ValueError(
                        "trtllm_mha backend only supports topk = 1 for speculative decoding."
                    )

805
806
807
808
            if (
                self.speculative_eagle_topk == 1
                and self.speculative_num_draft_tokens != self.speculative_num_steps + 1
            ):
Lianmin Zheng's avatar
Lianmin Zheng committed
809
                logger.warning(
810
811
812
                    "speculative_num_draft_tokens is adjusted to speculative_num_steps + 1 when speculative_eagle_topk == 1"
                )
                self.speculative_num_draft_tokens = self.speculative_num_steps + 1
813

814
815
816
817
818
819
820
821
822
            if (
                self.speculative_eagle_topk > 1
                and self.page_size > 1
                and self.attention_backend != "flashinfer"
            ):
                raise ValueError(
                    "speculative_eagle_topk > 1 with page_size > 1 is unstable and produces incorrect results for paged attention backends. This combination is only supported for the 'flashinfer' backend."
                )

823
            # The token generated from the verify step is counted.
824
            # If sepculative_num_steps >= speculative_num_draft_tokens, the additional tokens will definitely be discarded.
825
            # assert self.speculative_num_steps < self.speculative_num_draft_tokens
826

827
828
829
830
831
832
        # GGUF
        if (
            self.load_format == "auto" or self.load_format == "gguf"
        ) and check_gguf_file(self.model_path):
            self.quantization = self.load_format = "gguf"

833
834
        if is_remote_url(self.model_path):
            self.load_format = "remote"
835
836
        if self.custom_weight_loader is None:
            self.custom_weight_loader = []
837

838
839
840
841
842
843
844
845
        if self.load_format == "remote_instance":
            if (
                self.remote_instance_weight_loader_seed_instance_ip is None
                or self.remote_instance_weight_loader_seed_instance_service_port is None
                or self.remote_instance_weight_loader_send_weights_group_ports is None
            ):
                self.load_format = "auto"

Byron Hsu's avatar
Byron Hsu committed
846
        # PD disaggregation
Byron Hsu's avatar
Byron Hsu committed
847
848
849
850
851
852
853
854
        if self.disaggregation_mode == "decode":
            assert (
                self.disaggregation_decode_tp is None
            ), "Cannot set --disaggregation-decode-tp for the decode engine."
            assert (
                self.disaggregation_decode_dp is None
            ), "Cannot set --disaggregation-decode-dp for the decode engine."

Byron Hsu's avatar
Byron Hsu committed
855
            self.disable_radix_cache = True
856
            logger.warning("KV cache is forced as chunk cache for decode server")
857
858
859
860
861
862
863

            if self.dp_size > 1 and not is_in_ci():
                assert self.prefill_round_robin_balance, (
                    "Prefill round robin balance is required when dp size > 1. "
                    "Please make sure that the prefill instance is launched with `--load-balance-method round_robin`"
                    " and `--prefill-round-robin-balance` is set for decode server."
                )
Byron Hsu's avatar
Byron Hsu committed
864
865
866
867
868
869
870
871
872
873
874
        elif self.disaggregation_mode == "prefill":
            if self.disaggregation_decode_tp is None:
                self.disaggregation_decode_tp = self.tp_size
            if self.disaggregation_decode_dp is None:
                self.disaggregation_decode_dp = self.dp_size

            self.disaggregation_prefill_pp = self.pp_size
            self.validate_disagg_tp_size(self.tp_size, self.disaggregation_decode_tp)

            self.disable_cuda_graph = True
            logger.warning("Cuda graph is disabled for prefill server")
Byron Hsu's avatar
Byron Hsu committed
875

876
        # Propagate env vars
877
878
879
        os.environ["SGLANG_ENABLE_TORCH_COMPILE"] = (
            "1" if self.enable_torch_compile else "0"
        )
Yi Zhang's avatar
Yi Zhang committed
880
881
        os.environ["SGLANG_MAMBA_SSM_DTYPE"] = self.mamba_ssm_dtype

882
883
884
885
        # Set env var before grammar backends init
        os.environ["SGLANG_DISABLE_OUTLINES_DISK_CACHE"] = (
            "1" if self.disable_outlines_disk_cache else "0"
        )
886

887
888
889
890
891
892
        if self.enable_hierarchical_cache and self.disable_radix_cache:
            raise ValueError(
                "The arguments enable-hierarchical-cache and disable-radix-cache are mutually exclusive "
                "and cannot be used at the same time. Please use only one of them."
            )

Lianmin Zheng's avatar
Lianmin Zheng committed
893
894
    @staticmethod
    def add_cli_args(parser: argparse.ArgumentParser):
Lianmin Zheng's avatar
Lianmin Zheng committed
895
        # Model and tokenizer
Lianmin Zheng's avatar
Lianmin Zheng committed
896
897
        parser.add_argument(
            "--model-path",
898
            "--model",
Lianmin Zheng's avatar
Lianmin Zheng committed
899
900
901
902
            type=str,
            help="The path of the model weights. This can be a local folder or a Hugging Face repo ID.",
            required=True,
        )
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
        parser.add_argument(
            "--remote-instance-weight-loader-seed-instance-ip",
            type=str,
            default=ServerArgs.remote_instance_weight_loader_seed_instance_ip,
            help="The ip of the seed instance for loading weights from remote instance.",
        )
        parser.add_argument(
            "--remote-instance-weight-loader-seed-instance-service-port",
            type=int,
            default=ServerArgs.remote_instance_weight_loader_seed_instance_service_port,
            help="The service port of the seed instance for loading weights from remote instance.",
        )
        parser.add_argument(
            "--remote-instance-weight-loader-send-weights-group-ports",
            type=json_list_type,
            default=ServerArgs.remote_instance_weight_loader_send_weights_group_ports,
            help="The communication group ports for loading weights from remote instance.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
921
922
923
924
925
926
        parser.add_argument(
            "--tokenizer-path",
            type=str,
            default=ServerArgs.tokenizer_path,
            help="The path of the tokenizer.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
927
928
929
930
931
932
933
934
935
        parser.add_argument(
            "--tokenizer-mode",
            type=str,
            default=ServerArgs.tokenizer_mode,
            choices=["auto", "slow"],
            help="Tokenizer mode. 'auto' will use the fast "
            "tokenizer if available, and 'slow' will "
            "always use the slow tokenizer.",
        )
936
937
938
939
940
941
        parser.add_argument(
            "--tokenizer-worker-num",
            type=int,
            default=ServerArgs.tokenizer_worker_num,
            help="The worker num of the tokenizer manager.",
        )
942
943
944
        parser.add_argument(
            "--skip-tokenizer-init",
            action="store_true",
945
            help="If set, skip init tokenizer and pass input_ids in generate request.",
946
        )
947
        parser.add_argument(
Lianmin Zheng's avatar
Lianmin Zheng committed
948
949
950
            "--load-format",
            type=str,
            default=ServerArgs.load_format,
951
            choices=LOAD_FORMAT_CHOICES,
Lianmin Zheng's avatar
Lianmin Zheng committed
952
953
954
955
956
957
958
959
960
            help="The format of the model weights to load. "
            '"auto" will try to load the weights in the safetensors format '
            "and fall back to the pytorch bin format if safetensors format "
            "is not available. "
            '"pt" will load the weights in the pytorch bin format. '
            '"safetensors" will load the weights in the safetensors format. '
            '"npcache" will load the weights in pytorch format and store '
            "a numpy cache to speed up the loading. "
            '"dummy" will initialize the weights with random values, '
961
            "which is mainly for profiling."
962
963
            '"gguf" will load the weights in the gguf format. '
            '"bitsandbytes" will load the weights using bitsandbytes '
964
965
966
967
            "quantization."
            '"layered" loads weights layer by layer so that one can quantize a '
            "layer before loading another to make the peak memory envelope "
            "smaller.",
Lianmin Zheng's avatar
Lianmin Zheng committed
968
        )
969
970
971
972
973
974
975
        parser.add_argument(
            "--model-loader-extra-config",
            type=str,
            help="Extra config for model loader. "
            "This will be passed to the model loader corresponding to the chosen load_format.",
            default=ServerArgs.model_loader_extra_config,
        )
976
977
978
979
980
        parser.add_argument(
            "--trust-remote-code",
            action="store_true",
            help="Whether or not to allow for custom models defined on the Hub in their own modeling files.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
        parser.add_argument(
            "--context-length",
            type=int,
            default=ServerArgs.context_length,
            help="The model's maximum context length. Defaults to None (will use the value from the model's config.json instead).",
        )
        parser.add_argument(
            "--is-embedding",
            action="store_true",
            help="Whether to use a CausalLM as an embedding model.",
        )
        parser.add_argument(
            "--enable-multimodal",
            default=ServerArgs.enable_multimodal,
            action="store_true",
            help="Enable the multimodal functionality for the served model. If the model being served is not multimodal, nothing will happen",
        )
        parser.add_argument(
            "--revision",
            type=str,
            default=None,
            help="The specific model version to use. It can be a branch "
            "name, a tag name, or a commit id. If unspecified, will use "
            "the default version.",
        )
        parser.add_argument(
            "--model-impl",
            type=str,
            default=ServerArgs.model_impl,
            help="Which implementation of the model to use.\n\n"
            '* "auto" will try to use the SGLang implementation if it exists '
            "and fall back to the Transformers implementation if no SGLang "
            "implementation is available.\n"
            '* "sglang" will use the SGLang model implementation.\n'
            '* "transformers" will use the Transformers model '
            "implementation.\n",
        )

        # HTTP server
        parser.add_argument(
            "--host",
            type=str,
            default=ServerArgs.host,
            help="The host of the HTTP server.",
        )
        parser.add_argument(
            "--port",
            type=int,
            default=ServerArgs.port,
            help="The port of the HTTP server.",
        )
        parser.add_argument(
            "--skip-server-warmup",
            action="store_true",
            help="If set, skip warmup.",
        )
        parser.add_argument(
            "--warmups",
            type=str,
            required=False,
            help="Specify custom warmup functions (csv) to run before server starts eg. --warmups=warmup_name1,warmup_name2 "
            "will run the functions `warmup_name1` and `warmup_name2` specified in warmup.py before the server starts listening for requests",
        )
        parser.add_argument(
            "--nccl-port",
            type=int,
            default=ServerArgs.nccl_port,
            help="The port for NCCL distributed environment setup. Defaults to a random port.",
        )

