server_args.py 127 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
Lianmin Zheng's avatar
Lianmin Zheng committed
14
15
"""The arguments of the server."""

Lianmin Zheng's avatar
Lianmin Zheng committed
16
17
import argparse
import dataclasses
18
import json
19
import logging
20
import os
21
import random
22
import socket
23
import sys
24
import tempfile
25
from typing import List, Literal, Optional, Union
Lianmin Zheng's avatar
Lianmin Zheng committed
26

27
from sglang.srt.connector import ConnectorType
28
from sglang.srt.function_call.function_call_parser import FunctionCallParser
29
from sglang.srt.hf_transformers_utils import check_gguf_file, get_config
30
from sglang.srt.lora.lora_registry import LoRARef
31
from sglang.srt.parser.reasoning_parser import ReasoningParser
32
from sglang.srt.utils import (
33
34
    LORA_TARGET_ALL_MODULES,
    SUPPORTED_LORA_TARGET_MODULES,
Vincent's avatar
Vincent committed
35
    configure_ipv6,
36
    get_device,
Lianmin Zheng's avatar
Lianmin Zheng committed
37
    get_device_memory_capacity,
38
    is_cuda,
39
    is_flashinfer_available,
HAI's avatar
HAI committed
40
    is_hip,
41
    is_npu,
42
    is_port_available,
43
    is_remote_url,
44
45
    is_sm90_supported,
    is_sm100_supported,
46
    is_triton_kernels_available,
47
    is_valid_ipv6_address,
48
    json_list_type,
bjmsong's avatar
bjmsong committed
49
    nullable_str,
50
    parse_connector_type,
51
)
52
from sglang.utils import is_in_ci
53

54
55
logger = logging.getLogger(__name__)

Lianmin Zheng's avatar
Lianmin Zheng committed
56

57
58
59
60
61
62
63
64
65
66
67
68
# Define constants
LOAD_FORMAT_CHOICES = [
    "auto",
    "pt",
    "safetensors",
    "npcache",
    "dummy",
    "sharded_state",
    "gguf",
    "bitsandbytes",
    "layered",
    "remote",
69
    "remote_instance",
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
]

QUANTIZATION_CHOICES = [
    "awq",
    "fp8",
    "gptq",
    "marlin",
    "gptq_marlin",
    "awq_marlin",
    "bitsandbytes",
    "gguf",
    "modelopt",
    "modelopt_fp4",
    "petit_nvfp4",
    "w8a8_int8",
    "w8a8_fp8",
    "moe_wna16",
    "qoq",
    "w4afp8",
    "mxfp4",
]

ATTENTION_BACKEND_CHOICES = [
    # Common
    "triton",
    "torch_native",
96
    "flex_attention",
97
98
99
    # NVIDIA specific
    "cutlass_mla",
    "fa3",
100
    "fa4",
101
102
103
104
105
    "flashinfer",
    "flashmla",
    "trtllm_mla",
    "trtllm_mha",
    "dual_chunk_flash_attn",
Yi Zhang's avatar
Yi Zhang committed
106
    "hybrid_linear_attn",
107
108
109
110
111
112
113
114
    # AMD specific
    "aiter",
    "wave",
    # Other platforms
    "intel_amx",
    "ascend",
]

115
116
LORA_BACKEND_CHOICES = ["triton", "csgmv"]

117
118
DISAGG_TRANSFER_BACKEND_CHOICES = ["mooncake", "nixl", "ascend", "fake"]

119
120
GRAMMAR_BACKEND_CHOICES = ["xgrammar", "outlines", "llguidance", "none"]

121
DETERMINISTIC_ATTENTION_BACKEND_CHOICES = ["flashinfer", "fa3", "triton"]
122

123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

# Allow external code to add more choices
def add_load_format_choices(choices):
    LOAD_FORMAT_CHOICES.extend(choices)


def add_quantization_method_choices(choices):
    QUANTIZATION_CHOICES.extend(choices)


def add_attention_backend_choices(choices):
    ATTENTION_BACKEND_CHOICES.extend(choices)


def add_disagg_transfer_backend_choices(choices):
    DISAGG_TRANSFER_BACKEND_CHOICES.extend(choices)


141
142
143
144
def add_grammar_backend_choices(choices):
    GRAMMAR_BACKEND_CHOICES.extend(choices)


Lianmin Zheng's avatar
Lianmin Zheng committed
145
146
@dataclasses.dataclass
class ServerArgs:
Lianmin Zheng's avatar
Lianmin Zheng committed
147
    # Model and tokenizer
Lianmin Zheng's avatar
Lianmin Zheng committed
148
149
150
    model_path: str
    tokenizer_path: Optional[str] = None
    tokenizer_mode: str = "auto"
151
    tokenizer_worker_num: int = 1
152
    skip_tokenizer_init: bool = False
Lianmin Zheng's avatar
Lianmin Zheng committed
153
    load_format: str = "auto"
154
    model_loader_extra_config: str = "{}"
155
    trust_remote_code: bool = False
156
    context_length: Optional[int] = None
157
    is_embedding: bool = False
158
    enable_multimodal: Optional[bool] = None
159
    revision: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
160
    model_impl: str = "auto"
Lianmin Zheng's avatar
Lianmin Zheng committed
161

Lianmin Zheng's avatar
Lianmin Zheng committed
162
    # HTTP server
Lianmin Zheng's avatar
Lianmin Zheng committed
163
164
    host: str = "127.0.0.1"
    port: int = 30000
Lianmin Zheng's avatar
Lianmin Zheng committed
165
166
    skip_server_warmup: bool = False
    warmups: Optional[str] = None
167
    nccl_port: Optional[int] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
168

Lianmin Zheng's avatar
Lianmin Zheng committed
169
170
171
172
173
174
    # Quantization and data type
    dtype: str = "auto"
    quantization: Optional[str] = None
    quantization_param_path: Optional[str] = None
    kv_cache_dtype: str = "auto"

Lianmin Zheng's avatar
Lianmin Zheng committed
175
    # Memory and scheduling
Lianmin Zheng's avatar
Lianmin Zheng committed
176
    mem_fraction_static: Optional[float] = None
177
    max_running_requests: Optional[int] = None
178
    max_queued_requests: Optional[int] = None
179
    max_total_tokens: Optional[int] = None
180
    chunked_prefill_size: Optional[int] = None
181
    max_prefill_tokens: int = 16384
182
    schedule_policy: str = "fcfs"
183
184
185
    enable_priority_scheduling: bool = False
    schedule_low_priority_values_first: bool = False
    priority_scheduling_preemption_threshold: int = 10
186
    schedule_conservativeness: float = 1.0
187
    page_size: Optional[int] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
188
189
190
    hybrid_kvcache_ratio: Optional[float] = None
    swa_full_tokens_ratio: float = 0.8
    disable_hybrid_swa_memory: bool = False
191
    radix_eviction_policy: str = "lru"
Lianmin Zheng's avatar
Lianmin Zheng committed
192

Lianmin Zheng's avatar
Lianmin Zheng committed
193
194
    # Runtime options
    device: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
195
    tp_size: int = 1
196
197
    pp_size: int = 1
    max_micro_batch_size: Optional[int] = None
198
    stream_interval: int = 1
199
    stream_output: bool = False
200
    random_seed: Optional[int] = None
201
    constrained_json_whitespace_pattern: Optional[str] = None
202
    watchdog_timeout: float = 300
203
    dist_timeout: Optional[int] = None  # timeout for torch.distributed
204
    download_dir: Optional[str] = None
205
    base_gpu_id: int = 0
206
    gpu_id_step: int = 1
207
    sleep_on_idle: bool = False
Lianmin Zheng's avatar
Lianmin Zheng committed
208
209
210

    # Logging
    log_level: str = "info"
211
    log_level_http: Optional[str] = None
212
    log_requests: bool = False
213
    log_requests_level: int = 2
214
    crash_dump_folder: Optional[str] = None
Liangsheng Yin's avatar
Liangsheng Yin committed
215
    show_time_cost: bool = False
216
    enable_metrics: bool = False
217
    enable_metrics_for_all_schedulers: bool = False
218
219
    tokenizer_metrics_custom_labels_header: str = "x-customer-labels"
    tokenizer_metrics_allowed_customer_labels: Optional[List[str]] = None
220
221
    bucket_time_to_first_token: Optional[List[float]] = None
    bucket_inter_token_latency: Optional[List[float]] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
222
    bucket_e2e_request_latency: Optional[List[float]] = None
223
    collect_tokens_histogram: bool = False
224
225
    prompt_tokens_buckets: Optional[List[str]] = None
    generation_tokens_buckets: Optional[List[str]] = None
226
    decode_log_interval: int = 40
227
    enable_request_time_stats_logging: bool = False
228
    kv_events_config: Optional[str] = None
229
    gc_warning_threshold_secs: float = 0.0
230
231
    enable_trace: bool = False
    oltp_traces_endpoint: str = "localhost:4317"
Liangsheng Yin's avatar
Liangsheng Yin committed
232

233
    # API related
234
    api_key: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
235
    served_model_name: Optional[str] = None
236
    weight_version: str = "default"
Lianmin Zheng's avatar
Lianmin Zheng committed
237
238
    chat_template: Optional[str] = None
    completion_template: Optional[str] = None
239
    file_storage_path: str = "sglang_storage"
240
    enable_cache_report: bool = False
Xihuai Wang's avatar
Xihuai Wang committed
241
    reasoning_parser: Optional[str] = None
242
    tool_call_parser: Optional[str] = None
243
    tool_server: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
244

245
246
247
    # Data parallelism
    dp_size: int = 1
    load_balance_method: str = "round_robin"
248
    load_watch_interval: float = 0.1
249
250
    # FIXME: remove this after dp rank scheduling is fully supported with PD-Disaggregation
    prefill_round_robin_balance: bool = False
251

252
    # Multi-node distributed serving
253
    dist_init_addr: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
254
    nnodes: int = 1
255
    node_rank: int = 0
Lianmin Zheng's avatar
Lianmin Zheng committed
256
257
258

    # Model override args in JSON
    json_model_override_args: str = "{}"
259
    preferred_sampling_params: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
260

261
    # LoRA
262
    enable_lora: Optional[bool] = None
263
    max_lora_rank: Optional[int] = None
264
    lora_target_modules: Optional[Union[set[str], List[str]]] = None
265
266
267
    lora_paths: Optional[
        Union[dict[str, str], List[dict[str, str]], List[str], List[LoRARef]]
    ] = None
268
    max_loaded_loras: Optional[int] = None
269
    max_loras_per_batch: int = 8
270
    lora_backend: str = "triton"
271
    max_lora_chunk_size: Optional[int] = 16
272
273

    # Kernel backend
274
    attention_backend: Optional[str] = None
275
276
    decode_attention_backend: Optional[str] = None
    prefill_attention_backend: Optional[str] = None
277
    sampling_backend: Optional[str] = None
278
    grammar_backend: Optional[str] = None
279
    mm_attention_backend: Optional[str] = None
280

281
282
    # Speculative decoding
    speculative_algorithm: Optional[str] = None
283
    speculative_draft_model_path: Optional[str] = None
284
    speculative_draft_model_revision: Optional[str] = None
285
286
287
    speculative_num_steps: Optional[int] = None
    speculative_eagle_topk: Optional[int] = None
    speculative_num_draft_tokens: Optional[int] = None
288
289
    speculative_accept_threshold_single: float = 1.0
    speculative_accept_threshold_acc: float = 1.0
290
    speculative_token_map: Optional[str] = None
291
    speculative_attention_mode: str = "prefill"
292
293
294
295
296
297
298
299
    # For lookahead only
    speculative_lookahead_min_match_window_size: int = 1
    speculative_lookahead_max_match_window_size: int = 12
    speculative_lookahead_min_bfs_breadth: int = 1
    speculative_lookahead_max_bfs_breadth: int = 10
    speculative_lookahead_match_type: Literal["BFS", "PROB"] = "BFS"
    speculative_lookahead_branch_length: int = 18
    speculative_lookahead_capacity: int = 10 * 1000 * 1000
300

301
302
    # Expert parallelism
    ep_size: int = 1
303
304
305
306
307
308
309
310
311
    moe_a2a_backend: Literal["none", "deepep"] = "none"
    moe_runner_backend: Literal[
        "auto",
        "triton",
        "triton_kernel",
        "flashinfer_trtllm",
        "flashinfer_cutlass",
        "flashinfer_mxfp4",
    ] = "auto"
312
    flashinfer_mxfp4_moe_precision: Literal["default", "bf16"] = "default"
313
    enable_flashinfer_allreduce_fusion: bool = False
314
    deepep_mode: Literal["auto", "normal", "low_latency"] = "auto"
315
316
317
318
319
320
321
    ep_num_redundant_experts: int = 0
    ep_dispatch_algorithm: Optional[Literal["static", "dynamic", "fake"]] = None
    init_expert_location: str = "trivial"
    enable_eplb: bool = False
    eplb_algorithm: str = "auto"
    eplb_rebalance_num_iterations: int = 1000
    eplb_rebalance_layers_per_chunk: Optional[int] = None
322
    eplb_min_rebalancing_utilization_threshold: float = 1.0
323
324
325
326
327
328
329
330
    expert_distribution_recorder_mode: Optional[
        Literal["stat", "stat_approx", "per_pass", "per_token"]
    ] = None
    expert_distribution_recorder_buffer_size: Optional[int] = None
    enable_expert_distribution_metrics: bool = False
    deepep_config: Optional[str] = None
    moe_dense_tp_size: Optional[int] = None

Lianmin Zheng's avatar
Lianmin Zheng committed
331
332
333
334
    # Hierarchical cache
    enable_hierarchical_cache: bool = False
    hicache_ratio: float = 2.0
    hicache_size: int = 0
335
    hicache_write_policy: str = "write_through"
336
337
    hicache_io_backend: str = "kernel"
    hicache_mem_layout: str = "layer_first"
Lianmin Zheng's avatar
Lianmin Zheng committed
338
    hicache_storage_backend: Optional[str] = None
pansicheng's avatar
pansicheng committed
339
    hicache_storage_prefetch_policy: str = "best_effort"
340
    hicache_storage_backend_extra_config: Optional[str] = None
341
342
    # LMCache
    enable_lmcache: bool = False
Lianmin Zheng's avatar
Lianmin Zheng committed
343

344
345
    # Double Sparsity
    enable_double_sparsity: bool = False
Vincent's avatar
Vincent committed
346
    ds_channel_config_path: Optional[str] = None
347
348
349
350
351
    ds_heavy_channel_num: int = 32
    ds_heavy_token_num: int = 256
    ds_heavy_channel_type: str = "qk"
    ds_sparse_decode_threshold: int = 4096

fzyzcjy's avatar
fzyzcjy committed
352
353
354
355
356
357
358
    # Offloading
    cpu_offload_gb: int = 0
    offload_group_size: int = -1
    offload_num_in_group: int = 1
    offload_prefetch_step: int = 1
    offload_mode: str = "cpu"

359
    # Optimization/debug options
Lianmin Zheng's avatar
Lianmin Zheng committed
360
    disable_radix_cache: bool = False
361
362
    cuda_graph_max_bs: Optional[int] = None
    cuda_graph_bs: Optional[List[int]] = None
363
    disable_cuda_graph: bool = False
364
    disable_cuda_graph_padding: bool = False
365
    enable_profile_cuda_graph: bool = False
366
    enable_cudagraph_gc: bool = False
367
    enable_nccl_nvls: bool = False
368
    enable_symm_mem: bool = False
369
    disable_flashinfer_cutlass_moe_fp4_allgather: bool = False
370
    enable_tokenizer_batch_encode: bool = False
371
    disable_outlines_disk_cache: bool = False
372
    disable_custom_all_reduce: bool = False
373
    enable_mscclpp: bool = False
374
    disable_overlap_schedule: bool = False
375
    enable_mixed_chunk: bool = False
Ke Bao's avatar
Ke Bao committed
376
    enable_dp_attention: bool = False
377
    enable_dp_lm_head: bool = False
378
    enable_two_batch_overlap: bool = False
379
    tbo_token_distribution_threshold: float = 0.48
380
    enable_torch_compile: bool = False
381
    torch_compile_max_bs: int = 32
382
    torchao_config: str = ""
383
    enable_nan_detection: bool = False
384
    enable_p2p_check: bool = False
385
    triton_attention_reduce_in_fp32: bool = False
386
    triton_attention_num_kv_splits: int = 8
387
    triton_attention_split_tile_size: Optional[int] = None
388
    num_continuous_decode_steps: int = 1
389
    delete_ckpt_after_loading: bool = False
390
    enable_memory_saver: bool = False
391
    allow_auto_truncate: bool = False
392
    enable_custom_logit_processor: bool = False
393
    flashinfer_mla_disable_ragged: bool = False
394
    disable_shared_experts_fusion: bool = False
395
    disable_chunked_prefix_cache: bool = False
Lianmin Zheng's avatar
Lianmin Zheng committed
396
    disable_fast_image_processor: bool = False
397
    keep_mm_feature_on_device: bool = False
398
    enable_return_hidden_states: bool = False
399
    scheduler_recv_interval: int = 1
400
    numa_node: Optional[List[int]] = None
401

