server_args.py 102 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
Lianmin Zheng's avatar
Lianmin Zheng committed
14
15
"""The arguments of the server."""

Lianmin Zheng's avatar
Lianmin Zheng committed
16
17
import argparse
import dataclasses
18
import json
19
import logging
20
import os
21
import random
22
import sys
23
import tempfile
24
from typing import List, Literal, Optional, Union
Lianmin Zheng's avatar
Lianmin Zheng committed
25

26
from sglang.srt.function_call.function_call_parser import FunctionCallParser
27
from sglang.srt.hf_transformers_utils import check_gguf_file, get_config
28
from sglang.srt.lora.lora_registry import LoRARef
29
from sglang.srt.parser.reasoning_parser import ReasoningParser
30
from sglang.srt.utils import (
31
32
    LORA_TARGET_ALL_MODULES,
    SUPPORTED_LORA_TARGET_MODULES,
Vincent's avatar
Vincent committed
33
    configure_ipv6,
34
    get_device,
Lianmin Zheng's avatar
Lianmin Zheng committed
35
    get_device_memory_capacity,
36
    is_cuda,
37
    is_flashinfer_available,
HAI's avatar
HAI committed
38
    is_hip,
39
    is_port_available,
40
    is_remote_url,
41
42
    is_sm90_supported,
    is_sm100_supported,
43
    is_triton_kernels_available,
44
    is_valid_ipv6_address,
bjmsong's avatar
bjmsong committed
45
    nullable_str,
46
)
47

48
49
logger = logging.getLogger(__name__)

Lianmin Zheng's avatar
Lianmin Zheng committed
50

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
# Define constants
LOAD_FORMAT_CHOICES = [
    "auto",
    "pt",
    "safetensors",
    "npcache",
    "dummy",
    "sharded_state",
    "gguf",
    "bitsandbytes",
    "layered",
    "remote",
]

QUANTIZATION_CHOICES = [
    "awq",
    "fp8",
    "gptq",
    "marlin",
    "gptq_marlin",
    "awq_marlin",
    "bitsandbytes",
    "gguf",
    "modelopt",
    "modelopt_fp4",
    "petit_nvfp4",
    "w8a8_int8",
    "w8a8_fp8",
    "moe_wna16",
    "qoq",
    "w4afp8",
    "mxfp4",
]

ATTENTION_BACKEND_CHOICES = [
    # Common
    "triton",
    "torch_native",
    # NVIDIA specific
    "cutlass_mla",
    "fa3",
    "flashinfer",
    "flashmla",
    "trtllm_mla",
    "trtllm_mha",
    "dual_chunk_flash_attn",
    # AMD specific
    "aiter",
    "wave",
    # Other platforms
    "intel_amx",
    "ascend",
]

DISAGG_TRANSFER_BACKEND_CHOICES = ["mooncake", "nixl", "ascend", "fake"]


# Allow external code to add more choices
def add_load_format_choices(choices):
    LOAD_FORMAT_CHOICES.extend(choices)


def add_quantization_method_choices(choices):
    QUANTIZATION_CHOICES.extend(choices)


def add_attention_backend_choices(choices):
    ATTENTION_BACKEND_CHOICES.extend(choices)


def add_disagg_transfer_backend_choices(choices):
    DISAGG_TRANSFER_BACKEND_CHOICES.extend(choices)


Lianmin Zheng's avatar
Lianmin Zheng committed
125
126
@dataclasses.dataclass
class ServerArgs:
Lianmin Zheng's avatar
Lianmin Zheng committed
127
    # Model and tokenizer
Lianmin Zheng's avatar
Lianmin Zheng committed
128
129
130
    model_path: str
    tokenizer_path: Optional[str] = None
    tokenizer_mode: str = "auto"
131
    tokenizer_worker_num: int = 1
132
    skip_tokenizer_init: bool = False
Lianmin Zheng's avatar
Lianmin Zheng committed
133
    load_format: str = "auto"
134
    model_loader_extra_config: str = "{}"
135
    trust_remote_code: bool = False
136
    context_length: Optional[int] = None
137
    is_embedding: bool = False
138
    enable_multimodal: Optional[bool] = None
139
    revision: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
140
    model_impl: str = "auto"
Lianmin Zheng's avatar
Lianmin Zheng committed
141

Lianmin Zheng's avatar
Lianmin Zheng committed
142
    # HTTP server
Lianmin Zheng's avatar
Lianmin Zheng committed
143
144
    host: str = "127.0.0.1"
    port: int = 30000
Lianmin Zheng's avatar
Lianmin Zheng committed
145
146
    skip_server_warmup: bool = False
    warmups: Optional[str] = None
147
    nccl_port: Optional[int] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
148

Lianmin Zheng's avatar
Lianmin Zheng committed
149
150
151
152
153
154
    # Quantization and data type
    dtype: str = "auto"
    quantization: Optional[str] = None
    quantization_param_path: Optional[str] = None
    kv_cache_dtype: str = "auto"

Lianmin Zheng's avatar
Lianmin Zheng committed
155
    # Memory and scheduling
Lianmin Zheng's avatar
Lianmin Zheng committed
156
    mem_fraction_static: Optional[float] = None
157
    max_running_requests: Optional[int] = None
158
    max_queued_requests: Optional[int] = sys.maxsize
159
    max_total_tokens: Optional[int] = None
160
    chunked_prefill_size: Optional[int] = None
161
    max_prefill_tokens: int = 16384
162
    schedule_policy: str = "fcfs"
163
    schedule_conservativeness: float = 1.0
164
    page_size: Optional[int] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
165
166
167
    hybrid_kvcache_ratio: Optional[float] = None
    swa_full_tokens_ratio: float = 0.8
    disable_hybrid_swa_memory: bool = False
Lianmin Zheng's avatar
Lianmin Zheng committed
168

Lianmin Zheng's avatar
Lianmin Zheng committed
169
170
    # Runtime options
    device: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
171
    tp_size: int = 1
172
173
    pp_size: int = 1
    max_micro_batch_size: Optional[int] = None
174
    stream_interval: int = 1
175
    stream_output: bool = False
176
    random_seed: Optional[int] = None
177
    constrained_json_whitespace_pattern: Optional[str] = None
178
    watchdog_timeout: float = 300
179
    dist_timeout: Optional[int] = None  # timeout for torch.distributed
180
    download_dir: Optional[str] = None
181
    base_gpu_id: int = 0
182
    gpu_id_step: int = 1
183
    sleep_on_idle: bool = False
Lianmin Zheng's avatar
Lianmin Zheng committed
184
185
186

    # Logging
    log_level: str = "info"
187
    log_level_http: Optional[str] = None
188
    log_requests: bool = False
189
    log_requests_level: int = 2
190
    crash_dump_folder: Optional[str] = None
Liangsheng Yin's avatar
Liangsheng Yin committed
191
    show_time_cost: bool = False
192
    enable_metrics: bool = False
193
    enable_metrics_for_all_schedulers: bool = False
194
195
    bucket_time_to_first_token: Optional[List[float]] = None
    bucket_inter_token_latency: Optional[List[float]] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
196
    bucket_e2e_request_latency: Optional[List[float]] = None
197
    collect_tokens_histogram: bool = False
198
    decode_log_interval: int = 40
199
    enable_request_time_stats_logging: bool = False
200
    kv_events_config: Optional[str] = None
201
    gc_warning_threshold_secs: float = 0.0
Liangsheng Yin's avatar
Liangsheng Yin committed
202

203
    # API related
204
    api_key: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
205
    served_model_name: Optional[str] = None
206
    weight_version: str = "default"
Lianmin Zheng's avatar
Lianmin Zheng committed
207
208
    chat_template: Optional[str] = None
    completion_template: Optional[str] = None
209
    file_storage_path: str = "sglang_storage"
210
    enable_cache_report: bool = False
Xihuai Wang's avatar
Xihuai Wang committed
211
    reasoning_parser: Optional[str] = None
212
    tool_call_parser: Optional[str] = None
213
    tool_server: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
214

215
216
217
    # Data parallelism
    dp_size: int = 1
    load_balance_method: str = "round_robin"
218