        # Quantization and data type
Lianmin Zheng's avatar
Lianmin Zheng committed
1052
        parser.add_argument(
Lianmin Zheng's avatar
Lianmin Zheng committed
1053
            "--dtype",
Cody Yu's avatar
Cody Yu committed
1054
            type=str,
Lianmin Zheng's avatar
Lianmin Zheng committed
1055
            default=ServerArgs.dtype,
Ying Sheng's avatar
Ying Sheng committed
1056
1057
            choices=["auto", "half", "float16", "bfloat16", "float", "float32"],
            help="Data type for model weights and activations.\n\n"
Lianmin Zheng's avatar
Lianmin Zheng committed
1058
            '* "auto" will use FP16 precision for FP32 and FP16 models, and '
Ying Sheng's avatar
Ying Sheng committed
1059
            "BF16 precision for BF16 models.\n"
Lianmin Zheng's avatar
Lianmin Zheng committed
1060
1061
1062
1063
            '* "half" for FP16. Recommended for AWQ quantization.\n'
            '* "float16" is the same as "half".\n'
            '* "bfloat16" for a balance between precision and range.\n'
            '* "float" is shorthand for FP32 precision.\n'
Ying Sheng's avatar
Ying Sheng committed
1064
1065
            '* "float32" for FP32 precision.',
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1066
1067
1068
1069
        parser.add_argument(
            "--quantization",
            type=str,
            default=ServerArgs.quantization,
1070
            choices=QUANTIZATION_CHOICES,
Lianmin Zheng's avatar
Lianmin Zheng committed
1071
1072
            help="The quantization method.",
        )
1073
1074
1075
1076
1077
1078
1079
1080
1081
        parser.add_argument(
            "--quantization-param-path",
            type=nullable_str,
            default=None,
            help="Path to the JSON file containing the KV cache "
            "scaling factors. This should generally be supplied, when "
            "KV cache dtype is FP8. Otherwise, KV cache scaling factors "
            "default to 1.0, which may cause accuracy issues. ",
        )
1082
        parser.add_argument(
Lianmin Zheng's avatar
Lianmin Zheng committed
1083
            "--kv-cache-dtype",
1084
            type=str,
Lianmin Zheng's avatar
Lianmin Zheng committed
1085
1086
1087
            default=ServerArgs.kv_cache_dtype,
            choices=["auto", "fp8_e5m2", "fp8_e4m3"],
            help='Data type for kv cache storage. "auto" will use model data type. "fp8_e5m2" and "fp8_e4m3" is supported for CUDA 11.8+.',
1088
        )
1089

1090
        # Memory and scheduling
Lianmin Zheng's avatar
Lianmin Zheng committed
1091
1092
1093
1094
        parser.add_argument(
            "--mem-fraction-static",
            type=float,
            default=ServerArgs.mem_fraction_static,
1095
            help="The fraction of the memory used for static allocation (model weights and KV cache memory pool). Use a smaller value if you see out-of-memory errors.",
Lianmin Zheng's avatar
Lianmin Zheng committed
1096
        )
1097
1098
1099
1100
1101
1102
        parser.add_argument(
            "--max-running-requests",
            type=int,
            default=ServerArgs.max_running_requests,
            help="The maximum number of running requests.",
        )
1103
1104
1105
1106
1107
1108
        parser.add_argument(
            "--max-queued-requests",
            type=int,
            default=ServerArgs.max_queued_requests,
            help="The maximum number of queued requests. This option is ignored when using disaggregation-mode.",
        )
1109
1110
1111
1112
        parser.add_argument(
            "--max-total-tokens",
            type=int,
            default=ServerArgs.max_total_tokens,
1113
1114
            help="The maximum number of tokens in the memory pool. If not specified, it will be automatically calculated based on the memory usage fraction. "
            "This option is typically used for development and debugging purposes.",
1115
        )
1116
1117
1118
1119
        parser.add_argument(
            "--chunked-prefill-size",
            type=int,
            default=ServerArgs.chunked_prefill_size,
1120
            help="The maximum number of tokens in a chunk for the chunked prefill. Setting this to -1 means disabling chunked prefill.",
1121
1122
1123
1124
1125
1126
1127
        )
        parser.add_argument(
            "--max-prefill-tokens",
            type=int,
            default=ServerArgs.max_prefill_tokens,
            help="The maximum number of tokens in a prefill batch. The real bound will be the maximum of this value and the model's maximum context length.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1128
        parser.add_argument(
1129
            "--schedule-policy",
Lianmin Zheng's avatar
Lianmin Zheng committed
1130
            type=str,
1131
            default=ServerArgs.schedule_policy,
1132
            choices=["lpm", "random", "fcfs", "dfs-weight", "lof", "priority"],
1133
            help="The scheduling policy of the requests.",
Lianmin Zheng's avatar
Lianmin Zheng committed
1134
        )
1135
1136
1137
1138
        parser.add_argument(
            "--schedule-conservativeness",
            type=float,
            default=ServerArgs.schedule_conservativeness,
1139
            help="How conservative the schedule policy is. A larger value means more conservative scheduling. Use a larger value if you see requests being retracted frequently.",
1140
        )
1141
1142
1143
1144
1145
1146
        parser.add_argument(
            "--page-size",
            type=int,
            default=ServerArgs.page_size,
            help="The number of tokens in a page.",
        )
tarinkk's avatar
tarinkk committed
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
        parser.add_argument(
            "--hybrid-kvcache-ratio",
            nargs="?",
            const=0.5,
            type=float,
            default=ServerArgs.hybrid_kvcache_ratio,
            help=(
                "Mix ratio in [0,1] between uniform and hybrid kv buffers "
                "(0.0 = pure uniform: swa_size / full_size = 1)"
                "(1.0 = pure hybrid: swa_size / full_size = local_attention_size / context_length)"
            ),
        )
Hanming Lu's avatar
Hanming Lu committed
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
        parser.add_argument(
            "--swa-full-tokens-ratio",
            type=float,
            default=ServerArgs.swa_full_tokens_ratio,
            help="The ratio of SWA layer KV tokens / full layer KV tokens, regardless of the number of swa:full layers. It should be between 0 and 1. "
            "E.g. 0.5 means if each swa layer has 50 tokens, then each full layer has 100 tokens.",
        )
        parser.add_argument(
            "--disable-hybrid-swa-memory",
            action="store_true",
            help="Disable the hybrid SWA memory.",
        )
1171

Lianmin Zheng's avatar
Lianmin Zheng committed
1172
1173
1174
1175
1176
1177
1178
        # Runtime options
        parser.add_argument(
            "--device",
            type=str,
            default=ServerArgs.device,
            help="The device to use ('cuda', 'xpu', 'hpu', 'npu', 'cpu'). Defaults to auto-detection if not specified.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1179
        parser.add_argument(
1180
            "--tensor-parallel-size",
Lianmin Zheng's avatar
Lianmin Zheng committed
1181
            "--tp-size",
Lianmin Zheng's avatar
Lianmin Zheng committed
1182
            type=int,
Lianmin Zheng's avatar
Lianmin Zheng committed
1183
            default=ServerArgs.tp_size,
1184
            help="The tensor parallelism size.",
1185
        )
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
        parser.add_argument(
            "--pipeline-parallel-size",
            "--pp-size",
            type=int,
            default=ServerArgs.pp_size,
            help="The pipeline parallelism size.",
        )
        parser.add_argument(
            "--max-micro-batch-size",
            type=int,
            default=ServerArgs.max_micro_batch_size,
            help="The maximum micro batch size in pipeline parallelism.",
        )
1199
1200
1201
        parser.add_argument(
            "--stream-interval",
            type=int,
Lianmin Zheng's avatar
Lianmin Zheng committed
1202
            default=ServerArgs.stream_interval,
1203
            help="The interval (or buffer size) for streaming in terms of the token length. A smaller value makes streaming smoother, while a larger value makes the throughput higher",
1204
        )
1205
1206
1207
1208
1209
        parser.add_argument(
            "--stream-output",
            action="store_true",
            help="Whether to output as a sequence of disjoint segments.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1210
1211
1212
1213
        parser.add_argument(
            "--random-seed",
            type=int,
            default=ServerArgs.random_seed,
1214
            help="The random seed.",
Lianmin Zheng's avatar
Lianmin Zheng committed
1215
        )
1216
1217
1218
1219
        parser.add_argument(
            "--constrained-json-whitespace-pattern",
            type=str,
            default=ServerArgs.constrained_json_whitespace_pattern,
Lianmin Zheng's avatar
Lianmin Zheng committed
1220
            help="(outlines backend only) Regex pattern for syntactic whitespaces allowed in JSON constrained output. For example, to allow the model generate consecutive whitespaces, set the pattern to [\n\t ]*",
1221
        )
1222
1223
1224
1225
1226
1227
        parser.add_argument(
            "--watchdog-timeout",
            type=float,
            default=ServerArgs.watchdog_timeout,
            help="Set watchdog timeout in seconds. If a forward batch takes longer than this, the server will crash to prevent hanging.",
        )
1228
1229
1230
1231
1232
1233
        parser.add_argument(
            "--dist-timeout",
            type=int,
            default=ServerArgs.dist_timeout,
            help="Set timeout for torch.distributed initialization.",
        )
1234
1235
1236
1237
        parser.add_argument(
            "--download-dir",
            type=str,
            default=ServerArgs.download_dir,
1238
            help="Model download directory for huggingface.",
1239
        )
1240
1241
1242
1243
1244
1245
        parser.add_argument(
            "--base-gpu-id",
            type=int,
            default=ServerArgs.base_gpu_id,
            help="The base GPU ID to start allocating GPUs from. Useful when running multiple instances on the same machine.",
        )
1246
1247
1248
1249
1250
1251
        parser.add_argument(
            "--gpu-id-step",
            type=int,
            default=ServerArgs.gpu_id_step,
            help="The delta between consecutive GPU IDs that are used. For example, setting it to 2 will use GPU 0,2,4,...",
        )
1252
1253
1254
1255
1256
        parser.add_argument(
            "--sleep-on-idle",
            action="store_true",
            help="Reduce CPU usage when sglang is idle.",
        )
1257
1258