402
403
404
405
406
    # Dynamic batch tokenizer
    enable_dynamic_batch_tokenizer: bool = False
    dynamic_batch_tokenizer_batch_size: int = 32
    dynamic_batch_tokenizer_batch_timeout: float = 0.002

407
408
409
410
    # Debug tensor dumps
    debug_tensor_dump_output_folder: Optional[str] = None
    debug_tensor_dump_input_file: Optional[str] = None
    debug_tensor_dump_inject: bool = False
411
    debug_tensor_dump_prefill_only: bool = False
412

Lianmin Zheng's avatar
Lianmin Zheng committed
413
    # PD disaggregation: can be "null" (not disaggregated), "prefill" (prefill-only), or "decode" (decode-only)
414
    disaggregation_mode: Literal["null", "prefill", "decode"] = "null"
415
    disaggregation_transfer_backend: str = "mooncake"
416
    disaggregation_bootstrap_port: int = 8998
Byron Hsu's avatar
Byron Hsu committed
417
418
419
    disaggregation_decode_tp: Optional[int] = None
    disaggregation_decode_dp: Optional[int] = None
    disaggregation_prefill_pp: Optional[int] = 1
420
    disaggregation_ib_device: Optional[str] = None
421
    num_reserved_decode_tokens: int = 512  # used for decode kv cache offload in PD
Byron Hsu's avatar
Byron Hsu committed
422

423
424
425
    # FIXME: hack to reduce ITL when decode bs is small
    disaggregation_decode_polling_interval: int = 1

426
427
    # For model weight update
    custom_weight_loader: Optional[List[str]] = None
428
    weight_loader_disable_mmap: bool = False
429

430
431
432
433
434
    # Remote instance weight loading
    remote_instance_weight_loader_seed_instance_ip: Optional[str] = None
    remote_instance_weight_loader_seed_instance_service_port: Optional[int] = None
    remote_instance_weight_loader_send_weights_group_ports: Optional[List[int]] = None

435
436
437
438
    # For PD-Multiplexing
    enable_pdmux: bool = False
    sm_group_num: int = 3

Yi Zhang's avatar
Yi Zhang committed
439
440
441
442
    # Mamba cache
    max_mamba_cache_size: Optional[int] = None
    mamba_ssm_dtype: str = "float32"

443
444
445
    # For deterministic inference
    enable_deterministic_inference: bool = False

446
447
448
    # Deprecated arguments
    enable_ep_moe: bool = False
    enable_deepep_moe: bool = False
449
    enable_flashinfer_cutlass_moe: bool = False
450
    enable_flashinfer_cutedsl_moe: bool = False
451
452
    enable_flashinfer_trtllm_moe: bool = False
    enable_triton_kernel_moe: bool = False
453
    enable_flashinfer_mxfp4_moe: bool = False
454

455
    def _handle_deprecated_args(self):
456
457
458
459
460
461
462
463
464
465
        if self.enable_ep_moe:
            self.ep_size = self.tp_size
            print_deprecated_warning(
                "NOTE: --enable-ep-moe is deprecated. Please set `--ep-size` to the same value as `--tp-size` instead."
            )
        if self.enable_deepep_moe:
            self.moe_a2a_backend = "deepep"
            print_deprecated_warning(
                "NOTE: --enable-deepep-moe is deprecated. Please set `--moe-a2a-backend` to 'deepep' instead."
            )
466
467
468
469
470
        if self.enable_triton_kernel_moe:
            self.moe_runner_backend = "triton_kernel"
            print_deprecated_warning(
                "NOTE: --enable-triton-kernel-moe is deprecated. Please set `--moe-runner-backend` to 'triton_kernel' instead."
            )
471
472
473
474
475
        if self.enable_flashinfer_cutedsl_moe:
            self.moe_runner_backend = "flashinfer_cutedsl"
            print_deprecated_warning(
                "NOTE: --enable-flashinfer-cutedsl-moe is deprecated. Please set `--moe-runner-backend` to 'flashinfer_cutedsl' instead."
            )
476
477
478
479
480
481
482
483
484
485
        if self.enable_flashinfer_cutlass_moe:
            self.moe_runner_backend = "flashinfer_cutlass"
            print_deprecated_warning(
                "NOTE: --enable-flashinfer-cutlass-moe is deprecated. Please set `--moe-runner-backend` to 'flashinfer_cutlass' instead."
            )
        if self.enable_flashinfer_trtllm_moe:
            self.moe_runner_backend = "flashinfer_trtllm"
            print_deprecated_warning(
                "NOTE: --enable-flashinfer-trtllm-moe is deprecated. Please set `--moe-runner-backend` to 'flashinfer_trtllm' instead."
            )
486
487
488
489
490
        if self.enable_flashinfer_mxfp4_moe:
            self.moe_runner_backend = "flashinfer_mxfp4"
            print_deprecated_warning(
                "NOTE: --enable-flashinfer-mxfp4-moe is deprecated. Please set `--moe-runner-backend` to 'flashinfer_mxfp4' instead."
            )
491

492
    def _handle_missing_default_values(self):
Lianmin Zheng's avatar
Lianmin Zheng committed
493
494
        if self.tokenizer_path is None:
            self.tokenizer_path = self.model_path
495
496
        if self.served_model_name is None:
            self.served_model_name = self.model_path
497
498
        if self.device is None:
            self.device = get_device()
499
500
501
        if self.random_seed is None:
            self.random_seed = random.randint(0, 1 << 30)

502
    def _handle_mem_fraction_static(self, gpu_mem):
Lianmin Zheng's avatar
Lianmin Zheng committed
503
        if self.mem_fraction_static is None:
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
            if gpu_mem is not None:
                # GPU memory capacity = model weights + KV cache pool + activations + cuda graph buffers
                # mem_fraction_static = (model weights + KV cache pool) / GPU memory capacity.

                # We want mem_fraction_static to be as large as possible but still has enough room
                # for activations and cuda graph buffers. We use the following heuristic to
                # compute the needed size for activations and cuda graph buffers:
                # - The size of the activation depends on the chunked_prefill_size and model size.
                # - The size of cuda graph buffers depends on the cuda graph capture range and model size.
                # For GPUs with more memory, we use a larger chunked_prefill_size and
                # capture more cuda graphs, so they need to reserve more memory.
                parallel_size = self.tp_size * self.pp_size

                if gpu_mem < 20 * 1024:
                    # T4, 4080. (chunked_prefill_size 2k, cuda_graph_max_bs 8)
                    reserved_mem = (2.8 + parallel_size / 10) * 1024
                elif gpu_mem < 35 * 1024:
                    # A10, L40, 4090, 5090. (chunked_prefill_size 2k, cuda_graph_max_bs 8)
                    reserved_mem = (2.8 + parallel_size / 10) * 1024
                elif gpu_mem < 90 * 1024:
                    # H100, A100. (chunked_prefill_size 8k, cuda_graph_max_bs 160)
                    reserved_mem = (9.5 + parallel_size / 2) * 1024
                elif gpu_mem < 100 * 1024:
                    # H20. (chunked_prefill_size 8k, cuda_graph_max_bs 256)
                    reserved_mem = (12 + parallel_size / 2) * 1024
                elif gpu_mem < 160 * 1024:
                    # H200. (chunked_prefill_size 8k, cuda_graph_max_bs 256)
                    reserved_mem = (12 + parallel_size / 2) * 1024
532
                else:
533
534
535
                    # B200, MI300. (chunked_prefill_size 16k, cuda_graph_max_bs 512)
                    reserved_mem = 32 * 1024

536
                # draft model and larger cuda graph buffers
537
                if self.speculative_algorithm is not None:
538
539
540
541
                    if self.speculative_algorithm == "STANDALONE":
                        # Standalone speculative decoding needs more memory than other speculative
                        # decoding algorithms since the draft model is typically larger.
                        reserved_mem += 6 * 1024
542
                    elif self.speculative_algorithm != "LOOKAHEAD":
543
                        reserved_mem += 2 * 1024
544
545
546
547
                if self.enable_dp_attention:
                    reserved_mem += 4 * 1024

                self.mem_fraction_static = round((gpu_mem - reserved_mem) / gpu_mem, 3)
548
            else:
549
                self.mem_fraction_static = 0.88
550

551
            # Lazy init to avoid circular import.
552
553
554
            from sglang.srt.configs.model_config import ModelConfig

            model_config = ModelConfig.from_server_args(self)
Lianmin Zheng's avatar
Lianmin Zheng committed
555
556
            if model_config.is_multimodal:
                self.adjust_mem_fraction_for_vlm(model_config)
557

558
    def _handle_chunked_prefill_size(self, gpu_mem):
559
        if self.chunked_prefill_size is None:
560
            if gpu_mem is not None:
561
562
                # A10, L40, 4090
                if gpu_mem < 35 * 1024:
563
                    self.chunked_prefill_size = 2048
564
565
                # H100, H200, A100, H20
                elif gpu_mem < 160 * 1024:
566
                    self.chunked_prefill_size = 8192
567
568
                # B200, MI300
                else:
569
                    self.chunked_prefill_size = 16384
570
            else:
571
                self.chunked_prefill_size = 4096
Lianmin Zheng's avatar
Lianmin Zheng committed
572

573
574
    def _handle_cuda_graph_max_bs(self, gpu_mem):
        # Based on detailed statistics, when serving TP1/TP2 models on lower-end GPUs with HBM<25G, you can either disable cuda graph or set `cuda_graph_max_bs` to a very small value to reduce the memory overhead of creating cuda graphs, with almost no impact on performance. However, when serving models with TP4 or TP8, we need to enable cuda graph to maintain high performance. In this case, we can set `cuda_graph_max_bs` to 80 (half of the default value 160) to reduce the memory overhead of creating cuda graphs. Looking at the logs from TP4 serving of qwen2-72b, a value of 80 is sufficient and can reduce the memory overhead of creating cuda graphs on lower-end GPUs compared to the original 160, avoiding OOM issues.
575
576
577
578
579
580
581
        if self.cuda_graph_max_bs is None:
            if gpu_mem is not None and gpu_mem < 35 * 1024:
                if self.tp_size < 4:
                    self.cuda_graph_max_bs = 8
                else:
                    self.cuda_graph_max_bs = 80

582
    def _handle_hpu_backends(self):
583
584
585
586
        if self.device == "hpu":
            self.attention_backend = "torch_native"
            self.sampling_backend = "pytorch"

587
    def _handle_cpu_backends(self):
588
589
590
591
592
        if self.device == "cpu":
            if self.attention_backend is None:
                self.attention_backend = "intel_amx"
            self.sampling_backend = "pytorch"

593
    def _handle_sampling_backend(self):
594
        if self.sampling_backend is None:
595
596
597
598
            self.sampling_backend = (
                "flashinfer" if is_flashinfer_available() else "pytorch"
            )

599
    def _handle_attention_backend_compatibility(self):
600
        if self.attention_backend == "torch_native":
601
            logger.warning(
602
603
604
                "Cuda graph is disabled because of using torch native attention backend"
            )
            self.disable_cuda_graph = True
605

606
607
608
609
610
611
612
613
614
        if self.attention_backend == "flex_attention":
            logger.warning(
                "Cuda graph is disabled because of using torch Flex Attention backend"
            )
            self.disable_cuda_graph = True
            assert (
                self.speculative_algorithm is None
            ), "Speculative decoding is currently not supported with Flex Attention backend"

615
        if is_npu() and self.attention_backend in ["ascend", "hybrid_linear_attn"]:
616
617
618
619
620
            logger.warning(
                "At this moment Ascend attention backend only supports a page_size of 128, change page_size to 128."
            )
            self.page_size = 128

621
622
623
624
        if (
            self.attention_backend == "flashmla"
            or self.decode_attention_backend == "flashmla"
        ):
Lianmin Zheng's avatar
Lianmin Zheng committed
625
626
627
628
629
            logger.warning(
                "FlashMLA only supports a page_size of 64, change page_size to 64."
            )
            self.page_size = 64

630
631
632
633
        if (
            self.attention_backend == "cutlass_mla"
            or self.decode_attention_backend == "cutlass_mla"
        ):
Lianmin Zheng's avatar
Lianmin Zheng committed
634
635
636
637
638
            logger.warning(
                "Cutlass MLA only supports a page_size of 128, change page_size to 128."
            )
            self.page_size = 128

Faraz's avatar
Faraz committed
639
640
641
642
        if (
            self.attention_backend == "trtllm_mla"
            or self.decode_attention_backend == "trtllm_mla"
        ):
643
644
645
646
647
648
649
650
651
652
            if not is_sm100_supported():
                raise ValueError(
                    "TRTLLM MLA backend is only supported on Blackwell GPUs (SM100). Please use a different backend."
                )

            if self.page_size not in [32, 64]:
                logger.warning(
                    f"TensorRT-LLM MLA only supports page_size of 32 or 64, changing page_size from {self.page_size} to 64."
                )
                self.page_size = 64
Faraz's avatar
Faraz committed
653
654
655
656
657

            if self.kv_cache_dtype not in ["fp8_e4m3", "auto"]:
                raise ValueError(
                    "TensorRT-LLM MLA backend only supports kv-cache-dtype of fp8_e4m3 or auto."
                )
658

659
660
661
662
663
        if (
            self.attention_backend == "trtllm_mha"
            or self.decode_attention_backend == "trtllm_mha"
            or self.prefill_attention_backend == "trtllm_mha"
        ):
664
665
666
667
668
669
670
671
672
673
674
            if not is_sm100_supported():
                raise ValueError(
                    "TRTLLM MHA backend is only supported on Blackwell GPUs (SM100). Please use a different backend."
                )

            if self.page_size not in [16, 32, 64]:
                logger.warning(
                    f"TensorRT-LLM MHA only supports page_size of 16, 32 or 64, changing page_size from {self.page_size} to 64."
                )
                self.page_size = 64

675
676
        if self.attention_backend == "dual_chunk_flash_attn":
            logger.warning(
677
                "Mixed chunk, radix cache, and cuda graphs are disabled because of using dual chunk flash attention backend"
678
679
680
681
682
            )
            self.enable_mixed_chunk = False
            self.disable_cuda_graph = True
            self.disable_radix_cache = True

683
    def _handle_page_size(self):
684
685
686
        if self.page_size is None:
            self.page_size = 1

687
    def _handle_amd_specifics(self):
688
689
690
        if is_hip():
            self.triton_attention_num_kv_splits = 16

691
    def _handle_grammar_backend(self):
692
693
        if self.grammar_backend is None:
            self.grammar_backend = "xgrammar"
694

695
    def _handle_data_parallelism(self):
696
697
        if self.dp_size == 1:
            self.enable_dp_attention = False
698
            self.enable_dp_lm_head = False
699

Ke Bao's avatar
Ke Bao committed
700
        if self.enable_dp_attention:
701
            self.schedule_conservativeness = self.schedule_conservativeness * 0.3
Lianmin Zheng's avatar
Lianmin Zheng committed
702
703
            assert self.tp_size % self.dp_size == 0
            self.chunked_prefill_size = self.chunked_prefill_size // self.dp_size
704
            logger.warning(
705
                f"DP attention is enabled. The chunked prefill size is adjusted to {self.chunked_prefill_size} to avoid MoE kernel issues. "
706
            )
707

708
709
710
        if self.enable_dp_lm_head:
            assert (
                self.enable_dp_attention
711
            ), "Please enable dp attention when setting enable_dp_lm_head. "
712

713
    def _handle_moe_kernel_config(self):
714
        if self.moe_runner_backend == "flashinfer_cutlass":
715
716
717
            assert (
                self.quantization == "modelopt_fp4"
            ), "modelopt_fp4 quantization is required for Flashinfer MOE"
718
719
720
721
            assert self.ep_size in [
                1,
                self.tp_size,
            ], "The expert parallel size must be 1 or the same as the tensor parallel size"
722

723
        if self.moe_runner_backend == "flashinfer_trtllm":
724
725
726
727
728
729
730
            assert (
                self.quantization == "modelopt_fp4" or self.quantization == "fp8"
            ), "modelopt_fp4 quantization is required for Flashinfer TRTLLM MoE"
            self.disable_shared_experts_fusion = True
            logger.warning(
                "FlashInfer TRTLLM MoE is enabled. --disable-shared-experts-fusion is automatically set."
            )
731

732
    def _handle_deepep_moe(self):
733
        if self.moe_a2a_backend == "deepep":
734
735
736
            if self.deepep_mode == "normal":
                logger.warning("Cuda graph is disabled because deepep_mode=`normal`")
                self.disable_cuda_graph = True
737
            self.ep_size = self.tp_size
Lianmin Zheng's avatar
Lianmin Zheng committed
738
            logger.warning(
739
740
                f"DeepEP MoE is enabled. The expert parallel size is adjusted to be the same as the tensor parallel size[{self.tp_size}]."
            )
741