219
    # Multi-node distributed serving
220
    dist_init_addr: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
221
    nnodes: int = 1
222
    node_rank: int = 0
Lianmin Zheng's avatar
Lianmin Zheng committed
223
224
225

    # Model override args in JSON
    json_model_override_args: str = "{}"
226
    preferred_sampling_params: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
227

228
    # LoRA
229
    enable_lora: Optional[bool] = None
230
    max_lora_rank: Optional[int] = None
231
    lora_target_modules: Optional[Union[set[str], List[str]]] = None
232
233
234
    lora_paths: Optional[
        Union[dict[str, str], List[dict[str, str]], List[str], List[LoRARef]]
    ] = None
235
    max_loaded_loras: Optional[int] = None
236
    max_loras_per_batch: int = 8
237
    lora_backend: str = "triton"
238
239

    # Kernel backend
240
    attention_backend: Optional[str] = None
241
242
    decode_attention_backend: Optional[str] = None
    prefill_attention_backend: Optional[str] = None
243
    sampling_backend: Optional[str] = None
244
    grammar_backend: Optional[str] = None
245
    mm_attention_backend: Optional[str] = None
246

247
248
    # Speculative decoding
    speculative_algorithm: Optional[str] = None
249
    speculative_draft_model_path: Optional[str] = None
250
251
252
    speculative_num_steps: Optional[int] = None
    speculative_eagle_topk: Optional[int] = None
    speculative_num_draft_tokens: Optional[int] = None
253
254
    speculative_accept_threshold_single: float = 1.0
    speculative_accept_threshold_acc: float = 1.0
255
    speculative_token_map: Optional[str] = None
256

257
258
    # Expert parallelism
    ep_size: int = 1
259
260
261
262
263
264
265
266
267
    moe_a2a_backend: Literal["none", "deepep"] = "none"
    moe_runner_backend: Literal[
        "auto",
        "triton",
        "triton_kernel",
        "flashinfer_trtllm",
        "flashinfer_cutlass",
        "flashinfer_mxfp4",
    ] = "auto"
268
    flashinfer_mxfp4_moe_precision: Literal["default", "bf16"] = "default"
269
    enable_flashinfer_allreduce_fusion: bool = False
270
    deepep_mode: Literal["auto", "normal", "low_latency"] = "auto"
271
272
273
274
275
276
277
    ep_num_redundant_experts: int = 0
    ep_dispatch_algorithm: Optional[Literal["static", "dynamic", "fake"]] = None
    init_expert_location: str = "trivial"
    enable_eplb: bool = False
    eplb_algorithm: str = "auto"
    eplb_rebalance_num_iterations: int = 1000
    eplb_rebalance_layers_per_chunk: Optional[int] = None
278
    eplb_min_rebalancing_utilization_threshold: float = 1.0
279
280
281
282
283
284
285
286
    expert_distribution_recorder_mode: Optional[
        Literal["stat", "stat_approx", "per_pass", "per_token"]
    ] = None
    expert_distribution_recorder_buffer_size: Optional[int] = None
    enable_expert_distribution_metrics: bool = False
    deepep_config: Optional[str] = None
    moe_dense_tp_size: Optional[int] = None

Lianmin Zheng's avatar
Lianmin Zheng committed
287
288
289
290
    # Hierarchical cache
    enable_hierarchical_cache: bool = False
    hicache_ratio: float = 2.0
    hicache_size: int = 0
291
    hicache_write_policy: str = "write_through"
292
293
    hicache_io_backend: str = "kernel"
    hicache_mem_layout: str = "layer_first"
Lianmin Zheng's avatar
Lianmin Zheng committed
294
    hicache_storage_backend: Optional[str] = None
pansicheng's avatar
pansicheng committed
295
    hicache_storage_prefetch_policy: str = "best_effort"
296
    hicache_storage_backend_extra_config: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
297

298
299
    # Double Sparsity
    enable_double_sparsity: bool = False
Vincent's avatar
Vincent committed
300
    ds_channel_config_path: Optional[str] = None
301
302
303
304
305
    ds_heavy_channel_num: int = 32
    ds_heavy_token_num: int = 256
    ds_heavy_channel_type: str = "qk"
    ds_sparse_decode_threshold: int = 4096

fzyzcjy's avatar
fzyzcjy committed
306
307
308
309
310
311
312
    # Offloading
    cpu_offload_gb: int = 0
    offload_group_size: int = -1
    offload_num_in_group: int = 1
    offload_prefetch_step: int = 1
    offload_mode: str = "cpu"

313
    # Optimization/debug options
Lianmin Zheng's avatar
Lianmin Zheng committed
314
    disable_radix_cache: bool = False
315
316
    cuda_graph_max_bs: Optional[int] = None
    cuda_graph_bs: Optional[List[int]] = None
317
    disable_cuda_graph: bool = False
318
    disable_cuda_graph_padding: bool = False
319
    enable_profile_cuda_graph: bool = False
320
    enable_cudagraph_gc: bool = False
321
    enable_nccl_nvls: bool = False
322
    enable_symm_mem: bool = False
323
    disable_flashinfer_cutlass_moe_fp4_allgather: bool = False
324
    enable_tokenizer_batch_encode: bool = False
325
    disable_outlines_disk_cache: bool = False
326
    disable_custom_all_reduce: bool = False
327
    enable_mscclpp: bool = False
328
    disable_overlap_schedule: bool = False
329
    enable_mixed_chunk: bool = False
Ke Bao's avatar
Ke Bao committed
330
    enable_dp_attention: bool = False
331
    enable_dp_lm_head: bool = False
332
    enable_two_batch_overlap: bool = False
333
    tbo_token_distribution_threshold: float = 0.48
334
    enable_torch_compile: bool = False
335
    torch_compile_max_bs: int = 32
336
    torchao_config: str = ""
337
    enable_nan_detection: bool = False
338
    enable_p2p_check: bool = False
339
    triton_attention_reduce_in_fp32: bool = False
340
    triton_attention_num_kv_splits: int = 8
341
    num_continuous_decode_steps: int = 1
342
    delete_ckpt_after_loading: bool = False
343
    enable_memory_saver: bool = False
344
    allow_auto_truncate: bool = False
345
    enable_custom_logit_processor: bool = False
346
    flashinfer_mla_disable_ragged: bool = False
347
    disable_shared_experts_fusion: bool = False
348
    disable_chunked_prefix_cache: bool = False
Lianmin Zheng's avatar
Lianmin Zheng committed
349
    disable_fast_image_processor: bool = False
350
    enable_return_hidden_states: bool = False
351
    scheduler_recv_interval: int = 1
352
353
354
355
356

    # Debug tensor dumps
    debug_tensor_dump_output_folder: Optional[str] = None
    debug_tensor_dump_input_file: Optional[str] = None
    debug_tensor_dump_inject: bool = False
357
    debug_tensor_dump_prefill_only: bool = False
358

Lianmin Zheng's avatar
Lianmin Zheng committed
359
    # PD disaggregation: can be "null" (not disaggregated), "prefill" (prefill-only), or "decode" (decode-only)
Byron Hsu's avatar
Byron Hsu committed
360
    disaggregation_mode: str = "null"
361
    disaggregation_transfer_backend: str = "mooncake"
362
    disaggregation_bootstrap_port: int = 8998
Byron Hsu's avatar
Byron Hsu committed
363
364
365
    disaggregation_decode_tp: Optional[int] = None
    disaggregation_decode_dp: Optional[int] = None
    disaggregation_prefill_pp: Optional[int] = 1
366
    disaggregation_ib_device: Optional[str] = None
367
    num_reserved_decode_tokens: int = 512  # used for decode kv cache offload in PD
368
    pdlb_url: Optional[str] = None
Byron Hsu's avatar
Byron Hsu committed
369

370
371
    # For model weight update
    custom_weight_loader: Optional[List[str]] = None
372
    weight_loader_disable_mmap: bool = False
373

374
375
376
377
    # For PD-Multiplexing
    enable_pdmux: bool = False
    sm_group_num: int = 3

378
379
380
    # Deprecated arguments
    enable_ep_moe: bool = False
    enable_deepep_moe: bool = False
381
382
383
    enable_flashinfer_cutlass_moe: bool = False
    enable_flashinfer_trtllm_moe: bool = False
    enable_triton_kernel_moe: bool = False
384
    enable_flashinfer_mxfp4_moe: bool = False
385