        # Logging
Lianmin Zheng's avatar
Lianmin Zheng committed
1259
1260
1261
1262
        parser.add_argument(
            "--log-level",
            type=str,
            default=ServerArgs.log_level,
1263
            help="The logging level of all loggers.",
Lianmin Zheng's avatar
Lianmin Zheng committed
1264
        )
1265
        parser.add_argument(
1266
1267
1268
1269
            "--log-level-http",
            type=str,
            default=ServerArgs.log_level_http,
            help="The logging level of HTTP server. If not set, reuse --log-level by default.",
1270
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1271
        parser.add_argument(
1272
            "--log-requests",
Lianmin Zheng's avatar
Lianmin Zheng committed
1273
            action="store_true",
1274
1275
1276
1277
1278
            help="Log metadata, inputs, outputs of all requests. The verbosity is decided by --log-requests-level",
        )
        parser.add_argument(
            "--log-requests-level",
            type=int,
1279
            default=ServerArgs.log_requests_level,
1280
1281
1282
1283
1284
1285
1286
1287
            help="0: Log metadata (no sampling parameters). 1: Log metadata and sampling parameters. 2: Log metadata, sampling parameters and partial input/output. 3: Log every input/output.",
            choices=[0, 1, 2, 3],
        )
        parser.add_argument(
            "--crash-dump-folder",
            type=str,
            default=ServerArgs.crash_dump_folder,
            help="Folder path to dump requests from the last 5 min before a crash (if any). If not specified, crash dumping is disabled.",
Lianmin Zheng's avatar
Lianmin Zheng committed
1288
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1289
1290
1291
        parser.add_argument(
            "--show-time-cost",
            action="store_true",
Ying Sheng's avatar
Ying Sheng committed
1292
            help="Show time cost of custom marks.",
Lianmin Zheng's avatar
Lianmin Zheng committed
1293
        )
1294
1295
1296
1297
1298
        parser.add_argument(
            "--enable-metrics",
            action="store_true",
            help="Enable log prometheus metrics.",
        )
1299
1300
1301
1302
1303
1304
1305
        parser.add_argument(
            "--enable-metrics-for-all-schedulers",
            action="store_true",
            help="Enable --enable-metrics-for-all-schedulers when you want schedulers on all TP ranks (not just TP 0) "
            "to record request metrics separately. This is especially useful when dp_attention is enabled, as "
            "otherwise all metrics appear to come from TP 0.",
        )
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
        parser.add_argument(
            "--bucket-time-to-first-token",
            type=float,
            nargs="+",
            default=ServerArgs.bucket_time_to_first_token,
            help="The buckets of time to first token, specified as a list of floats.",
        )
        parser.add_argument(
            "--bucket-inter-token-latency",
            type=float,
            nargs="+",
            default=ServerArgs.bucket_inter_token_latency,
            help="The buckets of inter-token latency, specified as a list of floats.",
        )
        parser.add_argument(
            "--bucket-e2e-request-latency",
            type=float,
            nargs="+",
            default=ServerArgs.bucket_e2e_request_latency,
            help="The buckets of end-to-end request latency, specified as a list of floats.",
        )
        parser.add_argument(
            "--collect-tokens-histogram",
            action="store_true",
            default=ServerArgs.collect_tokens_histogram,
            help="Collect prompt/generation tokens histogram.",
        )
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
        bucket_rule = (
            "Supports 3 rule types: 'default' uses predefined buckets; 'tse <middle> <base> <count>' "
            "generates two sides exponential distributed buckets (e.g., 'tse 1000 2 8' generates buckets "
            "[984.0, 992.0, 996.0, 998.0, 1000.0, 1002.0, 1004.0, 1008.0, 1016.0]).); 'customer <value1> "
            "<value2> ...' uses custom bucket values (e.g., 'customer 10 50 100 500')."
        )
        parser.add_argument(
            "--prompt-tokens-buckets",
            type=str,
            nargs="+",
            default=ServerArgs.prompt_tokens_buckets,
            help=f"The buckets rule of prompt tokens. {bucket_rule}",
        )
        parser.add_argument(
            "--generation-tokens-buckets",
            type=str,
            nargs="+",
            default=ServerArgs.generation_tokens_buckets,
            help=f"The buckets rule for generation tokens histogram. {bucket_rule}",
        )
1353
1354
1355
1356
1357
1358
        parser.add_argument(
            "--gc-warning-threshold-secs",
            type=float,
            default=ServerArgs.gc_warning_threshold_secs,
            help="The threshold for long GC warning. If a GC takes longer than this, a warning will be logged. Set to 0 to disable.",
        )
1359
1360
1361
1362
        parser.add_argument(
            "--decode-log-interval",
            type=int,
            default=ServerArgs.decode_log_interval,
1363
            help="The log interval of decode batch.",
1364
        )
1365
1366
1367
1368
1369
1370
        parser.add_argument(
            "--enable-request-time-stats-logging",
            action="store_true",
            default=ServerArgs.enable_request_time_stats_logging,
            help="Enable per request time stats logging",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1371
1372
1373
1374
1375
1376
        parser.add_argument(
            "--kv-events-config",
            type=str,
            default=None,
            help="Config in json format for NVIDIA dynamo KV event publishing. Publishing will be enabled if this flag is used.",
        )
1377

1378
        # API related
Liangsheng Yin's avatar
Liangsheng Yin committed
1379
1380
1381
1382
        parser.add_argument(
            "--api-key",
            type=str,
            default=ServerArgs.api_key,
1383
            help="Set API key of the server. It is also used in the OpenAI API compatible server.",
Liangsheng Yin's avatar
Liangsheng Yin committed
1384
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1385
1386
1387
1388
1389
1390
        parser.add_argument(
            "--served-model-name",
            type=str,
            default=ServerArgs.served_model_name,
            help="Override the model name returned by the v1/models endpoint in OpenAI API server.",
        )
1391
1392
1393
1394
1395
1396
        parser.add_argument(
            "--weight-version",
            type=str,
            default=ServerArgs.weight_version,
            help="Version identifier for the model weights. Defaults to 'default' if not specified.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
        parser.add_argument(
            "--chat-template",
            type=str,
            default=ServerArgs.chat_template,
            help="The buliltin chat template name or the path of the chat template file. This is only used for OpenAI-compatible API server.",
        )
        parser.add_argument(
            "--completion-template",
            type=str,
            default=ServerArgs.completion_template,
            help="The buliltin completion template name or the path of the completion template file. This is only used for OpenAI-compatible API server. only for code completion currently.",
        )
1409
        parser.add_argument(
1410
            "--file-storage-path",
1411
            type=str,
1412
            default=ServerArgs.file_storage_path,
1413
1414
            help="The path of the file storage in backend.",
        )
1415
1416
1417
1418
1419
        parser.add_argument(
            "--enable-cache-report",
            action="store_true",
            help="Return number of cached tokens in usage.prompt_tokens_details for each openai request.",
        )
Xihuai Wang's avatar
Xihuai Wang committed
1420
1421
1422
1423
1424
1425
1426
        parser.add_argument(
            "--reasoning-parser",
            type=str,
            choices=list(ReasoningParser.DetectorMap.keys()),
            default=ServerArgs.reasoning_parser,
            help=f"Specify the parser for reasoning models, supported parsers are: {list(ReasoningParser.DetectorMap.keys())}.",
        )
1427
        tool_call_parser_choices = list(FunctionCallParser.ToolCallParserEnum.keys())
1428
1429
1430
        parser.add_argument(
            "--tool-call-parser",
            type=str,
1431
            choices=tool_call_parser_choices,
1432
            default=ServerArgs.tool_call_parser,
1433
            help=f"Specify the parser for handling tool-call interactions. Options include: {tool_call_parser_choices}.",
1434
        )
1435
1436
1437
1438
1439
1440
        parser.add_argument(
            "--tool-server",
            type=str,
            default=None,
            help="Either 'demo' or a comma-separated list of tool server urls to use for the model. If not specified, no tool server will be used.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1441

1442
1443
        # Data parallelism
        parser.add_argument(
1444
            "--data-parallel-size",
1445
1446
1447
            "--dp-size",
            type=int,
            default=ServerArgs.dp_size,
1448
            help="The data parallelism size.",
1449
1450
1451
1452
1453
        )
        parser.add_argument(
            "--load-balance-method",
            type=str,
            default=ServerArgs.load_balance_method,
1454
            help="The load balancing strategy for data parallelism.",
1455
1456
1457
            choices=[
                "round_robin",
                "shortest_queue",
1458
                "minimum_tokens",
1459
1460
            ],
        )
1461
1462
1463
1464
1465
1466
        parser.add_argument(
            "--prefill-round-robin-balance",
            default=ServerArgs.prefill_round_robin_balance,
            action="store_true",
            help="Prefill is round robin balanced. This is used to promise decode server can get the correct dp rank.",
        )
1467

1468
        # Multi-node distributed serving
1469
        parser.add_argument(
1470
            "--dist-init-addr",
1471
            "--nccl-init-addr",  # For backward compatibility. This will be removed in the future.
1472
            type=str,
1473
            help="The host address for initializing distributed backend (e.g., `192.168.0.2:25000`).",
1474
1475
        )
        parser.add_argument(
Liangsheng Yin's avatar
Liangsheng Yin committed
1476
            "--nnodes", type=int, default=ServerArgs.nnodes, help="The number of nodes."
1477
        )
1478
1479
1480
        parser.add_argument(
            "--node-rank", type=int, default=ServerArgs.node_rank, help="The node rank."
        )
1481

Lianmin Zheng's avatar
Lianmin Zheng committed
1482
1483
1484
1485
1486
1487
1488
        # Model override args
        parser.add_argument(
            "--json-model-override-args",
            type=str,
            help="A dictionary in JSON string format used to override default model configurations.",
            default=ServerArgs.json_model_override_args,
        )
1489
1490
1491
1492
1493
        parser.add_argument(
            "--preferred-sampling-params",
            type=str,
            help="json-formatted sampling settings that will be returned in /get_model_info",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1494

1495
        # LoRA
1496
1497
1498
1499
1500
1501
        parser.add_argument(
            "--enable-lora",
            default=ServerArgs.enable_lora,
            action="store_true",
            help="Enable LoRA support for the model. This argument is automatically set to True if `--lora-paths` is provided for backward compatibility.",
        )
1502
1503
1504
1505
1506
1507
1508
1509
1510
        parser.add_argument(
            "--max-lora-rank",
            default=ServerArgs.max_lora_rank,
            type=int,
            help="The maximum rank of LoRA adapters. If not specified, it will be automatically inferred from the adapters provided in --lora-paths.",
        )
        parser.add_argument(
            "--lora-target-modules",
            type=str,
1511
            choices=SUPPORTED_LORA_TARGET_MODULES + [LORA_TARGET_ALL_MODULES],
1512
1513
            nargs="*",
            default=None,
1514
1515
1516
            help="The union set of all target modules where LoRA should be applied. If not specified, "
            "it will be automatically inferred from the adapters provided in --lora-paths. If 'all' is specified, "
            "all supported modules will be targeted.",
1517
        )
1518
1519
1520
1521
1522
1523
        parser.add_argument(
            "--lora-paths",
            type=str,
            nargs="*",
            default=None,
            action=LoRAPathAction,
1524
            help='The list of LoRA adapters to load. Each adapter must be specified in one of the following formats: <PATH> | <NAME>=<PATH> | JSON with schema {"lora_name":str,"lora_path":str,"pinned":bool}',
1525
1526
1527
1528
1529
        )
        parser.add_argument(
            "--max-loras-per-batch",
            type=int,
            default=8,
1530
1531
            help="Maximum number of adapters for a running batch, include base-only request.",
        )
1532
1533
1534
1535
1536
1537
        parser.add_argument(
            "--max-loaded-loras",
            type=int,
            default=ServerArgs.max_loaded_loras,
            help="If specified, it limits the maximum number of LoRA adapters loaded in CPU memory at a time. The value must be greater than or equal to `--max-loras-per-batch`.",
        )
1538
1539
1540
1541
1542
        parser.add_argument(
            "--lora-backend",
            type=str,
            default="triton",
            help="Choose the kernel backend for multi-LoRA serving.",
1543
1544
1545
        )