742
    def _handle_eplb_and_dispatch(self):
743
744
        if self.enable_eplb and (self.expert_distribution_recorder_mode is None):
            self.expert_distribution_recorder_mode = "stat"
745
            logger.warning(
746
                "EPLB is enabled. The expert_distribution_recorder_mode is automatically set."
747
748
749
750
751
752
753
            )

        if (self.enable_eplb or (self.init_expert_location is not None)) and (
            self.ep_dispatch_algorithm is None
        ):
            self.ep_dispatch_algorithm = "static"

754
        if self.enable_eplb:
755
            assert self.ep_size > 1
756

757
    def _handle_expert_distribution_metrics(self):
758
759
760
761
762
        if self.enable_expert_distribution_metrics and (
            self.expert_distribution_recorder_mode is None
        ):
            self.expert_distribution_recorder_mode = "stat"

763
        if self.expert_distribution_recorder_buffer_size is None:
764
765
            if (x := self.eplb_rebalance_num_iterations) is not None:
                self.expert_distribution_recorder_buffer_size = x
766
767
768
            elif self.expert_distribution_recorder_mode is not None:
                self.expert_distribution_recorder_buffer_size = 1000

769
    def _handle_pipeline_parallelism(self):
Lianmin Zheng's avatar
Lianmin Zheng committed
770
771
772
773
774
775
        if self.pp_size > 1:
            self.disable_overlap_schedule = True
            logger.warning(
                "Pipeline parallelism is incompatible with overlap schedule."
            )

776
    def _handle_hicache(self):
777
778
779
780
        if self.hicache_storage_backend == "mooncake":
            self.hicache_io_backend = "kernel"
            self.hicache_mem_layout = "page_first"

781
782
783
784
785
786
787
        if self.hicache_mem_layout == "page_first_direct":
            if self.hicache_io_backend != "direct":
                self.hicache_io_backend = "direct"
                logger.warning(
                    "Page first direct layout only support direct io backend"
                )

788
    def _handle_speculative_decoding(self):
789
790
791
        if self.speculative_algorithm == "NEXTN":
            self.speculative_algorithm = "EAGLE"

792
        if self.speculative_algorithm in ("EAGLE", "EAGLE3", "STANDALONE"):
793
            if self.speculative_algorithm == "STANDALONE" and self.enable_dp_attention:
794
                # TODO: support dp attention for standalone speculative decoding
795
796
797
                raise ValueError(
                    "Currently standalone speculative decoding does not support dp attention."
                )
798
            if self.max_running_requests is None:
799
                self.max_running_requests = 48
800
            self.disable_overlap_schedule = True
Lianmin Zheng's avatar
Lianmin Zheng committed
801
            logger.warning(
802
                "Overlap scheduler is disabled because of using "
803
                "eagle speculative decoding."
804
            )
805
806
807
808
809
810
            if self.enable_mixed_chunk:
                self.enable_mixed_chunk = False
                logger.warning(
                    "Mixed chunked prefill is disabled because of using "
                    "eagle speculative decoding."
                )
811

Lianmin Zheng's avatar
Lianmin Zheng committed
812
            model_arch = self.get_hf_config().architectures[0]
strgrb's avatar
strgrb committed
813
814
815
            if model_arch in [
                "DeepseekV3ForCausalLM",
                "Glm4MoeForCausalLM",
Yuan Luo's avatar
Yuan Luo committed
816
                "BailingMoeForCausalLM",
strgrb's avatar
strgrb committed
817
818
                "BailingMoeV2ForCausalLM",
            ]:
819
820
821
822
823
824
                if self.speculative_draft_model_path is None:
                    self.speculative_draft_model_path = self.model_path
                else:
                    logger.warning(
                        "DeepSeek MTP does not require setting speculative_draft_model_path."
                    )
825

826
827
828
829
830
831
832
833
834
            if self.speculative_num_steps is None:
                assert (
                    self.speculative_eagle_topk is None
                    and self.speculative_num_draft_tokens is None
                )
                (
                    self.speculative_num_steps,
                    self.speculative_eagle_topk,
                    self.speculative_num_draft_tokens,
835
                ) = auto_choose_speculative_params(self)
836

837
838
839
840
841
842
843
844
845
846
            if (
                self.attention_backend == "trtllm_mha"
                or self.decode_attention_backend == "trtllm_mha"
                or self.prefill_attention_backend == "trtllm_mha"
            ):
                if self.speculative_eagle_topk > 1:
                    raise ValueError(
                        "trtllm_mha backend only supports topk = 1 for speculative decoding."
                    )

847
848
849
850
            if (
                self.speculative_eagle_topk == 1
                and self.speculative_num_draft_tokens != self.speculative_num_steps + 1
            ):
Lianmin Zheng's avatar
Lianmin Zheng committed
851
                logger.warning(
852
853
854
                    "speculative_num_draft_tokens is adjusted to speculative_num_steps + 1 when speculative_eagle_topk == 1"
                )
                self.speculative_num_draft_tokens = self.speculative_num_steps + 1
855

856
857
858
859
860
861
862
863
864
            if (
                self.speculative_eagle_topk > 1
                and self.page_size > 1
                and self.attention_backend != "flashinfer"
            ):
                raise ValueError(
                    "speculative_eagle_topk > 1 with page_size > 1 is unstable and produces incorrect results for paged attention backends. This combination is only supported for the 'flashinfer' backend."
                )

865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
        if self.speculative_algorithm == "LOOKAHEAD":
            if not self.device.startswith("cuda"):
                raise ValueError(
                    "Lookahead speculative decoding only supports CUDA device."
                )
            if self.max_running_requests is None:
                self.max_running_requests = 48
            self.disable_overlap_schedule = True
            self.enable_mixed_chunk = False
            self.speculative_eagle_topk = self.speculative_lookahead_max_bfs_breadth
            if self.speculative_num_draft_tokens is None:
                self.speculative_num_draft_tokens = (
                    self.speculative_lookahead_max_match_window_size
                )
            logger.warning(
                "The overlap scheduler and mixed chunked prefill are disabled because of "
                "using lookahead speculative decoding."
            )
883

884
885
886
887
888
889
890
891
892
893
894
895
896
            if (
                self.speculative_eagle_topk > 1
                and self.page_size > 1
                and self.attention_backend != "flashinfer"
            ):
                raise ValueError(
                    "speculative_eagle_topk > 1 with page_size > 1 is unstable and produces incorrect results for paged attention backends. This combination is only supported for the 'flashinfer' backend."
                )
            if self.enable_dp_attention:
                # TODO: support dp attention for lookahead speculative decoding
                raise ValueError(
                    "Currently lookahead speculative decoding does not support dp attention."
                )
897
898

    def _handle_load_format(self):
899
900
901
902
903
        if (
            self.load_format == "auto" or self.load_format == "gguf"
        ) and check_gguf_file(self.model_path):
            self.quantization = self.load_format = "gguf"

904
905
        if is_remote_url(self.model_path):
            self.load_format = "remote"
906

907
908
        if self.custom_weight_loader is None:
            self.custom_weight_loader = []
909

910
911
912
913
914
915
916
917
        if self.load_format == "remote_instance":
            if (
                self.remote_instance_weight_loader_seed_instance_ip is None
                or self.remote_instance_weight_loader_seed_instance_service_port is None
                or self.remote_instance_weight_loader_send_weights_group_ports is None
            ):
                self.load_format = "auto"

918
    def _handle_disaggregation(self):
Byron Hsu's avatar
Byron Hsu committed
919
920
921
922
923
924
925
926
        if self.disaggregation_mode == "decode":
            assert (
                self.disaggregation_decode_tp is None
            ), "Cannot set --disaggregation-decode-tp for the decode engine."
            assert (
                self.disaggregation_decode_dp is None
            ), "Cannot set --disaggregation-decode-dp for the decode engine."

Byron Hsu's avatar
Byron Hsu committed
927
            self.disable_radix_cache = True
928
            logger.warning("KV cache is forced as chunk cache for decode server")
929
930
931
932
933
934
935

            if self.dp_size > 1 and not is_in_ci():
                assert self.prefill_round_robin_balance, (
                    "Prefill round robin balance is required when dp size > 1. "
                    "Please make sure that the prefill instance is launched with `--load-balance-method round_robin`"
                    " and `--prefill-round-robin-balance` is set for decode server."
                )
Byron Hsu's avatar
Byron Hsu committed
936
937
938
939
940
941
942
943
944
945
        elif self.disaggregation_mode == "prefill":
            if self.disaggregation_decode_tp is None:
                self.disaggregation_decode_tp = self.tp_size
            if self.disaggregation_decode_dp is None:
                self.disaggregation_decode_dp = self.dp_size

            self.disaggregation_prefill_pp = self.pp_size
            self.validate_disagg_tp_size(self.tp_size, self.disaggregation_decode_tp)
            self.disable_cuda_graph = True
            logger.warning("Cuda graph is disabled for prefill server")
Byron Hsu's avatar
Byron Hsu committed
946

947
    def _handle_tokenizer_batching(self):
948
949
950
951
952
953
        if self.enable_tokenizer_batch_encode and self.enable_dynamic_batch_tokenizer:
            raise ValueError(
                "Cannot enable both --enable-tokenizer-batch-encode and --enable-dynamic-batch-tokenizer. "
                "Please choose one tokenizer batching approach."
            )

954
    def _handle_environment_variables(self):
955
956
957
        os.environ["SGLANG_ENABLE_TORCH_COMPILE"] = (
            "1" if self.enable_torch_compile else "0"
        )
Yi Zhang's avatar
Yi Zhang committed
958
        os.environ["SGLANG_MAMBA_SSM_DTYPE"] = self.mamba_ssm_dtype
959
960
961
        os.environ["SGLANG_DISABLE_OUTLINES_DISK_CACHE"] = (
            "1" if self.disable_outlines_disk_cache else "0"
        )
962
963
964
        os.environ["SGLANG_ENABLE_DETERMINISTIC_INFERENCE"] = (
            "1" if self.enable_deterministic_inference else "0"
        )
965

966
    def _handle_cache_compatibility(self):
967
968
969
970
971
972
        if self.enable_hierarchical_cache and self.disable_radix_cache:
            raise ValueError(
                "The arguments enable-hierarchical-cache and disable-radix-cache are mutually exclusive "
                "and cannot be used at the same time. Please use only one of them."
            )

973
    def _handle_metrics_labels(self):
974
975
976
977
978
979
980
981
        if (
            not self.tokenizer_metrics_custom_labels_header
            and self.tokenizer_metrics_allowed_customer_labels
        ):
            raise ValueError(
                "Please set --tokenizer-metrics-custom-labels-header when setting --tokenizer-metrics-allowed-customer-labels."
            )

982
    def _handle_deterministic_inference(self):
983
        if self.enable_deterministic_inference:
984
            # Check sampling backend
985
986
987
988
            self.sampling_backend = "pytorch"
            logger.warning(
                "Sampling backend is set to pytorch for deterministic inference."
            )
989
990
991
992
993
994
995

            # Check attention backend
            if self.attention_backend not in DETERMINISTIC_ATTENTION_BACKEND_CHOICES:
                raise ValueError(
                    f"Currently only {DETERMINISTIC_ATTENTION_BACKEND_CHOICES} attention backends are supported for deterministic inference."
                )

996
            # Currently, only FA3 supports radix cache. Support for other backends is in progress
997
998
999
            if self.attention_backend != "fa3":
                self.disable_radix_cache = True
                logger.warning(
1000
                    f"Currently radix cache is not compatible with {self.attention_backend} attention backend for deterministic inference. It will be supported in the future."
1001
                )
1002
1003
1004

            # Check TP size
            if self.tp_size > 1:
1005
                raise ValueError(
1006
                    "Currently only TP size 1 is supported for deterministic inference."
1007
1008
                )

1009
1010
1011
1012
1013
            # Warnings on MoE models
            logger.warning(
                "Currently deterministic inference is only tested on dense models. Please be cautious when using it on MoE models."
            )

1014
    def _handle_other_validations(self):
fzyzcjy's avatar
fzyzcjy committed
1015
        pass
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093

    def __post_init__(self):
        """
        Orchestrates the handling of various server arguments, ensuring proper configuration and validation.
        """
        # Step 1: Handle deprecated arguments.
        self._handle_deprecated_args()

        # Step 2: Set missing default values.
        self._handle_missing_default_values()

        # Get GPU memory capacity, which is a common dependency for several configuration steps.
        gpu_mem = get_device_memory_capacity(self.device)

        # Step 3: Handle memory-related configurations.
        self._handle_mem_fraction_static(gpu_mem)
        self._handle_chunked_prefill_size(gpu_mem)

        # Step 4: Handle CUDA graph settings.
        self._handle_cuda_graph_max_bs(gpu_mem)

        # Step 5: Handle device-specific backends.
        self._handle_hpu_backends()
        self._handle_cpu_backends()

        # Step 6: Apply model-specific adjustments.
        if parse_connector_type(self.model_path) != ConnectorType.INSTANCE:
            self.model_specific_adjustments()

        # Step 7: Set kernel backends.
        self._handle_sampling_backend()
        self._handle_attention_backend_compatibility()
        self._handle_page_size()
        self._handle_amd_specifics()
        self._handle_grammar_backend()

        # Step 8: Handle data parallelism.
        self._handle_data_parallelism()

        # Step 9: Handle MoE configurations.
        self._handle_moe_kernel_config()
        self._handle_deepep_moe()
        self._handle_eplb_and_dispatch()
        self._handle_expert_distribution_metrics()

        # Step 10: Handle pipeline parallelism.
        self._handle_pipeline_parallelism()

        # Step 11: Handle Hicache settings.
        self._handle_hicache()

        # Step 12: Handle speculative decoding logic.
        self._handle_speculative_decoding()

        # Step 13: Handle model loading format.
        self._handle_load_format()

        # Step 14: Handle PD disaggregation.
        self._handle_disaggregation()

        # Step 15: Validate tokenizer settings.
        self._handle_tokenizer_batching()

        # Step 16: Propagate environment variables.
        self._handle_environment_variables()

        # Step 17: Validate cache settings.
        self._handle_cache_compatibility()

        # Step 18: Validate metrics labels.
        self._handle_metrics_labels()

        # Step 19: Handle deterministic inference.
        self._handle_deterministic_inference()

        # Step 20: Handle any other necessary validations.
        self._handle_other_validations()

Lianmin Zheng's avatar
Lianmin Zheng committed
1094
1095
    @staticmethod
    def add_cli_args(parser: argparse.ArgumentParser):
Lianmin Zheng's avatar
Lianmin Zheng committed
1096
        # Model and tokenizer
Lianmin Zheng's avatar
Lianmin Zheng committed
1097
1098
        parser.add_argument(
            "--model-path",
1099
            "--model",
Lianmin Zheng's avatar
Lianmin Zheng committed
1100
1101
1102
1103
            type=str,
            help="The path of the model weights. This can be a local folder or a Hugging Face repo ID.",
            required=True,
        )
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
        parser.add_argument(
            "--remote-instance-weight-loader-seed-instance-ip",
            type=str,
            default=ServerArgs.remote_instance_weight_loader_seed_instance_ip,
            help="The ip of the seed instance for loading weights from remote instance.",
        )
        parser.add_argument(
            "--remote-instance-weight-loader-seed-instance-service-port",
            type=int,
            default=ServerArgs.remote_instance_weight_loader_seed_instance_service_port,
            help="The service port of the seed instance for loading weights from remote instance.",
        )
        parser.add_argument(
            "--remote-instance-weight-loader-send-weights-group-ports",
            type=json_list_type,
            default=ServerArgs.remote_instance_weight_loader_send_weights_group_ports,
            help="The communication group ports for loading weights from remote instance.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1122
1123
1124
1125
1126
1127
        parser.add_argument(
            "--tokenizer-path",
            type=str,
            default=ServerArgs.tokenizer_path,
            help="The path of the tokenizer.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1128
1129
1130
1131
1132
1133
1134
1135
1136
        parser.add_argument(
            "--tokenizer-mode",
            type=str,
            default=ServerArgs.tokenizer_mode,
            choices=["auto", "slow"],
            help="Tokenizer mode. 'auto' will use the fast "
            "tokenizer if available, and 'slow' will "
            "always use the slow tokenizer.",
        )
1137
1138
1139
1140
1141
1142
        parser.add_argument(
            "--tokenizer-worker-num",
            type=int,
            default=ServerArgs.tokenizer_worker_num,
            help="The worker num of the tokenizer manager.",
        )
1143
1144
1145
        parser.add_argument(
            "--skip-tokenizer-init",
            action="store_true",
1146
            help="If set, skip init tokenizer and pass input_ids in generate request.",
1147
        )
1148
        parser.add_argument(
Lianmin Zheng's avatar
Lianmin Zheng committed
1149
1150
1151
            "--load-format",
            type=str,
            default=ServerArgs.load_format,
1152
            choices=LOAD_FORMAT_CHOICES,
Lianmin Zheng's avatar
Lianmin Zheng committed
1153
1154
1155
1156
1157
1158
1159
1160
1161
            help="The format of the model weights to load. "
            '"auto" will try to load the weights in the safetensors format '
            "and fall back to the pytorch bin format if safetensors format "
            "is not available. "
            '"pt" will load the weights in the pytorch bin format. '
            '"safetensors" will load the weights in the safetensors format. '
            '"npcache" will load the weights in pytorch format and store '
            "a numpy cache to speed up the loading. "
            '"dummy" will initialize the weights with random values, '
1162
            "which is mainly for profiling."
1163
1164
            '"gguf" will load the weights in the gguf format. '
            '"bitsandbytes" will load the weights using bitsandbytes '
1165
1166
1167
1168
            "quantization."
            '"layered" loads weights layer by layer so that one can quantize a '
            "layer before loading another to make the peak memory envelope "
            "smaller.",
Lianmin Zheng's avatar
Lianmin Zheng committed
1169
        )
1170
1171
1172
1173
1174
1175
1176
        parser.add_argument(
            "--model-loader-extra-config",
            type=str,
            help="Extra config for model loader. "
            "This will be passed to the model loader corresponding to the chosen load_format.",
            default=ServerArgs.model_loader_extra_config,
        )
1177
1178
1179
1180
1181
        parser.add_argument(
            "--trust-remote-code",
            action="store_true",
            help="Whether or not to allow for custom models defined on the Hub in their own modeling files.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
        parser.add_argument(
            "--context-length",
            type=int,
            default=ServerArgs.context_length,
            help="The model's maximum context length. Defaults to None (will use the value from the model's config.json instead).",
        )
        parser.add_argument(
            "--is-embedding",
            action="store_true",
            help="Whether to use a CausalLM as an embedding model.",
        )
        parser.add_argument(
            "--enable-multimodal",
            default=ServerArgs.enable_multimodal,
            action="store_true",
            help="Enable the multimodal functionality for the served model. If the model being served is not multimodal, nothing will happen",
        )
        parser.add_argument(
            "--revision",
            type=str,
            default=None,
            help="The specific model version to use. It can be a branch "
            "name, a tag name, or a commit id. If unspecified, will use "
            "the default version.",
        )
        parser.add_argument(
            "--model-impl",
            type=str,
            default=ServerArgs.model_impl,
            help="Which implementation of the model to use.\n\n"
            '* "auto" will try to use the SGLang implementation if it exists '
            "and fall back to the Transformers implementation if no SGLang "
            "implementation is available.\n"
            '* "sglang" will use the SGLang model implementation.\n'
            '* "transformers" will use the Transformers model '
            "implementation.\n",
        )