Lianmin Zheng's avatar
Lianmin Zheng committed
386
    def __post_init__(self):
387
388
389
390
391
392
393
394
395
396
397
        # Check deprecated arguments
        if self.enable_ep_moe:
            self.ep_size = self.tp_size
            print_deprecated_warning(
                "NOTE: --enable-ep-moe is deprecated. Please set `--ep-size` to the same value as `--tp-size` instead."
            )
        if self.enable_deepep_moe:
            self.moe_a2a_backend = "deepep"
            print_deprecated_warning(
                "NOTE: --enable-deepep-moe is deprecated. Please set `--moe-a2a-backend` to 'deepep' instead."
            )
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
        if self.enable_triton_kernel_moe:
            self.moe_runner_backend = "triton_kernel"
            print_deprecated_warning(
                "NOTE: --enable-triton-kernel-moe is deprecated. Please set `--moe-runner-backend` to 'triton_kernel' instead."
            )
        if self.enable_flashinfer_cutlass_moe:
            self.moe_runner_backend = "flashinfer_cutlass"
            print_deprecated_warning(
                "NOTE: --enable-flashinfer-cutlass-moe is deprecated. Please set `--moe-runner-backend` to 'flashinfer_cutlass' instead."
            )
        if self.enable_flashinfer_trtllm_moe:
            self.moe_runner_backend = "flashinfer_trtllm"
            print_deprecated_warning(
                "NOTE: --enable-flashinfer-trtllm-moe is deprecated. Please set `--moe-runner-backend` to 'flashinfer_trtllm' instead."
            )
413
414
415
416
417
        if self.enable_flashinfer_mxfp4_moe:
            self.moe_runner_backend = "flashinfer_mxfp4"
            print_deprecated_warning(
                "NOTE: --enable-flashinfer-mxfp4-moe is deprecated. Please set `--moe-runner-backend` to 'flashinfer_mxfp4' instead."
            )
418

419
        # Set missing default values
Lianmin Zheng's avatar
Lianmin Zheng committed
420
421
        if self.tokenizer_path is None:
            self.tokenizer_path = self.model_path
422
423
        if self.served_model_name is None:
            self.served_model_name = self.model_path
424
425
        if self.device is None:
            self.device = get_device()
426
427
428
        if self.random_seed is None:
            self.random_seed = random.randint(0, 1 << 30)

Lianmin Zheng's avatar
Lianmin Zheng committed
429
        gpu_mem = get_device_memory_capacity(self.device)
430

431
        # Set mem fraction static
Lianmin Zheng's avatar
Lianmin Zheng committed
432
        if self.mem_fraction_static is None:
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
            if gpu_mem is not None:
                # GPU memory capacity = model weights + KV cache pool + activations + cuda graph buffers
                # mem_fraction_static = (model weights + KV cache pool) / GPU memory capacity.

                # We want mem_fraction_static to be as large as possible but still has enough room
                # for activations and cuda graph buffers. We use the following heuristic to
                # compute the needed size for activations and cuda graph buffers:
                # - The size of the activation depends on the chunked_prefill_size and model size.
                # - The size of cuda graph buffers depends on the cuda graph capture range and model size.
                # For GPUs with more memory, we use a larger chunked_prefill_size and
                # capture more cuda graphs, so they need to reserve more memory.
                parallel_size = self.tp_size * self.pp_size

                if gpu_mem < 20 * 1024:
                    # T4, 4080. (chunked_prefill_size 2k, cuda_graph_max_bs 8)
                    reserved_mem = (2.8 + parallel_size / 10) * 1024
                elif gpu_mem < 35 * 1024:
                    # A10, L40, 4090, 5090. (chunked_prefill_size 2k, cuda_graph_max_bs 8)
                    reserved_mem = (2.8 + parallel_size / 10) * 1024
                elif gpu_mem < 90 * 1024:
                    # H100, A100. (chunked_prefill_size 8k, cuda_graph_max_bs 160)
                    reserved_mem = (9.5 + parallel_size / 2) * 1024
                elif gpu_mem < 100 * 1024:
                    # H20. (chunked_prefill_size 8k, cuda_graph_max_bs 256)
                    reserved_mem = (12 + parallel_size / 2) * 1024
                elif gpu_mem < 160 * 1024:
                    # H200. (chunked_prefill_size 8k, cuda_graph_max_bs 256)
                    reserved_mem = (12 + parallel_size / 2) * 1024
461
                else:
462
463
464
                    # B200, MI300. (chunked_prefill_size 16k, cuda_graph_max_bs 512)
                    reserved_mem = 32 * 1024

465
                if self.speculative_algorithm is not None:
466
467
468
469
470
471
                    # draft model and larger cuda graph buffers
                    reserved_mem += 2 * 1024
                if self.enable_dp_attention:
                    reserved_mem += 4 * 1024

                self.mem_fraction_static = round((gpu_mem - reserved_mem) / gpu_mem, 3)
472
            else:
473
                self.mem_fraction_static = 0.88
474

475
            # Lazy init to avoid circular import
Lianmin Zheng's avatar
Lianmin Zheng committed
476
            # Multimodal models need more memory for the image processor
477
478
479
            from sglang.srt.configs.model_config import ModelConfig

            model_config = ModelConfig.from_server_args(self)
Lianmin Zheng's avatar
Lianmin Zheng committed
480
481
            if model_config.is_multimodal:
                self.adjust_mem_fraction_for_vlm(model_config)
482

483
484
        # Set chunked prefill size, which depends on the gpu memory capacity
        if self.chunked_prefill_size is None:
485
486
487
488
489
490
491
            if gpu_mem is not None:
                if gpu_mem < 35 * 1024:  # A10, L40, 4090
                    self.chunked_prefill_size = 2048
                elif gpu_mem < 160 * 1024:  # H100, H200, A100, H20
                    self.chunked_prefill_size = 8192
                else:  # B200, MI300
                    self.chunked_prefill_size = 16384
492
            else:
493
                self.chunked_prefill_size = 4096
Lianmin Zheng's avatar
Lianmin Zheng committed
494

495
496
497
498
499
500
501
502
503
        # Set cuda graph max batch size
        if self.cuda_graph_max_bs is None:
            # Based on detailed statistics, when serving TP1/TP2 models on lower-end GPUs with HBM<25G, you can either disable cuda graph or set `cuda_graph_max_bs` to a very small value to reduce the memory overhead of creating cuda graphs, with almost no impact on performance. However, when serving models with TP4 or TP8, we need to enable cuda graph to maintain high performance. In this case, we can set `cuda_graph_max_bs` to 80 (half of the default value 160) to reduce the memory overhead of creating cuda graphs. Looking at the logs from TP4 serving of qwen2-72b, a value of 80 is sufficient and can reduce the memory overhead of creating cuda graphs on lower-end GPUs compared to the original 160, avoiding OOM issues.
            if gpu_mem is not None and gpu_mem < 35 * 1024:
                if self.tp_size < 4:
                    self.cuda_graph_max_bs = 8
                else:
                    self.cuda_graph_max_bs = 80

504
        # Set kernel backends for hpu device
505
506
507
508
        if self.device == "hpu":
            self.attention_backend = "torch_native"
            self.sampling_backend = "pytorch"

509
510
511
        # Model-specific adjustments
        self.model_specific_adjustments()

Lianmin Zheng's avatar
Lianmin Zheng committed
512
        # Set kernel backends
513
514
515
516
517
        if self.device == "cpu":
            if self.attention_backend is None:
                self.attention_backend = "intel_amx"
            self.sampling_backend = "pytorch"

518
        if self.sampling_backend is None:
519
520
521
522
523
            self.sampling_backend = (
                "flashinfer" if is_flashinfer_available() else "pytorch"
            )

        if self.attention_backend == "torch_native":
524
            logger.warning(
525
526
527
                "Cuda graph is disabled because of using torch native attention backend"
            )
            self.disable_cuda_graph = True
528