        # Kernel backend
1546
1547
1548
        parser.add_argument(
            "--attention-backend",
            type=str,
1549
            choices=ATTENTION_BACKEND_CHOICES,
1550
1551
1552
            default=ServerArgs.attention_backend,
            help="Choose the kernels for attention layers.",
        )
1553
1554
1555
        parser.add_argument(
            "--prefill-attention-backend",
            type=str,
1556
            choices=ATTENTION_BACKEND_CHOICES,
1557
1558
1559
            default=ServerArgs.prefill_attention_backend,
            help="Choose the kernels for prefill attention layers (have priority over --attention-backend).",
        )
1560
1561
1562
        parser.add_argument(
            "--decode-attention-backend",
            type=str,
1563
            choices=ATTENTION_BACKEND_CHOICES,
1564
1565
1566
            default=ServerArgs.decode_attention_backend,
            help="Choose the kernels for decode attention layers (have priority over --attention-backend).",
        )
1567
1568
1569
1570
1571
1572
1573
        parser.add_argument(
            "--sampling-backend",
            type=str,
            choices=["flashinfer", "pytorch"],
            default=ServerArgs.sampling_backend,
            help="Choose the kernels for sampling layers.",
        )
1574
1575
1576
        parser.add_argument(
            "--grammar-backend",
            type=str,
1577
            choices=GRAMMAR_BACKEND_CHOICES,
1578
            default=ServerArgs.grammar_backend,
Lianmin Zheng's avatar
Lianmin Zheng committed
1579
            help="Choose the backend for grammar-guided decoding.",
1580
        )
1581
1582
1583
1584
1585
1586
1587
        parser.add_argument(
            "--mm-attention-backend",
            type=str,
            choices=["sdpa", "fa3", "triton_attn"],
            default=ServerArgs.mm_attention_backend,
            help="Set multimodal attention backend.",
        )
1588

1589
1590
1591
1592
        # Speculative decoding
        parser.add_argument(
            "--speculative-algorithm",
            type=str,
1593
            choices=["EAGLE", "EAGLE3", "NEXTN", "STANDALONE"],
1594
1595
1596
1597
            help="Speculative algorithm.",
        )
        parser.add_argument(
            "--speculative-draft-model-path",
1598
            "--speculative-draft-model",
1599
1600
1601
            type=str,
            help="The path of the draft model weights. This can be a local folder or a Hugging Face repo ID.",
        )
1602
1603
1604
1605
1606
1607
1608
1609
        parser.add_argument(
            "--speculative-draft-model-revision",
            type=str,
            default=None,
            help="The specific draft model version to use. It can be a branch "
            "name, a tag name, or a commit id. If unspecified, will use "
            "the default version.",
        )
1610
1611
1612
1613
1614
1615
1616
1617
1618
        parser.add_argument(
            "--speculative-num-steps",
            type=int,
            help="The number of steps sampled from draft model in Speculative Decoding.",
            default=ServerArgs.speculative_num_steps,
        )
        parser.add_argument(
            "--speculative-eagle-topk",
            type=int,
1619
            help="The number of tokens sampled from the draft model in eagle2 each step.",
1620
1621
            default=ServerArgs.speculative_eagle_topk,
        )
1622
1623
1624
        parser.add_argument(
            "--speculative-num-draft-tokens",
            type=int,
1625
            help="The number of tokens sampled from the draft model in Speculative Decoding.",
1626
1627
            default=ServerArgs.speculative_num_draft_tokens,
        )
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
        parser.add_argument(
            "--speculative-accept-threshold-single",
            type=float,
            help="Accept a draft token if its probability in the target model is greater than this threshold.",
            default=ServerArgs.speculative_accept_threshold_single,
        )
        parser.add_argument(
            "--speculative-accept-threshold-acc",
            type=float,
            help="The accept probability of a draft token is raised from its target probability p to min(1, p / threshold_acc).",
            default=ServerArgs.speculative_accept_threshold_acc,
        )
1640
1641
1642
1643
1644
1645
        parser.add_argument(
            "--speculative-token-map",
            type=str,
            help="The path of the draft model's small vocab table.",
            default=ServerArgs.speculative_token_map,
        )
1646
        parser.add_argument(
1647
            "--speculative-attention-mode",
1648
1649
            type=str,
            choices=["prefill", "decode"],
1650
1651
            help="Attention backend for speculative decoding operations (both target verify and draft extend). Can be one of 'prefill' (default) or 'decode'.",
            default=ServerArgs.speculative_attention_mode,
1652
        )
1653
1654
1655
1656
1657

        # Expert parallelism
        parser.add_argument(
            "--expert-parallel-size",
            "--ep-size",
Cheng Wan's avatar
Cheng Wan committed
1658
            "--ep",
1659
1660
1661
1662
1663
            type=int,
            default=ServerArgs.ep_size,
            help="The expert parallelism size.",
        )
        parser.add_argument(
1664
1665
            "--moe-a2a-backend",
            type=str,
1666
            choices=["none", "deepep"],
1667
1668
            default=ServerArgs.moe_a2a_backend,
            help="Choose the backend for MoE A2A.",
1669
        )
1670
        parser.add_argument(
1671
1672
1673
1674
1675
1676
1677
1678
            "--moe-runner-backend",
            type=str,
            choices=[
                "auto",
                "triton",
                "triton_kernel",
                "flashinfer_trtllm",
                "flashinfer_cutlass",
1679
                "flashinfer_mxfp4",
1680
                "flashinfer_cutedsl",
1681
1682
1683
            ],
            default=ServerArgs.moe_runner_backend,
            help="Choose the runner backend for MoE.",
1684
1685
        )
        parser.add_argument(
1686
1687
            "--flashinfer-mxfp4-moe-precision",
            type=str,
1688
            choices=["default", "bf16"],
1689
1690
1691
1692
            default=ServerArgs.flashinfer_mxfp4_moe_precision,
            help="Choose the computation precision of flashinfer mxfp4 moe",
        )
        parser.add_argument(
1693
1694
            "--enable-flashinfer-allreduce-fusion",
            action="store_true",
1695
            help="Enable FlashInfer allreduce fusion with Residual RMSNorm.",
1696
        )
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
        parser.add_argument(
            "--deepep-mode",
            type=str,
            choices=["normal", "low_latency", "auto"],
            default="auto",
            help="Select the mode when enable DeepEP MoE, could be `normal`, `low_latency` or `auto`. Default is `auto`, which means `low_latency` for decode batch and `normal` for prefill batch.",
        )
        parser.add_argument(
            "--ep-num-redundant-experts",
            type=int,
            default=ServerArgs.ep_num_redundant_experts,
            help="Allocate this number of redundant experts in expert parallel.",
        )
        parser.add_argument(
            "--ep-dispatch-algorithm",
            type=str,
            default=ServerArgs.ep_dispatch_algorithm,
            help="The algorithm to choose ranks for redundant experts in expert parallel.",
        )
        parser.add_argument(
            "--init-expert-location",
            type=str,
            default=ServerArgs.init_expert_location,
            help="Initial location of EP experts.",
        )
        parser.add_argument(
            "--enable-eplb",
            action="store_true",
            help="Enable EPLB algorithm",
        )
        parser.add_argument(
            "--eplb-algorithm",
            type=str,
            default=ServerArgs.eplb_algorithm,
            help="Chosen EPLB algorithm",
        )
        parser.add_argument(
            "--eplb-rebalance-num-iterations",
            type=int,
            default=ServerArgs.eplb_rebalance_num_iterations,
            help="Number of iterations to automatically trigger a EPLB re-balance.",
        )
        parser.add_argument(
            "--eplb-rebalance-layers-per-chunk",
            type=int,
            default=ServerArgs.eplb_rebalance_layers_per_chunk,
            help="Number of layers to rebalance per forward pass.",
        )
1745
1746
1747
1748
1749
1750
        parser.add_argument(
            "--eplb-min-rebalancing-utilization-threshold",
            type=float,
            default=ServerArgs.eplb_min_rebalancing_utilization_threshold,
            help="Minimum threshold for GPU average utilization to trigger EPLB rebalancing. Must be in the range [0.0, 1.0].",
        )
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
        parser.add_argument(
            "--expert-distribution-recorder-mode",
            type=str,
            default=ServerArgs.expert_distribution_recorder_mode,
            help="Mode of expert distribution recorder.",
        )
        parser.add_argument(
            "--expert-distribution-recorder-buffer-size",
            type=int,
            default=ServerArgs.expert_distribution_recorder_buffer_size,
            help="Circular buffer size of expert distribution recorder. Set to -1 to denote infinite buffer.",
        )
        parser.add_argument(
            "--enable-expert-distribution-metrics",
            action="store_true",
            help="Enable logging metrics for expert balancedness",
        )
        parser.add_argument(
            "--deepep-config",
            type=str,
            default=ServerArgs.deepep_config,
            help="Tuned DeepEP config suitable for your own cluster. It can be either a string with JSON content or a file path.",
        )
        parser.add_argument(
            "--moe-dense-tp-size",
            type=int,
            default=ServerArgs.moe_dense_tp_size,
            help="TP size for MoE dense MLP layers. This flag is useful when, with large TP size, there are errors caused by weights in MLP layers having dimension smaller than the min dimension GEMM supports.",
        )
1780

Yi Zhang's avatar
Yi Zhang committed
1781
1782
1783
1784
1785
        # Mamba Cache
        parser.add_argument(
            "--max-mamba-cache-size",
            type=int,
            default=ServerArgs.max_mamba_cache_size,
1786
            help="The maximum size of the mamba cache.",
Yi Zhang's avatar
Yi Zhang committed
1787
1788
1789
1790
1791
1792
        )
        parser.add_argument(
            "--mamba-ssm-dtype",
            type=str,
            default=ServerArgs.mamba_ssm_dtype,
            choices=["float32", "bfloat16"],
1793
            help="The data type of the SSM states in mamba cache.",
Yi Zhang's avatar
Yi Zhang committed
1794
        )
1795

