server_args.py 84.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
Lianmin Zheng's avatar
Lianmin Zheng committed
14
15
"""The arguments of the server."""

Lianmin Zheng's avatar
Lianmin Zheng committed
16
17
import argparse
import dataclasses
18
import json
19
import logging
20
import os
21
import random
22
import sys
23
import tempfile
24
from typing import List, Literal, Optional, Union
Lianmin Zheng's avatar
Lianmin Zheng committed
25

26
from sglang.srt.hf_transformers_utils import check_gguf_file, get_config
27
from sglang.srt.lora.lora_registry import LoRARef
Xihuai Wang's avatar
Xihuai Wang committed
28
from sglang.srt.reasoning_parser import ReasoningParser
29
from sglang.srt.utils import (
30
31
    LORA_TARGET_ALL_MODULES,
    SUPPORTED_LORA_TARGET_MODULES,
Vincent's avatar
Vincent committed
32
    configure_ipv6,
33
    get_device,
Lianmin Zheng's avatar
Lianmin Zheng committed
34
    get_device_memory_capacity,
35
    is_flashinfer_available,
HAI's avatar
HAI committed
36
    is_hip,
37
    is_port_available,
38
    is_remote_url,
39
    is_valid_ipv6_address,
bjmsong's avatar
bjmsong committed
40
    nullable_str,
41
)
42

43
44
logger = logging.getLogger(__name__)

Lianmin Zheng's avatar
Lianmin Zheng committed
45
46
47

@dataclasses.dataclass
class ServerArgs:
Lianmin Zheng's avatar
Lianmin Zheng committed
48
    # Model and tokenizer
Lianmin Zheng's avatar
Lianmin Zheng committed
49
50
51
    model_path: str
    tokenizer_path: Optional[str] = None
    tokenizer_mode: str = "auto"
52
    skip_tokenizer_init: bool = False
Lianmin Zheng's avatar
Lianmin Zheng committed
53
    load_format: str = "auto"
54
    model_loader_extra_config: str = "{}"
55
    trust_remote_code: bool = False
56
    context_length: Optional[int] = None
57
    is_embedding: bool = False
58
    enable_multimodal: Optional[bool] = None
59
    revision: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
60
    model_impl: str = "auto"
Lianmin Zheng's avatar
Lianmin Zheng committed
61

Lianmin Zheng's avatar
Lianmin Zheng committed
62
    # HTTP server
Lianmin Zheng's avatar
Lianmin Zheng committed
63
64
    host: str = "127.0.0.1"
    port: int = 30000
Lianmin Zheng's avatar
Lianmin Zheng committed
65
66
    skip_server_warmup: bool = False
    warmups: Optional[str] = None
67
    nccl_port: Optional[int] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
68

Lianmin Zheng's avatar
Lianmin Zheng committed
69
70
71
72
73
74
    # Quantization and data type
    dtype: str = "auto"
    quantization: Optional[str] = None
    quantization_param_path: Optional[str] = None
    kv_cache_dtype: str = "auto"

Lianmin Zheng's avatar
Lianmin Zheng committed
75
    # Memory and scheduling
Lianmin Zheng's avatar
Lianmin Zheng committed
76
    mem_fraction_static: Optional[float] = None
77
    max_running_requests: Optional[int] = None
78
    max_queued_requests: Optional[int] = sys.maxsize
79
    max_total_tokens: Optional[int] = None
80
    chunked_prefill_size: Optional[int] = None
81
    max_prefill_tokens: int = 16384
82
    schedule_policy: str = "fcfs"
83
    schedule_conservativeness: float = 1.0
84
    cpu_offload_gb: int = 0
85
    page_size: Optional[int] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
86
87
88
    hybrid_kvcache_ratio: Optional[float] = None
    swa_full_tokens_ratio: float = 0.8
    disable_hybrid_swa_memory: bool = False
Lianmin Zheng's avatar
Lianmin Zheng committed
89

Lianmin Zheng's avatar
Lianmin Zheng committed
90
91
    # Runtime options
    device: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
92
    tp_size: int = 1
93
94
    pp_size: int = 1
    max_micro_batch_size: Optional[int] = None
95
    stream_interval: int = 1
96
    stream_output: bool = False
97
    random_seed: Optional[int] = None
98
    constrained_json_whitespace_pattern: Optional[str] = None
99
    watchdog_timeout: float = 300
100
    dist_timeout: Optional[int] = None  # timeout for torch.distributed
101
    download_dir: Optional[str] = None
102
    base_gpu_id: int = 0
103
    gpu_id_step: int = 1
104
    sleep_on_idle: bool = False
Lianmin Zheng's avatar
Lianmin Zheng committed
105
106
107

    # Logging
    log_level: str = "info"
108
    log_level_http: Optional[str] = None
109
    log_requests: bool = False
110
    log_requests_level: int = 0
111
    crash_dump_folder: Optional[str] = None
Liangsheng Yin's avatar
Liangsheng Yin committed
112
    show_time_cost: bool = False
113
    enable_metrics: bool = False
114
    enable_metrics_for_all_schedulers: bool = False
115
116
    bucket_time_to_first_token: Optional[List[float]] = None
    bucket_inter_token_latency: Optional[List[float]] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
117
    bucket_e2e_request_latency: Optional[List[float]] = None
118
    collect_tokens_histogram: bool = False
119
    decode_log_interval: int = 40
120
    enable_request_time_stats_logging: bool = False
121
    kv_events_config: Optional[str] = None
Liangsheng Yin's avatar
Liangsheng Yin committed
122

123
    # API related
124
    api_key: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
125
126
127
    served_model_name: Optional[str] = None
    chat_template: Optional[str] = None
    completion_template: Optional[str] = None
128
    file_storage_path: str = "sglang_storage"
129
    enable_cache_report: bool = False
Xihuai Wang's avatar
Xihuai Wang committed
130
    reasoning_parser: Optional[str] = None
131
    tool_call_parser: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
132

133
134
135
    # Data parallelism
    dp_size: int = 1
    load_balance_method: str = "round_robin"
136

137
    # Multi-node distributed serving
138
    dist_init_addr: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
139
    nnodes: int = 1
140
    node_rank: int = 0
Lianmin Zheng's avatar
Lianmin Zheng committed
141
142
143

    # Model override args in JSON
    json_model_override_args: str = "{}"
144
    preferred_sampling_params: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
145

146
    # LoRA
147
    enable_lora: Optional[bool] = None
148
    max_lora_rank: Optional[int] = None
149
    lora_target_modules: Optional[Union[set[str], List[str]]] = None
150
    lora_paths: Optional[Union[dict[str, str], dict[str, LoRARef], List[str]]] = None
151
    max_loras_per_batch: int = 8
152
    lora_backend: str = "triton"
153
154

    # Kernel backend
155
    attention_backend: Optional[str] = None
156
157
    decode_attention_backend: Optional[str] = None
    prefill_attention_backend: Optional[str] = None
158
    sampling_backend: Optional[str] = None
159
    grammar_backend: Optional[str] = None
160
    mm_attention_backend: Optional[str] = None
161

162
163
    # Speculative decoding
    speculative_algorithm: Optional[str] = None
164
    speculative_draft_model_path: Optional[str] = None
165
166
167
    speculative_num_steps: Optional[int] = None
    speculative_eagle_topk: Optional[int] = None
    speculative_num_draft_tokens: Optional[int] = None
168
169
    speculative_accept_threshold_single: float = 1.0
    speculative_accept_threshold_acc: float = 1.0
170
    speculative_token_map: Optional[str] = None
171

172
173
174
175
    # Expert parallelism
    ep_size: int = 1
    enable_ep_moe: bool = False
    enable_deepep_moe: bool = False
176
177
    enable_flashinfer_cutlass_moe: bool = False
    enable_flashinfer_trtllm_moe: bool = False
178
    enable_flashinfer_allreduce_fusion: bool = False
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
    deepep_mode: Optional[Literal["auto", "normal", "low_latency"]] = "auto"
    ep_num_redundant_experts: int = 0
    ep_dispatch_algorithm: Optional[Literal["static", "dynamic", "fake"]] = None
    init_expert_location: str = "trivial"
    enable_eplb: bool = False
    eplb_algorithm: str = "auto"
    eplb_rebalance_num_iterations: int = 1000
    eplb_rebalance_layers_per_chunk: Optional[int] = None
    expert_distribution_recorder_mode: Optional[
        Literal["stat", "stat_approx", "per_pass", "per_token"]
    ] = None
    expert_distribution_recorder_buffer_size: Optional[int] = None
    enable_expert_distribution_metrics: bool = False
    deepep_config: Optional[str] = None
    moe_dense_tp_size: Optional[int] = None

Lianmin Zheng's avatar
Lianmin Zheng committed
195
196
197
198
199
200
201
202
    # Hierarchical cache
    enable_hierarchical_cache: bool = False
    hicache_ratio: float = 2.0
    hicache_size: int = 0
    hicache_write_policy: str = "write_through_selective"
    hicache_io_backend: str = ""
    hicache_storage_backend: Optional[str] = None

203
204
    # Double Sparsity
    enable_double_sparsity: bool = False
Vincent's avatar
Vincent committed
205
    ds_channel_config_path: Optional[str] = None
206
207
208
209
210
    ds_heavy_channel_num: int = 32
    ds_heavy_token_num: int = 256
    ds_heavy_channel_type: str = "qk"
    ds_sparse_decode_threshold: int = 4096

211
    # Optimization/debug options
Lianmin Zheng's avatar
Lianmin Zheng committed
212
    disable_radix_cache: bool = False
213
214
    cuda_graph_max_bs: Optional[int] = None
    cuda_graph_bs: Optional[List[int]] = None
215
    disable_cuda_graph: bool = False
216
    disable_cuda_graph_padding: bool = False
217
    enable_profile_cuda_graph: bool = False
218
    enable_nccl_nvls: bool = False
219
    enable_tokenizer_batch_encode: bool = False
220
    disable_outlines_disk_cache: bool = False
221
    disable_custom_all_reduce: bool = False
222
    enable_mscclpp: bool = False
223
    disable_overlap_schedule: bool = False
224
    enable_mixed_chunk: bool = False
Ke Bao's avatar
Ke Bao committed
225
    enable_dp_attention: bool = False
226
    enable_dp_lm_head: bool = False
227
    enable_two_batch_overlap: bool = False
228
    enable_torch_compile: bool = False
229
    torch_compile_max_bs: int = 32
230
    torchao_config: str = ""
231
    enable_nan_detection: bool = False
232
    enable_p2p_check: bool = False
233
    triton_attention_reduce_in_fp32: bool = False
234
    triton_attention_num_kv_splits: int = 8
235
    num_continuous_decode_steps: int = 1
236
    delete_ckpt_after_loading: bool = False
237
    enable_memory_saver: bool = False
238
    allow_auto_truncate: bool = False
239
    enable_custom_logit_processor: bool = False
240
    flashinfer_mla_disable_ragged: bool = False
241
    disable_shared_experts_fusion: bool = False
242
    disable_chunked_prefix_cache: bool = False
Lianmin Zheng's avatar
Lianmin Zheng committed
243
    disable_fast_image_processor: bool = False
244
    enable_return_hidden_states: bool = False
Yuan Luo's avatar
Yuan Luo committed
245
    enable_triton_kernel_moe: bool = False
246
247
248
249
250

    # Debug tensor dumps
    debug_tensor_dump_output_folder: Optional[str] = None
    debug_tensor_dump_input_file: Optional[str] = None
    debug_tensor_dump_inject: bool = False
251
    debug_tensor_dump_prefill_only: bool = False
252