529
530
531
532
533
534
        if self.attention_backend == "ascend":
            logger.warning(
                "At this moment Ascend attention backend only supports a page_size of 128, change page_size to 128."
            )
            self.page_size = 128

535
536
537
538
        if (
            self.attention_backend == "flashmla"
            or self.decode_attention_backend == "flashmla"
        ):
Lianmin Zheng's avatar
Lianmin Zheng committed
539
540
541
542
543
            logger.warning(
                "FlashMLA only supports a page_size of 64, change page_size to 64."
            )
            self.page_size = 64

544
545
546
547
        if (
            self.attention_backend == "cutlass_mla"
            or self.decode_attention_backend == "cutlass_mla"
        ):
Lianmin Zheng's avatar
Lianmin Zheng committed
548
549
550
551
552
            logger.warning(
                "Cutlass MLA only supports a page_size of 128, change page_size to 128."
            )
            self.page_size = 128

Faraz's avatar
Faraz committed
553
554
555
556
        if (
            self.attention_backend == "trtllm_mla"
            or self.decode_attention_backend == "trtllm_mla"
        ):
557
558
559
560
561
562
563
564
565
566
            if not is_sm100_supported():
                raise ValueError(
                    "TRTLLM MLA backend is only supported on Blackwell GPUs (SM100). Please use a different backend."
                )

            if self.page_size not in [32, 64]:
                logger.warning(
                    f"TensorRT-LLM MLA only supports page_size of 32 or 64, changing page_size from {self.page_size} to 64."
                )
                self.page_size = 64
Faraz's avatar
Faraz committed
567
568
569
570
571

            if self.kv_cache_dtype not in ["fp8_e4m3", "auto"]:
                raise ValueError(
                    "TensorRT-LLM MLA backend only supports kv-cache-dtype of fp8_e4m3 or auto."
                )
572

573
574
575
576
577
        if (
            self.attention_backend == "trtllm_mha"
            or self.decode_attention_backend == "trtllm_mha"
            or self.prefill_attention_backend == "trtllm_mha"
        ):
578
579
580
581
582
583
584
585
586
587
588
            if not is_sm100_supported():
                raise ValueError(
                    "TRTLLM MHA backend is only supported on Blackwell GPUs (SM100). Please use a different backend."
                )

            if self.page_size not in [16, 32, 64]:
                logger.warning(
                    f"TensorRT-LLM MHA only supports page_size of 16, 32 or 64, changing page_size from {self.page_size} to 64."
                )
                self.page_size = 64

589
590
        if self.attention_backend == "dual_chunk_flash_attn":
            logger.warning(
591
                "Mixed chunk, radix cache, and cuda graphs are disabled because of using dual chunk flash attention backend"
592
593
594
595
596
            )
            self.enable_mixed_chunk = False
            self.disable_cuda_graph = True
            self.disable_radix_cache = True

597
598
599
600
601
602
603
604
        # Set page size
        if self.page_size is None:
            self.page_size = 1

        # AMD-specific Triton attention KV splits default number
        if is_hip():
            self.triton_attention_num_kv_splits = 16

605
606
607
        # Choose grammar backend
        if self.grammar_backend is None:
            self.grammar_backend = "xgrammar"
608

609
        # Data parallelism attention
Ke Bao's avatar
Ke Bao committed
610
        if self.enable_dp_attention:
611
            self.schedule_conservativeness = self.schedule_conservativeness * 0.3
Lianmin Zheng's avatar
Lianmin Zheng committed
612
613
614
615
616
            assert (
                self.dp_size > 1
            ), "Please set a dp-size > 1. You can use 1 < dp-size <= tp-size "
            assert self.tp_size % self.dp_size == 0
            self.chunked_prefill_size = self.chunked_prefill_size // self.dp_size
617
            logger.warning(
618
                f"DP attention is enabled. The chunked prefill size is adjusted to {self.chunked_prefill_size} to avoid MoE kernel issues. "
619
            )
620

621
622
623
        if self.enable_dp_lm_head:
            assert (
                self.enable_dp_attention
624
            ), "Please enable dp attention when setting enable_dp_lm_head. "
625

626
        # MoE kernel
627
        if self.moe_runner_backend == "flashinfer_cutlass":
628
629
630
            assert (
                self.quantization == "modelopt_fp4"
            ), "modelopt_fp4 quantization is required for Flashinfer MOE"
631
632
633
634
            assert self.ep_size in [
                1,
                self.tp_size,
            ], "The expert parallel size must be 1 or the same as the tensor parallel size"
635

636
        if self.moe_runner_backend == "flashinfer_trtllm":
637
638
639
640
641
642
            if not self.disable_shared_experts_fusion:
                self.disable_shared_experts_fusion = True
                logger.warning(
                    "FlashInfer TRTLLM MoE is enabled. --disable-shared-experts-fusion is automatically set."
                )

643
        # DeepEP MoE
644
        if self.moe_a2a_backend == "deepep":
645
646
647
            if self.deepep_mode == "normal":
                logger.warning("Cuda graph is disabled because deepep_mode=`normal`")
                self.disable_cuda_graph = True
648
            self.ep_size = self.tp_size
Lianmin Zheng's avatar
Lianmin Zheng committed
649
            logger.warning(
650
651
                f"DeepEP MoE is enabled. The expert parallel size is adjusted to be the same as the tensor parallel size[{self.tp_size}]."
            )
652

653
654
        if self.enable_eplb and (self.expert_distribution_recorder_mode is None):
            self.expert_distribution_recorder_mode = "stat"
655
            logger.warning(
656
                "EPLB is enabled. The expert_distribution_recorder_mode is automatically set."
657
658
659
660
661
662
663
            )

        if (self.enable_eplb or (self.init_expert_location is not None)) and (
            self.ep_dispatch_algorithm is None
        ):
            self.ep_dispatch_algorithm = "static"

664
        if self.enable_eplb:
665
            assert self.ep_size > 1
666

667
668
669
670
671
        if self.enable_expert_distribution_metrics and (
            self.expert_distribution_recorder_mode is None
        ):
            self.expert_distribution_recorder_mode = "stat"

672
        if self.expert_distribution_recorder_buffer_size is None:
673
674
            if (x := self.eplb_rebalance_num_iterations) is not None:
                self.expert_distribution_recorder_buffer_size = x
675
676
677
            elif self.expert_distribution_recorder_mode is not None:
                self.expert_distribution_recorder_buffer_size = 1000

Lianmin Zheng's avatar
Lianmin Zheng committed
678
679
680
681
682
683
684
        # Pipeline parallelism
        if self.pp_size > 1:
            self.disable_overlap_schedule = True
            logger.warning(
                "Pipeline parallelism is incompatible with overlap schedule."
            )

Lianmin Zheng's avatar
Lianmin Zheng committed
685
        # Hicache
686
687
688
689
690
        if self.hicache_storage_backend == "mooncake":
            # to use mooncake storage backend, the following conditions must be met:
            self.hicache_io_backend = "kernel"
            self.hicache_mem_layout = "page_first"

691
        # Speculative Decoding
692
693
694
695
        if self.speculative_algorithm == "NEXTN":
            # NEXTN shares the same implementation of EAGLE
            self.speculative_algorithm = "EAGLE"

Lianmin Zheng's avatar
Lianmin Zheng committed
696
        if self.speculative_algorithm in ("EAGLE", "EAGLE3"):
697
            if self.max_running_requests is None:
698
                self.max_running_requests = 48
699
            self.disable_overlap_schedule = True
Lianmin Zheng's avatar
Lianmin Zheng committed
700
            logger.warning(
701
                "Overlap scheduler is disabled because of using "
702
                "eagle speculative decoding."
703
            )
704
705
706
707
708
709
            if self.enable_mixed_chunk:
                self.enable_mixed_chunk = False
                logger.warning(
                    "Mixed chunked prefill is disabled because of using "
                    "eagle speculative decoding."
                )
710

Lianmin Zheng's avatar
Lianmin Zheng committed
711
            model_arch = self.get_hf_config().architectures[0]
Yuxuan Zhang's avatar
Yuxuan Zhang committed
712
            if model_arch in ["DeepseekV3ForCausalLM", "Glm4MoeForCausalLM"]:
Hanming Lu's avatar
Hanming Lu committed
713
                # Auto set draft_model_path DeepSeek-V3/R1
714
715
716
717
718
719
                if self.speculative_draft_model_path is None:
                    self.speculative_draft_model_path = self.model_path
                else:
                    logger.warning(
                        "DeepSeek MTP does not require setting speculative_draft_model_path."
                    )
720