Lianmin Zheng's avatar
Lianmin Zheng committed
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
        # Hierarchical cache
        parser.add_argument(
            "--enable-hierarchical-cache",
            action="store_true",
            help="Enable hierarchical cache",
        )
        parser.add_argument(
            "--hicache-ratio",
            type=float,
            default=ServerArgs.hicache_ratio,
            help="The ratio of the size of host KV cache memory pool to the size of device pool.",
        )
        parser.add_argument(
            "--hicache-size",
            type=int,
            default=ServerArgs.hicache_size,
            help="The size of host KV cache memory pool in gigabytes, which will override the hicache_ratio if set.",
        )
        parser.add_argument(
            "--hicache-write-policy",
            type=str,
            choices=["write_back", "write_through", "write_through_selective"],
            default=ServerArgs.hicache_write_policy,
            help="The write policy of hierarchical cache.",
        )
        parser.add_argument(
            "--hicache-io-backend",
            type=str,
            choices=["direct", "kernel"],
            default=ServerArgs.hicache_io_backend,
            help="The IO backend for KV cache transfer between CPU and GPU",
        )
1828
1829
1830
        parser.add_argument(
            "--hicache-mem-layout",
            type=str,
1831
            choices=["layer_first", "page_first", "page_first_direct"],
1832
1833
1834
            default=ServerArgs.hicache_mem_layout,
            help="The layout of host memory pool for hierarchical cache.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1835
1836
1837
        parser.add_argument(
            "--hicache-storage-backend",
            type=str,
1838
            choices=["file", "mooncake", "hf3fs", "nixl"],
Lianmin Zheng's avatar
Lianmin Zheng committed
1839
1840
1841
            default=ServerArgs.hicache_storage_backend,
            help="The storage backend for hierarchical KV cache.",
        )
pansicheng's avatar
pansicheng committed
1842
1843
1844
1845
1846
1847
1848
        parser.add_argument(
            "--hicache-storage-prefetch-policy",
            type=str,
            choices=["best_effort", "wait_complete", "timeout"],
            default=ServerArgs.hicache_storage_prefetch_policy,
            help="Control when prefetching from the storage backend should stop.",
        )
1849
1850
1851
1852
1853
1854
        parser.add_argument(
            "--hicache-storage-backend-extra-config",
            type=str,
            default=ServerArgs.hicache_storage_backend_extra_config,
            help="A dictionary in JSON string format containing extra configuration for the storage backend.",
        )
1855
1856
1857
1858
1859
1860
        # LMCache
        parser.add_argument(
            "--enable-lmcache",
            action="store_true",
            help="Using LMCache as an alternative hierarchical cache solution",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1861

1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
        # Double Sparsity
        parser.add_argument(
            "--enable-double-sparsity",
            action="store_true",
            help="Enable double sparsity attention",
        )
        parser.add_argument(
            "--ds-channel-config-path",
            type=str,
            default=ServerArgs.ds_channel_config_path,
            help="The path of the double sparsity channel config",
        )
        parser.add_argument(
            "--ds-heavy-channel-num",
            type=int,
            default=ServerArgs.ds_heavy_channel_num,
            help="The number of heavy channels in double sparsity attention",
        )
        parser.add_argument(
            "--ds-heavy-token-num",
            type=int,
            default=ServerArgs.ds_heavy_token_num,
            help="The number of heavy tokens in double sparsity attention",
        )
        parser.add_argument(
            "--ds-heavy-channel-type",
            type=str,
            default=ServerArgs.ds_heavy_channel_type,
            help="The type of heavy channels in double sparsity attention",
        )
        parser.add_argument(
            "--ds-sparse-decode-threshold",
            type=int,
            default=ServerArgs.ds_sparse_decode_threshold,
            help="The type of heavy channels in double sparsity attention",
        )

fzyzcjy's avatar
fzyzcjy committed
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
        # Offloading
        parser.add_argument(
            "--cpu-offload-gb",
            type=int,
            default=ServerArgs.cpu_offload_gb,
            help="How many GBs of RAM to reserve for CPU offloading.",
        )
        parser.add_argument(
            "--offload-group-size",
            type=int,
            default=ServerArgs.offload_group_size,
            help="Number of layers per group in offloading.",
        )
        parser.add_argument(
            "--offload-num-in-group",
            type=int,
            default=ServerArgs.offload_num_in_group,
            help="Number of layers to be offloaded within a group.",
        )
        parser.add_argument(
            "--offload-prefetch-step",
            type=int,
            default=ServerArgs.offload_prefetch_step,
            help="Steps to prefetch in offloading.",
        )
        parser.add_argument(
            "--offload-mode",
            type=str,
            default=ServerArgs.offload_mode,
            help="Mode of offloading.",
        )

1931
        # Optimization/debug options
Liangsheng Yin's avatar
Liangsheng Yin committed
1932
        parser.add_argument(
Lianmin Zheng's avatar
Lianmin Zheng committed
1933
            "--disable-radix-cache",
Liangsheng Yin's avatar
Liangsheng Yin committed
1934
            action="store_true",
Ying Sheng's avatar
Ying Sheng committed
1935
            help="Disable RadixAttention for prefix caching.",
Liangsheng Yin's avatar
Liangsheng Yin committed
1936
        )
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
        parser.add_argument(
            "--cuda-graph-max-bs",
            type=int,
            default=ServerArgs.cuda_graph_max_bs,
            help="Set the maximum batch size for cuda graph. It will extend the cuda graph capture batch size to this value.",
        )
        parser.add_argument(
            "--cuda-graph-bs",
            type=int,
            nargs="+",
            help="Set the list of batch sizes for cuda graph.",
        )
1949
1950
1951
        parser.add_argument(
            "--disable-cuda-graph",
            action="store_true",
1952
            help="Disable cuda graph.",
1953
        )
1954
        parser.add_argument(
1955
1956
            "--disable-cuda-graph-padding",
            action="store_true",
1957
            help="Disable cuda graph when padding is needed. Still uses cuda graph when padding is not needed.",
1958
        )
1959
1960
1961
1962
1963
        parser.add_argument(
            "--enable-profile-cuda-graph",
            action="store_true",
            help="Enable profiling of cuda graph capture.",
        )
1964
1965
1966
1967
1968
        parser.add_argument(
            "--enable-cudagraph-gc",
            action="store_true",
            help="Enable garbage collection during CUDA graph capture. If disabled (default), GC is frozen during capture to speed up the process.",
        )
1969
1970
1971
1972
1973
        parser.add_argument(
            "--enable-nccl-nvls",
            action="store_true",
            help="Enable NCCL NVLS for prefill heavy requests when available.",
        )
1974
1975
1976
1977
1978
        parser.add_argument(
            "--enable-symm-mem",
            action="store_true",
            help="Enable NCCL symmetric memory for fast collectives.",
        )
1979
1980
1981
1982
1983
        parser.add_argument(
            "--disable-flashinfer-cutlass-moe-fp4-allgather",
            action="store_true",
            help="Disables quantize before all-gather for flashinfer cutlass moe.",
        )
1984
1985
1986
1987
1988
        parser.add_argument(
            "--enable-tokenizer-batch-encode",
            action="store_true",
            help="Enable batch tokenization for improved performance when processing multiple text inputs. Do not use with image inputs, pre-tokenized input_ids, or input_embeds.",
        )
1989
        parser.add_argument(
1990
            "--disable-outlines-disk-cache",
1991
            action="store_true",
1992
            help="Disable disk cache of outlines to avoid possible crashes related to file system or high concurrency.",
1993
        )
1994
1995
1996
1997
1998
        parser.add_argument(
            "--disable-custom-all-reduce",
            action="store_true",
            help="Disable the custom all-reduce kernel and fall back to NCCL.",
        )
1999
2000
2001
2002
2003
        parser.add_argument(
            "--enable-mscclpp",
            action="store_true",
            help="Enable using mscclpp for small messages for all-reduce kernel and fall back to NCCL.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
2004
        parser.add_argument(
2005
            "--disable-overlap-schedule",
Lianmin Zheng's avatar
Lianmin Zheng committed
2006
            action="store_true",
2007
            help="Disable the overlap scheduler, which overlaps the CPU scheduler with GPU model worker.",
Lianmin Zheng's avatar
Lianmin Zheng committed
2008
        )
2009
2010
2011
        parser.add_argument(
            "--enable-mixed-chunk",
            action="store_true",
2012
            help="Enabling mixing prefill and decode in a batch when using chunked prefill.",
2013
        )
Ke Bao's avatar
Ke Bao committed
2014
2015
2016
        parser.add_argument(
            "--enable-dp-attention",
            action="store_true",
2017
            help="Enabling data parallelism for attention and tensor parallelism for FFN. The dp size should be equal to the tp size. Currently DeepSeek-V2 and Qwen 2/3 MoE models are supported.",
Ke Bao's avatar
Ke Bao committed
2018
        )
2019
2020
2021
2022
2023
        parser.add_argument(
            "--enable-dp-lm-head",
            action="store_true",
            help="Enable vocabulary parallel across the attention TP group to avoid all-gather across DP groups, optimizing performance under DP attention.",
        )
2024
2025
2026
2027
2028
        parser.add_argument(
            "--enable-two-batch-overlap",
            action="store_true",
            help="Enabling two micro batches to overlap.",
        )
2029
2030
2031
2032
2033
2034
        parser.add_argument(
            "--tbo-token-distribution-threshold",
            type=float,
            default=ServerArgs.tbo_token_distribution_threshold,
            help="The threshold of token distribution between two batches in micro-batch-overlap, determines whether to two-batch-overlap or two-chunk-overlap. Set to 0 denote disable two-chunk-overlap.",
        )
2035
2036
2037
        parser.add_argument(
            "--enable-torch-compile",
            action="store_true",
2038
2039
            help="Optimize the model with torch.compile. Experimental feature.",
        )
2040
        parser.add_argument(
2041
            "--torch-compile-max-bs",
2042
            type=int,
2043
            default=ServerArgs.torch_compile_max_bs,
2044
2045
            help="Set the maximum batch size when using torch compile.",
        )
2046
2047
2048
2049
        parser.add_argument(
            "--torchao-config",
            type=str,
            default=ServerArgs.torchao_config,
2050
            help="Optimize the model with torchao. Experimental feature. Current choices are: int8dq, int8wo, int4wo-<group_size>, fp8wo, fp8dq-per_tensor, fp8dq-per_row",
2051
        )
2052
2053
2054
2055
2056
        parser.add_argument(
            "--enable-nan-detection",
            action="store_true",
            help="Enable the NaN detection for debugging purposes.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
2057
        parser.add_argument(
2058
            "--enable-p2p-check",
Lianmin Zheng's avatar
Lianmin Zheng committed
2059
            action="store_true",
2060
            help="Enable P2P check for GPU access, otherwise the p2p access is allowed by default.",
Lianmin Zheng's avatar
Lianmin Zheng committed
2061
        )
2062
        parser.add_argument(
2063
            "--triton-attention-reduce-in-fp32",
2064
            action="store_true",
2065
            help="Cast the intermediate attention results to fp32 to avoid possible crashes related to fp16."
2066
            "This only affects Triton attention kernels.",
2067
        )
2068
2069
2070
2071
2072
2073
        parser.add_argument(
            "--triton-attention-num-kv-splits",
            type=int,
            default=ServerArgs.triton_attention_num_kv_splits,
            help="The number of KV splits in flash decoding Triton kernel. Larger value is better in longer context scenarios. The default value is 8.",
        )
2074
2075
2076
2077
2078
2079
2080
2081
        parser.add_argument(
            "--num-continuous-decode-steps",
            type=int,
            default=ServerArgs.num_continuous_decode_steps,
            help="Run multiple continuous decoding steps to reduce scheduling overhead. "
            "This can potentially increase throughput but may also increase time-to-first-token latency. "
            "The default value is 1, meaning only run one decoding step at a time.",
        )
2082
2083
2084
2085
2086
        parser.add_argument(
            "--delete-ckpt-after-loading",
            action="store_true",
            help="Delete the model checkpoint after loading the model.",
        )
2087
2088
2089
2090
2091
        parser.add_argument(
            "--enable-memory-saver",
            action="store_true",
            help="Allow saving memory using release_memory_occupation and resume_memory_occupation",
        )
2092
2093
2094
2095
2096
        parser.add_argument(
            "--allow-auto-truncate",
            action="store_true",
            help="Allow automatically truncating requests that exceed the maximum input length instead of returning an error.",
        )
2097
2098
2099
2100
2101
        parser.add_argument(
            "--enable-custom-logit-processor",
            action="store_true",
            help="Enable users to pass custom logit processors to the server (disabled by default for security)",
        )
2102
        parser.add_argument(
2103
            "--flashinfer-mla-disable-ragged",
2104
            action="store_true",
2105
            help="Not using ragged prefill wrapper when running flashinfer mla",
2106
        )
2107
        parser.add_argument(
2108
2109
2110
            "--disable-shared-experts-fusion",
            action="store_true",
            help="Disable shared experts fusion optimization for deepseek v3/r1.",
2111
        )
2112
2113
2114
2115
2116
        parser.add_argument(
            "--disable-chunked-prefix-cache",
            action="store_true",
            help="Disable chunked prefix cache feature for deepseek, which should save overhead for short sequences.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
2117
2118
2119
2120
2121
        parser.add_argument(
            "--disable-fast-image-processor",
            action="store_true",
            help="Adopt base image processor instead of fast image processor.",
        )
2122
2123
2124
2125
2126
        parser.add_argument(
            "--enable-return-hidden-states",
            action="store_true",
            help="Enable returning hidden states with responses.",
        )
2127
2128
2129
2130
2131
2132
        parser.add_argument(
            "--scheduler-recv-interval",
            type=int,
            default=ServerArgs.scheduler_recv_interval,
            help="The interval to poll requests in scheduler. Can be set to >1 to reduce the overhead of this.",
        )
2133
2134
2135
2136
2137
2138
        parser.add_argument(
            "--numa-node",
            type=int,
            nargs="+",
            help="Sets the numa node for the subprocesses. i-th element corresponds to i-th subprocess.",
        )
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158