        # HTTP server
        parser.add_argument(
            "--host",
            type=str,
            default=ServerArgs.host,
            help="The host of the HTTP server.",
        )
        parser.add_argument(
            "--port",
            type=int,
            default=ServerArgs.port,
            help="The port of the HTTP server.",
        )
        parser.add_argument(
            "--skip-server-warmup",
            action="store_true",
            help="If set, skip warmup.",
        )
        parser.add_argument(
            "--warmups",
            type=str,
            required=False,
            help="Specify custom warmup functions (csv) to run before server starts eg. --warmups=warmup_name1,warmup_name2 "
            "will run the functions `warmup_name1` and `warmup_name2` specified in warmup.py before the server starts listening for requests",
        )
        parser.add_argument(
            "--nccl-port",
            type=int,
            default=ServerArgs.nccl_port,
            help="The port for NCCL distributed environment setup. Defaults to a random port.",
        )

        # Quantization and data type
Lianmin Zheng's avatar
Lianmin Zheng committed
1253
        parser.add_argument(
Lianmin Zheng's avatar
Lianmin Zheng committed
1254
            "--dtype",
Cody Yu's avatar
Cody Yu committed
1255
            type=str,
Lianmin Zheng's avatar
Lianmin Zheng committed
1256
            default=ServerArgs.dtype,
Ying Sheng's avatar
Ying Sheng committed
1257
1258
            choices=["auto", "half", "float16", "bfloat16", "float", "float32"],
            help="Data type for model weights and activations.\n\n"
Lianmin Zheng's avatar
Lianmin Zheng committed
1259
            '* "auto" will use FP16 precision for FP32 and FP16 models, and '
Ying Sheng's avatar
Ying Sheng committed
1260
            "BF16 precision for BF16 models.\n"
Lianmin Zheng's avatar
Lianmin Zheng committed
1261
1262
1263
1264
            '* "half" for FP16. Recommended for AWQ quantization.\n'
            '* "float16" is the same as "half".\n'
            '* "bfloat16" for a balance between precision and range.\n'
            '* "float" is shorthand for FP32 precision.\n'
Ying Sheng's avatar
Ying Sheng committed
1265
1266
            '* "float32" for FP32 precision.',
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1267
1268
1269
1270
        parser.add_argument(
            "--quantization",
            type=str,
            default=ServerArgs.quantization,
1271
            choices=QUANTIZATION_CHOICES,
Lianmin Zheng's avatar
Lianmin Zheng committed
1272
1273
            help="The quantization method.",
        )
1274
1275
1276
1277
1278
1279
1280
1281
1282
        parser.add_argument(
            "--quantization-param-path",
            type=nullable_str,
            default=None,
            help="Path to the JSON file containing the KV cache "
            "scaling factors. This should generally be supplied, when "
            "KV cache dtype is FP8. Otherwise, KV cache scaling factors "
            "default to 1.0, which may cause accuracy issues. ",
        )
1283
        parser.add_argument(
Lianmin Zheng's avatar
Lianmin Zheng committed
1284
            "--kv-cache-dtype",
1285
            type=str,
Lianmin Zheng's avatar
Lianmin Zheng committed
1286
1287
1288
            default=ServerArgs.kv_cache_dtype,
            choices=["auto", "fp8_e5m2", "fp8_e4m3"],
            help='Data type for kv cache storage. "auto" will use model data type. "fp8_e5m2" and "fp8_e4m3" is supported for CUDA 11.8+.',
1289
        )
1290

1291
        # Memory and scheduling
Lianmin Zheng's avatar
Lianmin Zheng committed
1292
1293
1294
1295
        parser.add_argument(
            "--mem-fraction-static",
            type=float,
            default=ServerArgs.mem_fraction_static,
1296
            help="The fraction of the memory used for static allocation (model weights and KV cache memory pool). Use a smaller value if you see out-of-memory errors.",
Lianmin Zheng's avatar
Lianmin Zheng committed
1297
        )
1298
1299
1300
1301
1302
1303
        parser.add_argument(
            "--max-running-requests",
            type=int,
            default=ServerArgs.max_running_requests,
            help="The maximum number of running requests.",
        )
1304
1305
1306
1307
1308
1309
        parser.add_argument(
            "--max-queued-requests",
            type=int,
            default=ServerArgs.max_queued_requests,
            help="The maximum number of queued requests. This option is ignored when using disaggregation-mode.",
        )
1310
1311
1312
1313
        parser.add_argument(
            "--max-total-tokens",
            type=int,
            default=ServerArgs.max_total_tokens,
1314
1315
            help="The maximum number of tokens in the memory pool. If not specified, it will be automatically calculated based on the memory usage fraction. "
            "This option is typically used for development and debugging purposes.",
1316
        )
1317
1318
1319
1320
        parser.add_argument(
            "--chunked-prefill-size",
            type=int,
            default=ServerArgs.chunked_prefill_size,
1321
            help="The maximum number of tokens in a chunk for the chunked prefill. Setting this to -1 means disabling chunked prefill.",
1322
1323
1324
1325
1326
1327
1328
        )
        parser.add_argument(
            "--max-prefill-tokens",
            type=int,
            default=ServerArgs.max_prefill_tokens,
            help="The maximum number of tokens in a prefill batch. The real bound will be the maximum of this value and the model's maximum context length.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1329
        parser.add_argument(
1330
            "--schedule-policy",
Lianmin Zheng's avatar
Lianmin Zheng committed
1331
            type=str,
1332
            default=ServerArgs.schedule_policy,
1333
            choices=["lpm", "random", "fcfs", "dfs-weight", "lof", "priority"],
1334
            help="The scheduling policy of the requests.",
Lianmin Zheng's avatar
Lianmin Zheng committed
1335
        )
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
        parser.add_argument(
            "--enable-priority-scheduling",
            action="store_true",
            default=ServerArgs.enable_priority_scheduling,
            help="Enable priority scheduling. Requests with higher priority integer values will be scheduled first by default.",
        )
        parser.add_argument(
            "--schedule-low-priority-values-first",
            action="store_true",
            default=ServerArgs.schedule_low_priority_values_first,
            help="If specified with --enable-priority-scheduling, the scheduler will schedule requests with lower priority integer values first.",
        )
        parser.add_argument(
            "--priority-scheduling-preemption-threshold",
            type=int,
            default=ServerArgs.priority_scheduling_preemption_threshold,
            help="Minimum difference in priorities for an incoming request to have to preempt running request(s).",
        )
1354
1355
1356
1357
        parser.add_argument(
            "--schedule-conservativeness",
            type=float,
            default=ServerArgs.schedule_conservativeness,
1358
            help="How conservative the schedule policy is. A larger value means more conservative scheduling. Use a larger value if you see requests being retracted frequently.",
1359
        )
1360
1361
1362
1363
1364
1365
        parser.add_argument(
            "--page-size",
            type=int,
            default=ServerArgs.page_size,
            help="The number of tokens in a page.",
        )
tarinkk's avatar
tarinkk committed
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
        parser.add_argument(
            "--hybrid-kvcache-ratio",
            nargs="?",
            const=0.5,
            type=float,
            default=ServerArgs.hybrid_kvcache_ratio,
            help=(
                "Mix ratio in [0,1] between uniform and hybrid kv buffers "
                "(0.0 = pure uniform: swa_size / full_size = 1)"
                "(1.0 = pure hybrid: swa_size / full_size = local_attention_size / context_length)"
            ),
        )
Hanming Lu's avatar
Hanming Lu committed
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
        parser.add_argument(
            "--swa-full-tokens-ratio",
            type=float,
            default=ServerArgs.swa_full_tokens_ratio,
            help="The ratio of SWA layer KV tokens / full layer KV tokens, regardless of the number of swa:full layers. It should be between 0 and 1. "
            "E.g. 0.5 means if each swa layer has 50 tokens, then each full layer has 100 tokens.",
        )
        parser.add_argument(
            "--disable-hybrid-swa-memory",
            action="store_true",
            help="Disable the hybrid SWA memory.",
        )
1390

Lianmin Zheng's avatar
Lianmin Zheng committed
1391
1392
1393
1394
1395
1396
1397
        # Runtime options
        parser.add_argument(
            "--device",
            type=str,
            default=ServerArgs.device,
            help="The device to use ('cuda', 'xpu', 'hpu', 'npu', 'cpu'). Defaults to auto-detection if not specified.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1398
        parser.add_argument(
1399
            "--tensor-parallel-size",
Lianmin Zheng's avatar
Lianmin Zheng committed
1400
            "--tp-size",
Lianmin Zheng's avatar
Lianmin Zheng committed
1401
            type=int,
Lianmin Zheng's avatar
Lianmin Zheng committed
1402
            default=ServerArgs.tp_size,
1403
            help="The tensor parallelism size.",
1404
        )
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
        parser.add_argument(
            "--pipeline-parallel-size",
            "--pp-size",
            type=int,
            default=ServerArgs.pp_size,
            help="The pipeline parallelism size.",
        )
        parser.add_argument(
            "--max-micro-batch-size",
            type=int,
            default=ServerArgs.max_micro_batch_size,
            help="The maximum micro batch size in pipeline parallelism.",
        )
1418
1419
1420
        parser.add_argument(
            "--stream-interval",
            type=int,
Lianmin Zheng's avatar
Lianmin Zheng committed
1421
            default=ServerArgs.stream_interval,
1422
            help="The interval (or buffer size) for streaming in terms of the token length. A smaller value makes streaming smoother, while a larger value makes the throughput higher",
1423
        )
1424
1425
1426
1427
1428
        parser.add_argument(
            "--stream-output",
            action="store_true",
            help="Whether to output as a sequence of disjoint segments.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1429
1430
1431
1432
        parser.add_argument(
            "--random-seed",
            type=int,
            default=ServerArgs.random_seed,
1433
            help="The random seed.",
Lianmin Zheng's avatar
Lianmin Zheng committed
1434
        )
1435
1436
1437
1438
        parser.add_argument(
            "--constrained-json-whitespace-pattern",
            type=str,
            default=ServerArgs.constrained_json_whitespace_pattern,
Lianmin Zheng's avatar
Lianmin Zheng committed
1439
            help="(outlines backend only) Regex pattern for syntactic whitespaces allowed in JSON constrained output. For example, to allow the model generate consecutive whitespaces, set the pattern to [\n\t ]*",
1440
        )
1441
1442
1443
1444
1445
1446
        parser.add_argument(
            "--watchdog-timeout",
            type=float,
            default=ServerArgs.watchdog_timeout,
            help="Set watchdog timeout in seconds. If a forward batch takes longer than this, the server will crash to prevent hanging.",
        )
1447
1448
1449
1450
1451
1452
        parser.add_argument(
            "--dist-timeout",
            type=int,
            default=ServerArgs.dist_timeout,
            help="Set timeout for torch.distributed initialization.",
        )
1453
1454
1455
1456
        parser.add_argument(
            "--download-dir",
            type=str,
            default=ServerArgs.download_dir,
1457
            help="Model download directory for huggingface.",
1458
        )
1459
1460
1461
1462
1463
1464
        parser.add_argument(
            "--base-gpu-id",
            type=int,
            default=ServerArgs.base_gpu_id,
            help="The base GPU ID to start allocating GPUs from. Useful when running multiple instances on the same machine.",
        )
1465
1466
1467
1468
1469
1470
        parser.add_argument(
            "--gpu-id-step",
            type=int,
            default=ServerArgs.gpu_id_step,
            help="The delta between consecutive GPU IDs that are used. For example, setting it to 2 will use GPU 0,2,4,...",
        )
1471
1472
1473
1474
1475
        parser.add_argument(
            "--sleep-on-idle",
            action="store_true",
            help="Reduce CPU usage when sglang is idle.",
        )
1476
1477