721
722
723
724
725
726
727
728
729
730
            # Auto choose parameters
            if self.speculative_num_steps is None:
                assert (
                    self.speculative_eagle_topk is None
                    and self.speculative_num_draft_tokens is None
                )
                (
                    self.speculative_num_steps,
                    self.speculative_eagle_topk,
                    self.speculative_num_draft_tokens,
731
                ) = auto_choose_speculative_params(self)
732

733
734
735
736
737
738
739
740
741
742
            if (
                self.attention_backend == "trtllm_mha"
                or self.decode_attention_backend == "trtllm_mha"
                or self.prefill_attention_backend == "trtllm_mha"
            ):
                if self.speculative_eagle_topk > 1:
                    raise ValueError(
                        "trtllm_mha backend only supports topk = 1 for speculative decoding."
                    )

743
744
745
746
            if (
                self.speculative_eagle_topk == 1
                and self.speculative_num_draft_tokens != self.speculative_num_steps + 1
            ):
Lianmin Zheng's avatar
Lianmin Zheng committed
747
                logger.warning(
748
749
750
                    "speculative_num_draft_tokens is adjusted to speculative_num_steps + 1 when speculative_eagle_topk == 1"
                )
                self.speculative_num_draft_tokens = self.speculative_num_steps + 1
751

752
753
754
755
756
757
758
759
760
            if (
                self.speculative_eagle_topk > 1
                and self.page_size > 1
                and self.attention_backend != "flashinfer"
            ):
                raise ValueError(
                    "speculative_eagle_topk > 1 with page_size > 1 is unstable and produces incorrect results for paged attention backends. This combination is only supported for the 'flashinfer' backend."
                )

761
            # The token generated from the verify step is counted.
762
            # If sepculative_num_steps >= speculative_num_draft_tokens, the additional tokens will definitely be discarded.
763
            # assert self.speculative_num_steps < self.speculative_num_draft_tokens
764

765
766
767
768
769
770
        # GGUF
        if (
            self.load_format == "auto" or self.load_format == "gguf"
        ) and check_gguf_file(self.model_path):
            self.quantization = self.load_format = "gguf"

771
        # Model loading
772
773
        if is_remote_url(self.model_path):
            self.load_format = "remote"
774
775
        if self.custom_weight_loader is None:
            self.custom_weight_loader = []
776

Byron Hsu's avatar
Byron Hsu committed
777
        # PD disaggregation
Byron Hsu's avatar
Byron Hsu committed
778
779
780
781
782
783
784
785
        if self.disaggregation_mode == "decode":
            assert (
                self.disaggregation_decode_tp is None
            ), "Cannot set --disaggregation-decode-tp for the decode engine."
            assert (
                self.disaggregation_decode_dp is None
            ), "Cannot set --disaggregation-decode-dp for the decode engine."

Byron Hsu's avatar
Byron Hsu committed
786
            self.disable_radix_cache = True
787
            logger.warning("KV cache is forced as chunk cache for decode server")
Byron Hsu's avatar
Byron Hsu committed
788
789
790
791
792
793
794
795
796
797
798
        elif self.disaggregation_mode == "prefill":
            if self.disaggregation_decode_tp is None:
                self.disaggregation_decode_tp = self.tp_size
            if self.disaggregation_decode_dp is None:
                self.disaggregation_decode_dp = self.dp_size

            self.disaggregation_prefill_pp = self.pp_size
            self.validate_disagg_tp_size(self.tp_size, self.disaggregation_decode_tp)

            self.disable_cuda_graph = True
            logger.warning("Cuda graph is disabled for prefill server")
Byron Hsu's avatar
Byron Hsu committed
799

800
        # Propagate env vars
801
802
803
        os.environ["SGLANG_ENABLE_TORCH_COMPILE"] = (
            "1" if self.enable_torch_compile else "0"
        )
804
805
806
807
        # Set env var before grammar backends init
        os.environ["SGLANG_DISABLE_OUTLINES_DISK_CACHE"] = (
            "1" if self.disable_outlines_disk_cache else "0"
        )
808

809
810
811
812
813
814
        if self.enable_hierarchical_cache and self.disable_radix_cache:
            raise ValueError(
                "The arguments enable-hierarchical-cache and disable-radix-cache are mutually exclusive "
                "and cannot be used at the same time. Please use only one of them."
            )

Lianmin Zheng's avatar
Lianmin Zheng committed
815
816
    @staticmethod
    def add_cli_args(parser: argparse.ArgumentParser):
Lianmin Zheng's avatar
Lianmin Zheng committed
817
        # Model and tokenizer
Lianmin Zheng's avatar
Lianmin Zheng committed
818
819
        parser.add_argument(
            "--model-path",
820
            "--model",
Lianmin Zheng's avatar
Lianmin Zheng committed
821
822
823
824
825
826
827
828
829
830
            type=str,
            help="The path of the model weights. This can be a local folder or a Hugging Face repo ID.",
            required=True,
        )
        parser.add_argument(
            "--tokenizer-path",
            type=str,
            default=ServerArgs.tokenizer_path,
            help="The path of the tokenizer.",
        )
831
832
833
834
835
836
        parser.add_argument(
            "--tokenizer-worker-num",
            type=int,
            default=ServerArgs.tokenizer_worker_num,
            help="The worker num of the tokenizer manager.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
837
838
839
840
841
842
843
844
845
        parser.add_argument(
            "--tokenizer-mode",
            type=str,
            default=ServerArgs.tokenizer_mode,
            choices=["auto", "slow"],
            help="Tokenizer mode. 'auto' will use the fast "
            "tokenizer if available, and 'slow' will "
            "always use the slow tokenizer.",
        )
846
847
848
        parser.add_argument(
            "--skip-tokenizer-init",
            action="store_true",
849
            help="If set, skip init tokenizer and pass input_ids in generate request.",
850
        )
851
        parser.add_argument(
Lianmin Zheng's avatar
Lianmin Zheng committed
852
853
854
            "--load-format",
            type=str,
            default=ServerArgs.load_format,
855
            choices=LOAD_FORMAT_CHOICES,
Lianmin Zheng's avatar
Lianmin Zheng committed
856
857
858
859
860
861
862
863
864
            help="The format of the model weights to load. "
            '"auto" will try to load the weights in the safetensors format '
            "and fall back to the pytorch bin format if safetensors format "
            "is not available. "
            '"pt" will load the weights in the pytorch bin format. '
            '"safetensors" will load the weights in the safetensors format. '
            '"npcache" will load the weights in pytorch format and store '
            "a numpy cache to speed up the loading. "
            '"dummy" will initialize the weights with random values, '
865
            "which is mainly for profiling."
866
867
            '"gguf" will load the weights in the gguf format. '
            '"bitsandbytes" will load the weights using bitsandbytes '
868
869
870
871
            "quantization."
            '"layered" loads weights layer by layer so that one can quantize a '
            "layer before loading another to make the peak memory envelope "
            "smaller.",
Lianmin Zheng's avatar
Lianmin Zheng committed
872
        )
873
874
875
876
877
878
879
        parser.add_argument(
            "--model-loader-extra-config",
            type=str,
            help="Extra config for model loader. "
            "This will be passed to the model loader corresponding to the chosen load_format.",
            default=ServerArgs.model_loader_extra_config,
        )
880
881
882
883
884
        parser.add_argument(
            "--trust-remote-code",
            action="store_true",
            help="Whether or not to allow for custom models defined on the Hub in their own modeling files.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
        parser.add_argument(
            "--context-length",
            type=int,
            default=ServerArgs.context_length,
            help="The model's maximum context length. Defaults to None (will use the value from the model's config.json instead).",
        )
        parser.add_argument(
            "--is-embedding",
            action="store_true",
            help="Whether to use a CausalLM as an embedding model.",
        )
        parser.add_argument(
            "--enable-multimodal",
            default=ServerArgs.enable_multimodal,
            action="store_true",
            help="Enable the multimodal functionality for the served model. If the model being served is not multimodal, nothing will happen",
        )
        parser.add_argument(
            "--revision",
            type=str,
            default=None,
            help="The specific model version to use. It can be a branch "
            "name, a tag name, or a commit id. If unspecified, will use "
            "the default version.",
        )
        parser.add_argument(
            "--model-impl",
            type=str,
            default=ServerArgs.model_impl,
            help="Which implementation of the model to use.\n\n"
            '* "auto" will try to use the SGLang implementation if it exists '
            "and fall back to the Transformers implementation if no SGLang "
            "implementation is available.\n"
            '* "sglang" will use the SGLang model implementation.\n'
            '* "transformers" will use the Transformers model '
            "implementation.\n",
        )