        # Debug tensor dumps
        parser.add_argument(
            "--debug-tensor-dump-output-folder",
            type=str,
            default=ServerArgs.debug_tensor_dump_output_folder,
            help="The output folder for dumping tensors.",
        )
        parser.add_argument(
            "--debug-tensor-dump-input-file",
            type=str,
            default=ServerArgs.debug_tensor_dump_input_file,
            help="The input filename for dumping tensors",
        )
        parser.add_argument(
            "--debug-tensor-dump-inject",
            type=str,
            default=ServerArgs.debug_tensor_dump_inject,
            help="Inject the outputs from jax as the input of every layer.",
        )
2159
2160
2161
2162
2163
        parser.add_argument(
            "--debug-tensor-dump-prefill-only",
            action="store_true",
            help="Only dump the tensors for prefill requests (i.e. batch size > 1).",
        )
2164

Lianmin Zheng's avatar
Lianmin Zheng committed
2165
        # PD disaggregation
Byron Hsu's avatar
Byron Hsu committed
2166
2167
2168
2169
2170
2171
2172
        parser.add_argument(
            "--disaggregation-mode",
            type=str,
            default="null",
            choices=["null", "prefill", "decode"],
            help='Only used for PD disaggregation. "prefill" for prefill-only server, and "decode" for decode-only server. If not specified, it is not PD disaggregated',
        )
2173
2174
2175
2176
        parser.add_argument(
            "--disaggregation-transfer-backend",
            type=str,
            default=ServerArgs.disaggregation_transfer_backend,
2177
            choices=DISAGG_TRANSFER_BACKEND_CHOICES,
2178
2179
            help="The backend for disaggregation transfer. Default is mooncake.",
        )
2180
2181
2182
2183
2184
2185
        parser.add_argument(
            "--disaggregation-bootstrap-port",
            type=int,
            default=ServerArgs.disaggregation_bootstrap_port,
            help="Bootstrap server port on the prefill server. Default is 8998.",
        )
Byron Hsu's avatar
Byron Hsu committed
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
        parser.add_argument(
            "--disaggregation-decode-tp",
            type=int,
            default=ServerArgs.disaggregation_decode_tp,
            help="Decode tp size. If not set, it matches the tp size of the current engine. This is only set on the prefill server.",
        )
        parser.add_argument(
            "--disaggregation-decode-dp",
            type=int,
            default=ServerArgs.disaggregation_decode_dp,
            help="Decode dp size. If not set, it matches the dp size of the current engine. This is only set on the prefill server.",
        )
        parser.add_argument(
            "--disaggregation-prefill-pp",
            type=int,
            default=ServerArgs.disaggregation_prefill_pp,
            help="Prefill pp size. If not set, it is default to 1. This is only set on the decode server.",
        )
2204
2205
2206
2207
        parser.add_argument(
            "--disaggregation-ib-device",
            type=str,
            default=ServerArgs.disaggregation_ib_device,
2208
2209
2210
            help="The InfiniBand devices for disaggregation transfer, accepts single device (e.g., --disaggregation-ib-device mlx5_0) "
            "or multiple comma-separated devices (e.g., --disaggregation-ib-device mlx5_0,mlx5_1). "
            "Default is None, which triggers automatic device detection when mooncake backend is enabled.",
2211
        )
2212
2213
2214
2215
2216
2217
        parser.add_argument(
            "--num-reserved-decode-tokens",
            type=int,
            default=ServerArgs.num_reserved_decode_tokens,
            help="Number of decode tokens that will have memory reserved when adding new request to the running batch.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
2218
2219

        # Custom weight loader
2220
2221
2222
2223
2224
2225
2226
        parser.add_argument(
            "--custom-weight-loader",
            type=str,
            nargs="*",
            default=None,
            help="The custom dataloader which used to update the model. Should be set with a valid import path, such as my_package.weight_load_func",
        )
2227
2228
2229
2230
2231
2232
2233
        parser.add_argument(
            "--weight-loader-disable-mmap",
            action="store_true",
            help="Disable mmap while loading weight using safetensors.",
        )

        # For PD-Multiplexing
2234
2235
2236
2237
2238
        parser.add_argument(
            "--enable-pdmux",
            action="store_true",
            help="Enable PD-Multiplexing, PD running on greenctx stream.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
2239

2240
2241
2242
2243
2244
2245
        parser.add_argument(
            "--sm-group-num",
            type=int,
            default=ServerArgs.sm_group_num,
            help="Number of sm partition groups.",
        )
Byron Hsu's avatar
Byron Hsu committed
2246

2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
        # Deprecated arguments
        parser.add_argument(
            "--enable-ep-moe",
            action="store_true",
            help="(Deprecated) Enabling expert parallelism for moe. The ep size is equal to the tp size.",
        )
        parser.add_argument(
            "--enable-deepep-moe",
            action="store_true",
            help="(Deprecated) Enabling DeepEP MoE implementation for EP MoE.",
        )
2258
2259
2260
2261
2262
        parser.add_argument(
            "--enable-flashinfer-cutlass-moe",
            action="store_true",
            help="(Deprecated) Enable FlashInfer CUTLASS MoE backend for modelopt_fp4 quant on Blackwell. Supports MoE-EP",
        )
2263
2264
2265
2266
2267
        parser.add_argument(
            "--enable-flashinfer-cutedsl-moe",
            action="store_true",
            help="(Deprecated) Enable FlashInfer CuteDSL MoE backend for modelopt_fp4 quant on Blackwell. Supports MoE-EP",
        )
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
        parser.add_argument(
            "--enable-flashinfer-trtllm-moe",
            action="store_true",
            help="(Deprecated) Enable FlashInfer TRTLLM MoE backend on Blackwell. Supports BlockScale FP8 MoE-EP",
        )
        parser.add_argument(
            "--enable-triton-kernel-moe",
            action="store_true",
            help="(Deprecated) Use triton moe grouped gemm kernel.",
        )
2278
2279
2280
2281
2282
        parser.add_argument(
            "--enable-flashinfer-mxfp4-moe",
            action="store_true",
            help="(Deprecated) Enable FlashInfer MXFP4 MoE backend for modelopt_fp4 quant on Blackwell.",
        )
2283

Lianmin Zheng's avatar
Lianmin Zheng committed
2284
2285
    @classmethod
    def from_cli_args(cls, args: argparse.Namespace):
2286
        args.tp_size = args.tensor_parallel_size
2287
        args.pp_size = args.pipeline_parallel_size
2288
        args.dp_size = args.data_parallel_size
xiaobochen's avatar
xiaobochen committed
2289
        args.ep_size = args.expert_parallel_size
2290

Lianmin Zheng's avatar
Lianmin Zheng committed
2291
2292
2293
2294
        attrs = [attr.name for attr in dataclasses.fields(cls)]
        return cls(**{attr: getattr(args, attr) for attr in attrs})

    def url(self):
2295
        if is_valid_ipv6_address(self.host):
2296
2297
2298
            return f"http://[{self.host}]:{self.port}"
        else:
            return f"http://{self.host}:{self.port}"
Lianmin Zheng's avatar
Lianmin Zheng committed
2299

Lianmin Zheng's avatar
Lianmin Zheng committed
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
    def get_hf_config(self):
        kwargs = {}
        hf_config = get_config(
            self.model_path,
            trust_remote_code=self.trust_remote_code,
            revision=self.revision,
            model_override_args=json.loads(self.json_model_override_args),
            **kwargs,
        )
        return hf_config

2311
    def check_server_args(self):
2312
        # Check parallel size constraints
2313
        assert (
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
            self.tp_size * self.pp_size
        ) % self.nnodes == 0, "tp_size must be divisible by number of nodes"

        if self.pp_size > 1:
            assert (
                self.disable_overlap_schedule
                and self.speculative_algorithm is None
                and not self.enable_mixed_chunk
            ), "Pipeline parallelism is not compatible with overlap schedule, speculative decoding, mixed chunked prefill."