Lianmin Zheng's avatar
Lianmin Zheng committed
253
    # PD disaggregation: can be "null" (not disaggregated), "prefill" (prefill-only), or "decode" (decode-only)
Byron Hsu's avatar
Byron Hsu committed
254
    disaggregation_mode: str = "null"
255
    disaggregation_transfer_backend: str = "mooncake"
256
    disaggregation_bootstrap_port: int = 8998
Byron Hsu's avatar
Byron Hsu committed
257
258
259
    disaggregation_decode_tp: Optional[int] = None
    disaggregation_decode_dp: Optional[int] = None
    disaggregation_prefill_pp: Optional[int] = 1
260
    disaggregation_ib_device: Optional[str] = None
261
    num_reserved_decode_tokens: int = 512  # used for decode kv cache offload in PD
262
    pdlb_url: Optional[str] = None
Byron Hsu's avatar
Byron Hsu committed
263

264
265
    # For model weight update
    custom_weight_loader: Optional[List[str]] = None
266
    weight_loader_disable_mmap: bool = False
267

268
269
270
271
    # For PD-Multiplexing
    enable_pdmux: bool = False
    sm_group_num: int = 3

Lianmin Zheng's avatar
Lianmin Zheng committed
272
    def __post_init__(self):
273
        # Set missing default values
Lianmin Zheng's avatar
Lianmin Zheng committed
274
275
        if self.tokenizer_path is None:
            self.tokenizer_path = self.model_path
276
277
        if self.served_model_name is None:
            self.served_model_name = self.model_path
278
279
        if self.device is None:
            self.device = get_device()
280
281
282
        if self.random_seed is None:
            self.random_seed = random.randint(0, 1 << 30)

Lianmin Zheng's avatar
Lianmin Zheng committed
283
        gpu_mem = get_device_memory_capacity(self.device)
284

285
        # Set mem fraction static
Lianmin Zheng's avatar
Lianmin Zheng committed
286
        if self.mem_fraction_static is None:
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
            if gpu_mem is not None:
                # GPU memory capacity = model weights + KV cache pool + activations + cuda graph buffers
                # mem_fraction_static = (model weights + KV cache pool) / GPU memory capacity.

                # We want mem_fraction_static to be as large as possible but still has enough room
                # for activations and cuda graph buffers. We use the following heuristic to
                # compute the needed size for activations and cuda graph buffers:
                # - The size of the activation depends on the chunked_prefill_size and model size.
                # - The size of cuda graph buffers depends on the cuda graph capture range and model size.
                # For GPUs with more memory, we use a larger chunked_prefill_size and
                # capture more cuda graphs, so they need to reserve more memory.
                parallel_size = self.tp_size * self.pp_size

                if gpu_mem < 20 * 1024:
                    # T4, 4080. (chunked_prefill_size 2k, cuda_graph_max_bs 8)
                    reserved_mem = (2.8 + parallel_size / 10) * 1024
                elif gpu_mem < 35 * 1024:
                    # A10, L40, 4090, 5090. (chunked_prefill_size 2k, cuda_graph_max_bs 8)
                    reserved_mem = (2.8 + parallel_size / 10) * 1024
                elif gpu_mem < 90 * 1024:
                    # H100, A100. (chunked_prefill_size 8k, cuda_graph_max_bs 160)
                    reserved_mem = (9.5 + parallel_size / 2) * 1024
                elif gpu_mem < 100 * 1024:
                    # H20. (chunked_prefill_size 8k, cuda_graph_max_bs 256)
                    reserved_mem = (12 + parallel_size / 2) * 1024
                elif gpu_mem < 160 * 1024:
                    # H200. (chunked_prefill_size 8k, cuda_graph_max_bs 256)
                    reserved_mem = (12 + parallel_size / 2) * 1024
315
                else:
316
317
318
                    # B200, MI300. (chunked_prefill_size 16k, cuda_graph_max_bs 512)
                    reserved_mem = 32 * 1024

319
                if self.speculative_algorithm is not None:
320
321
322
323
324
325
                    # draft model and larger cuda graph buffers
                    reserved_mem += 2 * 1024
                if self.enable_dp_attention:
                    reserved_mem += 4 * 1024

                self.mem_fraction_static = round((gpu_mem - reserved_mem) / gpu_mem, 3)
326
            else:
327
                self.mem_fraction_static = 0.88
328

329
            # Lazy init to avoid circular import
Lianmin Zheng's avatar
Lianmin Zheng committed
330
            # Multimodal models need more memory for the image processor
331
332
333
            from sglang.srt.configs.model_config import ModelConfig

            model_config = ModelConfig.from_server_args(self)
Lianmin Zheng's avatar
Lianmin Zheng committed
334
335
            if model_config.is_multimodal:
                self.adjust_mem_fraction_for_vlm(model_config)
336

337
338
        # Set chunked prefill size, which depends on the gpu memory capacity
        if self.chunked_prefill_size is None:
339
340
341
342
343
344
345
            if gpu_mem is not None:
                if gpu_mem < 35 * 1024:  # A10, L40, 4090
                    self.chunked_prefill_size = 2048
                elif gpu_mem < 160 * 1024:  # H100, H200, A100, H20
                    self.chunked_prefill_size = 8192
                else:  # B200, MI300
                    self.chunked_prefill_size = 16384
346
            else:
347
                self.chunked_prefill_size = 4096
Lianmin Zheng's avatar
Lianmin Zheng committed
348

349
350
351
352
353
354
355
356
357
        # Set cuda graph max batch size
        if self.cuda_graph_max_bs is None:
            # Based on detailed statistics, when serving TP1/TP2 models on lower-end GPUs with HBM<25G, you can either disable cuda graph or set `cuda_graph_max_bs` to a very small value to reduce the memory overhead of creating cuda graphs, with almost no impact on performance. However, when serving models with TP4 or TP8, we need to enable cuda graph to maintain high performance. In this case, we can set `cuda_graph_max_bs` to 80 (half of the default value 160) to reduce the memory overhead of creating cuda graphs. Looking at the logs from TP4 serving of qwen2-72b, a value of 80 is sufficient and can reduce the memory overhead of creating cuda graphs on lower-end GPUs compared to the original 160, avoiding OOM issues.
            if gpu_mem is not None and gpu_mem < 35 * 1024:
                if self.tp_size < 4:
                    self.cuda_graph_max_bs = 8
                else:
                    self.cuda_graph_max_bs = 80

358
        # Set kernel backends for hpu device
359
360
361
362
        if self.device == "hpu":
            self.attention_backend = "torch_native"
            self.sampling_backend = "pytorch"

Lianmin Zheng's avatar
Lianmin Zheng committed
363
        # Set kernel backends
364
365
366
367
368
        if self.device == "cpu":
            if self.attention_backend is None:
                self.attention_backend = "intel_amx"
            self.sampling_backend = "pytorch"

369
        if self.sampling_backend is None:
370
371
372
373
374
            self.sampling_backend = (
                "flashinfer" if is_flashinfer_available() else "pytorch"
            )

        if self.attention_backend == "torch_native":
375
            logger.warning(
376
377
378
                "Cuda graph is disabled because of using torch native attention backend"
            )
            self.disable_cuda_graph = True
379

380
381
382
383
384
385
        if self.attention_backend == "ascend":
            logger.warning(
                "At this moment Ascend attention backend only supports a page_size of 128, change page_size to 128."
            )
            self.page_size = 128

386
387
388
389
        if (
            self.attention_backend == "flashmla"
            or self.decode_attention_backend == "flashmla"
        ):
Lianmin Zheng's avatar
Lianmin Zheng committed
390
391
392
393
394
            logger.warning(
                "FlashMLA only supports a page_size of 64, change page_size to 64."
            )
            self.page_size = 64

395
396
397
398
        if (
            self.attention_backend == "cutlass_mla"
            or self.decode_attention_backend == "cutlass_mla"
        ):
Lianmin Zheng's avatar
Lianmin Zheng committed
399
400
401
402
403
            logger.warning(
                "Cutlass MLA only supports a page_size of 128, change page_size to 128."
            )
            self.page_size = 128

404
405
406
407
408
409
410
411
        # Set page size
        if self.page_size is None:
            self.page_size = 1

        # AMD-specific Triton attention KV splits default number
        if is_hip():
            self.triton_attention_num_kv_splits = 16

412
413
414
        # Choose grammar backend
        if self.grammar_backend is None:
            self.grammar_backend = "xgrammar"
415

416
        # Data parallelism attention
Ke Bao's avatar
Ke Bao committed
417
        if self.enable_dp_attention:
418
            self.schedule_conservativeness = self.schedule_conservativeness * 0.3
Lianmin Zheng's avatar
Lianmin Zheng committed
419
420
421
422
423
            assert (
                self.dp_size > 1
            ), "Please set a dp-size > 1. You can use 1 < dp-size <= tp-size "
            assert self.tp_size % self.dp_size == 0
            self.chunked_prefill_size = self.chunked_prefill_size // self.dp_size
424
            logger.warning(
425
                f"DP attention is enabled. The chunked prefill size is adjusted to {self.chunked_prefill_size} to avoid MoE kernel issues. "
426
            )
427

428
429
430
        if self.enable_dp_lm_head:
            assert (
                self.enable_dp_attention
431
            ), "Please enable dp attention when setting enable_dp_lm_head. "
432

433
        # MoE kernel
434
        if self.enable_flashinfer_cutlass_moe:
435
436
437
438
439
            assert (
                self.quantization == "modelopt_fp4"
            ), "modelopt_fp4 quantization is required for Flashinfer MOE"
            os.environ["TRTLLM_ENABLE_PDL"] = "1"

440
441
442
443
        if self.enable_flashinfer_trtllm_moe:
            assert self.enable_ep_moe, "EP MoE is required for Flashinfer TRTLLM MOE"
            logger.warning(f"Flashinfer TRTLLM MoE is enabled.")