        # HTTP server
        parser.add_argument(
            "--host",
            type=str,
            default=ServerArgs.host,
            help="The host of the HTTP server.",
        )
        parser.add_argument(
            "--port",
            type=int,
            default=ServerArgs.port,
            help="The port of the HTTP server.",
        )
        parser.add_argument(
            "--skip-server-warmup",
            action="store_true",
            help="If set, skip warmup.",
        )
        parser.add_argument(
            "--warmups",
            type=str,
            required=False,
            help="Specify custom warmup functions (csv) to run before server starts eg. --warmups=warmup_name1,warmup_name2 "
            "will run the functions `warmup_name1` and `warmup_name2` specified in warmup.py before the server starts listening for requests",
        )
        parser.add_argument(
            "--nccl-port",
            type=int,
            default=ServerArgs.nccl_port,
            help="The port for NCCL distributed environment setup. Defaults to a random port.",
        )

        # Quantization and data type
Lianmin Zheng's avatar
Lianmin Zheng committed
956
        parser.add_argument(
Lianmin Zheng's avatar
Lianmin Zheng committed
957
            "--dtype",
Cody Yu's avatar
Cody Yu committed
958
            type=str,
Lianmin Zheng's avatar
Lianmin Zheng committed
959
            default=ServerArgs.dtype,
Ying Sheng's avatar
Ying Sheng committed
960
961
            choices=["auto", "half", "float16", "bfloat16", "float", "float32"],
            help="Data type for model weights and activations.\n\n"
Lianmin Zheng's avatar
Lianmin Zheng committed
962
            '* "auto" will use FP16 precision for FP32 and FP16 models, and '
Ying Sheng's avatar
Ying Sheng committed
963
            "BF16 precision for BF16 models.\n"
Lianmin Zheng's avatar
Lianmin Zheng committed
964
965
966
967
            '* "half" for FP16. Recommended for AWQ quantization.\n'
            '* "float16" is the same as "half".\n'
            '* "bfloat16" for a balance between precision and range.\n'
            '* "float" is shorthand for FP32 precision.\n'
Ying Sheng's avatar
Ying Sheng committed
968
969
            '* "float32" for FP32 precision.',
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
970
971
972
973
        parser.add_argument(
            "--quantization",
            type=str,
            default=ServerArgs.quantization,
974
            choices=QUANTIZATION_CHOICES,
Lianmin Zheng's avatar
Lianmin Zheng committed
975
976
            help="The quantization method.",
        )
977
978
979
980
981
982
983
984
985
        parser.add_argument(
            "--quantization-param-path",
            type=nullable_str,
            default=None,
            help="Path to the JSON file containing the KV cache "
            "scaling factors. This should generally be supplied, when "
            "KV cache dtype is FP8. Otherwise, KV cache scaling factors "
            "default to 1.0, which may cause accuracy issues. ",
        )
986
        parser.add_argument(
Lianmin Zheng's avatar
Lianmin Zheng committed
987
            "--kv-cache-dtype",
988
            type=str,
Lianmin Zheng's avatar
Lianmin Zheng committed
989
990
991
            default=ServerArgs.kv_cache_dtype,
            choices=["auto", "fp8_e5m2", "fp8_e4m3"],
            help='Data type for kv cache storage. "auto" will use model data type. "fp8_e5m2" and "fp8_e4m3" is supported for CUDA 11.8+.',
992
        )
993

994
        # Memory and scheduling
Lianmin Zheng's avatar
Lianmin Zheng committed
995
996
997
998
        parser.add_argument(
            "--mem-fraction-static",
            type=float,
            default=ServerArgs.mem_fraction_static,
999
            help="The fraction of the memory used for static allocation (model weights and KV cache memory pool). Use a smaller value if you see out-of-memory errors.",
Lianmin Zheng's avatar
Lianmin Zheng committed
1000
        )
1001
1002
1003
1004
1005
1006
        parser.add_argument(
            "--max-running-requests",
            type=int,
            default=ServerArgs.max_running_requests,
            help="The maximum number of running requests.",
        )
1007
1008
1009
1010
1011
1012
        parser.add_argument(
            "--max-queued-requests",
            type=int,
            default=ServerArgs.max_queued_requests,
            help="The maximum number of queued requests. This option is ignored when using disaggregation-mode.",
        )
1013
1014
1015
1016
        parser.add_argument(
            "--max-total-tokens",
            type=int,
            default=ServerArgs.max_total_tokens,
1017
1018
            help="The maximum number of tokens in the memory pool. If not specified, it will be automatically calculated based on the memory usage fraction. "
            "This option is typically used for development and debugging purposes.",
1019
        )
1020
1021
1022
1023
        parser.add_argument(
            "--chunked-prefill-size",
            type=int,
            default=ServerArgs.chunked_prefill_size,
1024
            help="The maximum number of tokens in a chunk for the chunked prefill. Setting this to -1 means disabling chunked prefill.",
1025
1026
1027
1028
1029
1030
1031
        )
        parser.add_argument(
            "--max-prefill-tokens",
            type=int,
            default=ServerArgs.max_prefill_tokens,
            help="The maximum number of tokens in a prefill batch. The real bound will be the maximum of this value and the model's maximum context length.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1032
        parser.add_argument(
1033
            "--schedule-policy",
Lianmin Zheng's avatar
Lianmin Zheng committed
1034
            type=str,
1035
            default=ServerArgs.schedule_policy,
1036
            choices=["lpm", "random", "fcfs", "dfs-weight", "lof"],
1037
            help="The scheduling policy of the requests.",
Lianmin Zheng's avatar
Lianmin Zheng committed
1038
        )
1039
1040
1041
1042
        parser.add_argument(
            "--schedule-conservativeness",
            type=float,
            default=ServerArgs.schedule_conservativeness,
1043
            help="How conservative the schedule policy is. A larger value means more conservative scheduling. Use a larger value if you see requests being retracted frequently.",
1044
        )
1045
1046
1047
1048
1049
1050
        parser.add_argument(
            "--page-size",
            type=int,
            default=ServerArgs.page_size,
            help="The number of tokens in a page.",
        )
tarinkk's avatar
tarinkk committed
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
        parser.add_argument(
            "--hybrid-kvcache-ratio",
            nargs="?",
            const=0.5,
            type=float,
            default=ServerArgs.hybrid_kvcache_ratio,
            help=(
                "Mix ratio in [0,1] between uniform and hybrid kv buffers "
                "(0.0 = pure uniform: swa_size / full_size = 1)"
                "(1.0 = pure hybrid: swa_size / full_size = local_attention_size / context_length)"
            ),
        )
Hanming Lu's avatar
Hanming Lu committed
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
        parser.add_argument(
            "--swa-full-tokens-ratio",
            type=float,
            default=ServerArgs.swa_full_tokens_ratio,
            help="The ratio of SWA layer KV tokens / full layer KV tokens, regardless of the number of swa:full layers. It should be between 0 and 1. "
            "E.g. 0.5 means if each swa layer has 50 tokens, then each full layer has 100 tokens.",
        )
        parser.add_argument(
            "--disable-hybrid-swa-memory",
            action="store_true",
            help="Disable the hybrid SWA memory.",
        )
1075