2324
        assert not (
2325
2326
            self.dp_size > 1 and self.nnodes != 1 and not self.enable_dp_attention
        ), "multi-node data parallel is not supported unless dp attention!"
2327

2328
        assert self.base_gpu_id >= 0, "base_gpu_id must be non-negative"
2329
        assert self.gpu_id_step >= 1, "gpu_id_step must be positive"
2330

Lianmin Zheng's avatar
Lianmin Zheng committed
2331
2332
2333
2334
2335
        assert self.moe_dense_tp_size in {
            1,
            None,
        }, "moe_dense_tp_size only support 1 and None currently"

2336
        # Check LoRA
2337
2338
        self.check_lora_server_args()

2339
2340
2341
2342
2343
2344
2345
        # Check speculative decoding
        if self.speculative_algorithm is not None:
            assert (
                not self.enable_mixed_chunk
            ), "enable_mixed_chunk is required for speculative decoding"

        # Check chunked prefill
2346
2347
2348
2349
2350
        # Skip validation if chunked prefill is disabled (i.e., size <= 0).
        if self.chunked_prefill_size > 0:
            assert (
                self.chunked_prefill_size % self.page_size == 0
            ), "chunked_prefill_size must be divisible by page_size"
2351

2352
2353
        # Check multi tokenizer
        assert self.tokenizer_worker_num > 0, "Tokenizer worker num must >= 1"
2354
2355
2356
2357
2358
2359
        self.validate_buckets_rule(
            "--prompt-tokens-buckets", self.prompt_tokens_buckets
        )
        self.validate_buckets_rule(
            "--generation-tokens-buckets", self.generation_tokens_buckets
        )
2360

2361
    def check_lora_server_args(self):
2362
        assert self.max_loras_per_batch > 0, "max_loras_per_batch must be positive"
2363

2364
2365
2366
2367
        # Enable LoRA if any LoRA paths are provided for backward compatibility.
        if self.lora_paths:
            if self.enable_lora is None:
                self.enable_lora = True
2368
                logger.warning(
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
                    "--enable-lora is set to True because --lora-paths is provided."
                )
            elif self.enable_lora is False:
                logger.warning(
                    "--enable-lora is set to False, any provided lora_paths will be ignored."
                )

        if self.enable_lora:
            if isinstance(self.lora_paths, list):
                lora_paths = self.lora_paths
2379
                self.lora_paths = []
2380
                for lora_path in lora_paths:
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
                    if isinstance(lora_path, str):
                        if "=" in lora_path:
                            name, path = lora_path.split("=", 1)
                            lora_ref = LoRARef(
                                lora_name=name, lora_path=path, pinned=False
                            )
                        else:
                            lora_ref = LoRARef(
                                lora_name=lora_path, lora_path=lora_path, pinned=False
                            )
                    elif isinstance(lora_path, dict):
                        assert (
                            "lora_name" in lora_path and "lora_path" in lora_path
                        ), f"When providing LoRA paths as a list of dict, each dict should contain 'lora_name' and 'lora_path' keys. Got: {lora_path}"
                        lora_ref = LoRARef(
                            lora_name=lora_path["lora_name"],
                            lora_path=lora_path["lora_path"],
                            pinned=lora_path.get("pinned", False),
2399
                        )
2400
                    else:
2401
2402
2403
                        raise ValueError(
                            f"Invalid type for item in --lora-paths list: {type(lora_path)}. "
                            "Expected a string or a dictionary."
2404
                        )
2405
                    self.lora_paths.append(lora_ref)
2406
            elif isinstance(self.lora_paths, dict):
2407
2408
                self.lora_paths = [
                    LoRARef(lora_name=k, lora_path=v, pinned=False)
2409
                    for k, v in self.lora_paths.items()
2410
                ]
2411
            elif self.lora_paths is None:
2412
                self.lora_paths = []
2413
2414
2415
2416
2417
            else:
                raise ValueError(
                    f"Invalid type for --lora-paths: {type(self.lora_paths)}. "
                    "Expected a list or a dictionary."
                )
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431

            # Expand target modules
            if self.lora_target_modules:
                self.lora_target_modules = set(self.lora_target_modules)
                if "all" in self.lora_target_modules:
                    assert (
                        len(self.lora_target_modules) == 1
                    ), "If 'all' is specified in --lora-target-modules, it should be the only module specified."
                    self.lora_target_modules = set(SUPPORTED_LORA_TARGET_MODULES)

            # Ensure sufficient information is provided for LoRA initialization.
            assert self.lora_paths or (
                self.max_lora_rank and self.lora_target_modules
            ), "When no initial --lora-paths is provided, you need to specify both --max-lora-rank and --lora-target-modules for LoRA initialization."
2432

2433
2434
2435
2436
2437
2438
            # Validate max_loaded_loras
            if self.max_loaded_loras is not None:
                assert self.max_loaded_loras >= self.max_loras_per_batch, (
                    "max_loaded_loras should be greater than or equal to max_loras_per_batch. "
                    f"max_loaded_loras={self.max_loaded_loras}, max_loras_per_batch={self.max_loras_per_batch}"
                )
2439
                assert len(self.lora_paths) <= self.max_loaded_loras, (
2440
2441
2442
2443
                    "The number of LoRA paths should not exceed max_loaded_loras. "
                    f"max_loaded_loras={self.max_loaded_loras}, lora_paths={len(self.lora_paths)}"
                )

Lianmin Zheng's avatar
Lianmin Zheng committed
2444
2445
2446
2447
2448
2449
2450
2451
    def validate_disagg_tp_size(self, prefill_tp: int, decode_tp: int):
        larger_tp = max(decode_tp, prefill_tp)
        smaller_tp = min(decode_tp, prefill_tp)
        assert larger_tp % smaller_tp == 0, (
            "Different tp size is supported only when one tp is multiple of the other. "
            f"decode_tp={decode_tp}, prefill_tp={prefill_tp}"
        )

2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
    def validate_buckets_rule(self, arg_name: str, buckets_rule: List[str]):
        if not buckets_rule:
            return

        assert len(buckets_rule) > 0, f"{arg_name} cannot be empty list"
        rule = buckets_rule[0]
        assert rule in [
            "tse",
            "default",
            "customer",
        ], f"Unsupported {arg_name} rule type: '{rule}'. Must be one of: 'tse', 'default', 'customer'"

        if rule == "tse":
            assert (
                len(buckets_rule) == 4
            ), f"{arg_name} TSE rule requires exactly 4 parameters: ['tse', middle, base, count], got {len(buckets_rule)}"
            try:
                middle = float(buckets_rule[1])
                base = float(buckets_rule[2])
                count = int(buckets_rule[3])
            except (ValueError, IndexError):
                assert (
                    False
                ), f"{arg_name} TSE rule parameters must be: ['tse', <float:middle>, <float:base>, <int:count>]"
            assert base > 1, f"{arg_name} TSE base must be larger than 1, got: {base}"
            assert count > 0, f"{arg_name} TSE count must be positive, got: {count}"
            assert middle > 0, f"{arg_name} TSE middle must be positive, got: {middle}"

        elif rule == "default":
            assert (
                len(buckets_rule) == 1
            ), f"{arg_name} default rule should only have one parameter: ['default'], got {len(buckets_rule)}"

        elif rule == "customer":
            assert (
                len(buckets_rule) >= 2
            ), f"{arg_name} customer rule requires at least one bucket value: ['customer', value1, ...]"
            try:
                bucket_values = [float(x) for x in buckets_rule[1:]]
            except ValueError:
                assert False, f"{arg_name} customer rule bucket values must be numeric"
            assert len(set(bucket_values)) == len(
                bucket_values
            ), f"{arg_name} customer rule bucket values should not contain duplicates"
            assert all(
                val >= 0 for val in bucket_values
            ), f"{arg_name} customer rule bucket values should be non-negative"

2500
2501
2502
2503
2504
    def model_specific_adjustments(self):
        hf_config = self.get_hf_config()
        model_arch = hf_config.architectures[0]
        if model_arch in ["GptOssForCausalLM"]:
            if self.attention_backend is None:
2505
                if is_cuda() and is_sm100_supported():
2506
                    self.attention_backend = "trtllm_mha"
2507
                elif is_cuda() and is_sm90_supported():
2508
2509
2510
                    self.attention_backend = "fa3"
                else:
                    self.attention_backend = "triton"
2511
            supported_backends = ["triton", "trtllm_mha", "fa3"]
2512
2513
2514
            logger.info(
                f"Use {self.attention_backend} as attention backend for GptOssForCausalLM"
            )
2515
2516
2517
            assert (
                self.attention_backend in supported_backends
            ), f"GptOssForCausalLM requires one of {supported_backends} attention backend, but got '{self.attention_backend}'"
2518
2519

            if is_sm100_supported():
2520
2521
2522
2523
2524
                if not self.enable_dp_attention:
                    self.enable_flashinfer_allreduce_fusion = True
                    logger.info(
                        "Enable FlashInfer AllReduce Fusion on sm100 for GptOssForCausalLM"
                    )
2525
2526
2527
2528
2529
2530
2531
            quantization_config = getattr(hf_config, "quantization_config", None)
            is_mxfp4_quant_format = (
                quantization_config is not None
                and quantization_config.get("quant_method") == "mxfp4"
            )

            if is_sm100_supported() and is_mxfp4_quant_format:
2532
                self.moe_runner_backend = "flashinfer_mxfp4"
2533
2534
2535
2536
                logger.warning(
                    "Detected SM100 and MXFP4 quantization format for GPT-OSS model, enabling FlashInfer MXFP4 MOE kernel."
                )
            else:
2537
                if self.moe_runner_backend == "triton_kernel":
2538
2539
2540
                    assert (
                        self.ep_size == 1
                    ), "Triton kernel MoE is only supported when ep_size == 1"
2541
2542
2543
2544
2545
2546
                if (
                    self.moe_runner_backend == "auto"
                    and self.ep_size == 1
                    and is_triton_kernels_available()
                ):
                    self.moe_runner_backend = "triton_kernel"
2547
2548
2549
2550
2551
2552
2553
                    logger.warning(
                        "Detected GPT-OSS model, enabling triton_kernels MOE kernel."
                    )
            self.disable_hybrid_swa_memory = True
            if is_mxfp4_quant_format:
                # use bf16 for mxfp4 triton kernels
                self.dtype = "bfloat16"
2554