444
445
        # DeepEP MoE
        if self.enable_deepep_moe:
446
447
448
            if self.deepep_mode == "normal":
                logger.warning("Cuda graph is disabled because deepep_mode=`normal`")
                self.disable_cuda_graph = True
449
            self.ep_size = self.tp_size
Lianmin Zheng's avatar
Lianmin Zheng committed
450
            logger.warning(
451
452
                f"DeepEP MoE is enabled. The expert parallel size is adjusted to be the same as the tensor parallel size[{self.tp_size}]."
            )
453

454
455
456
        if self.enable_eplb and (self.expert_distribution_recorder_mode is None):
            self.expert_distribution_recorder_mode = "stat"
            logger.info(
457
                "EPLB is enabled. The expert_distribution_recorder_mode is automatically set."
458
459
460
461
462
463
464
            )

        if (self.enable_eplb or (self.init_expert_location is not None)) and (
            self.ep_dispatch_algorithm is None
        ):
            self.ep_dispatch_algorithm = "static"
            logger.info(
465
                "EPLB is enabled or init_expert_location is provided. ep_dispatch_algorithm is configured."
466
467
            )

468
469
470
        if self.enable_eplb:
            assert self.enable_ep_moe or self.enable_deepep_moe

471
472
473
474
475
        if self.enable_expert_distribution_metrics and (
            self.expert_distribution_recorder_mode is None
        ):
            self.expert_distribution_recorder_mode = "stat"

476
        if self.expert_distribution_recorder_buffer_size is None:
477
478
            if (x := self.eplb_rebalance_num_iterations) is not None:
                self.expert_distribution_recorder_buffer_size = x
479
480
481
            elif self.expert_distribution_recorder_mode is not None:
                self.expert_distribution_recorder_buffer_size = 1000

Lianmin Zheng's avatar
Lianmin Zheng committed
482
483
484
485
486
487
488
        # Pipeline parallelism
        if self.pp_size > 1:
            self.disable_overlap_schedule = True
            logger.warning(
                "Pipeline parallelism is incompatible with overlap schedule."
            )

489
        # Speculative Decoding
490
491
492
493
        if self.speculative_algorithm == "NEXTN":
            # NEXTN shares the same implementation of EAGLE
            self.speculative_algorithm = "EAGLE"

Lianmin Zheng's avatar
Lianmin Zheng committed
494
        if self.speculative_algorithm in ("EAGLE", "EAGLE3"):
495
            if self.max_running_requests is None:
496
                self.max_running_requests = 48
497
            self.disable_overlap_schedule = True
Lianmin Zheng's avatar
Lianmin Zheng committed
498
            logger.warning(
499
                "Overlap scheduler is disabled because of using "
500
                "eagle speculative decoding."
501
            )
502
503
504
505
506
507
            if self.enable_mixed_chunk:
                self.enable_mixed_chunk = False
                logger.warning(
                    "Mixed chunked prefill is disabled because of using "
                    "eagle speculative decoding."
                )
508

Lianmin Zheng's avatar
Lianmin Zheng committed
509
            model_arch = self.get_hf_config().architectures[0]
Yuxuan Zhang's avatar
Yuxuan Zhang committed
510
            if model_arch in ["DeepseekV3ForCausalLM", "Glm4MoeForCausalLM"]:
Hanming Lu's avatar
Hanming Lu committed
511
                # Auto set draft_model_path DeepSeek-V3/R1
512
513
514
515
516
517
                if self.speculative_draft_model_path is None:
                    self.speculative_draft_model_path = self.model_path
                else:
                    logger.warning(
                        "DeepSeek MTP does not require setting speculative_draft_model_path."
                    )
518

519
520
521
522
523
524
525
526
527
528
            # Auto choose parameters
            if self.speculative_num_steps is None:
                assert (
                    self.speculative_eagle_topk is None
                    and self.speculative_num_draft_tokens is None
                )
                (
                    self.speculative_num_steps,
                    self.speculative_eagle_topk,
                    self.speculative_num_draft_tokens,
529
                ) = auto_choose_speculative_params(self)
530

531
532
533
534
            if (
                self.speculative_eagle_topk == 1
                and self.speculative_num_draft_tokens != self.speculative_num_steps + 1
            ):
Lianmin Zheng's avatar
Lianmin Zheng committed
535
                logger.warning(
536
537
538
                    "speculative_num_draft_tokens is adjusted to speculative_num_steps + 1 when speculative_eagle_topk == 1"
                )
                self.speculative_num_draft_tokens = self.speculative_num_steps + 1
539

540
            # The token generated from the verify step is counted.
541
            # If sepculative_num_steps >= speculative_num_draft_tokens, the additional tokens will definitely be discarded.
542
            # assert self.speculative_num_steps < self.speculative_num_draft_tokens
543

544
545
546
547
548
549
        # GGUF
        if (
            self.load_format == "auto" or self.load_format == "gguf"
        ) and check_gguf_file(self.model_path):
            self.quantization = self.load_format = "gguf"

550
        # Model loading
551
552
        if is_remote_url(self.model_path):
            self.load_format = "remote"
553
554
        if self.custom_weight_loader is None:
            self.custom_weight_loader = []
555

Byron Hsu's avatar
Byron Hsu committed
556
        # PD disaggregation
Byron Hsu's avatar
Byron Hsu committed
557
558
559
560
561
562
563
564
        if self.disaggregation_mode == "decode":
            assert (
                self.disaggregation_decode_tp is None
            ), "Cannot set --disaggregation-decode-tp for the decode engine."
            assert (
                self.disaggregation_decode_dp is None
            ), "Cannot set --disaggregation-decode-dp for the decode engine."

Byron Hsu's avatar
Byron Hsu committed
565
            self.disable_radix_cache = True
566
            logger.warning("KV cache is forced as chunk cache for decode server")
Byron Hsu's avatar
Byron Hsu committed
567
568
569
570
571
572
573
574
575
576
577
        elif self.disaggregation_mode == "prefill":
            if self.disaggregation_decode_tp is None:
                self.disaggregation_decode_tp = self.tp_size
            if self.disaggregation_decode_dp is None:
                self.disaggregation_decode_dp = self.dp_size

            self.disaggregation_prefill_pp = self.pp_size
            self.validate_disagg_tp_size(self.tp_size, self.disaggregation_decode_tp)

            self.disable_cuda_graph = True
            logger.warning("Cuda graph is disabled for prefill server")
Byron Hsu's avatar
Byron Hsu committed
578

579
        # Propagate env vars
580
581
582
        os.environ["SGLANG_ENABLE_TORCH_COMPILE"] = (
            "1" if self.enable_torch_compile else "0"
        )
583
584
585
586
        # Set env var before grammar backends init
        os.environ["SGLANG_DISABLE_OUTLINES_DISK_CACHE"] = (
            "1" if self.disable_outlines_disk_cache else "0"
        )
587

Lianmin Zheng's avatar
Lianmin Zheng committed
588
589
    @staticmethod
    def add_cli_args(parser: argparse.ArgumentParser):
Lianmin Zheng's avatar
Lianmin Zheng committed
590
        # Model and tokenizer
Lianmin Zheng's avatar
Lianmin Zheng committed
591
592
        parser.add_argument(
            "--model-path",
593
            "--model",
Lianmin Zheng's avatar
Lianmin Zheng committed
594
595
596
597
598
599
600
601
602
603
            type=str,
            help="The path of the model weights. This can be a local folder or a Hugging Face repo ID.",
            required=True,
        )
        parser.add_argument(
            "--tokenizer-path",
            type=str,
            default=ServerArgs.tokenizer_path,
            help="The path of the tokenizer.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
604
605
606
607
608
609
610
611
612
        parser.add_argument(
            "--tokenizer-mode",
            type=str,
            default=ServerArgs.tokenizer_mode,
            choices=["auto", "slow"],
            help="Tokenizer mode. 'auto' will use the fast "
            "tokenizer if available, and 'slow' will "
            "always use the slow tokenizer.",
        )
613
614
615
        parser.add_argument(
            "--skip-tokenizer-init",
            action="store_true",
616
            help="If set, skip init tokenizer and pass input_ids in generate request.",
617
        )
618
        parser.add_argument(
Lianmin Zheng's avatar
Lianmin Zheng committed
619
620
621
            "--load-format",
            type=str,
            default=ServerArgs.load_format,
622
623
624
625
626
627
            choices=[
                "auto",
                "pt",
                "safetensors",
                "npcache",
                "dummy",
628
                "sharded_state",
629
630
                "gguf",
                "bitsandbytes",
631
                "layered",
632
                "remote",
633
            ],
Lianmin Zheng's avatar
Lianmin Zheng committed
634
635
636
637
638
639
640
641
642
            help="The format of the model weights to load. "
            '"auto" will try to load the weights in the safetensors format '
            "and fall back to the pytorch bin format if safetensors format "
            "is not available. "
            '"pt" will load the weights in the pytorch bin format. '
            '"safetensors" will load the weights in the safetensors format. '
            '"npcache" will load the weights in pytorch format and store '
            "a numpy cache to speed up the loading. "
            '"dummy" will initialize the weights with random values, '
643
            "which is mainly for profiling."
644
645
            '"gguf" will load the weights in the gguf format. '
            '"bitsandbytes" will load the weights using bitsandbytes '
646
647
648
649
            "quantization."
            '"layered" loads weights layer by layer so that one can quantize a '
            "layer before loading another to make the peak memory envelope "
            "smaller.",
Lianmin Zheng's avatar
Lianmin Zheng committed
650
        )
651
652
653
654
655
656
657
        parser.add_argument(
            "--model-loader-extra-config",
            type=str,
            help="Extra config for model loader. "
            "This will be passed to the model loader corresponding to the chosen load_format.",
            default=ServerArgs.model_loader_extra_config,
        )
658
659
660
661
662
        parser.add_argument(
            "--trust-remote-code",
            action="store_true",
            help="Whether or not to allow for custom models defined on the Hub in their own modeling files.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
        parser.add_argument(
            "--context-length",
            type=int,
            default=ServerArgs.context_length,
            help="The model's maximum context length. Defaults to None (will use the value from the model's config.json instead).",
        )
        parser.add_argument(
            "--is-embedding",
            action="store_true",
            help="Whether to use a CausalLM as an embedding model.",
        )
        parser.add_argument(
            "--enable-multimodal",
            default=ServerArgs.enable_multimodal,
            action="store_true",
            help="Enable the multimodal functionality for the served model. If the model being served is not multimodal, nothing will happen",
        )
        parser.add_argument(
            "--revision",
            type=str,
            default=None,
            help="The specific model version to use. It can be a branch "
            "name, a tag name, or a commit id. If unspecified, will use "
            "the default version.",
        )
        parser.add_argument(
            "--model-impl",
            type=str,
            default=ServerArgs.model_impl,
            help="Which implementation of the model to use.\n\n"
            '* "auto" will try to use the SGLang implementation if it exists '
            "and fall back to the Transformers implementation if no SGLang "
            "implementation is available.\n"
            '* "sglang" will use the SGLang model implementation.\n'
            '* "transformers" will use the Transformers model '
            "implementation.\n",
        )

        # HTTP server
        parser.add_argument(
            "--host",
            type=str,
            default=ServerArgs.host,
            help="The host of the HTTP server.",
        )
        parser.add_argument(
            "--port",
            type=int,
            default=ServerArgs.port,
            help="The port of the HTTP server.",
        )
        parser.add_argument(
            "--skip-server-warmup",
            action="store_true",
            help="If set, skip warmup.",
        )
        parser.add_argument(
            "--warmups",
            type=str,
            required=False,
            help="Specify custom warmup functions (csv) to run before server starts eg. --warmups=warmup_name1,warmup_name2 "
            "will run the functions `warmup_name1` and `warmup_name2` specified in warmup.py before the server starts listening for requests",
        )
        parser.add_argument(
            "--nccl-port",
            type=int,
            default=ServerArgs.nccl_port,
            help="The port for NCCL distributed environment setup. Defaults to a random port.",
        )