Lianmin Zheng's avatar
Lianmin Zheng committed
1076
1077
1078
1079
1080
1081
1082
        # Runtime options
        parser.add_argument(
            "--device",
            type=str,
            default=ServerArgs.device,
            help="The device to use ('cuda', 'xpu', 'hpu', 'npu', 'cpu'). Defaults to auto-detection if not specified.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1083
        parser.add_argument(
1084
            "--tensor-parallel-size",
Lianmin Zheng's avatar
Lianmin Zheng committed
1085
            "--tp-size",
Lianmin Zheng's avatar
Lianmin Zheng committed
1086
            type=int,
Lianmin Zheng's avatar
Lianmin Zheng committed
1087
            default=ServerArgs.tp_size,
1088
            help="The tensor parallelism size.",
1089
        )
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
        parser.add_argument(
            "--pipeline-parallel-size",
            "--pp-size",
            type=int,
            default=ServerArgs.pp_size,
            help="The pipeline parallelism size.",
        )
        parser.add_argument(
            "--max-micro-batch-size",
            type=int,
            default=ServerArgs.max_micro_batch_size,
            help="The maximum micro batch size in pipeline parallelism.",
        )
1103
1104
1105
        parser.add_argument(
            "--stream-interval",
            type=int,
Lianmin Zheng's avatar
Lianmin Zheng committed
1106
            default=ServerArgs.stream_interval,
1107
            help="The interval (or buffer size) for streaming in terms of the token length. A smaller value makes streaming smoother, while a larger value makes the throughput higher",
1108
        )
1109
1110
1111
1112
1113
        parser.add_argument(
            "--stream-output",
            action="store_true",
            help="Whether to output as a sequence of disjoint segments.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1114
1115
1116
1117
        parser.add_argument(
            "--random-seed",
            type=int,
            default=ServerArgs.random_seed,
1118
            help="The random seed.",
Lianmin Zheng's avatar
Lianmin Zheng committed
1119
        )
1120
1121
1122
1123
        parser.add_argument(
            "--constrained-json-whitespace-pattern",
            type=str,
            default=ServerArgs.constrained_json_whitespace_pattern,
Lianmin Zheng's avatar
Lianmin Zheng committed
1124
            help="(outlines backend only) Regex pattern for syntactic whitespaces allowed in JSON constrained output. For example, to allow the model generate consecutive whitespaces, set the pattern to [\n\t ]*",
1125
        )
1126
1127
1128
1129
1130
1131
        parser.add_argument(
            "--watchdog-timeout",
            type=float,
            default=ServerArgs.watchdog_timeout,
            help="Set watchdog timeout in seconds. If a forward batch takes longer than this, the server will crash to prevent hanging.",
        )
1132
1133
1134
1135
1136
1137
        parser.add_argument(
            "--dist-timeout",
            type=int,
            default=ServerArgs.dist_timeout,
            help="Set timeout for torch.distributed initialization.",
        )
1138
1139
1140
1141
        parser.add_argument(
            "--download-dir",
            type=str,
            default=ServerArgs.download_dir,
1142
            help="Model download directory for huggingface.",
1143
        )
1144
1145
1146
1147
1148
1149
        parser.add_argument(
            "--base-gpu-id",
            type=int,
            default=ServerArgs.base_gpu_id,
            help="The base GPU ID to start allocating GPUs from. Useful when running multiple instances on the same machine.",
        )
1150
1151
1152
1153
1154
1155
        parser.add_argument(
            "--gpu-id-step",
            type=int,
            default=ServerArgs.gpu_id_step,
            help="The delta between consecutive GPU IDs that are used. For example, setting it to 2 will use GPU 0,2,4,...",
        )
1156
1157
1158
1159
1160
        parser.add_argument(
            "--sleep-on-idle",
            action="store_true",
            help="Reduce CPU usage when sglang is idle.",
        )
1161
1162

        # Logging
Lianmin Zheng's avatar
Lianmin Zheng committed
1163
1164
1165
1166
        parser.add_argument(
            "--log-level",
            type=str,
            default=ServerArgs.log_level,
1167
            help="The logging level of all loggers.",
Lianmin Zheng's avatar
Lianmin Zheng committed
1168
        )
1169
        parser.add_argument(
1170
1171
1172
1173
            "--log-level-http",
            type=str,
            default=ServerArgs.log_level_http,
            help="The logging level of HTTP server. If not set, reuse --log-level by default.",
1174
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1175
        parser.add_argument(
1176
            "--log-requests",
Lianmin Zheng's avatar
Lianmin Zheng committed
1177
            action="store_true",
1178
1179
1180
1181
1182
            help="Log metadata, inputs, outputs of all requests. The verbosity is decided by --log-requests-level",
        )
        parser.add_argument(
            "--log-requests-level",
            type=int,
1183
            default=ServerArgs.log_requests_level,
1184
1185
1186
1187
1188
1189
1190
1191
            help="0: Log metadata (no sampling parameters). 1: Log metadata and sampling parameters. 2: Log metadata, sampling parameters and partial input/output. 3: Log every input/output.",
            choices=[0, 1, 2, 3],
        )
        parser.add_argument(
            "--crash-dump-folder",
            type=str,
            default=ServerArgs.crash_dump_folder,
            help="Folder path to dump requests from the last 5 min before a crash (if any). If not specified, crash dumping is disabled.",
Lianmin Zheng's avatar
Lianmin Zheng committed
1192
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1193
1194
1195
        parser.add_argument(
            "--show-time-cost",
            action="store_true",
Ying Sheng's avatar
Ying Sheng committed
1196
            help="Show time cost of custom marks.",
Lianmin Zheng's avatar
Lianmin Zheng committed
1197
        )
1198
1199
1200
1201
1202
        parser.add_argument(
            "--enable-metrics",
            action="store_true",
            help="Enable log prometheus metrics.",
        )
1203
1204
1205
1206
1207
1208
1209
        parser.add_argument(
            "--enable-metrics-for-all-schedulers",
            action="store_true",
            help="Enable --enable-metrics-for-all-schedulers when you want schedulers on all TP ranks (not just TP 0) "
            "to record request metrics separately. This is especially useful when dp_attention is enabled, as "
            "otherwise all metrics appear to come from TP 0.",
        )
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
        parser.add_argument(
            "--bucket-time-to-first-token",
            type=float,
            nargs="+",
            default=ServerArgs.bucket_time_to_first_token,
            help="The buckets of time to first token, specified as a list of floats.",
        )
        parser.add_argument(
            "--bucket-inter-token-latency",
            type=float,
            nargs="+",
            default=ServerArgs.bucket_inter_token_latency,
            help="The buckets of inter-token latency, specified as a list of floats.",
        )
        parser.add_argument(
            "--bucket-e2e-request-latency",
            type=float,
            nargs="+",
            default=ServerArgs.bucket_e2e_request_latency,
            help="The buckets of end-to-end request latency, specified as a list of floats.",
        )
        parser.add_argument(
            "--collect-tokens-histogram",
            action="store_true",
            default=ServerArgs.collect_tokens_histogram,
            help="Collect prompt/generation tokens histogram.",
        )
1237
1238
1239
1240
1241
1242
        parser.add_argument(
            "--gc-warning-threshold-secs",
            type=float,
            default=ServerArgs.gc_warning_threshold_secs,
            help="The threshold for long GC warning. If a GC takes longer than this, a warning will be logged. Set to 0 to disable.",
        )
1243
1244
1245
1246
        parser.add_argument(
            "--decode-log-interval",
            type=int,
            default=ServerArgs.decode_log_interval,
1247
            help="The log interval of decode batch.",
1248
        )
1249
1250
1251
1252
1253
1254
        parser.add_argument(
            "--enable-request-time-stats-logging",
            action="store_true",
            default=ServerArgs.enable_request_time_stats_logging,
            help="Enable per request time stats logging",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1255
1256
1257
1258
1259
1260
        parser.add_argument(
            "--kv-events-config",
            type=str,
            default=None,
            help="Config in json format for NVIDIA dynamo KV event publishing. Publishing will be enabled if this flag is used.",
        )
1261