        # Logging
Lianmin Zheng's avatar
Lianmin Zheng committed
1478
1479
1480
1481
        parser.add_argument(
            "--log-level",
            type=str,
            default=ServerArgs.log_level,
1482
            help="The logging level of all loggers.",
Lianmin Zheng's avatar
Lianmin Zheng committed
1483
        )
1484
        parser.add_argument(
1485
1486
1487
1488
            "--log-level-http",
            type=str,
            default=ServerArgs.log_level_http,
            help="The logging level of HTTP server. If not set, reuse --log-level by default.",
1489
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1490
        parser.add_argument(
1491
            "--log-requests",
Lianmin Zheng's avatar
Lianmin Zheng committed
1492
            action="store_true",
1493
1494
1495
1496
1497
            help="Log metadata, inputs, outputs of all requests. The verbosity is decided by --log-requests-level",
        )
        parser.add_argument(
            "--log-requests-level",
            type=int,
1498
            default=ServerArgs.log_requests_level,
1499
1500
1501
1502
1503
1504
1505
1506
            help="0: Log metadata (no sampling parameters). 1: Log metadata and sampling parameters. 2: Log metadata, sampling parameters and partial input/output. 3: Log every input/output.",
            choices=[0, 1, 2, 3],
        )
        parser.add_argument(
            "--crash-dump-folder",
            type=str,
            default=ServerArgs.crash_dump_folder,
            help="Folder path to dump requests from the last 5 min before a crash (if any). If not specified, crash dumping is disabled.",
Lianmin Zheng's avatar
Lianmin Zheng committed
1507
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1508
1509
1510
        parser.add_argument(
            "--show-time-cost",
            action="store_true",
Ying Sheng's avatar
Ying Sheng committed
1511
            help="Show time cost of custom marks.",
Lianmin Zheng's avatar
Lianmin Zheng committed
1512
        )
1513
1514
1515
1516
1517
        parser.add_argument(
            "--enable-metrics",
            action="store_true",
            help="Enable log prometheus metrics.",
        )
1518
1519
1520
1521
1522
1523
1524
        parser.add_argument(
            "--enable-metrics-for-all-schedulers",
            action="store_true",
            help="Enable --enable-metrics-for-all-schedulers when you want schedulers on all TP ranks (not just TP 0) "
            "to record request metrics separately. This is especially useful when dp_attention is enabled, as "
            "otherwise all metrics appear to come from TP 0.",
        )
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
        parser.add_argument(
            "--tokenizer-metrics-custom-labels-header",
            type=str,
            default=ServerArgs.tokenizer_metrics_custom_labels_header,
            help="Specify the HTTP header for passing customer labels for tokenizer metrics.",
        )
        parser.add_argument(
            "--tokenizer-metrics-allowed-customer-labels",
            type=str,
            nargs="+",
            default=ServerArgs.tokenizer_metrics_allowed_customer_labels,
            help="The customer labels allowed for tokenizer metrics. The labels are specified via a dict in "
            "'--tokenizer-metrics-custom-labels-header' field in HTTP requests, e.g., {'label1': 'value1', 'label2': "
            "'value2'} is allowed if '--tokenizer-metrics-allowed-labels label1 label2' is set.",
        )
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
        parser.add_argument(
            "--bucket-time-to-first-token",
            type=float,
            nargs="+",
            default=ServerArgs.bucket_time_to_first_token,
            help="The buckets of time to first token, specified as a list of floats.",
        )
        parser.add_argument(
            "--bucket-inter-token-latency",
            type=float,
            nargs="+",
            default=ServerArgs.bucket_inter_token_latency,
            help="The buckets of inter-token latency, specified as a list of floats.",
        )
        parser.add_argument(
            "--bucket-e2e-request-latency",
            type=float,
            nargs="+",
            default=ServerArgs.bucket_e2e_request_latency,
            help="The buckets of end-to-end request latency, specified as a list of floats.",
        )
        parser.add_argument(
            "--collect-tokens-histogram",
            action="store_true",
            default=ServerArgs.collect_tokens_histogram,
            help="Collect prompt/generation tokens histogram.",
        )
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
        bucket_rule = (
            "Supports 3 rule types: 'default' uses predefined buckets; 'tse <middle> <base> <count>' "
            "generates two sides exponential distributed buckets (e.g., 'tse 1000 2 8' generates buckets "
            "[984.0, 992.0, 996.0, 998.0, 1000.0, 1002.0, 1004.0, 1008.0, 1016.0]).); 'customer <value1> "
            "<value2> ...' uses custom bucket values (e.g., 'customer 10 50 100 500')."
        )
        parser.add_argument(
            "--prompt-tokens-buckets",
            type=str,
            nargs="+",
            default=ServerArgs.prompt_tokens_buckets,
            help=f"The buckets rule of prompt tokens. {bucket_rule}",
        )
        parser.add_argument(
            "--generation-tokens-buckets",
            type=str,
            nargs="+",
            default=ServerArgs.generation_tokens_buckets,
            help=f"The buckets rule for generation tokens histogram. {bucket_rule}",
        )
1587
1588
1589
1590
1591
1592
        parser.add_argument(
            "--gc-warning-threshold-secs",
            type=float,
            default=ServerArgs.gc_warning_threshold_secs,
            help="The threshold for long GC warning. If a GC takes longer than this, a warning will be logged. Set to 0 to disable.",
        )
1593
1594
1595
1596
        parser.add_argument(
            "--decode-log-interval",
            type=int,
            default=ServerArgs.decode_log_interval,
1597
            help="The log interval of decode batch.",
1598
        )
1599
1600
1601
1602
1603
1604
        parser.add_argument(
            "--enable-request-time-stats-logging",
            action="store_true",
            default=ServerArgs.enable_request_time_stats_logging,
            help="Enable per request time stats logging",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1605
1606
1607
1608
1609
        parser.add_argument(
            "--kv-events-config",
            type=str,
            default=None,
            help="Config in json format for NVIDIA dynamo KV event publishing. Publishing will be enabled if this flag is used.",
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
        )
        parser.add_argument(
            "--enable-trace",
            action="store_true",
            help="Enable opentelemetry trace",
        )
        parser.add_argument(
            "--oltp-traces-endpoint",
            type=str,
            default="localhost:4317",
            help="Config opentelemetry collector endpoint if --enable-trace is set. format: <ip>:<port>",
Lianmin Zheng's avatar
Lianmin Zheng committed
1621
        )
1622

1623
        # API related
Liangsheng Yin's avatar
Liangsheng Yin committed
1624
1625
1626
1627
        parser.add_argument(
            "--api-key",
            type=str,
            default=ServerArgs.api_key,
1628
            help="Set API key of the server. It is also used in the OpenAI API compatible server.",
Liangsheng Yin's avatar
Liangsheng Yin committed
1629
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1630
1631
1632
1633
1634
1635
        parser.add_argument(
            "--served-model-name",
            type=str,
            default=ServerArgs.served_model_name,
            help="Override the model name returned by the v1/models endpoint in OpenAI API server.",
        )
1636
1637
1638
1639
1640
1641
        parser.add_argument(
            "--weight-version",
            type=str,
            default=ServerArgs.weight_version,
            help="Version identifier for the model weights. Defaults to 'default' if not specified.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
        parser.add_argument(
            "--chat-template",
            type=str,
            default=ServerArgs.chat_template,
            help="The buliltin chat template name or the path of the chat template file. This is only used for OpenAI-compatible API server.",
        )
        parser.add_argument(
            "--completion-template",
            type=str,
            default=ServerArgs.completion_template,
            help="The buliltin completion template name or the path of the completion template file. This is only used for OpenAI-compatible API server. only for code completion currently.",
        )
1654
        parser.add_argument(
1655
            "--file-storage-path",
1656
            type=str,
1657
            default=ServerArgs.file_storage_path,
1658
1659
            help="The path of the file storage in backend.",
        )
1660
1661
1662
1663
1664
        parser.add_argument(
            "--enable-cache-report",
            action="store_true",
            help="Return number of cached tokens in usage.prompt_tokens_details for each openai request.",
        )
Xihuai Wang's avatar
Xihuai Wang committed
1665
1666
1667
1668
1669
1670
1671
        parser.add_argument(
            "--reasoning-parser",
            type=str,
            choices=list(ReasoningParser.DetectorMap.keys()),
            default=ServerArgs.reasoning_parser,
            help=f"Specify the parser for reasoning models, supported parsers are: {list(ReasoningParser.DetectorMap.keys())}.",
        )
1672
        tool_call_parser_choices = list(FunctionCallParser.ToolCallParserEnum.keys())
1673
1674
1675
        parser.add_argument(
            "--tool-call-parser",
            type=str,
1676
            choices=tool_call_parser_choices,
1677
            default=ServerArgs.tool_call_parser,
1678
            help=f"Specify the parser for handling tool-call interactions. Options include: {tool_call_parser_choices}.",
1679
        )
1680
1681
1682
1683
1684
1685
        parser.add_argument(
            "--tool-server",
            type=str,
            default=None,
            help="Either 'demo' or a comma-separated list of tool server urls to use for the model. If not specified, no tool server will be used.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1686

1687
1688
        # Data parallelism
        parser.add_argument(
1689
            "--data-parallel-size",
1690
1691
1692
            "--dp-size",
            type=int,
            default=ServerArgs.dp_size,
1693
            help="The data parallelism size.",
1694
1695
1696
1697
1698
        )
        parser.add_argument(
            "--load-balance-method",
            type=str,
            default=ServerArgs.load_balance_method,
1699
            help="The load balancing strategy for data parallelism.",
1700
1701
1702
            choices=[
                "round_robin",
                "shortest_queue",
1703
                "minimum_tokens",
1704
1705
            ],
        )
1706
1707
1708
1709
1710
1711
        parser.add_argument(
            "--load-watch-interval",
            type=float,
            default=ServerArgs.load_watch_interval,
            help="The interval of load watching in seconds.",
        )
1712
1713
1714
1715
1716
1717
        parser.add_argument(
            "--prefill-round-robin-balance",
            default=ServerArgs.prefill_round_robin_balance,
            action="store_true",
            help="Prefill is round robin balanced. This is used to promise decode server can get the correct dp rank.",
        )
1718

1719
        # Multi-node distributed serving
1720
        parser.add_argument(
1721
            "--dist-init-addr",
1722
            "--nccl-init-addr",  # For backward compatibility. This will be removed in the future.
1723
            type=str,
1724
            help="The host address for initializing distributed backend (e.g., `192.168.0.2:25000`).",
1725
1726
        )
        parser.add_argument(
Liangsheng Yin's avatar
Liangsheng Yin committed
1727
            "--nnodes", type=int, default=ServerArgs.nnodes, help="The number of nodes."
1728
        )
1729
1730
1731
        parser.add_argument(
            "--node-rank", type=int, default=ServerArgs.node_rank, help="The node rank."
        )
1732

Lianmin Zheng's avatar
Lianmin Zheng committed
1733
1734
1735
1736
1737
1738
1739
        # Model override args
        parser.add_argument(
            "--json-model-override-args",
            type=str,
            help="A dictionary in JSON string format used to override default model configurations.",
            default=ServerArgs.json_model_override_args,
        )
1740
1741
1742
1743
1744
        parser.add_argument(
            "--preferred-sampling-params",
            type=str,
            help="json-formatted sampling settings that will be returned in /get_model_info",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1745

1746
        # LoRA
1747
1748
1749
1750
1751
1752
        parser.add_argument(
            "--enable-lora",
            default=ServerArgs.enable_lora,
            action="store_true",
            help="Enable LoRA support for the model. This argument is automatically set to True if `--lora-paths` is provided for backward compatibility.",
        )
1753
1754
1755
1756
1757
1758
1759
1760
1761
        parser.add_argument(
            "--max-lora-rank",
            default=ServerArgs.max_lora_rank,
            type=int,
            help="The maximum rank of LoRA adapters. If not specified, it will be automatically inferred from the adapters provided in --lora-paths.",
        )
        parser.add_argument(
            "--lora-target-modules",
            type=str,
1762
            choices=SUPPORTED_LORA_TARGET_MODULES + [LORA_TARGET_ALL_MODULES],
1763
1764
            nargs="*",
            default=None,
1765
1766
1767
            help="The union set of all target modules where LoRA should be applied. If not specified, "
            "it will be automatically inferred from the adapters provided in --lora-paths. If 'all' is specified, "
            "all supported modules will be targeted.",
1768
        )
1769
1770
1771
1772
1773
1774
        parser.add_argument(
            "--lora-paths",
            type=str,
            nargs="*",
            default=None,
            action=LoRAPathAction,
1775
            help='The list of LoRA adapters to load. Each adapter must be specified in one of the following formats: <PATH> | <NAME>=<PATH> | JSON with schema {"lora_name":str,"lora_path":str,"pinned":bool}',
1776
1777
1778
1779
1780
        )
        parser.add_argument(
            "--max-loras-per-batch",
            type=int,
            default=8,
1781
1782
            help="Maximum number of adapters for a running batch, include base-only request.",
        )
1783
1784
1785
1786
1787
1788
        parser.add_argument(
            "--max-loaded-loras",
            type=int,
            default=ServerArgs.max_loaded_loras,
            help="If specified, it limits the maximum number of LoRA adapters loaded in CPU memory at a time. The value must be greater than or equal to `--max-loras-per-batch`.",
        )
1789
1790
1791
        parser.add_argument(
            "--lora-backend",
            type=str,
1792
1793
            choices=LORA_BACKEND_CHOICES,
            default=ServerArgs.lora_backend,
1794
            help="Choose the kernel backend for multi-LoRA serving.",
1795
        )
1796
1797
1798
1799
1800
1801
1802
        parser.add_argument(
            "--max-lora-chunk-size",
            type=int,
            default=ServerArgs.max_lora_chunk_size,
            choices=[16, 32, 64, 128],
            help="Maximum chunk size for the ChunkedSGMV LoRA backend. Only used when --lora-backend is 'csgmv'. Choosing a larger value might improve performance.",
        )
1803
1804

        # Kernel backend
1805
1806
1807
        parser.add_argument(
            "--attention-backend",
            type=str,
1808
            choices=ATTENTION_BACKEND_CHOICES,
1809
1810
1811
            default=ServerArgs.attention_backend,
            help="Choose the kernels for attention layers.",
        )
1812
1813
1814
        parser.add_argument(
            "--prefill-attention-backend",
            type=str,
1815
            choices=ATTENTION_BACKEND_CHOICES,
1816
1817
1818
            default=ServerArgs.prefill_attention_backend,
            help="Choose the kernels for prefill attention layers (have priority over --attention-backend).",
        )
1819
1820
1821
        parser.add_argument(
            "--decode-attention-backend",
            type=str,
1822
            choices=ATTENTION_BACKEND_CHOICES,
1823
1824
1825
            default=ServerArgs.decode_attention_backend,
            help="Choose the kernels for decode attention layers (have priority over --attention-backend).",
        )
1826
1827
1828
1829
1830
1831
1832
        parser.add_argument(
            "--sampling-backend",
            type=str,
            choices=["flashinfer", "pytorch"],
            default=ServerArgs.sampling_backend,
            help="Choose the kernels for sampling layers.",
        )
1833
1834
1835
        parser.add_argument(
            "--grammar-backend",
            type=str,
1836
            choices=GRAMMAR_BACKEND_CHOICES,
1837
            default=ServerArgs.grammar_backend,
Lianmin Zheng's avatar
Lianmin Zheng committed
1838
            help="Choose the backend for grammar-guided decoding.",
1839
        )
1840
1841
1842
        parser.add_argument(
            "--mm-attention-backend",
            type=str,
1843
            choices=["sdpa", "fa3", "triton_attn", "ascend_attn"],
1844
1845
1846
            default=ServerArgs.mm_attention_backend,
            help="Set multimodal attention backend.",
        )
1847

1848
1849
1850
1851
        # Speculative decoding
        parser.add_argument(
            "--speculative-algorithm",
            type=str,
1852
            choices=["EAGLE", "EAGLE3", "NEXTN", "STANDALONE", "LOOKAHEAD"],
1853
1854
1855
1856
            help="Speculative algorithm.",
        )
        parser.add_argument(
            "--speculative-draft-model-path",
1857
            "--speculative-draft-model",
1858
1859
1860
            type=str,
            help="The path of the draft model weights. This can be a local folder or a Hugging Face repo ID.",
        )
1861
1862
1863
1864
1865
1866
1867
1868
        parser.add_argument(
            "--speculative-draft-model-revision",
            type=str,
            default=None,
            help="The specific draft model version to use. It can be a branch "
            "name, a tag name, or a commit id. If unspecified, will use "
            "the default version.",
        )
1869
1870
1871
1872
1873
1874
1875
1876
1877
        parser.add_argument(
            "--speculative-num-steps",
            type=int,
            help="The number of steps sampled from draft model in Speculative Decoding.",
            default=ServerArgs.speculative_num_steps,
        )
        parser.add_argument(
            "--speculative-eagle-topk",
            type=int,
1878
            help="The number of tokens sampled from the draft model in eagle2 each step.",
1879
1880
            default=ServerArgs.speculative_eagle_topk,
        )
1881
1882
1883
        parser.add_argument(
            "--speculative-num-draft-tokens",
            type=int,
1884
            help="The number of tokens sampled from the draft model in Speculative Decoding.",
1885
1886
            default=ServerArgs.speculative_num_draft_tokens,
        )
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
        parser.add_argument(
            "--speculative-accept-threshold-single",
            type=float,
            help="Accept a draft token if its probability in the target model is greater than this threshold.",
            default=ServerArgs.speculative_accept_threshold_single,
        )
        parser.add_argument(
            "--speculative-accept-threshold-acc",
            type=float,
            help="The accept probability of a draft token is raised from its target probability p to min(1, p / threshold_acc).",
            default=ServerArgs.speculative_accept_threshold_acc,
        )
1899
1900
1901
1902
1903
1904
        parser.add_argument(
            "--speculative-token-map",
            type=str,
            help="The path of the draft model's small vocab table.",
            default=ServerArgs.speculative_token_map,
        )
1905
        parser.add_argument(
1906
            "--speculative-attention-mode",
1907
1908
            type=str,
            choices=["prefill", "decode"],
1909
1910
            help="Attention backend for speculative decoding operations (both target verify and draft extend). Can be one of 'prefill' (default) or 'decode'.",
            default=ServerArgs.speculative_attention_mode,
1911
        )
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
        # Lookahead speculative decoding
        parser.add_argument(
            "--speculative-lookahead-min-match-window-size",
            type=int,
            default=ServerArgs.speculative_lookahead_min_match_window_size,
            help="The minimum window size for pattern matching in lookahead speculative decoding.",
        )
        parser.add_argument(
            "--speculative-lookahead-max-match-window-size",
            type=int,
            default=ServerArgs.speculative_lookahead_max_match_window_size,
            help="The maximum window size for pattern matching in lookahead speculative decoding.",
        )
        parser.add_argument(
            "--speculative-lookahead-min-bfs-breadth",
            type=int,
            default=ServerArgs.speculative_lookahead_min_bfs_breadth,
            help="The minimum breadth for BFS (Breadth-First Search) in lookahead speculative decoding.",
        )
        parser.add_argument(
            "--speculative-lookahead-max-bfs-breadth",
            type=int,
            default=ServerArgs.speculative_lookahead_max_bfs_breadth,
            help="The maximum breadth for BFS (Breadth-First Search) in lookahead speculative decoding.",
        )
        parser.add_argument(
            "--speculative-lookahead-match-type",
            type=str,
            choices=["BFS", "PROB"],
            default=ServerArgs.speculative_lookahead_match_type,
            help="The match type for cache tree.",
        )
        parser.add_argument(
            "--speculative-lookahead-branch-length",
            type=int,
            default=ServerArgs.speculative_lookahead_branch_length,
            help="The branch length for lookahead speculative decoding.",
        )
        parser.add_argument(
            "--speculative-lookahead-capacity",
            type=int,
            default=ServerArgs.speculative_lookahead_capacity,
            help="The cache capacity for lookahead speculative decoding.",
        )
1956
1957
1958
1959
1960