        # Quantization and data type
Lianmin Zheng's avatar
Lianmin Zheng committed
734
        parser.add_argument(
Lianmin Zheng's avatar
Lianmin Zheng committed
735
            "--dtype",
Cody Yu's avatar
Cody Yu committed
736
            type=str,
Lianmin Zheng's avatar
Lianmin Zheng committed
737
            default=ServerArgs.dtype,
Ying Sheng's avatar
Ying Sheng committed
738
739
            choices=["auto", "half", "float16", "bfloat16", "float", "float32"],
            help="Data type for model weights and activations.\n\n"
Lianmin Zheng's avatar
Lianmin Zheng committed
740
            '* "auto" will use FP16 precision for FP32 and FP16 models, and '
Ying Sheng's avatar
Ying Sheng committed
741
            "BF16 precision for BF16 models.\n"
Lianmin Zheng's avatar
Lianmin Zheng committed
742
743
744
745
            '* "half" for FP16. Recommended for AWQ quantization.\n'
            '* "float16" is the same as "half".\n'
            '* "bfloat16" for a balance between precision and range.\n'
            '* "float" is shorthand for FP32 precision.\n'
Ying Sheng's avatar
Ying Sheng committed
746
747
            '* "float32" for FP32 precision.',
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
748
749
750
751
        parser.add_argument(
            "--quantization",
            type=str,
            default=ServerArgs.quantization,
Ying Sheng's avatar
Ying Sheng committed
752
753
754
755
756
757
            choices=[
                "awq",
                "fp8",
                "gptq",
                "marlin",
                "gptq_marlin",
Ying Sheng's avatar
Ying Sheng committed
758
                "awq_marlin",
Ying Sheng's avatar
Ying Sheng committed
759
                "bitsandbytes",
760
                "gguf",
761
                "modelopt",
762
                "modelopt_fp4",
763
                "petit_nvfp4",
764
                "w8a8_int8",
HandH1998's avatar
HandH1998 committed
765
                "w8a8_fp8",
AniZpZ's avatar
AniZpZ committed
766
                "moe_wna16",
HandH1998's avatar
HandH1998 committed
767
                "qoq",
768
                "w4afp8",
Ying Sheng's avatar
Ying Sheng committed
769
            ],
Lianmin Zheng's avatar
Lianmin Zheng committed
770
771
            help="The quantization method.",
        )
772
773
774
775
776
777
778
779
780
        parser.add_argument(
            "--quantization-param-path",
            type=nullable_str,
            default=None,
            help="Path to the JSON file containing the KV cache "
            "scaling factors. This should generally be supplied, when "
            "KV cache dtype is FP8. Otherwise, KV cache scaling factors "
            "default to 1.0, which may cause accuracy issues. ",
        )
781
        parser.add_argument(
Lianmin Zheng's avatar
Lianmin Zheng committed
782
            "--kv-cache-dtype",
783
            type=str,
Lianmin Zheng's avatar
Lianmin Zheng committed
784
785
786
            default=ServerArgs.kv_cache_dtype,
            choices=["auto", "fp8_e5m2", "fp8_e4m3"],
            help='Data type for kv cache storage. "auto" will use model data type. "fp8_e5m2" and "fp8_e4m3" is supported for CUDA 11.8+.',
787
        )
788

789
        # Memory and scheduling
Lianmin Zheng's avatar
Lianmin Zheng committed
790
791
792
793
        parser.add_argument(
            "--mem-fraction-static",
            type=float,
            default=ServerArgs.mem_fraction_static,
794
            help="The fraction of the memory used for static allocation (model weights and KV cache memory pool). Use a smaller value if you see out-of-memory errors.",
Lianmin Zheng's avatar
Lianmin Zheng committed
795
        )
796
797
798
799
800
801
        parser.add_argument(
            "--max-running-requests",
            type=int,
            default=ServerArgs.max_running_requests,
            help="The maximum number of running requests.",
        )
802
803
804
805
806
807
        parser.add_argument(
            "--max-queued-requests",
            type=int,
            default=ServerArgs.max_queued_requests,
            help="The maximum number of queued requests. This option is ignored when using disaggregation-mode.",
        )
808
809
810
811
        parser.add_argument(
            "--max-total-tokens",
            type=int,
            default=ServerArgs.max_total_tokens,
812
813
            help="The maximum number of tokens in the memory pool. If not specified, it will be automatically calculated based on the memory usage fraction. "
            "This option is typically used for development and debugging purposes.",
814
        )
815
816
817
818
        parser.add_argument(
            "--chunked-prefill-size",
            type=int,
            default=ServerArgs.chunked_prefill_size,
819
            help="The maximum number of tokens in a chunk for the chunked prefill. Setting this to -1 means disabling chunked prefill.",
820
821
822
823
824
825
826
        )
        parser.add_argument(
            "--max-prefill-tokens",
            type=int,
            default=ServerArgs.max_prefill_tokens,
            help="The maximum number of tokens in a prefill batch. The real bound will be the maximum of this value and the model's maximum context length.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
827
        parser.add_argument(
828
            "--schedule-policy",
Lianmin Zheng's avatar
Lianmin Zheng committed
829
            type=str,
830
            default=ServerArgs.schedule_policy,
Liangsheng Yin's avatar
Liangsheng Yin committed
831
            choices=["lpm", "random", "fcfs", "dfs-weight"],
832
            help="The scheduling policy of the requests.",
Lianmin Zheng's avatar
Lianmin Zheng committed
833
        )
834
835
836
837
        parser.add_argument(
            "--schedule-conservativeness",
            type=float,
            default=ServerArgs.schedule_conservativeness,
838
            help="How conservative the schedule policy is. A larger value means more conservative scheduling. Use a larger value if you see requests being retracted frequently.",
839
        )
840
841
842
843
        parser.add_argument(
            "--cpu-offload-gb",
            type=int,
            default=ServerArgs.cpu_offload_gb,
844
            help="How many GBs of RAM to reserve for CPU offloading.",
845
        )
846
847
848
849
850
851
        parser.add_argument(
            "--page-size",
            type=int,
            default=ServerArgs.page_size,
            help="The number of tokens in a page.",
        )
tarinkk's avatar
tarinkk committed
852
853
854
855
856
857
858
859
860
861
862
863
        parser.add_argument(
            "--hybrid-kvcache-ratio",
            nargs="?",
            const=0.5,
            type=float,
            default=ServerArgs.hybrid_kvcache_ratio,
            help=(
                "Mix ratio in [0,1] between uniform and hybrid kv buffers "
                "(0.0 = pure uniform: swa_size / full_size = 1)"
                "(1.0 = pure hybrid: swa_size / full_size = local_attention_size / context_length)"
            ),
        )
Hanming Lu's avatar
Hanming Lu committed
864
865
866
867
868
869
870
871
872
873
874
875
        parser.add_argument(
            "--swa-full-tokens-ratio",
            type=float,
            default=ServerArgs.swa_full_tokens_ratio,
            help="The ratio of SWA layer KV tokens / full layer KV tokens, regardless of the number of swa:full layers. It should be between 0 and 1. "
            "E.g. 0.5 means if each swa layer has 50 tokens, then each full layer has 100 tokens.",
        )
        parser.add_argument(
            "--disable-hybrid-swa-memory",
            action="store_true",
            help="Disable the hybrid SWA memory.",
        )
876

Lianmin Zheng's avatar
Lianmin Zheng committed
877
878
879
880
881
882
883
        # Runtime options
        parser.add_argument(
            "--device",
            type=str,
            default=ServerArgs.device,
            help="The device to use ('cuda', 'xpu', 'hpu', 'npu', 'cpu'). Defaults to auto-detection if not specified.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
884
        parser.add_argument(
885
            "--tensor-parallel-size",
Lianmin Zheng's avatar
Lianmin Zheng committed
886
            "--tp-size",
Lianmin Zheng's avatar
Lianmin Zheng committed
887
            type=int,
Lianmin Zheng's avatar
Lianmin Zheng committed
888
            default=ServerArgs.tp_size,
889
            help="The tensor parallelism size.",
890
        )
891
892
893
894
895
896
897
898
899
900
901
902
903
        parser.add_argument(
            "--pipeline-parallel-size",
            "--pp-size",
            type=int,
            default=ServerArgs.pp_size,
            help="The pipeline parallelism size.",
        )
        parser.add_argument(
            "--max-micro-batch-size",
            type=int,
            default=ServerArgs.max_micro_batch_size,
            help="The maximum micro batch size in pipeline parallelism.",
        )
904
905
906
        parser.add_argument(
            "--stream-interval",
            type=int,
Lianmin Zheng's avatar
Lianmin Zheng committed
907
            default=ServerArgs.stream_interval,
908
            help="The interval (or buffer size) for streaming in terms of the token length. A smaller value makes streaming smoother, while a larger value makes the throughput higher",
909
        )
910
911
912
913
914
        parser.add_argument(
            "--stream-output",
            action="store_true",
            help="Whether to output as a sequence of disjoint segments.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
915
916
917
918
        parser.add_argument(
            "--random-seed",
            type=int,
            default=ServerArgs.random_seed,
919
            help="The random seed.",
Lianmin Zheng's avatar
Lianmin Zheng committed
920
        )
921
922
923
924
        parser.add_argument(
            "--constrained-json-whitespace-pattern",
            type=str,
            default=ServerArgs.constrained_json_whitespace_pattern,
Lianmin Zheng's avatar
Lianmin Zheng committed
925
            help="(outlines backend only) Regex pattern for syntactic whitespaces allowed in JSON constrained output. For example, to allow the model generate consecutive whitespaces, set the pattern to [\n\t ]*",
926
        )
927
928
929
930
931
932
        parser.add_argument(
            "--watchdog-timeout",
            type=float,
            default=ServerArgs.watchdog_timeout,
            help="Set watchdog timeout in seconds. If a forward batch takes longer than this, the server will crash to prevent hanging.",
        )
933
934
935
936
937
938
        parser.add_argument(
            "--dist-timeout",
            type=int,
            default=ServerArgs.dist_timeout,
            help="Set timeout for torch.distributed initialization.",
        )
939
940
941
942
        parser.add_argument(
            "--download-dir",
            type=str,
            default=ServerArgs.download_dir,
943
            help="Model download directory for huggingface.",
944
        )
945
946
947
948
949
950
        parser.add_argument(
            "--base-gpu-id",
            type=int,
            default=ServerArgs.base_gpu_id,
            help="The base GPU ID to start allocating GPUs from. Useful when running multiple instances on the same machine.",
        )
951
952
953
954
955
956
        parser.add_argument(
            "--gpu-id-step",
            type=int,
            default=ServerArgs.gpu_id_step,
            help="The delta between consecutive GPU IDs that are used. For example, setting it to 2 will use GPU 0,2,4,...",
        )
957
958
959
960
961
        parser.add_argument(
            "--sleep-on-idle",
            action="store_true",
            help="Reduce CPU usage when sglang is idle.",
        )
962
963

        # Logging
Lianmin Zheng's avatar
Lianmin Zheng committed
964
965
966
967
        parser.add_argument(
            "--log-level",
            type=str,
            default=ServerArgs.log_level,
968
            help="The logging level of all loggers.",
Lianmin Zheng's avatar
Lianmin Zheng committed
969
        )
970
        parser.add_argument(
971
972
973
974
            "--log-level-http",
            type=str,
            default=ServerArgs.log_level_http,
            help="The logging level of HTTP server. If not set, reuse --log-level by default.",
975
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
976
        parser.add_argument(
977
            "--log-requests",
Lianmin Zheng's avatar
Lianmin Zheng committed
978
            action="store_true",
979
980
981
982
983
984
            help="Log metadata, inputs, outputs of all requests. The verbosity is decided by --log-requests-level",
        )
        parser.add_argument(
            "--log-requests-level",
            type=int,
            default=0,
985
986
987
988
989
990
991
992
            help="0: Log metadata (no sampling parameters). 1: Log metadata and sampling parameters. 2: Log metadata, sampling parameters and partial input/output. 3: Log every input/output.",
            choices=[0, 1, 2, 3],
        )
        parser.add_argument(
            "--crash-dump-folder",
            type=str,
            default=ServerArgs.crash_dump_folder,
            help="Folder path to dump requests from the last 5 min before a crash (if any). If not specified, crash dumping is disabled.",
Lianmin Zheng's avatar
Lianmin Zheng committed
993
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
994
995
996
        parser.add_argument(
            "--show-time-cost",
            action="store_true",
Ying Sheng's avatar
Ying Sheng committed
997
            help="Show time cost of custom marks.",
Lianmin Zheng's avatar
Lianmin Zheng committed
998
        )
999
1000
1001
1002
1003
        parser.add_argument(
            "--enable-metrics",
            action="store_true",
            help="Enable log prometheus metrics.",
        )
1004
1005
1006
1007
1008
1009
1010
        parser.add_argument(
            "--enable-metrics-for-all-schedulers",
            action="store_true",
            help="Enable --enable-metrics-for-all-schedulers when you want schedulers on all TP ranks (not just TP 0) "
            "to record request metrics separately. This is especially useful when dp_attention is enabled, as "
            "otherwise all metrics appear to come from TP 0.",
        )
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
        parser.add_argument(
            "--bucket-time-to-first-token",
            type=float,
            nargs="+",
            default=ServerArgs.bucket_time_to_first_token,
            help="The buckets of time to first token, specified as a list of floats.",
        )
        parser.add_argument(
            "--bucket-inter-token-latency",
            type=float,
            nargs="+",
            default=ServerArgs.bucket_inter_token_latency,
            help="The buckets of inter-token latency, specified as a list of floats.",
        )
        parser.add_argument(
            "--bucket-e2e-request-latency",
            type=float,
            nargs="+",
            default=ServerArgs.bucket_e2e_request_latency,
            help="The buckets of end-to-end request latency, specified as a list of floats.",
        )
        parser.add_argument(
            "--collect-tokens-histogram",
            action="store_true",
            default=ServerArgs.collect_tokens_histogram,
            help="Collect prompt/generation tokens histogram.",
        )
1038
1039
1040
1041
        parser.add_argument(
            "--decode-log-interval",
            type=int,
            default=ServerArgs.decode_log_interval,
1042
            help="The log interval of decode batch.",
1043
        )
1044
1045
1046
1047
1048
1049
        parser.add_argument(
            "--enable-request-time-stats-logging",
            action="store_true",
            default=ServerArgs.enable_request_time_stats_logging,
            help="Enable per request time stats logging",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1050
1051
1052
1053
1054
1055
        parser.add_argument(
            "--kv-events-config",
            type=str,
            default=None,
            help="Config in json format for NVIDIA dynamo KV event publishing. Publishing will be enabled if this flag is used.",
        )
1056