2555
        elif "Llama4" in model_arch:
2556
2557
2558
            assert self.attention_backend in {
                "fa3",
                "aiter",
2559
2560
                "triton",
            }, "fa3, aiter, or triton is required for Llama4 model"
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
        elif model_arch in [
            "Gemma2ForCausalLM",
            "Gemma3ForCausalLM",
            "Gemma3ForConditionalGeneration",
            "Gemma3nForCausalLM",
            "Gemma3nForConditionalGeneration",
        ]:
            # FIXME: https://github.com/sgl-project/sglang/pull/7367 is not compatible with gemma2 model.
            # It failed at this test: https://github.com/sgl-project/sglang/actions/runs/16255155597/job/45890331952#step:4:736
            logger.warning(
                f"Disable hybrid SWA memory for {model_arch} as it is not yet supported."
            )
            self.disable_hybrid_swa_memory = True

Lianmin Zheng's avatar
Lianmin Zheng committed
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
    def adjust_mem_fraction_for_vlm(self, model_config):
        vision_config = getattr(model_config.hf_config, "vision_config", None)
        if vision_config is None:
            return

        # roughly reduce the mem_fraction_static base on params of Vit
        original_server_arg_mem_fraction = self.mem_fraction_static
        # a base mem_fraction_static factor for regular Vit
        base_mem_fraction_reduction_ratio = 0.95

        vit_num_layers = getattr(vision_config, "num_hidden_layers", 24)
        vit_hidden_size = getattr(vision_config, "hidden_size", 1024)

        # baseline ViT params (ViT-L/14)
        baseline_vit_layers = 24
        baseline_vit_hidden_size = 1024

        # weight params count
        current_complexity_score = vit_num_layers * (vit_hidden_size**2)
        baseline_complexity_score = baseline_vit_layers * (baseline_vit_hidden_size**2)
        complexity_ratio = (
            current_complexity_score / baseline_complexity_score
            if baseline_complexity_score > 0
            else 1.0
        )

        # every time the complexity grows 100%, adjust final factor for 10%
        sensitivity_scale = 0.1
        dynamic_adjustment_factor = 1.0 - sensitivity_scale * (complexity_ratio - 1.0)
        dynamic_adjustment_factor = max(0.8, min(1.05, dynamic_adjustment_factor))

        final_overall_factor = (
            base_mem_fraction_reduction_ratio * dynamic_adjustment_factor
        )
        self.mem_fraction_static = (
            original_server_arg_mem_fraction * final_overall_factor
        )

Lianmin Zheng's avatar
Lianmin Zheng committed
2613

Lianmin Zheng's avatar
Lianmin Zheng committed
2614
def prepare_server_args(argv: List[str]) -> ServerArgs:
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
    """
    Prepare the server arguments from the command line arguments.

    Args:
        args: The command line arguments. Typically, it should be `sys.argv[1:]`
            to ensure compatibility with `parse_args` when no arguments are passed.

    Returns:
        The server arguments.
    """
    parser = argparse.ArgumentParser()
    ServerArgs.add_cli_args(parser)
Lianmin Zheng's avatar
Lianmin Zheng committed
2627
    raw_args = parser.parse_args(argv)
2628
2629
2630
2631
    server_args = ServerArgs.from_cli_args(raw_args)
    return server_args


2632
2633
2634
ZMQ_TCP_PORT_DELTA = 233


Lianmin Zheng's avatar
Lianmin Zheng committed
2635
2636
@dataclasses.dataclass
class PortArgs:
2637
2638
2639
2640
2641
2642
    # The ipc filename for tokenizer to receive inputs from detokenizer (zmq)
    tokenizer_ipc_name: str
    # The ipc filename for scheduler (rank 0) to receive inputs from tokenizer (zmq)
    scheduler_input_ipc_name: str
    # The ipc filename for detokenizer to receive inputs from scheduler (zmq)
    detokenizer_ipc_name: str
2643

2644
2645
    # The port for nccl initialization (torch.dist)
    nccl_port: int
2646

2647
2648
2649
    # The ipc filename for rpc call between Engine and Scheduler
    rpc_ipc_name: str

2650
2651
2652
    # The ipc filename for Scheduler to send metrics
    metrics_ipc_name: str

2653
2654
2655
    # The ipc filename for Tokenizer and worker tokenizer
    tokenizer_worker_ipc_name: Optional[str]

2656
    @staticmethod
2657
    def init_new(server_args, dp_rank: Optional[int] = None) -> "PortArgs":
2658
        if server_args.nccl_port is None:
Lianmin Zheng's avatar
Lianmin Zheng committed
2659
            nccl_port = server_args.port + random.randint(100, 1000)
2660
            while True:
Lianmin Zheng's avatar
Lianmin Zheng committed
2661
                if is_port_available(nccl_port):
2662
                    break
Lianmin Zheng's avatar
Lianmin Zheng committed
2663
2664
                if nccl_port < 60000:
                    nccl_port += 42
2665
                else:
Lianmin Zheng's avatar
Lianmin Zheng committed
2666
                    nccl_port -= 43
2667
        else:
Lianmin Zheng's avatar
Lianmin Zheng committed
2668
            nccl_port = server_args.nccl_port
2669

2670
2671
2672
2673
2674
2675
        if not server_args.enable_dp_attention:
            # Normal case, use IPC within a single node
            return PortArgs(
                tokenizer_ipc_name=f"ipc://{tempfile.NamedTemporaryFile(delete=False).name}",
                scheduler_input_ipc_name=f"ipc://{tempfile.NamedTemporaryFile(delete=False).name}",
                detokenizer_ipc_name=f"ipc://{tempfile.NamedTemporaryFile(delete=False).name}",
Lianmin Zheng's avatar
Lianmin Zheng committed
2676
                nccl_port=nccl_port,
2677
                rpc_ipc_name=f"ipc://{tempfile.NamedTemporaryFile(delete=False).name}",
2678
                metrics_ipc_name=f"ipc://{tempfile.NamedTemporaryFile(delete=False).name}",
2679
                tokenizer_worker_ipc_name=None,
2680
2681
2682
2683
2684
            )
        else:
            # DP attention. Use TCP + port to handle both single-node and multi-node.
            if server_args.nnodes == 1 and server_args.dist_init_addr is None:
                dist_init_addr = ("127.0.0.1", server_args.port + ZMQ_TCP_PORT_DELTA)
Vincent's avatar
Vincent committed
2685
2686
2687
            elif server_args.dist_init_addr.startswith("["):  # ipv6 address
                port_num, host = configure_ipv6(server_args.dist_init_addr)
                dist_init_addr = (host, str(port_num))
2688
2689
            else:
                dist_init_addr = server_args.dist_init_addr.split(":")
Vincent's avatar
Vincent committed
2690

2691
2692
2693
2694
2695
2696
            assert (
                len(dist_init_addr) == 2
            ), "please provide --dist-init-addr as host:port of head node"

            dist_init_host, dist_init_port = dist_init_addr
            port_base = int(dist_init_port) + 1
2697
2698
2699
            detokenizer_port = port_base + 1
            rpc_port = port_base + 2
            metrics_ipc_name = port_base + 3
2700
            if dp_rank is None:
2701
                # TokenizerManager to DataParallelController
2702
                scheduler_input_port = port_base + 4
2703
            else:
2704
                scheduler_input_port = port_base + 4 + 1 + dp_rank
2705
2706
2707
2708

            return PortArgs(
                tokenizer_ipc_name=f"tcp://{dist_init_host}:{port_base}",
                scheduler_input_ipc_name=f"tcp://{dist_init_host}:{scheduler_input_port}",
2709
                detokenizer_ipc_name=f"tcp://{dist_init_host}:{detokenizer_port}",
Lianmin Zheng's avatar
Lianmin Zheng committed
2710
                nccl_port=nccl_port,
2711
2712
                rpc_ipc_name=f"tcp://{dist_init_host}:{rpc_port}",
                metrics_ipc_name=f"tcp://{dist_init_host}:{metrics_ipc_name}",
2713
                tokenizer_worker_ipc_name=None,
2714
            )
2715

2716
2717
2718

class LoRAPathAction(argparse.Action):
    def __call__(self, parser, namespace, values, option_string=None):
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
        lora_paths = []
        if values:
            assert isinstance(values, list), "Expected a list of LoRA paths."
            for lora_path in values:
                lora_path = lora_path.strip()
                if lora_path.startswith("{") and lora_path.endswith("}"):
                    obj = json.loads(lora_path)
                    assert "lora_path" in obj and "lora_name" in obj, (
                        f"{repr(lora_path)} looks like a JSON str, "
                        "but it does not contain 'lora_name' and 'lora_path' keys."
                    )
                    lora_paths.append(obj)
                else:
                    lora_paths.append(lora_path)

        setattr(namespace, self.dest, lora_paths)
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744


class DeprecatedAction(argparse.Action):
    def __init__(self, option_strings, dest, nargs=0, **kwargs):
        super(DeprecatedAction, self).__init__(
            option_strings, dest, nargs=nargs, **kwargs
        )

    def __call__(self, parser, namespace, values, option_string=None):
        raise ValueError(self.help)
2745
2746


2747
2748
2749
2750
def print_deprecated_warning(message: str):
    logger.warning(f"\033[33m{message}\033[0m")


2751
def auto_choose_speculative_params(self: ServerArgs):
2752
2753
2754
2755
2756
    """
    Automatically choose the parameters for speculative decoding.

    You can tune them on your own models and prompts with scripts/playground/bench_speculative.py
    """
Lianmin Zheng's avatar
Lianmin Zheng committed
2757
    hf_config = self.get_hf_config()
2758
    arch = hf_config.architectures[0]
2759
2760
2761
    if self.speculative_algorithm == "STANDALONE":
        # The default value for standalone speculative decoding
        return (3, 1, 4)
2762
2763
2764
    if arch in ["LlamaForCausalLM"]:
        # The default value for llama
        return (5, 4, 8)
2765
2766
2767
2768
    elif arch in [
        "DeepseekV3ForCausalLM",
        "DeepseekV2ForCausalLM",
        "GptOssForCausalLM",
strgrb's avatar
strgrb committed
2769
2770
        "BailingMoeForCausalLM",
        "BailingMoeV2ForCausalLM",
2771
2772
    ]:
        # The default value for deepseek and gpt-oss
2773
        return (3, 1, 4)
2774
2775
2776
2777
2778
    elif arch in ["Grok1ForCausalLM", "Grok1VForCausalLM"]:
        return (5, 4, 8)
    else:
        # The default value for all other models
        return (5, 4, 8)