        # Expert parallelism
        parser.add_argument(
            "--expert-parallel-size",
            "--ep-size",
Cheng Wan's avatar
Cheng Wan committed
1961
            "--ep",
1962
1963
1964
1965
1966
            type=int,
            default=ServerArgs.ep_size,
            help="The expert parallelism size.",
        )
        parser.add_argument(
1967
1968
            "--moe-a2a-backend",
            type=str,
1969
            choices=["none", "deepep"],
1970
1971
            default=ServerArgs.moe_a2a_backend,
            help="Choose the backend for MoE A2A.",
1972
        )
1973
        parser.add_argument(
1974
1975
1976
1977
1978
1979
1980
1981
            "--moe-runner-backend",
            type=str,
            choices=[
                "auto",
                "triton",
                "triton_kernel",
                "flashinfer_trtllm",
                "flashinfer_cutlass",
1982
                "flashinfer_mxfp4",
1983
                "flashinfer_cutedsl",
1984
1985
1986
            ],
            default=ServerArgs.moe_runner_backend,
            help="Choose the runner backend for MoE.",
1987
1988
        )
        parser.add_argument(
1989
1990
            "--flashinfer-mxfp4-moe-precision",
            type=str,
1991
            choices=["default", "bf16"],
1992
1993
1994
1995
            default=ServerArgs.flashinfer_mxfp4_moe_precision,
            help="Choose the computation precision of flashinfer mxfp4 moe",
        )
        parser.add_argument(
1996
1997
            "--enable-flashinfer-allreduce-fusion",
            action="store_true",
1998
            help="Enable FlashInfer allreduce fusion with Residual RMSNorm.",
1999
        )
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
        parser.add_argument(
            "--deepep-mode",
            type=str,
            choices=["normal", "low_latency", "auto"],
            default="auto",
            help="Select the mode when enable DeepEP MoE, could be `normal`, `low_latency` or `auto`. Default is `auto`, which means `low_latency` for decode batch and `normal` for prefill batch.",
        )
        parser.add_argument(
            "--ep-num-redundant-experts",
            type=int,
            default=ServerArgs.ep_num_redundant_experts,
            help="Allocate this number of redundant experts in expert parallel.",
        )
        parser.add_argument(
            "--ep-dispatch-algorithm",
            type=str,
            default=ServerArgs.ep_dispatch_algorithm,
            help="The algorithm to choose ranks for redundant experts in expert parallel.",
        )
        parser.add_argument(
            "--init-expert-location",
            type=str,
            default=ServerArgs.init_expert_location,
            help="Initial location of EP experts.",
        )
        parser.add_argument(
            "--enable-eplb",
            action="store_true",
            help="Enable EPLB algorithm",
        )
        parser.add_argument(
            "--eplb-algorithm",
            type=str,
            default=ServerArgs.eplb_algorithm,
            help="Chosen EPLB algorithm",
        )
        parser.add_argument(
            "--eplb-rebalance-num-iterations",
            type=int,
            default=ServerArgs.eplb_rebalance_num_iterations,
            help="Number of iterations to automatically trigger a EPLB re-balance.",
        )
        parser.add_argument(
            "--eplb-rebalance-layers-per-chunk",
            type=int,
            default=ServerArgs.eplb_rebalance_layers_per_chunk,
            help="Number of layers to rebalance per forward pass.",
        )
2048
2049
2050
2051
2052
2053
        parser.add_argument(
            "--eplb-min-rebalancing-utilization-threshold",
            type=float,
            default=ServerArgs.eplb_min_rebalancing_utilization_threshold,
            help="Minimum threshold for GPU average utilization to trigger EPLB rebalancing. Must be in the range [0.0, 1.0].",
        )
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
        parser.add_argument(
            "--expert-distribution-recorder-mode",
            type=str,
            default=ServerArgs.expert_distribution_recorder_mode,
            help="Mode of expert distribution recorder.",
        )
        parser.add_argument(
            "--expert-distribution-recorder-buffer-size",
            type=int,
            default=ServerArgs.expert_distribution_recorder_buffer_size,
            help="Circular buffer size of expert distribution recorder. Set to -1 to denote infinite buffer.",
        )
        parser.add_argument(
            "--enable-expert-distribution-metrics",
            action="store_true",
            help="Enable logging metrics for expert balancedness",
        )
        parser.add_argument(
            "--deepep-config",
            type=str,
            default=ServerArgs.deepep_config,
            help="Tuned DeepEP config suitable for your own cluster. It can be either a string with JSON content or a file path.",
        )
        parser.add_argument(
            "--moe-dense-tp-size",
            type=int,
            default=ServerArgs.moe_dense_tp_size,
            help="TP size for MoE dense MLP layers. This flag is useful when, with large TP size, there are errors caused by weights in MLP layers having dimension smaller than the min dimension GEMM supports.",
        )
2083

Yi Zhang's avatar
Yi Zhang committed
2084
2085
2086
2087
2088
        # Mamba Cache
        parser.add_argument(
            "--max-mamba-cache-size",
            type=int,
            default=ServerArgs.max_mamba_cache_size,
2089
            help="The maximum size of the mamba cache.",
Yi Zhang's avatar
Yi Zhang committed
2090
2091
2092
2093
2094
2095
        )
        parser.add_argument(
            "--mamba-ssm-dtype",
            type=str,
            default=ServerArgs.mamba_ssm_dtype,
            choices=["float32", "bfloat16"],
2096
            help="The data type of the SSM states in mamba cache.",
Yi Zhang's avatar
Yi Zhang committed
2097
        )
2098

Lianmin Zheng's avatar
Lianmin Zheng committed
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
        # Hierarchical cache
        parser.add_argument(
            "--enable-hierarchical-cache",
            action="store_true",
            help="Enable hierarchical cache",
        )
        parser.add_argument(
            "--hicache-ratio",
            type=float,
            default=ServerArgs.hicache_ratio,
            help="The ratio of the size of host KV cache memory pool to the size of device pool.",
        )
        parser.add_argument(
            "--hicache-size",
            type=int,
            default=ServerArgs.hicache_size,
            help="The size of host KV cache memory pool in gigabytes, which will override the hicache_ratio if set.",
        )
        parser.add_argument(
            "--hicache-write-policy",
            type=str,
            choices=["write_back", "write_through", "write_through_selective"],
            default=ServerArgs.hicache_write_policy,
            help="The write policy of hierarchical cache.",
        )
2124
2125
2126
2127
2128
2129
2130
        parser.add_argument(
            "--radix-eviction-policy",
            type=str,
            choices=["lru", "lfu"],
            default=ServerArgs.radix_eviction_policy,
            help="The eviction policy of radix trees. 'lru' stands for Least Recently Used, 'lfu' stands for Least Frequently Used.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
2131
2132
2133
2134
2135
2136
2137
        parser.add_argument(
            "--hicache-io-backend",
            type=str,
            choices=["direct", "kernel"],
            default=ServerArgs.hicache_io_backend,
            help="The IO backend for KV cache transfer between CPU and GPU",
        )
2138
2139
2140
        parser.add_argument(
            "--hicache-mem-layout",
            type=str,
2141
            choices=["layer_first", "page_first", "page_first_direct"],
2142
2143
2144
            default=ServerArgs.hicache_mem_layout,
            help="The layout of host memory pool for hierarchical cache.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
2145
2146
2147
        parser.add_argument(
            "--hicache-storage-backend",
            type=str,
2148
            choices=["file", "mooncake", "hf3fs", "nixl"],
Lianmin Zheng's avatar
Lianmin Zheng committed
2149
2150
2151
            default=ServerArgs.hicache_storage_backend,
            help="The storage backend for hierarchical KV cache.",
        )
pansicheng's avatar
pansicheng committed
2152
2153
2154
2155
2156
2157
2158
        parser.add_argument(
            "--hicache-storage-prefetch-policy",
            type=str,
            choices=["best_effort", "wait_complete", "timeout"],
            default=ServerArgs.hicache_storage_prefetch_policy,
            help="Control when prefetching from the storage backend should stop.",
        )
2159
2160
2161
2162
2163
2164
        parser.add_argument(
            "--hicache-storage-backend-extra-config",
            type=str,
            default=ServerArgs.hicache_storage_backend_extra_config,
            help="A dictionary in JSON string format containing extra configuration for the storage backend.",
        )
2165
2166
2167
2168
2169
2170
        # LMCache
        parser.add_argument(
            "--enable-lmcache",
            action="store_true",
            help="Using LMCache as an alternative hierarchical cache solution",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
2171

2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
        # Double Sparsity
        parser.add_argument(
            "--enable-double-sparsity",
            action="store_true",
            help="Enable double sparsity attention",
        )
        parser.add_argument(
            "--ds-channel-config-path",
            type=str,
            default=ServerArgs.ds_channel_config_path,
            help="The path of the double sparsity channel config",
        )
        parser.add_argument(
            "--ds-heavy-channel-num",
            type=int,
            default=ServerArgs.ds_heavy_channel_num,
            help="The number of heavy channels in double sparsity attention",
        )
        parser.add_argument(
            "--ds-heavy-token-num",
            type=int,
            default=ServerArgs.ds_heavy_token_num,
            help="The number of heavy tokens in double sparsity attention",
        )
        parser.add_argument(
            "--ds-heavy-channel-type",
            type=str,
            default=ServerArgs.ds_heavy_channel_type,
            help="The type of heavy channels in double sparsity attention",
        )
        parser.add_argument(
            "--ds-sparse-decode-threshold",
            type=int,
            default=ServerArgs.ds_sparse_decode_threshold,
            help="The type of heavy channels in double sparsity attention",
        )

fzyzcjy's avatar
fzyzcjy committed
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
        # Offloading
        parser.add_argument(
            "--cpu-offload-gb",
            type=int,
            default=ServerArgs.cpu_offload_gb,
            help="How many GBs of RAM to reserve for CPU offloading.",
        )
        parser.add_argument(
            "--offload-group-size",
            type=int,
            default=ServerArgs.offload_group_size,
            help="Number of layers per group in offloading.",
        )
        parser.add_argument(
            "--offload-num-in-group",
            type=int,
            default=ServerArgs.offload_num_in_group,
            help="Number of layers to be offloaded within a group.",
        )
        parser.add_argument(
            "--offload-prefetch-step",
            type=int,
            default=ServerArgs.offload_prefetch_step,
            help="Steps to prefetch in offloading.",
        )
        parser.add_argument(
            "--offload-mode",
            type=str,
            default=ServerArgs.offload_mode,
            help="Mode of offloading.",
        )

2241
        # Optimization/debug options
Liangsheng Yin's avatar
Liangsheng Yin committed
2242
        parser.add_argument(
Lianmin Zheng's avatar
Lianmin Zheng committed
2243
            "--disable-radix-cache",
Liangsheng Yin's avatar
Liangsheng Yin committed
2244
            action="store_true",
Ying Sheng's avatar
Ying Sheng committed
2245
            help="Disable RadixAttention for prefix caching.",
Liangsheng Yin's avatar
Liangsheng Yin committed
2246
        )
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
        parser.add_argument(
            "--cuda-graph-max-bs",
            type=int,
            default=ServerArgs.cuda_graph_max_bs,
            help="Set the maximum batch size for cuda graph. It will extend the cuda graph capture batch size to this value.",
        )
        parser.add_argument(
            "--cuda-graph-bs",
            type=int,
            nargs="+",
            help="Set the list of batch sizes for cuda graph.",
        )
2259
2260
2261
        parser.add_argument(
            "--disable-cuda-graph",
            action="store_true",
2262
            help="Disable cuda graph.",
2263
        )
2264
        parser.add_argument(
2265
2266
            "--disable-cuda-graph-padding",
            action="store_true",
2267
            help="Disable cuda graph when padding is needed. Still uses cuda graph when padding is not needed.",
2268
        )
2269
2270
2271
2272
2273
        parser.add_argument(
            "--enable-profile-cuda-graph",
            action="store_true",
            help="Enable profiling of cuda graph capture.",
        )
2274
2275
2276
2277
2278
        parser.add_argument(
            "--enable-cudagraph-gc",
            action="store_true",
            help="Enable garbage collection during CUDA graph capture. If disabled (default), GC is frozen during capture to speed up the process.",
        )
2279
2280
2281
2282
2283
        parser.add_argument(
            "--enable-nccl-nvls",
            action="store_true",
            help="Enable NCCL NVLS for prefill heavy requests when available.",
        )
2284
2285
2286
2287
2288
        parser.add_argument(
            "--enable-symm-mem",
            action="store_true",
            help="Enable NCCL symmetric memory for fast collectives.",
        )
2289
2290
2291
2292
2293
        parser.add_argument(
            "--disable-flashinfer-cutlass-moe-fp4-allgather",
            action="store_true",
            help="Disables quantize before all-gather for flashinfer cutlass moe.",
        )
2294
2295
2296
2297
2298
        parser.add_argument(
            "--enable-tokenizer-batch-encode",
            action="store_true",
            help="Enable batch tokenization for improved performance when processing multiple text inputs. Do not use with image inputs, pre-tokenized input_ids, or input_embeds.",
        )
2299
        parser.add_argument(
2300
            "--disable-outlines-disk-cache",
2301
            action="store_true",
2302
            help="Disable disk cache of outlines to avoid possible crashes related to file system or high concurrency.",
2303
        )
2304
2305
2306
2307
2308
        parser.add_argument(
            "--disable-custom-all-reduce",
            action="store_true",
            help="Disable the custom all-reduce kernel and fall back to NCCL.",
        )
2309
2310
2311
2312
2313
        parser.add_argument(
            "--enable-mscclpp",
            action="store_true",
            help="Enable using mscclpp for small messages for all-reduce kernel and fall back to NCCL.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
2314
        parser.add_argument(
2315
            "--disable-overlap-schedule",
Lianmin Zheng's avatar
Lianmin Zheng committed
2316
            action="store_true",
2317
            help="Disable the overlap scheduler, which overlaps the CPU scheduler with GPU model worker.",
Lianmin Zheng's avatar
Lianmin Zheng committed
2318
        )
2319
2320
2321
        parser.add_argument(
            "--enable-mixed-chunk",
            action="store_true",
2322
            help="Enabling mixing prefill and decode in a batch when using chunked prefill.",
2323
        )
Ke Bao's avatar
Ke Bao committed
2324
2325
2326
        parser.add_argument(
            "--enable-dp-attention",
            action="store_true",
2327
            help="Enabling data parallelism for attention and tensor parallelism for FFN. The dp size should be equal to the tp size. Currently DeepSeek-V2 and Qwen 2/3 MoE models are supported.",
Ke Bao's avatar
Ke Bao committed
2328
        )
2329
2330
2331
2332
2333
        parser.add_argument(
            "--enable-dp-lm-head",
            action="store_true",
            help="Enable vocabulary parallel across the attention TP group to avoid all-gather across DP groups, optimizing performance under DP attention.",
        )
2334
2335
2336
2337
2338
        parser.add_argument(
            "--enable-two-batch-overlap",
            action="store_true",
            help="Enabling two micro batches to overlap.",
        )
2339
2340
2341
2342
2343
2344
        parser.add_argument(
            "--tbo-token-distribution-threshold",
            type=float,
            default=ServerArgs.tbo_token_distribution_threshold,
            help="The threshold of token distribution between two batches in micro-batch-overlap, determines whether to two-batch-overlap or two-chunk-overlap. Set to 0 denote disable two-chunk-overlap.",
        )
2345
2346
2347
        parser.add_argument(
            "--enable-torch-compile",
            action="store_true",
2348
2349
            help="Optimize the model with torch.compile. Experimental feature.",
        )
2350
        parser.add_argument(
2351
            "--torch-compile-max-bs",
2352
            type=int,
2353
            default=ServerArgs.torch_compile_max_bs,
2354
2355
            help="Set the maximum batch size when using torch compile.",
        )
2356
2357
2358
2359
        parser.add_argument(
            "--torchao-config",
            type=str,
            default=ServerArgs.torchao_config,
2360
            help="Optimize the model with torchao. Experimental feature. Current choices are: int8dq, int8wo, int4wo-<group_size>, fp8wo, fp8dq-per_tensor, fp8dq-per_row",
2361
        )
2362
2363
2364
2365
2366
        parser.add_argument(
            "--enable-nan-detection",
            action="store_true",
            help="Enable the NaN detection for debugging purposes.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
2367
        parser.add_argument(
2368
            "--enable-p2p-check",
Lianmin Zheng's avatar
Lianmin Zheng committed
2369
            action="store_true",
2370
            help="Enable P2P check for GPU access, otherwise the p2p access is allowed by default.",
Lianmin Zheng's avatar
Lianmin Zheng committed
2371
        )
2372
        parser.add_argument(
2373
            "--triton-attention-reduce-in-fp32",
2374
            action="store_true",
2375
            help="Cast the intermediate attention results to fp32 to avoid possible crashes related to fp16."
2376
            "This only affects Triton attention kernels.",
2377
        )
2378
2379
2380
2381
2382
2383
        parser.add_argument(
            "--triton-attention-num-kv-splits",
            type=int,
            default=ServerArgs.triton_attention_num_kv_splits,
            help="The number of KV splits in flash decoding Triton kernel. Larger value is better in longer context scenarios. The default value is 8.",
        )
2384
2385
2386
2387
2388
2389
        parser.add_argument(
            "--triton-attention-split-tile-size",
            type=int,
            default=ServerArgs.triton_attention_split_tile_size,
            help="The size of split KV tile in flash decoding Triton kernel. Used for deterministic inference.",
        )
2390
2391
2392
2393
2394
2395
2396
2397
        parser.add_argument(
            "--num-continuous-decode-steps",
            type=int,
            default=ServerArgs.num_continuous_decode_steps,
            help="Run multiple continuous decoding steps to reduce scheduling overhead. "
            "This can potentially increase throughput but may also increase time-to-first-token latency. "
            "The default value is 1, meaning only run one decoding step at a time.",
        )
2398
2399
2400
2401
2402
        parser.add_argument(
            "--delete-ckpt-after-loading",
            action="store_true",
            help="Delete the model checkpoint after loading the model.",
        )
2403
2404
2405
2406
2407
        parser.add_argument(
            "--enable-memory-saver",
            action="store_true",
            help="Allow saving memory using release_memory_occupation and resume_memory_occupation",
        )
2408
2409
2410
2411
2412
        parser.add_argument(
            "--allow-auto-truncate",
            action="store_true",
            help="Allow automatically truncating requests that exceed the maximum input length instead of returning an error.",
        )
2413
2414
2415
2416
2417
        parser.add_argument(
            "--enable-custom-logit-processor",
            action="store_true",
            help="Enable users to pass custom logit processors to the server (disabled by default for security)",
        )
2418
        parser.add_argument(
2419
            "--flashinfer-mla-disable-ragged",
2420
            action="store_true",
2421
            help="Not using ragged prefill wrapper when running flashinfer mla",
2422
        )
2423
        parser.add_argument(
2424
2425
2426
            "--disable-shared-experts-fusion",
            action="store_true",
            help="Disable shared experts fusion optimization for deepseek v3/r1.",
2427
        )
2428
2429
2430
2431
2432
        parser.add_argument(
            "--disable-chunked-prefix-cache",
            action="store_true",
            help="Disable chunked prefix cache feature for deepseek, which should save overhead for short sequences.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
2433
2434
2435
2436
2437
        parser.add_argument(
            "--disable-fast-image-processor",
            action="store_true",
            help="Adopt base image processor instead of fast image processor.",
        )
2438
2439
2440
2441
2442
        parser.add_argument(
            "--keep-mm-feature-on-device",
            action="store_true",
            help="Keep multimodal feature tensors on device after processing to save D2H copy.",
        )
2443
2444
2445
2446
2447
        parser.add_argument(
            "--enable-return-hidden-states",
            action="store_true",
            help="Enable returning hidden states with responses.",
        )
2448
2449
2450
2451
2452
2453
        parser.add_argument(
            "--scheduler-recv-interval",
            type=int,
            default=ServerArgs.scheduler_recv_interval,
            help="The interval to poll requests in scheduler. Can be set to >1 to reduce the overhead of this.",
        )
2454
2455
2456
2457
2458
2459
        parser.add_argument(
            "--numa-node",
            type=int,
            nargs="+",
            help="Sets the numa node for the subprocesses. i-th element corresponds to i-th subprocess.",
        )
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479