1057
        # API related
Liangsheng Yin's avatar
Liangsheng Yin committed
1058
1059
1060
1061
        parser.add_argument(
            "--api-key",
            type=str,
            default=ServerArgs.api_key,
1062
            help="Set API key of the server. It is also used in the OpenAI API compatible server.",
Liangsheng Yin's avatar
Liangsheng Yin committed
1063
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
        parser.add_argument(
            "--served-model-name",
            type=str,
            default=ServerArgs.served_model_name,
            help="Override the model name returned by the v1/models endpoint in OpenAI API server.",
        )
        parser.add_argument(
            "--chat-template",
            type=str,
            default=ServerArgs.chat_template,
            help="The buliltin chat template name or the path of the chat template file. This is only used for OpenAI-compatible API server.",
        )
        parser.add_argument(
            "--completion-template",
            type=str,
            default=ServerArgs.completion_template,
            help="The buliltin completion template name or the path of the completion template file. This is only used for OpenAI-compatible API server. only for code completion currently.",
        )
1082
        parser.add_argument(
1083
            "--file-storage-path",
1084
            type=str,
1085
            default=ServerArgs.file_storage_path,
1086
1087
            help="The path of the file storage in backend.",
        )
1088
1089
1090
1091
1092
        parser.add_argument(
            "--enable-cache-report",
            action="store_true",
            help="Return number of cached tokens in usage.prompt_tokens_details for each openai request.",
        )
Xihuai Wang's avatar
Xihuai Wang committed
1093
1094
1095
1096
1097
1098
1099
        parser.add_argument(
            "--reasoning-parser",
            type=str,
            choices=list(ReasoningParser.DetectorMap.keys()),
            default=ServerArgs.reasoning_parser,
            help=f"Specify the parser for reasoning models, supported parsers are: {list(ReasoningParser.DetectorMap.keys())}.",
        )
1100
1101
1102
        parser.add_argument(
            "--tool-call-parser",
            type=str,
Atream's avatar
Atream committed
1103
1104
1105
1106
1107
1108
1109
            choices=[
                "qwen25",
                "mistral",
                "llama3",
                "deepseekv3",
                "pythonic",
                "kimi_k2",
1110
                "qwen3_coder",
Yuxuan Zhang's avatar
Yuxuan Zhang committed
1111
                "glm45",
Chang Su's avatar
Chang Su committed
1112
                "step3",
Atream's avatar
Atream committed
1113
            ],
1114
            default=ServerArgs.tool_call_parser,
Chang Su's avatar
Chang Su committed
1115
            help="Specify the parser for handling tool-call interactions. Options include: 'qwen25', 'mistral', 'llama3', 'deepseekv3', 'pythonic', 'kimi_k2', 'qwen3_coder', 'glm45', and 'step3'.",
1116
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1117

1118
1119
        # Data parallelism
        parser.add_argument(
1120
            "--data-parallel-size",
1121
1122
1123
            "--dp-size",
            type=int,
            default=ServerArgs.dp_size,
1124
            help="The data parallelism size.",
1125
1126
1127
1128
1129
        )
        parser.add_argument(
            "--load-balance-method",
            type=str,
            default=ServerArgs.load_balance_method,
1130
            help="The load balancing strategy for data parallelism.",
1131
1132
1133
1134
1135
            choices=[
                "round_robin",
                "shortest_queue",
            ],
        )
1136

1137
        # Multi-node distributed serving
1138
        parser.add_argument(
1139
            "--dist-init-addr",
1140
            "--nccl-init-addr",  # For backward compatibility. This will be removed in the future.
1141
            type=str,
1142
            help="The host address for initializing distributed backend (e.g., `192.168.0.2:25000`).",
1143
1144
        )
        parser.add_argument(
Liangsheng Yin's avatar
Liangsheng Yin committed
1145
            "--nnodes", type=int, default=ServerArgs.nnodes, help="The number of nodes."
1146
        )
1147
1148
1149
        parser.add_argument(
            "--node-rank", type=int, default=ServerArgs.node_rank, help="The node rank."
        )
1150

Lianmin Zheng's avatar
Lianmin Zheng committed
1151
1152
1153
1154
1155
1156
1157
        # Model override args
        parser.add_argument(
            "--json-model-override-args",
            type=str,
            help="A dictionary in JSON string format used to override default model configurations.",
            default=ServerArgs.json_model_override_args,
        )
1158
1159
1160
1161
1162
        parser.add_argument(
            "--preferred-sampling-params",
            type=str,
            help="json-formatted sampling settings that will be returned in /get_model_info",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1163

1164
        # LoRA
1165
1166
1167
1168
1169
1170
        parser.add_argument(
            "--enable-lora",
            default=ServerArgs.enable_lora,
            action="store_true",
            help="Enable LoRA support for the model. This argument is automatically set to True if `--lora-paths` is provided for backward compatibility.",
        )
1171
1172
1173
1174
1175
1176
1177
1178
1179
        parser.add_argument(
            "--max-lora-rank",
            default=ServerArgs.max_lora_rank,
            type=int,
            help="The maximum rank of LoRA adapters. If not specified, it will be automatically inferred from the adapters provided in --lora-paths.",
        )
        parser.add_argument(
            "--lora-target-modules",
            type=str,
1180
            choices=SUPPORTED_LORA_TARGET_MODULES + [LORA_TARGET_ALL_MODULES],
1181
1182
            nargs="*",
            default=None,
1183
1184
1185
            help="The union set of all target modules where LoRA should be applied. If not specified, "
            "it will be automatically inferred from the adapters provided in --lora-paths. If 'all' is specified, "
            "all supported modules will be targeted.",
1186
        )
1187
1188
1189
1190
1191
1192
        parser.add_argument(
            "--lora-paths",
            type=str,
            nargs="*",
            default=None,
            action=LoRAPathAction,
1193
            help="The list of LoRA adapters. You can provide a list of either path in str or renamed path in the format {name}={path}.",
1194
1195
1196
1197
1198
        )
        parser.add_argument(
            "--max-loras-per-batch",
            type=int,
            default=8,
1199
1200
1201
1202
1203
1204
1205
            help="Maximum number of adapters for a running batch, include base-only request.",
        )
        parser.add_argument(
            "--lora-backend",
            type=str,
            default="triton",
            help="Choose the kernel backend for multi-LoRA serving.",
1206
1207
1208
        )

        # Kernel backend
1209
1210
1211
        parser.add_argument(
            "--attention-backend",
            type=str,
1212
            choices=[
1213
                "aiter",
1214
                "cutlass_mla",
1215
                "fa3",
1216
                "flashinfer",
1217
                "flashmla",
1218
                "intel_amx",
1219
                "torch_native",
1220
                "ascend",
1221
                "triton",
1222
            ],
1223
1224
1225
            default=ServerArgs.attention_backend,
            help="Choose the kernels for attention layers.",
        )
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
        parser.add_argument(
            "--decode-attention-backend",
            type=str,
            choices=[
                "flashinfer",
                "triton",
                "torch_native",
                "fa3",
                "flashmla",
                "cutlass_mla",
            ],
            default=ServerArgs.decode_attention_backend,
            help="Choose the kernels for decode attention layers (have priority over --attention-backend).",
        )

        parser.add_argument(
            "--prefill-attention-backend",
            type=str,
            choices=[
                "flashinfer",
                "triton",
                "torch_native",
                "fa3",
                "flashmla",
                "cutlass_mla",
            ],
            default=ServerArgs.prefill_attention_backend,
            help="Choose the kernels for prefill attention layers (have priority over --attention-backend).",
        )
1255
1256
1257
1258
1259
1260
1261
        parser.add_argument(
            "--sampling-backend",
            type=str,
            choices=["flashinfer", "pytorch"],
            default=ServerArgs.sampling_backend,
            help="Choose the kernels for sampling layers.",
        )
1262
1263
1264
        parser.add_argument(
            "--grammar-backend",
            type=str,
1265
            choices=["xgrammar", "outlines", "llguidance", "none"],
1266
            default=ServerArgs.grammar_backend,
Lianmin Zheng's avatar
Lianmin Zheng committed
1267
            help="Choose the backend for grammar-guided decoding.",
1268
        )
1269
1270
1271
1272
1273
1274
1275
        parser.add_argument(
            "--mm-attention-backend",
            type=str,
            choices=["sdpa", "fa3", "triton_attn"],
            default=ServerArgs.mm_attention_backend,
            help="Set multimodal attention backend.",
        )
1276

1277
1278
1279
1280
        # Speculative decoding
        parser.add_argument(
            "--speculative-algorithm",
            type=str,
James Liu's avatar
James Liu committed
1281
            choices=["EAGLE", "EAGLE3", "NEXTN"],
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
            help="Speculative algorithm.",
        )
        parser.add_argument(
            "--speculative-draft-model-path",
            type=str,
            help="The path of the draft model weights. This can be a local folder or a Hugging Face repo ID.",
        )
        parser.add_argument(
            "--speculative-num-steps",
            type=int,
            help="The number of steps sampled from draft model in Speculative Decoding.",
            default=ServerArgs.speculative_num_steps,
        )
        parser.add_argument(
            "--speculative-eagle-topk",
            type=int,
1298
            help="The number of tokens sampled from the draft model in eagle2 each step.",
1299
1300
            default=ServerArgs.speculative_eagle_topk,
        )
1301
1302
1303
        parser.add_argument(
            "--speculative-num-draft-tokens",
            type=int,
1304
            help="The number of tokens sampled from the draft model in Speculative Decoding.",
1305
1306
            default=ServerArgs.speculative_num_draft_tokens,
        )
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
        parser.add_argument(
            "--speculative-accept-threshold-single",
            type=float,
            help="Accept a draft token if its probability in the target model is greater than this threshold.",
            default=ServerArgs.speculative_accept_threshold_single,
        )
        parser.add_argument(
            "--speculative-accept-threshold-acc",
            type=float,
            help="The accept probability of a draft token is raised from its target probability p to min(1, p / threshold_acc).",
            default=ServerArgs.speculative_accept_threshold_acc,
        )
1319
1320
1321
1322
1323
1324
        parser.add_argument(
            "--speculative-token-map",
            type=str,
            help="The path of the draft model's small vocab table.",
            default=ServerArgs.speculative_token_map,
        )
1325
1326
1327
1328
1329

        # Expert parallelism
        parser.add_argument(
            "--expert-parallel-size",
            "--ep-size",
Cheng Wan's avatar
Cheng Wan committed
1330
            "--ep",
1331
1332
1333
1334
1335
1336
1337
1338
1339
            type=int,
            default=ServerArgs.ep_size,
            help="The expert parallelism size.",
        )
        parser.add_argument(
            "--enable-ep-moe",
            action="store_true",
            help="Enabling expert parallelism for moe. The ep size is equal to the tp size.",
        )
1340
        parser.add_argument(
1341
            "--enable-flashinfer-cutlass-moe",
1342
1343
1344
            action="store_true",
            help="Enable FlashInfer CUTLASS MoE backend for modelopt_fp4 quant on Blackwell. Supports MoE-EP with --enable-ep-moe",
        )
1345
        parser.add_argument(
1346
1347
1348
1349
1350
            "--enable-flashinfer-trtllm-moe",
            action="store_true",
            help="Enable FlashInfer TRTLLM MoE backend on Blackwell. Supports BlockScale FP8 MoE-EP with --enable-ep-moe",
        )
        parser.add_argument(
1351
1352
1353
1354
            "--enable-flashinfer-allreduce-fusion",
            action="store_true",
            help="Enable FlashInfer allreduce fusion for Add_RMSNorm.",
        )
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
        parser.add_argument(
            "--enable-deepep-moe",
            action="store_true",
            help="Enabling DeepEP MoE implementation for EP MoE.",
        )
        parser.add_argument(
            "--deepep-mode",
            type=str,
            choices=["normal", "low_latency", "auto"],
            default="auto",
            help="Select the mode when enable DeepEP MoE, could be `normal`, `low_latency` or `auto`. Default is `auto`, which means `low_latency` for decode batch and `normal` for prefill batch.",
        )
        parser.add_argument(
            "--ep-num-redundant-experts",
            type=int,
            default=ServerArgs.ep_num_redundant_experts,
            help="Allocate this number of redundant experts in expert parallel.",
        )
        parser.add_argument(
            "--ep-dispatch-algorithm",
            type=str,
            default=ServerArgs.ep_dispatch_algorithm,
            help="The algorithm to choose ranks for redundant experts in expert parallel.",
        )
        parser.add_argument(
            "--init-expert-location",
            type=str,
            default=ServerArgs.init_expert_location,
            help="Initial location of EP experts.",
        )
        parser.add_argument(
            "--enable-eplb",
            action="store_true",
            help="Enable EPLB algorithm",
        )
        parser.add_argument(
            "--eplb-algorithm",
            type=str,
            default=ServerArgs.eplb_algorithm,
            help="Chosen EPLB algorithm",
        )
        parser.add_argument(
            "--eplb-rebalance-num-iterations",
            type=int,
            default=ServerArgs.eplb_rebalance_num_iterations,
            help="Number of iterations to automatically trigger a EPLB re-balance.",
        )
        parser.add_argument(
            "--eplb-rebalance-layers-per-chunk",
            type=int,
            default=ServerArgs.eplb_rebalance_layers_per_chunk,
            help="Number of layers to rebalance per forward pass.",
        )
        parser.add_argument(
            "--expert-distribution-recorder-mode",
            type=str,
            default=ServerArgs.expert_distribution_recorder_mode,
            help="Mode of expert distribution recorder.",
        )
        parser.add_argument(
            "--expert-distribution-recorder-buffer-size",
            type=int,
            default=ServerArgs.expert_distribution_recorder_buffer_size,
            help="Circular buffer size of expert distribution recorder. Set to -1 to denote infinite buffer.",
        )
        parser.add_argument(
            "--enable-expert-distribution-metrics",
            action="store_true",
            help="Enable logging metrics for expert balancedness",
        )
        parser.add_argument(
            "--deepep-config",
            type=str,
            default=ServerArgs.deepep_config,
            help="Tuned DeepEP config suitable for your own cluster. It can be either a string with JSON content or a file path.",
        )
        parser.add_argument(
            "--moe-dense-tp-size",
            type=int,
            default=ServerArgs.moe_dense_tp_size,
            help="TP size for MoE dense MLP layers. This flag is useful when, with large TP size, there are errors caused by weights in MLP layers having dimension smaller than the min dimension GEMM supports.",
        )
1437

Lianmin Zheng's avatar
Lianmin Zheng committed
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
        # Hierarchical cache
        parser.add_argument(
            "--enable-hierarchical-cache",
            action="store_true",
            help="Enable hierarchical cache",
        )
        parser.add_argument(
            "--hicache-ratio",
            type=float,
            default=ServerArgs.hicache_ratio,
            help="The ratio of the size of host KV cache memory pool to the size of device pool.",
        )
        parser.add_argument(
            "--hicache-size",
            type=int,
            default=ServerArgs.hicache_size,
            help="The size of host KV cache memory pool in gigabytes, which will override the hicache_ratio if set.",
        )
        parser.add_argument(
            "--hicache-write-policy",
            type=str,
            choices=["write_back", "write_through", "write_through_selective"],
            default=ServerArgs.hicache_write_policy,
            help="The write policy of hierarchical cache.",
        )
        parser.add_argument(
            "--hicache-io-backend",
            type=str,
            choices=["direct", "kernel"],
            default=ServerArgs.hicache_io_backend,
            help="The IO backend for KV cache transfer between CPU and GPU",
        )
        parser.add_argument(
            "--hicache-storage-backend",
            type=str,
1473
            choices=["file", "mooncake", "hf3fs"],
Lianmin Zheng's avatar
Lianmin Zheng committed
1474
1475
1476
1477
            default=ServerArgs.hicache_storage_backend,
            help="The storage backend for hierarchical KV cache.",
        )

1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
        # Double Sparsity
        parser.add_argument(
            "--enable-double-sparsity",
            action="store_true",
            help="Enable double sparsity attention",
        )
        parser.add_argument(
            "--ds-channel-config-path",
            type=str,
            default=ServerArgs.ds_channel_config_path,
            help="The path of the double sparsity channel config",
        )
        parser.add_argument(
            "--ds-heavy-channel-num",
            type=int,
            default=ServerArgs.ds_heavy_channel_num,
            help="The number of heavy channels in double sparsity attention",
        )
        parser.add_argument(
            "--ds-heavy-token-num",
            type=int,
            default=ServerArgs.ds_heavy_token_num,
            help="The number of heavy tokens in double sparsity attention",
        )
        parser.add_argument(
            "--ds-heavy-channel-type",
            type=str,
            default=ServerArgs.ds_heavy_channel_type,
            help="The type of heavy channels in double sparsity attention",
        )
        parser.add_argument(
            "--ds-sparse-decode-threshold",
            type=int,
            default=ServerArgs.ds_sparse_decode_threshold,
            help="The type of heavy channels in double sparsity attention",
        )

1515
        # Optimization/debug options
Liangsheng Yin's avatar
Liangsheng Yin committed
1516
        parser.add_argument(
Lianmin Zheng's avatar
Lianmin Zheng committed
1517
            "--disable-radix-cache",
Liangsheng Yin's avatar
Liangsheng Yin committed
1518
            action="store_true",
Ying Sheng's avatar
Ying Sheng committed
1519
            help="Disable RadixAttention for prefix caching.",
Liangsheng Yin's avatar
Liangsheng Yin committed
1520
        )
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
        parser.add_argument(
            "--cuda-graph-max-bs",
            type=int,
            default=ServerArgs.cuda_graph_max_bs,
            help="Set the maximum batch size for cuda graph. It will extend the cuda graph capture batch size to this value.",
        )
        parser.add_argument(
            "--cuda-graph-bs",
            type=int,
            nargs="+",
            help="Set the list of batch sizes for cuda graph.",
        )
1533
1534
1535
        parser.add_argument(
            "--disable-cuda-graph",
            action="store_true",
1536
            help="Disable cuda graph.",
1537
        )
1538
        parser.add_argument(
1539
1540
            "--disable-cuda-graph-padding",
            action="store_true",
1541
            help="Disable cuda graph when padding is needed. Still uses cuda graph when padding is not needed.",
1542
        )
1543
1544
1545
1546
1547
        parser.add_argument(
            "--enable-profile-cuda-graph",
            action="store_true",
            help="Enable profiling of cuda graph capture.",
        )
1548
1549
1550
1551
1552
        parser.add_argument(
            "--enable-nccl-nvls",
            action="store_true",
            help="Enable NCCL NVLS for prefill heavy requests when available.",
        )
1553
1554
1555
1556
1557
        parser.add_argument(
            "--enable-tokenizer-batch-encode",
            action="store_true",
            help="Enable batch tokenization for improved performance when processing multiple text inputs. Do not use with image inputs, pre-tokenized input_ids, or input_embeds.",
        )
1558
        parser.add_argument(
1559
            "--disable-outlines-disk-cache",
1560
            action="store_true",
1561
            help="Disable disk cache of outlines to avoid possible crashes related to file system or high concurrency.",
1562
        )
1563
1564
1565
1566
1567
        parser.add_argument(
            "--disable-custom-all-reduce",
            action="store_true",
            help="Disable the custom all-reduce kernel and fall back to NCCL.",
        )
1568
1569
1570
1571
1572
        parser.add_argument(
            "--enable-mscclpp",
            action="store_true",
            help="Enable using mscclpp for small messages for all-reduce kernel and fall back to NCCL.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1573
        parser.add_argument(
1574
            "--disable-overlap-schedule",
Lianmin Zheng's avatar
Lianmin Zheng committed
1575
            action="store_true",
1576
            help="Disable the overlap scheduler, which overlaps the CPU scheduler with GPU model worker.",
Lianmin Zheng's avatar
Lianmin Zheng committed
1577
        )
1578
1579
1580
        parser.add_argument(
            "--enable-mixed-chunk",
            action="store_true",
1581
            help="Enabling mixing prefill and decode in a batch when using chunked prefill.",
1582
        )
Ke Bao's avatar
Ke Bao committed
1583
1584
1585
        parser.add_argument(
            "--enable-dp-attention",
            action="store_true",
1586
            help="Enabling data parallelism for attention and tensor parallelism for FFN. The dp size should be equal to the tp size. Currently DeepSeek-V2 and Qwen 2/3 MoE models are supported.",
Ke Bao's avatar
Ke Bao committed
1587
        )
1588
1589
1590
1591
1592
        parser.add_argument(
            "--enable-dp-lm-head",
            action="store_true",
            help="Enable vocabulary parallel across the attention TP group to avoid all-gather across DP groups, optimizing performance under DP attention.",
        )
1593
1594
1595
1596
1597
        parser.add_argument(
            "--enable-two-batch-overlap",
            action="store_true",
            help="Enabling two micro batches to overlap.",
        )
1598
1599
1600
        parser.add_argument(
            "--enable-torch-compile",
            action="store_true",
1601
1602
            help="Optimize the model with torch.compile. Experimental feature.",
        )
1603
        parser.add_argument(
1604
            "--torch-compile-max-bs",
1605
            type=int,
1606
            default=ServerArgs.torch_compile_max_bs,
1607
1608
            help="Set the maximum batch size when using torch compile.",
        )
1609
1610
1611
1612
        parser.add_argument(
            "--torchao-config",
            type=str,
            default=ServerArgs.torchao_config,
1613
            help="Optimize the model with torchao. Experimental feature. Current choices are: int8dq, int8wo, int4wo-<group_size>, fp8wo, fp8dq-per_tensor, fp8dq-per_row",
1614
        )
1615
1616
1617
1618
1619
        parser.add_argument(
            "--enable-nan-detection",
            action="store_true",
            help="Enable the NaN detection for debugging purposes.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1620
        parser.add_argument(
1621
            "--enable-p2p-check",
Lianmin Zheng's avatar
Lianmin Zheng committed
1622
            action="store_true",
1623
            help="Enable P2P check for GPU access, otherwise the p2p access is allowed by default.",
Lianmin Zheng's avatar
Lianmin Zheng committed
1624
        )
1625
        parser.add_argument(
1626
            "--triton-attention-reduce-in-fp32",
1627
            action="store_true",
1628
            help="Cast the intermediate attention results to fp32 to avoid possible crashes related to fp16."
1629
            "This only affects Triton attention kernels.",
1630
        )
1631
1632
1633
1634
1635
1636
        parser.add_argument(
            "--triton-attention-num-kv-splits",
            type=int,
            default=ServerArgs.triton_attention_num_kv_splits,
            help="The number of KV splits in flash decoding Triton kernel. Larger value is better in longer context scenarios. The default value is 8.",
        )
1637
1638
1639
1640
1641
1642
1643
1644
        parser.add_argument(
            "--num-continuous-decode-steps",
            type=int,
            default=ServerArgs.num_continuous_decode_steps,
            help="Run multiple continuous decoding steps to reduce scheduling overhead. "
            "This can potentially increase throughput but may also increase time-to-first-token latency. "
            "The default value is 1, meaning only run one decoding step at a time.",
        )
1645
1646
1647
1648
1649
        parser.add_argument(
            "--delete-ckpt-after-loading",
            action="store_true",
            help="Delete the model checkpoint after loading the model.",
        )
1650
1651
1652
1653
1654
        parser.add_argument(
            "--enable-memory-saver",
            action="store_true",
            help="Allow saving memory using release_memory_occupation and resume_memory_occupation",
        )
1655
1656
1657
1658
1659
        parser.add_argument(
            "--allow-auto-truncate",
            action="store_true",
            help="Allow automatically truncating requests that exceed the maximum input length instead of returning an error.",
        )
1660
1661
1662
1663
1664
        parser.add_argument(
            "--enable-custom-logit-processor",
            action="store_true",
            help="Enable users to pass custom logit processors to the server (disabled by default for security)",
        )
1665
        parser.add_argument(
1666
            "--flashinfer-mla-disable-ragged",
1667
            action="store_true",
1668
            help="Not using ragged prefill wrapper when running flashinfer mla",
1669
        )
1670
        parser.add_argument(
1671
1672
1673
            "--disable-shared-experts-fusion",
            action="store_true",
            help="Disable shared experts fusion optimization for deepseek v3/r1.",
1674
        )
1675
1676
1677
1678
1679
        parser.add_argument(
            "--disable-chunked-prefix-cache",
            action="store_true",
            help="Disable chunked prefix cache feature for deepseek, which should save overhead for short sequences.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1680
1681
1682
1683
1684
        parser.add_argument(
            "--disable-fast-image-processor",
            action="store_true",
            help="Adopt base image processor instead of fast image processor.",
        )
1685
1686
1687
1688
1689
        parser.add_argument(
            "--enable-return-hidden-states",
            action="store_true",
            help="Enable returning hidden states with responses.",
        )
Yuan Luo's avatar
Yuan Luo committed
1690
1691
1692
1693
1694
        parser.add_argument(
            "--enable-triton-kernel-moe",
            action="store_true",
            help="Use triton moe grouped gemm kernel.",
        )
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714