        # Debug tensor dumps
        parser.add_argument(
            "--debug-tensor-dump-output-folder",
            type=str,
            default=ServerArgs.debug_tensor_dump_output_folder,
            help="The output folder for dumping tensors.",
        )
        parser.add_argument(
            "--debug-tensor-dump-input-file",
            type=str,
            default=ServerArgs.debug_tensor_dump_input_file,
            help="The input filename for dumping tensors",
        )
        parser.add_argument(
            "--debug-tensor-dump-inject",
            type=str,
            default=ServerArgs.debug_tensor_dump_inject,
            help="Inject the outputs from jax as the input of every layer.",
        )
2480
2481
2482
2483
2484
        parser.add_argument(
            "--debug-tensor-dump-prefill-only",
            action="store_true",
            help="Only dump the tensors for prefill requests (i.e. batch size > 1).",
        )
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
        parser.add_argument(
            "--enable-dynamic-batch-tokenizer",
            action="store_true",
            help="Enable async dynamic batch tokenizer for improved performance when multiple requests arrive concurrently.",
        )
        parser.add_argument(
            "--dynamic-batch-tokenizer-batch-size",
            type=int,
            default=ServerArgs.dynamic_batch_tokenizer_batch_size,
            help="[Only used if --enable-dynamic-batch-tokenizer is set] Maximum batch size for dynamic batch tokenizer.",
        )
        parser.add_argument(
            "--dynamic-batch-tokenizer-batch-timeout",
            type=float,
            default=ServerArgs.dynamic_batch_tokenizer_batch_timeout,
            help="[Only used if --enable-dynamic-batch-tokenizer is set] Timeout in seconds for batching tokenization requests.",
        )
2502

Lianmin Zheng's avatar
Lianmin Zheng committed
2503
        # PD disaggregation
Byron Hsu's avatar
Byron Hsu committed
2504
2505
2506
        parser.add_argument(
            "--disaggregation-mode",
            type=str,
2507
            default=ServerArgs.disaggregation_mode,
Byron Hsu's avatar
Byron Hsu committed
2508
2509
2510
            choices=["null", "prefill", "decode"],
            help='Only used for PD disaggregation. "prefill" for prefill-only server, and "decode" for decode-only server. If not specified, it is not PD disaggregated',
        )
2511
2512
2513
2514
        parser.add_argument(
            "--disaggregation-transfer-backend",
            type=str,
            default=ServerArgs.disaggregation_transfer_backend,
2515
            choices=DISAGG_TRANSFER_BACKEND_CHOICES,
2516
2517
            help="The backend for disaggregation transfer. Default is mooncake.",
        )
2518
2519
2520
2521
2522
2523
        parser.add_argument(
            "--disaggregation-bootstrap-port",
            type=int,
            default=ServerArgs.disaggregation_bootstrap_port,
            help="Bootstrap server port on the prefill server. Default is 8998.",
        )
Byron Hsu's avatar
Byron Hsu committed
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
        parser.add_argument(
            "--disaggregation-decode-tp",
            type=int,
            default=ServerArgs.disaggregation_decode_tp,
            help="Decode tp size. If not set, it matches the tp size of the current engine. This is only set on the prefill server.",
        )
        parser.add_argument(
            "--disaggregation-decode-dp",
            type=int,
            default=ServerArgs.disaggregation_decode_dp,
            help="Decode dp size. If not set, it matches the dp size of the current engine. This is only set on the prefill server.",
        )
        parser.add_argument(
            "--disaggregation-prefill-pp",
            type=int,
            default=ServerArgs.disaggregation_prefill_pp,
            help="Prefill pp size. If not set, it is default to 1. This is only set on the decode server.",
        )
2542
2543
2544
2545
        parser.add_argument(
            "--disaggregation-ib-device",
            type=str,
            default=ServerArgs.disaggregation_ib_device,
2546
2547
2548
            help="The InfiniBand devices for disaggregation transfer, accepts single device (e.g., --disaggregation-ib-device mlx5_0) "
            "or multiple comma-separated devices (e.g., --disaggregation-ib-device mlx5_0,mlx5_1). "
            "Default is None, which triggers automatic device detection when mooncake backend is enabled.",
2549
        )
2550
2551
2552
2553
2554
2555
        parser.add_argument(
            "--num-reserved-decode-tokens",
            type=int,
            default=ServerArgs.num_reserved_decode_tokens,
            help="Number of decode tokens that will have memory reserved when adding new request to the running batch.",
        )
2556
2557
2558
2559
2560
2561
        parser.add_argument(
            "--disaggregation-decode-polling-interval",
            type=int,
            default=ServerArgs.disaggregation_decode_polling_interval,
            help="The interval to poll requests in decode server. Can be set to >1 to reduce the overhead of this.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
2562
2563

        # Custom weight loader
2564
2565
2566
2567
2568
2569
2570
        parser.add_argument(
            "--custom-weight-loader",
            type=str,
            nargs="*",
            default=None,
            help="The custom dataloader which used to update the model. Should be set with a valid import path, such as my_package.weight_load_func",
        )
2571
2572
2573
2574
2575
2576
2577
        parser.add_argument(
            "--weight-loader-disable-mmap",
            action="store_true",
            help="Disable mmap while loading weight using safetensors.",
        )

        # For PD-Multiplexing
2578
2579
2580
2581
2582
        parser.add_argument(
            "--enable-pdmux",
            action="store_true",
            help="Enable PD-Multiplexing, PD running on greenctx stream.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
2583

2584
2585
2586
2587
2588
2589
        parser.add_argument(
            "--sm-group-num",
            type=int,
            default=ServerArgs.sm_group_num,
            help="Number of sm partition groups.",
        )
Byron Hsu's avatar
Byron Hsu committed
2590

2591
2592
2593
2594
2595
2596
2597
        # For deterministic inference
        parser.add_argument(
            "--enable-deterministic-inference",
            action="store_true",
            help="Enable deterministic inference mode with batch invariant ops.",
        )

2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
        # Deprecated arguments
        parser.add_argument(
            "--enable-ep-moe",
            action="store_true",
            help="(Deprecated) Enabling expert parallelism for moe. The ep size is equal to the tp size.",
        )
        parser.add_argument(
            "--enable-deepep-moe",
            action="store_true",
            help="(Deprecated) Enabling DeepEP MoE implementation for EP MoE.",
        )
2609
2610
2611
2612
2613
        parser.add_argument(
            "--enable-flashinfer-cutlass-moe",
            action="store_true",
            help="(Deprecated) Enable FlashInfer CUTLASS MoE backend for modelopt_fp4 quant on Blackwell. Supports MoE-EP",
        )
2614
2615
2616
2617
2618
        parser.add_argument(
            "--enable-flashinfer-cutedsl-moe",
            action="store_true",
            help="(Deprecated) Enable FlashInfer CuteDSL MoE backend for modelopt_fp4 quant on Blackwell. Supports MoE-EP",
        )
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
        parser.add_argument(
            "--enable-flashinfer-trtllm-moe",
            action="store_true",
            help="(Deprecated) Enable FlashInfer TRTLLM MoE backend on Blackwell. Supports BlockScale FP8 MoE-EP",
        )
        parser.add_argument(
            "--enable-triton-kernel-moe",
            action="store_true",
            help="(Deprecated) Use triton moe grouped gemm kernel.",
        )
2629
2630
2631
2632
2633
        parser.add_argument(
            "--enable-flashinfer-mxfp4-moe",
            action="store_true",
            help="(Deprecated) Enable FlashInfer MXFP4 MoE backend for modelopt_fp4 quant on Blackwell.",
        )
2634

Lianmin Zheng's avatar
Lianmin Zheng committed
2635
2636
    @classmethod
    def from_cli_args(cls, args: argparse.Namespace):
2637
        args.tp_size = args.tensor_parallel_size
2638
        args.pp_size = args.pipeline_parallel_size
2639
        args.dp_size = args.data_parallel_size
xiaobochen's avatar
xiaobochen committed
2640
        args.ep_size = args.expert_parallel_size
2641

Lianmin Zheng's avatar
Lianmin Zheng committed
2642
2643
2644
2645
        attrs = [attr.name for attr in dataclasses.fields(cls)]
        return cls(**{attr: getattr(args, attr) for attr in attrs})

    def url(self):
2646
        if is_valid_ipv6_address(self.host):
2647
2648
2649
            return f"http://[{self.host}]:{self.port}"
        else:
            return f"http://{self.host}:{self.port}"
Lianmin Zheng's avatar
Lianmin Zheng committed
2650

Lianmin Zheng's avatar
Lianmin Zheng committed
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
    def get_hf_config(self):
        kwargs = {}
        hf_config = get_config(
            self.model_path,
            trust_remote_code=self.trust_remote_code,
            revision=self.revision,
            model_override_args=json.loads(self.json_model_override_args),
            **kwargs,
        )
        return hf_config

2662
    def check_server_args(self):
2663
        # Check parallel size constraints
2664
        assert (
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
            self.tp_size * self.pp_size
        ) % self.nnodes == 0, "tp_size must be divisible by number of nodes"

        if self.pp_size > 1:
            assert (
                self.disable_overlap_schedule
                and self.speculative_algorithm is None
                and not self.enable_mixed_chunk
            ), "Pipeline parallelism is not compatible with overlap schedule, speculative decoding, mixed chunked prefill."

2675
        assert not (
2676
2677
            self.dp_size > 1 and self.nnodes != 1 and not self.enable_dp_attention
        ), "multi-node data parallel is not supported unless dp attention!"
2678

2679
        assert self.base_gpu_id >= 0, "base_gpu_id must be non-negative"
2680
        assert self.gpu_id_step >= 1, "gpu_id_step must be positive"
2681

Lianmin Zheng's avatar
Lianmin Zheng committed
2682
2683
2684
2685
2686
        assert self.moe_dense_tp_size in {
            1,
            None,
        }, "moe_dense_tp_size only support 1 and None currently"

2687
        # Check LoRA
2688
2689
        self.check_lora_server_args()

2690
2691
2692
2693
2694
2695
2696
        # Check speculative decoding
        if self.speculative_algorithm is not None:
            assert (
                not self.enable_mixed_chunk
            ), "enable_mixed_chunk is required for speculative decoding"

        # Check chunked prefill
2697
        # Skip validation if chunked prefill is disabled (i.e., size <= 0).
2698
2699
        # Skip validation if disaggregation mode is decode.
        if self.chunked_prefill_size > 0 and self.disaggregation_mode != "decode":
2700
2701
2702
            assert (
                self.chunked_prefill_size % self.page_size == 0
            ), "chunked_prefill_size must be divisible by page_size"
2703

2704
2705
        # Check multi tokenizer
        assert self.tokenizer_worker_num > 0, "Tokenizer worker num must >= 1"
2706
2707
2708
2709
2710
2711
        self.validate_buckets_rule(
            "--prompt-tokens-buckets", self.prompt_tokens_buckets
        )
        self.validate_buckets_rule(
            "--generation-tokens-buckets", self.generation_tokens_buckets
        )
2712

2713
2714
2715
2716
2717
2718
2719
        # Check scheduling policy
        if self.enable_priority_scheduling:
            assert self.schedule_policy in [
                "fcfs",
                "lof",
            ], f"To use priority scheduling, schedule_policy must be 'fcfs' or 'lof'. '{self.schedule_policy}' is not supported."

2720
    def check_lora_server_args(self):
2721
        assert self.max_loras_per_batch > 0, "max_loras_per_batch must be positive"
2722

2723
2724
2725
2726
        # Enable LoRA if any LoRA paths are provided for backward compatibility.
        if self.lora_paths:
            if self.enable_lora is None:
                self.enable_lora = True
2727
                logger.warning(
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
                    "--enable-lora is set to True because --lora-paths is provided."
                )
            elif self.enable_lora is False:
                logger.warning(
                    "--enable-lora is set to False, any provided lora_paths will be ignored."
                )

        if self.enable_lora:
            if isinstance(self.lora_paths, list):
                lora_paths = self.lora_paths
2738
                self.lora_paths = []
2739
                for lora_path in lora_paths:
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
                    if isinstance(lora_path, str):
                        if "=" in lora_path:
                            name, path = lora_path.split("=", 1)
                            lora_ref = LoRARef(
                                lora_name=name, lora_path=path, pinned=False
                            )
                        else:
                            lora_ref = LoRARef(
                                lora_name=lora_path, lora_path=lora_path, pinned=False
                            )
                    elif isinstance(lora_path, dict):
                        assert (
                            "lora_name" in lora_path and "lora_path" in lora_path
                        ), f"When providing LoRA paths as a list of dict, each dict should contain 'lora_name' and 'lora_path' keys. Got: {lora_path}"
                        lora_ref = LoRARef(
                            lora_name=lora_path["lora_name"],
                            lora_path=lora_path["lora_path"],
                            pinned=lora_path.get("pinned", False),
2758
                        )
2759
                    else:
2760
2761
2762
                        raise ValueError(
                            f"Invalid type for item in --lora-paths list: {type(lora_path)}. "
                            "Expected a string or a dictionary."
2763
                        )
2764
                    self.lora_paths.append(lora_ref)
2765
            elif isinstance(self.lora_paths, dict):
2766
2767
                self.lora_paths = [
                    LoRARef(lora_name=k, lora_path=v, pinned=False)
2768
                    for k, v in self.lora_paths.items()
2769
                ]
2770
            elif self.lora_paths is None:
2771
                self.lora_paths = []
2772
2773
2774
2775
2776
            else:
                raise ValueError(
                    f"Invalid type for --lora-paths: {type(self.lora_paths)}. "
                    "Expected a list or a dictionary."
                )
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790

            # Expand target modules
            if self.lora_target_modules:
                self.lora_target_modules = set(self.lora_target_modules)
                if "all" in self.lora_target_modules:
                    assert (
                        len(self.lora_target_modules) == 1
                    ), "If 'all' is specified in --lora-target-modules, it should be the only module specified."
                    self.lora_target_modules = set(SUPPORTED_LORA_TARGET_MODULES)

            # Ensure sufficient information is provided for LoRA initialization.
            assert self.lora_paths or (
                self.max_lora_rank and self.lora_target_modules
            ), "When no initial --lora-paths is provided, you need to specify both --max-lora-rank and --lora-target-modules for LoRA initialization."
2791

2792
2793
2794
2795
2796
2797
            # Validate max_loaded_loras
            if self.max_loaded_loras is not None:
                assert self.max_loaded_loras >= self.max_loras_per_batch, (
                    "max_loaded_loras should be greater than or equal to max_loras_per_batch. "
                    f"max_loaded_loras={self.max_loaded_loras}, max_loras_per_batch={self.max_loras_per_batch}"
                )
2798
                assert len(self.lora_paths) <= self.max_loaded_loras, (
2799
2800
2801
2802
                    "The number of LoRA paths should not exceed max_loaded_loras. "
                    f"max_loaded_loras={self.max_loaded_loras}, lora_paths={len(self.lora_paths)}"
                )

2803
2804
2805
2806
2807
2808
            if self.max_lora_chunk_size is not None:
                assert (
                    16 <= self.max_lora_chunk_size <= 128
                    and (self.max_lora_chunk_size & (self.max_lora_chunk_size - 1)) == 0
                ), "--max-lora-chunk-size must be a power of 2 between 16 and 128."