        # Debug tensor dumps
        parser.add_argument(
            "--debug-tensor-dump-output-folder",
            type=str,
            default=ServerArgs.debug_tensor_dump_output_folder,
            help="The output folder for dumping tensors.",
        )
        parser.add_argument(
            "--debug-tensor-dump-input-file",
            type=str,
            default=ServerArgs.debug_tensor_dump_input_file,
            help="The input filename for dumping tensors",
        )
        parser.add_argument(
            "--debug-tensor-dump-inject",
            type=str,
            default=ServerArgs.debug_tensor_dump_inject,
            help="Inject the outputs from jax as the input of every layer.",
        )
1715
1716
1717
1718
1719
        parser.add_argument(
            "--debug-tensor-dump-prefill-only",
            action="store_true",
            help="Only dump the tensors for prefill requests (i.e. batch size > 1).",
        )
1720

Lianmin Zheng's avatar
Lianmin Zheng committed
1721
        # PD disaggregation
Byron Hsu's avatar
Byron Hsu committed
1722
1723
1724
1725
1726
1727
1728
        parser.add_argument(
            "--disaggregation-mode",
            type=str,
            default="null",
            choices=["null", "prefill", "decode"],
            help='Only used for PD disaggregation. "prefill" for prefill-only server, and "decode" for decode-only server. If not specified, it is not PD disaggregated',
        )
1729
1730
1731
1732
        parser.add_argument(
            "--disaggregation-transfer-backend",
            type=str,
            default=ServerArgs.disaggregation_transfer_backend,
1733
            choices=["mooncake", "nixl", "ascend"],
1734
1735
            help="The backend for disaggregation transfer. Default is mooncake.",
        )
1736
1737
1738
1739
1740
1741
        parser.add_argument(
            "--disaggregation-bootstrap-port",
            type=int,
            default=ServerArgs.disaggregation_bootstrap_port,
            help="Bootstrap server port on the prefill server. Default is 8998.",
        )
Byron Hsu's avatar
Byron Hsu committed
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
        parser.add_argument(
            "--disaggregation-decode-tp",
            type=int,
            default=ServerArgs.disaggregation_decode_tp,
            help="Decode tp size. If not set, it matches the tp size of the current engine. This is only set on the prefill server.",
        )
        parser.add_argument(
            "--disaggregation-decode-dp",
            type=int,
            default=ServerArgs.disaggregation_decode_dp,
            help="Decode dp size. If not set, it matches the dp size of the current engine. This is only set on the prefill server.",
        )
        parser.add_argument(
            "--disaggregation-prefill-pp",
            type=int,
            default=ServerArgs.disaggregation_prefill_pp,
            help="Prefill pp size. If not set, it is default to 1. This is only set on the decode server.",
        )
1760
1761
1762
1763
        parser.add_argument(
            "--disaggregation-ib-device",
            type=str,
            default=ServerArgs.disaggregation_ib_device,
1764
1765
1766
            help="The InfiniBand devices for disaggregation transfer, accepts single device (e.g., --disaggregation-ib-device mlx5_0) "
            "or multiple comma-separated devices (e.g., --disaggregation-ib-device mlx5_0,mlx5_1). "
            "Default is None, which triggers automatic device detection when mooncake backend is enabled.",
1767
        )
1768
1769
1770
1771
1772
1773
        parser.add_argument(
            "--num-reserved-decode-tokens",
            type=int,
            default=ServerArgs.num_reserved_decode_tokens,
            help="Number of decode tokens that will have memory reserved when adding new request to the running batch.",
        )
1774
1775
1776
1777
1778
1779
        parser.add_argument(
            "--pdlb-url",
            type=str,
            default=None,
            help="The URL of the PD disaggregation load balancer. If set, the prefill/decode server will register with the load balancer.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1780
1781

        # Custom weight loader
1782
1783
1784
1785
1786
1787
1788
        parser.add_argument(
            "--custom-weight-loader",
            type=str,
            nargs="*",
            default=None,
            help="The custom dataloader which used to update the model. Should be set with a valid import path, such as my_package.weight_load_func",
        )
1789
1790
1791
1792
1793
        parser.add_argument(
            "--enable-pdmux",
            action="store_true",
            help="Enable PD-Multiplexing, PD running on greenctx stream.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1794
1795

        # For PD-Multiplexing
1796
1797
1798
1799
1800
1801
        parser.add_argument(
            "--sm-group-num",
            type=int,
            default=ServerArgs.sm_group_num,
            help="Number of sm partition groups.",
        )
1802
1803
1804
1805
1806
        parser.add_argument(
            "--weight-loader-disable-mmap",
            action="store_true",
            help="Disable mmap while loading weight using safetensors.",
        )
Byron Hsu's avatar
Byron Hsu committed
1807

Lianmin Zheng's avatar
Lianmin Zheng committed
1808
1809
    @classmethod
    def from_cli_args(cls, args: argparse.Namespace):
1810
        args.tp_size = args.tensor_parallel_size
1811
        args.pp_size = args.pipeline_parallel_size
1812
        args.dp_size = args.data_parallel_size
xiaobochen's avatar
xiaobochen committed
1813
        args.ep_size = args.expert_parallel_size
Lianmin Zheng's avatar
Lianmin Zheng committed
1814
1815
1816
1817
        attrs = [attr.name for attr in dataclasses.fields(cls)]
        return cls(**{attr: getattr(args, attr) for attr in attrs})

    def url(self):
1818
        if is_valid_ipv6_address(self.host):
1819
1820
1821
            return f"http://[{self.host}]:{self.port}"
        else:
            return f"http://{self.host}:{self.port}"
Lianmin Zheng's avatar
Lianmin Zheng committed
1822

Lianmin Zheng's avatar
Lianmin Zheng committed
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
    def get_hf_config(self):
        kwargs = {}
        hf_config = get_config(
            self.model_path,
            trust_remote_code=self.trust_remote_code,
            revision=self.revision,
            model_override_args=json.loads(self.json_model_override_args),
            **kwargs,
        )
        return hf_config

1834
    def check_server_args(self):
1835
        # Check parallel size constraints
1836
        assert (
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
            self.tp_size * self.pp_size
        ) % self.nnodes == 0, "tp_size must be divisible by number of nodes"

        if self.pp_size > 1:
            assert (
                self.disable_overlap_schedule
                and self.speculative_algorithm is None
                and not self.enable_mixed_chunk
            ), "Pipeline parallelism is not compatible with overlap schedule, speculative decoding, mixed chunked prefill."

1847
        assert not (
1848
1849
            self.dp_size > 1 and self.nnodes != 1 and not self.enable_dp_attention
        ), "multi-node data parallel is not supported unless dp attention!"
1850

1851
        assert self.base_gpu_id >= 0, "base_gpu_id must be non-negative"
1852
        assert self.gpu_id_step >= 1, "gpu_id_step must be positive"
1853

Lianmin Zheng's avatar
Lianmin Zheng committed
1854
1855
1856
1857
1858
        assert self.moe_dense_tp_size in {
            1,
            None,
        }, "moe_dense_tp_size only support 1 and None currently"

1859
1860
1861
1862
1863
1864
        # Check model architecture
        model_arch = self.get_hf_config().architectures[0]
        if "Llama4" in model_arch:
            assert self.attention_backend == "fa3", "fa3 is required for Llama4 model"

        # Check LoRA
1865
1866
        self.check_lora_server_args()

1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
        # Check speculative decoding
        if self.speculative_algorithm is not None:
            assert (
                not self.enable_mixed_chunk
            ), "enable_mixed_chunk is required for speculative decoding"

        # Check chunked prefill
        assert (
            self.chunked_prefill_size % self.page_size == 0
        ), "chunked_prefill_size must be divisible by page_size"

1878
    def check_lora_server_args(self):
1879
1880
1881
1882
1883
1884
        assert (
            self.max_loras_per_batch > 0
            # FIXME
            and (self.lora_paths is None or self.disable_radix_cache)
        ), "compatibility of lora and radix attention is in progress"

1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
        # Enable LoRA if any LoRA paths are provided for backward compatibility.
        if self.lora_paths:
            if self.enable_lora is None:
                self.enable_lora = True
                logger.info(
                    "--enable-lora is set to True because --lora-paths is provided."
                )
            elif self.enable_lora is False:
                logger.warning(
                    "--enable-lora is set to False, any provided lora_paths will be ignored."
                )

        if self.enable_lora:
            # Normalize lora_paths to a dictionary if it is a list.
            if isinstance(self.lora_paths, list):
                lora_paths = self.lora_paths
                self.lora_paths = {}
                for lora_path in lora_paths:
                    if "=" in lora_path:
                        name, path = lora_path.split("=", 1)
1905
                        self.lora_paths[name] = LoRARef(lora_name=name, lora_path=path)
1906
                    else:
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
                        self.lora_paths[lora_path] = LoRARef(
                            lora_name=lora_path,
                            lora_path=lora_path,
                        )
            elif isinstance(self.lora_paths, dict):
                self.lora_paths = {
                    k: LoRARef(lora_name=k, lora_path=v)
                    for k, v in self.lora_paths.items()
                }
            elif self.lora_paths is None:
                self.lora_paths = {}
            else:
                raise ValueError(
                    f"Invalid type for --lora-paths: {type(self.lora_paths)}. "
                    "Expected a list or a dictionary."
                )
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936

            # Expand target modules
            if self.lora_target_modules:
                self.lora_target_modules = set(self.lora_target_modules)
                if "all" in self.lora_target_modules:
                    assert (
                        len(self.lora_target_modules) == 1
                    ), "If 'all' is specified in --lora-target-modules, it should be the only module specified."
                    self.lora_target_modules = set(SUPPORTED_LORA_TARGET_MODULES)

            # Ensure sufficient information is provided for LoRA initialization.
            assert self.lora_paths or (
                self.max_lora_rank and self.lora_target_modules
            ), "When no initial --lora-paths is provided, you need to specify both --max-lora-rank and --lora-target-modules for LoRA initialization."
1937

Lianmin Zheng's avatar
Lianmin Zheng committed
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
    def validate_disagg_tp_size(self, prefill_tp: int, decode_tp: int):
        larger_tp = max(decode_tp, prefill_tp)
        smaller_tp = min(decode_tp, prefill_tp)
        assert larger_tp % smaller_tp == 0, (
            "Different tp size is supported only when one tp is multiple of the other. "
            f"decode_tp={decode_tp}, prefill_tp={prefill_tp}"
        )

    def adjust_mem_fraction_for_vlm(self, model_config):
        vision_config = getattr(model_config.hf_config, "vision_config", None)
        if vision_config is None:
            return

        # roughly reduce the mem_fraction_static base on params of Vit
        original_server_arg_mem_fraction = self.mem_fraction_static
        # a base mem_fraction_static factor for regular Vit
        base_mem_fraction_reduction_ratio = 0.95

        vit_num_layers = getattr(vision_config, "num_hidden_layers", 24)
        vit_hidden_size = getattr(vision_config, "hidden_size", 1024)

        # baseline ViT params (ViT-L/14)
        baseline_vit_layers = 24
        baseline_vit_hidden_size = 1024

        # weight params count
        current_complexity_score = vit_num_layers * (vit_hidden_size**2)
        baseline_complexity_score = baseline_vit_layers * (baseline_vit_hidden_size**2)
        complexity_ratio = (
            current_complexity_score / baseline_complexity_score
            if baseline_complexity_score > 0
            else 1.0
        )

        # every time the complexity grows 100%, adjust final factor for 10%
        sensitivity_scale = 0.1
        dynamic_adjustment_factor = 1.0 - sensitivity_scale * (complexity_ratio - 1.0)
        dynamic_adjustment_factor = max(0.8, min(1.05, dynamic_adjustment_factor))

        final_overall_factor = (
            base_mem_fraction_reduction_ratio * dynamic_adjustment_factor
        )
        self.mem_fraction_static = (
            original_server_arg_mem_fraction * final_overall_factor
        )
        logger.warning(
            f"Multimodal model: Dynamically adjusted --mem-fraction-static "
            f"from: {original_server_arg_mem_fraction:.3f} to: {self.mem_fraction_static:.3f}."
        )

Lianmin Zheng's avatar
Lianmin Zheng committed
1988

Lianmin Zheng's avatar
Lianmin Zheng committed
1989
def prepare_server_args(argv: List[str]) -> ServerArgs:
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
    """
    Prepare the server arguments from the command line arguments.

    Args:
        args: The command line arguments. Typically, it should be `sys.argv[1:]`
            to ensure compatibility with `parse_args` when no arguments are passed.

    Returns:
        The server arguments.
    """
    parser = argparse.ArgumentParser()
    ServerArgs.add_cli_args(parser)
Lianmin Zheng's avatar
Lianmin Zheng committed
2002
    raw_args = parser.parse_args(argv)
2003
2004
2005
2006
    server_args = ServerArgs.from_cli_args(raw_args)
    return server_args


2007
2008
2009
ZMQ_TCP_PORT_DELTA = 233


Lianmin Zheng's avatar
Lianmin Zheng committed
2010
2011
@dataclasses.dataclass
class PortArgs:
2012
2013
2014
2015
2016
2017
    # The ipc filename for tokenizer to receive inputs from detokenizer (zmq)
    tokenizer_ipc_name: str
    # The ipc filename for scheduler (rank 0) to receive inputs from tokenizer (zmq)
    scheduler_input_ipc_name: str
    # The ipc filename for detokenizer to receive inputs from scheduler (zmq)
    detokenizer_ipc_name: str
2018

2019
2020
    # The port for nccl initialization (torch.dist)
    nccl_port: int
2021

2022
2023
2024
    # The ipc filename for rpc call between Engine and Scheduler
    rpc_ipc_name: str

2025
2026
2027
    # The ipc filename for Scheduler to send metrics
    metrics_ipc_name: str

2028
    @staticmethod
2029
    def init_new(server_args, dp_rank: Optional[int] = None) -> "PortArgs":
2030
        if server_args.nccl_port is None:
Lianmin Zheng's avatar
Lianmin Zheng committed
2031
            nccl_port = server_args.port + random.randint(100, 1000)
2032
            while True:
Lianmin Zheng's avatar
Lianmin Zheng committed
2033
                if is_port_available(nccl_port):
2034
                    break
Lianmin Zheng's avatar
Lianmin Zheng committed
2035
2036
                if nccl_port < 60000:
                    nccl_port += 42
2037
                else:
Lianmin Zheng's avatar
Lianmin Zheng committed
2038
                    nccl_port -= 43
2039
        else:
Lianmin Zheng's avatar
Lianmin Zheng committed
2040
            nccl_port = server_args.nccl_port
2041

2042
2043
2044
2045
2046
2047
        if not server_args.enable_dp_attention:
            # Normal case, use IPC within a single node
            return PortArgs(
                tokenizer_ipc_name=f"ipc://{tempfile.NamedTemporaryFile(delete=False).name}",
                scheduler_input_ipc_name=f"ipc://{tempfile.NamedTemporaryFile(delete=False).name}",
                detokenizer_ipc_name=f"ipc://{tempfile.NamedTemporaryFile(delete=False).name}",
Lianmin Zheng's avatar
Lianmin Zheng committed
2048
                nccl_port=nccl_port,
2049
                rpc_ipc_name=f"ipc://{tempfile.NamedTemporaryFile(delete=False).name}",
2050
                metrics_ipc_name=f"ipc://{tempfile.NamedTemporaryFile(delete=False).name}",
2051
2052
2053
2054
2055
            )
        else:
            # DP attention. Use TCP + port to handle both single-node and multi-node.
            if server_args.nnodes == 1 and server_args.dist_init_addr is None:
                dist_init_addr = ("127.0.0.1", server_args.port + ZMQ_TCP_PORT_DELTA)
Vincent's avatar
Vincent committed
2056
2057
2058
            elif server_args.dist_init_addr.startswith("["):  # ipv6 address
                port_num, host = configure_ipv6(server_args.dist_init_addr)
                dist_init_addr = (host, str(port_num))
2059
2060
            else:
                dist_init_addr = server_args.dist_init_addr.split(":")
Vincent's avatar
Vincent committed
2061

2062
2063
2064
2065
2066
2067
            assert (
                len(dist_init_addr) == 2
            ), "please provide --dist-init-addr as host:port of head node"

            dist_init_host, dist_init_port = dist_init_addr
            port_base = int(dist_init_port) + 1
2068
2069
2070
            detokenizer_port = port_base + 1
            rpc_port = port_base + 2
            metrics_ipc_name = port_base + 3
2071
            if dp_rank is None:
2072
                # TokenizerManager to DataParallelController
2073
                scheduler_input_port = port_base + 4
2074
            else:
2075
                scheduler_input_port = port_base + 4 + 1 + dp_rank
2076
2077
2078
2079

            return PortArgs(
                tokenizer_ipc_name=f"tcp://{dist_init_host}:{port_base}",
                scheduler_input_ipc_name=f"tcp://{dist_init_host}:{scheduler_input_port}",
2080
                detokenizer_ipc_name=f"tcp://{dist_init_host}:{detokenizer_port}",
Lianmin Zheng's avatar
Lianmin Zheng committed
2081
                nccl_port=nccl_port,
2082
2083
                rpc_ipc_name=f"tcp://{dist_init_host}:{rpc_port}",
                metrics_ipc_name=f"tcp://{dist_init_host}:{metrics_ipc_name}",
2084
            )
2085

2086
2087
2088
2089
2090
2091
2092
2093
2094
2095

class LoRAPathAction(argparse.Action):
    def __call__(self, parser, namespace, values, option_string=None):
        setattr(namespace, self.dest, {})
        for lora_path in values:
            if "=" in lora_path:
                name, path = lora_path.split("=", 1)
                getattr(namespace, self.dest)[name] = path
            else:
                getattr(namespace, self.dest)[lora_path] = lora_path
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105


class DeprecatedAction(argparse.Action):
    def __init__(self, option_strings, dest, nargs=0, **kwargs):
        super(DeprecatedAction, self).__init__(
            option_strings, dest, nargs=nargs, **kwargs
        )

    def __call__(self, parser, namespace, values, option_string=None):
        raise ValueError(self.help)
2106
2107


2108
def auto_choose_speculative_params(self: ServerArgs):
2109
2110
2111
2112
2113
    """
    Automatically choose the parameters for speculative decoding.

    You can tune them on your own models and prompts with scripts/playground/bench_speculative.py
    """
Lianmin Zheng's avatar
Lianmin Zheng committed
2114
    hf_config = self.get_hf_config()
2115
2116
    arch = hf_config.architectures[0]

2117
2118
2119
2120
2121
    if arch in ["LlamaForCausalLM"]:
        # The default value for llama
        return (5, 4, 8)
    elif arch in ["DeepseekV3ForCausalLM", "DeepseekV2ForCausalLM"]:
        # The default value for deepseek
2122
        return (3, 1, 4)
2123
2124
2125
2126
2127
    elif arch in ["Grok1ForCausalLM", "Grok1VForCausalLM"]:
        return (5, 4, 8)
    else:
        # The default value for all other models
        return (5, 4, 8)