Lianmin Zheng's avatar
Lianmin Zheng committed
2809
2810
2811
2812
2813
2814
2815
2816
    def validate_disagg_tp_size(self, prefill_tp: int, decode_tp: int):
        larger_tp = max(decode_tp, prefill_tp)
        smaller_tp = min(decode_tp, prefill_tp)
        assert larger_tp % smaller_tp == 0, (
            "Different tp size is supported only when one tp is multiple of the other. "
            f"decode_tp={decode_tp}, prefill_tp={prefill_tp}"
        )

2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
    def validate_buckets_rule(self, arg_name: str, buckets_rule: List[str]):
        if not buckets_rule:
            return

        assert len(buckets_rule) > 0, f"{arg_name} cannot be empty list"
        rule = buckets_rule[0]
        assert rule in [
            "tse",
            "default",
            "customer",
        ], f"Unsupported {arg_name} rule type: '{rule}'. Must be one of: 'tse', 'default', 'customer'"

        if rule == "tse":
            assert (
                len(buckets_rule) == 4
            ), f"{arg_name} TSE rule requires exactly 4 parameters: ['tse', middle, base, count], got {len(buckets_rule)}"
            try:
                middle = float(buckets_rule[1])
                base = float(buckets_rule[2])
                count = int(buckets_rule[3])
            except (ValueError, IndexError):
                assert (
                    False
                ), f"{arg_name} TSE rule parameters must be: ['tse', <float:middle>, <float:base>, <int:count>]"
            assert base > 1, f"{arg_name} TSE base must be larger than 1, got: {base}"
            assert count > 0, f"{arg_name} TSE count must be positive, got: {count}"
            assert middle > 0, f"{arg_name} TSE middle must be positive, got: {middle}"

        elif rule == "default":
            assert (
                len(buckets_rule) == 1
            ), f"{arg_name} default rule should only have one parameter: ['default'], got {len(buckets_rule)}"

        elif rule == "customer":
            assert (
                len(buckets_rule) >= 2
            ), f"{arg_name} customer rule requires at least one bucket value: ['customer', value1, ...]"
            try:
                bucket_values = [float(x) for x in buckets_rule[1:]]
            except ValueError:
                assert False, f"{arg_name} customer rule bucket values must be numeric"
            assert len(set(bucket_values)) == len(
                bucket_values
            ), f"{arg_name} customer rule bucket values should not contain duplicates"
            assert all(
                val >= 0 for val in bucket_values
            ), f"{arg_name} customer rule bucket values should be non-negative"

2865
2866
2867
2868
2869
    def model_specific_adjustments(self):
        hf_config = self.get_hf_config()
        model_arch = hf_config.architectures[0]
        if model_arch in ["GptOssForCausalLM"]:
            if self.attention_backend is None:
2870
                if is_cuda() and is_sm100_supported():
2871
                    self.attention_backend = "trtllm_mha"
2872
                elif is_cuda() and is_sm90_supported():
2873
2874
2875
                    self.attention_backend = "fa3"
                else:
                    self.attention_backend = "triton"
2876
            supported_backends = ["triton", "trtllm_mha", "fa3"]
2877
2878
2879
            logger.info(
                f"Use {self.attention_backend} as attention backend for GptOssForCausalLM"
            )
2880
2881
2882
            assert (
                self.attention_backend in supported_backends
            ), f"GptOssForCausalLM requires one of {supported_backends} attention backend, but got '{self.attention_backend}'"
2883
2884

            if is_sm100_supported():
2885
2886
2887
2888
2889
                if not self.enable_dp_attention:
                    self.enable_flashinfer_allreduce_fusion = True
                    logger.info(
                        "Enable FlashInfer AllReduce Fusion on sm100 for GptOssForCausalLM"
                    )
2890
2891
2892
2893
2894
2895
2896
            quantization_config = getattr(hf_config, "quantization_config", None)
            is_mxfp4_quant_format = (
                quantization_config is not None
                and quantization_config.get("quant_method") == "mxfp4"
            )

            if is_sm100_supported() and is_mxfp4_quant_format:
2897
                self.moe_runner_backend = "flashinfer_mxfp4"
2898
2899
2900
2901
                logger.warning(
                    "Detected SM100 and MXFP4 quantization format for GPT-OSS model, enabling FlashInfer MXFP4 MOE kernel."
                )
            else:
2902
                if self.moe_runner_backend == "triton_kernel":
2903
2904
2905
                    assert (
                        self.ep_size == 1
                    ), "Triton kernel MoE is only supported when ep_size == 1"
2906
2907
2908
2909
2910
2911
                if (
                    self.moe_runner_backend == "auto"
                    and self.ep_size == 1
                    and is_triton_kernels_available()
                ):
                    self.moe_runner_backend = "triton_kernel"
2912
2913
2914
2915
2916
2917
2918
                    logger.warning(
                        "Detected GPT-OSS model, enabling triton_kernels MOE kernel."
                    )
            self.disable_hybrid_swa_memory = True
            if is_mxfp4_quant_format:
                # use bf16 for mxfp4 triton kernels
                self.dtype = "bfloat16"
2919

2920
        elif "Llama4" in model_arch and self.device != "cpu":
2921
2922
2923
            assert self.attention_backend in {
                "fa3",
                "aiter",
2924
2925
                "triton",
            }, "fa3, aiter, or triton is required for Llama4 model"
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
        elif model_arch in [
            "Gemma2ForCausalLM",
            "Gemma3ForCausalLM",
            "Gemma3ForConditionalGeneration",
            "Gemma3nForCausalLM",
            "Gemma3nForConditionalGeneration",
        ]:
            # FIXME: https://github.com/sgl-project/sglang/pull/7367 is not compatible with gemma2 model.
            # It failed at this test: https://github.com/sgl-project/sglang/actions/runs/16255155597/job/45890331952#step:4:736
            logger.warning(
                f"Disable hybrid SWA memory for {model_arch} as it is not yet supported."
            )
            self.disable_hybrid_swa_memory = True

Lianmin Zheng's avatar
Lianmin Zheng committed
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
    def adjust_mem_fraction_for_vlm(self, model_config):
        vision_config = getattr(model_config.hf_config, "vision_config", None)
        if vision_config is None:
            return

        # roughly reduce the mem_fraction_static base on params of Vit
        original_server_arg_mem_fraction = self.mem_fraction_static
        # a base mem_fraction_static factor for regular Vit
        base_mem_fraction_reduction_ratio = 0.95

        vit_num_layers = getattr(vision_config, "num_hidden_layers", 24)
        vit_hidden_size = getattr(vision_config, "hidden_size", 1024)

        # baseline ViT params (ViT-L/14)
        baseline_vit_layers = 24
        baseline_vit_hidden_size = 1024

        # weight params count
        current_complexity_score = vit_num_layers * (vit_hidden_size**2)
        baseline_complexity_score = baseline_vit_layers * (baseline_vit_hidden_size**2)
        complexity_ratio = (
            current_complexity_score / baseline_complexity_score
            if baseline_complexity_score > 0
            else 1.0
        )

        # every time the complexity grows 100%, adjust final factor for 10%
        sensitivity_scale = 0.1
        dynamic_adjustment_factor = 1.0 - sensitivity_scale * (complexity_ratio - 1.0)
        dynamic_adjustment_factor = max(0.8, min(1.05, dynamic_adjustment_factor))

        final_overall_factor = (
            base_mem_fraction_reduction_ratio * dynamic_adjustment_factor
        )
        self.mem_fraction_static = (
            original_server_arg_mem_fraction * final_overall_factor
        )

Lianmin Zheng's avatar
Lianmin Zheng committed
2978

Lianmin Zheng's avatar
Lianmin Zheng committed
2979
def prepare_server_args(argv: List[str]) -> ServerArgs:
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
    """
    Prepare the server arguments from the command line arguments.

    Args:
        args: The command line arguments. Typically, it should be `sys.argv[1:]`
            to ensure compatibility with `parse_args` when no arguments are passed.

    Returns:
        The server arguments.
    """
    parser = argparse.ArgumentParser()
    ServerArgs.add_cli_args(parser)
Lianmin Zheng's avatar
Lianmin Zheng committed
2992
    raw_args = parser.parse_args(argv)
2993
2994
2995
2996
    server_args = ServerArgs.from_cli_args(raw_args)
    return server_args


2997
2998
2999
ZMQ_TCP_PORT_DELTA = 233


Lianmin Zheng's avatar
Lianmin Zheng committed
3000
3001
@dataclasses.dataclass
class PortArgs:
3002
3003
3004
3005
3006
3007
    # The ipc filename for tokenizer to receive inputs from detokenizer (zmq)
    tokenizer_ipc_name: str
    # The ipc filename for scheduler (rank 0) to receive inputs from tokenizer (zmq)
    scheduler_input_ipc_name: str
    # The ipc filename for detokenizer to receive inputs from scheduler (zmq)
    detokenizer_ipc_name: str
3008

3009
3010
    # The port for nccl initialization (torch.dist)
    nccl_port: int
3011

3012
3013
3014
    # The ipc filename for rpc call between Engine and Scheduler
    rpc_ipc_name: str

3015
3016
3017
    # The ipc filename for Scheduler to send metrics
    metrics_ipc_name: str

3018
3019
3020
    # The ipc filename for Tokenizer and worker tokenizer
    tokenizer_worker_ipc_name: Optional[str]

3021
    @staticmethod
3022
    def init_new(server_args, dp_rank: Optional[int] = None) -> "PortArgs":
3023
        if server_args.nccl_port is None:
Lianmin Zheng's avatar
Lianmin Zheng committed
3024
            nccl_port = server_args.port + random.randint(100, 1000)
3025
            while True:
Lianmin Zheng's avatar
Lianmin Zheng committed
3026
                if is_port_available(nccl_port):
3027
                    break
Lianmin Zheng's avatar
Lianmin Zheng committed
3028
3029
                if nccl_port < 60000:
                    nccl_port += 42
3030
                else:
Lianmin Zheng's avatar
Lianmin Zheng committed
3031
                    nccl_port -= 43
3032
        else:
Lianmin Zheng's avatar
Lianmin Zheng committed
3033
            nccl_port = server_args.nccl_port
3034

3035
3036
3037
3038
3039
3040
        if not server_args.enable_dp_attention:
            # Normal case, use IPC within a single node
            return PortArgs(
                tokenizer_ipc_name=f"ipc://{tempfile.NamedTemporaryFile(delete=False).name}",
                scheduler_input_ipc_name=f"ipc://{tempfile.NamedTemporaryFile(delete=False).name}",
                detokenizer_ipc_name=f"ipc://{tempfile.NamedTemporaryFile(delete=False).name}",
Lianmin Zheng's avatar
Lianmin Zheng committed
3041
                nccl_port=nccl_port,
3042
                rpc_ipc_name=f"ipc://{tempfile.NamedTemporaryFile(delete=False).name}",
3043
                metrics_ipc_name=f"ipc://{tempfile.NamedTemporaryFile(delete=False).name}",
3044
                tokenizer_worker_ipc_name=None,
3045
3046
3047
3048
3049
            )
        else:
            # DP attention. Use TCP + port to handle both single-node and multi-node.
            if server_args.nnodes == 1 and server_args.dist_init_addr is None:
                dist_init_addr = ("127.0.0.1", server_args.port + ZMQ_TCP_PORT_DELTA)
Vincent's avatar
Vincent committed
3050
3051
3052
            elif server_args.dist_init_addr.startswith("["):  # ipv6 address
                port_num, host = configure_ipv6(server_args.dist_init_addr)
                dist_init_addr = (host, str(port_num))
3053
3054
            else:
                dist_init_addr = server_args.dist_init_addr.split(":")
Vincent's avatar
Vincent committed
3055

3056
3057
3058
3059
3060
3061
            assert (
                len(dist_init_addr) == 2
            ), "please provide --dist-init-addr as host:port of head node"

            dist_init_host, dist_init_port = dist_init_addr
            port_base = int(dist_init_port) + 1
3062
3063
3064
            detokenizer_port = port_base + 1
            rpc_port = port_base + 2
            metrics_ipc_name = port_base + 3
3065
            if dp_rank is None:
3066
                # TokenizerManager to DataParallelController
3067
                scheduler_input_port = port_base + 4
3068
            else:
3069
                scheduler_input_port = port_base + 4 + 1 + dp_rank
3070
3071
3072
3073

            return PortArgs(
                tokenizer_ipc_name=f"tcp://{dist_init_host}:{port_base}",
                scheduler_input_ipc_name=f"tcp://{dist_init_host}:{scheduler_input_port}",
3074
                detokenizer_ipc_name=f"tcp://{dist_init_host}:{detokenizer_port}",
Lianmin Zheng's avatar
Lianmin Zheng committed
3075
                nccl_port=nccl_port,
3076
3077
                rpc_ipc_name=f"tcp://{dist_init_host}:{rpc_port}",
                metrics_ipc_name=f"tcp://{dist_init_host}:{metrics_ipc_name}",
3078
                tokenizer_worker_ipc_name=None,
3079
            )
3080

3081
3082
3083

class LoRAPathAction(argparse.Action):
    def __call__(self, parser, namespace, values, option_string=None):
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
        lora_paths = []
        if values:
            assert isinstance(values, list), "Expected a list of LoRA paths."
            for lora_path in values:
                lora_path = lora_path.strip()
                if lora_path.startswith("{") and lora_path.endswith("}"):
                    obj = json.loads(lora_path)
                    assert "lora_path" in obj and "lora_name" in obj, (
                        f"{repr(lora_path)} looks like a JSON str, "
                        "but it does not contain 'lora_name' and 'lora_path' keys."
                    )
                    lora_paths.append(obj)
                else:
                    lora_paths.append(lora_path)

        setattr(namespace, self.dest, lora_paths)
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109


class DeprecatedAction(argparse.Action):
    def __init__(self, option_strings, dest, nargs=0, **kwargs):
        super(DeprecatedAction, self).__init__(
            option_strings, dest, nargs=nargs, **kwargs
        )

    def __call__(self, parser, namespace, values, option_string=None):
        raise ValueError(self.help)
3110
3111


3112
3113
3114
3115
def print_deprecated_warning(message: str):
    logger.warning(f"\033[33m{message}\033[0m")


3116
def auto_choose_speculative_params(self: ServerArgs):
3117
3118
3119
3120
3121
    """
    Automatically choose the parameters for speculative decoding.

    You can tune them on your own models and prompts with scripts/playground/bench_speculative.py
    """
Lianmin Zheng's avatar
Lianmin Zheng committed
3122
    hf_config = self.get_hf_config()
3123
    arch = hf_config.architectures[0]
3124
3125
3126
    if self.speculative_algorithm == "STANDALONE":
        # The default value for standalone speculative decoding
        return (3, 1, 4)
3127
3128
3129
    if arch in ["LlamaForCausalLM"]:
        # The default value for llama
        return (5, 4, 8)
3130
3131
3132
3133
    elif arch in [
        "DeepseekV3ForCausalLM",
        "DeepseekV2ForCausalLM",
        "GptOssForCausalLM",
strgrb's avatar
strgrb committed
3134
3135
        "BailingMoeForCausalLM",
        "BailingMoeV2ForCausalLM",
3136
3137
    ]:
        # The default value for deepseek and gpt-oss
3138
        return (3, 1, 4)
3139
3140
3141
3142
3143
    elif arch in ["Grok1ForCausalLM", "Grok1VForCausalLM"]:
        return (5, 4, 8)
    else:
        # The default value for all other models
        return (5, 4, 8)