1262
        # API related
Liangsheng Yin's avatar
Liangsheng Yin committed
1263
1264
1265
1266
        parser.add_argument(
            "--api-key",
            type=str,
            default=ServerArgs.api_key,
1267
            help="Set API key of the server. It is also used in the OpenAI API compatible server.",
Liangsheng Yin's avatar
Liangsheng Yin committed
1268
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1269
1270
1271
1272
1273
1274
        parser.add_argument(
            "--served-model-name",
            type=str,
            default=ServerArgs.served_model_name,
            help="Override the model name returned by the v1/models endpoint in OpenAI API server.",
        )
1275
1276
1277
1278
1279
1280
        parser.add_argument(
            "--weight-version",
            type=str,
            default=ServerArgs.weight_version,
            help="Version identifier for the model weights. Defaults to 'default' if not specified.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
        parser.add_argument(
            "--chat-template",
            type=str,
            default=ServerArgs.chat_template,
            help="The buliltin chat template name or the path of the chat template file. This is only used for OpenAI-compatible API server.",
        )
        parser.add_argument(
            "--completion-template",
            type=str,
            default=ServerArgs.completion_template,
            help="The buliltin completion template name or the path of the completion template file. This is only used for OpenAI-compatible API server. only for code completion currently.",
        )
1293
        parser.add_argument(
1294
            "--file-storage-path",
1295
            type=str,
1296
            default=ServerArgs.file_storage_path,
1297
1298
            help="The path of the file storage in backend.",
        )
1299
1300
1301
1302
1303
        parser.add_argument(
            "--enable-cache-report",
            action="store_true",
            help="Return number of cached tokens in usage.prompt_tokens_details for each openai request.",
        )
Xihuai Wang's avatar
Xihuai Wang committed
1304
1305
1306
1307
1308
1309
1310
        parser.add_argument(
            "--reasoning-parser",
            type=str,
            choices=list(ReasoningParser.DetectorMap.keys()),
            default=ServerArgs.reasoning_parser,
            help=f"Specify the parser for reasoning models, supported parsers are: {list(ReasoningParser.DetectorMap.keys())}.",
        )
1311
        tool_call_parser_choices = list(FunctionCallParser.ToolCallParserEnum.keys())
1312
1313
1314
        parser.add_argument(
            "--tool-call-parser",
            type=str,
1315
            choices=tool_call_parser_choices,
1316
            default=ServerArgs.tool_call_parser,
1317
            help=f"Specify the parser for handling tool-call interactions. Options include: {tool_call_parser_choices}.",
1318
        )
1319
1320
1321
1322
1323
1324
        parser.add_argument(
            "--tool-server",
            type=str,
            default=None,
            help="Either 'demo' or a comma-separated list of tool server urls to use for the model. If not specified, no tool server will be used.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1325

1326
1327
        # Data parallelism
        parser.add_argument(
1328
            "--data-parallel-size",
1329
1330
1331
            "--dp-size",
            type=int,
            default=ServerArgs.dp_size,
1332
            help="The data parallelism size.",
1333
1334
1335
1336
1337
        )
        parser.add_argument(
            "--load-balance-method",
            type=str,
            default=ServerArgs.load_balance_method,
1338
            help="The load balancing strategy for data parallelism.",
1339
1340
1341
            choices=[
                "round_robin",
                "shortest_queue",
1342
                "minimum_tokens",
1343
1344
            ],
        )
1345

1346
        # Multi-node distributed serving
1347
        parser.add_argument(
1348
            "--dist-init-addr",
1349
            "--nccl-init-addr",  # For backward compatibility. This will be removed in the future.
1350
            type=str,
1351
            help="The host address for initializing distributed backend (e.g., `192.168.0.2:25000`).",
1352
1353
        )
        parser.add_argument(
Liangsheng Yin's avatar
Liangsheng Yin committed
1354
            "--nnodes", type=int, default=ServerArgs.nnodes, help="The number of nodes."
1355
        )
1356
1357
1358
        parser.add_argument(
            "--node-rank", type=int, default=ServerArgs.node_rank, help="The node rank."
        )
1359

Lianmin Zheng's avatar
Lianmin Zheng committed
1360
1361
1362
1363
1364
1365
1366
        # Model override args
        parser.add_argument(
            "--json-model-override-args",
            type=str,
            help="A dictionary in JSON string format used to override default model configurations.",
            default=ServerArgs.json_model_override_args,
        )
1367
1368
1369
1370
1371
        parser.add_argument(
            "--preferred-sampling-params",
            type=str,
            help="json-formatted sampling settings that will be returned in /get_model_info",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1372

1373
        # LoRA
1374
1375
1376
1377
1378
1379
        parser.add_argument(
            "--enable-lora",
            default=ServerArgs.enable_lora,
            action="store_true",
            help="Enable LoRA support for the model. This argument is automatically set to True if `--lora-paths` is provided for backward compatibility.",
        )
1380
1381
1382
1383
1384
1385
1386
1387
1388
        parser.add_argument(
            "--max-lora-rank",
            default=ServerArgs.max_lora_rank,
            type=int,
            help="The maximum rank of LoRA adapters. If not specified, it will be automatically inferred from the adapters provided in --lora-paths.",
        )
        parser.add_argument(
            "--lora-target-modules",
            type=str,
1389
            choices=SUPPORTED_LORA_TARGET_MODULES + [LORA_TARGET_ALL_MODULES],
1390
1391
            nargs="*",
            default=None,
1392
1393
1394
            help="The union set of all target modules where LoRA should be applied. If not specified, "
            "it will be automatically inferred from the adapters provided in --lora-paths. If 'all' is specified, "
            "all supported modules will be targeted.",
1395
        )
1396
1397
1398
1399
1400
1401
        parser.add_argument(
            "--lora-paths",
            type=str,
            nargs="*",
            default=None,
            action=LoRAPathAction,
1402
            help='The list of LoRA adapters to load. Each adapter must be specified in one of the following formats: <PATH> | <NAME>=<PATH> | JSON with schema {"lora_name":str,"lora_path":str,"pinned":bool}',
1403
1404
1405
1406
1407
        )
        parser.add_argument(
            "--max-loras-per-batch",
            type=int,
            default=8,
1408
1409
            help="Maximum number of adapters for a running batch, include base-only request.",
        )
1410
1411
1412
1413
1414
1415
        parser.add_argument(
            "--max-loaded-loras",
            type=int,
            default=ServerArgs.max_loaded_loras,
            help="If specified, it limits the maximum number of LoRA adapters loaded in CPU memory at a time. The value must be greater than or equal to `--max-loras-per-batch`.",
        )
1416
1417
1418
1419
1420
        parser.add_argument(
            "--lora-backend",
            type=str,
            default="triton",
            help="Choose the kernel backend for multi-LoRA serving.",
1421
1422
1423
        )

        # Kernel backend
1424
1425
1426
        parser.add_argument(
            "--attention-backend",
            type=str,
1427
            choices=ATTENTION_BACKEND_CHOICES,
1428
1429
1430
            default=ServerArgs.attention_backend,
            help="Choose the kernels for attention layers.",
        )
1431
1432
1433
        parser.add_argument(
            "--prefill-attention-backend",
            type=str,
1434
            choices=ATTENTION_BACKEND_CHOICES,
1435
1436
1437
            default=ServerArgs.prefill_attention_backend,
            help="Choose the kernels for prefill attention layers (have priority over --attention-backend).",
        )
1438
1439
1440
        parser.add_argument(
            "--decode-attention-backend",
            type=str,
1441
            choices=ATTENTION_BACKEND_CHOICES,
1442
1443
1444
            default=ServerArgs.decode_attention_backend,
            help="Choose the kernels for decode attention layers (have priority over --attention-backend).",
        )
1445
1446
1447
1448
1449
1450
1451
        parser.add_argument(
            "--sampling-backend",
            type=str,
            choices=["flashinfer", "pytorch"],
            default=ServerArgs.sampling_backend,
            help="Choose the kernels for sampling layers.",
        )
1452
1453
1454
        parser.add_argument(
            "--grammar-backend",
            type=str,
1455
            choices=["xgrammar", "outlines", "llguidance", "none"],
1456
            default=ServerArgs.grammar_backend,
Lianmin Zheng's avatar
Lianmin Zheng committed
1457
            help="Choose the backend for grammar-guided decoding.",
1458
        )
1459
1460
1461
1462
1463
1464
1465
        parser.add_argument(
            "--mm-attention-backend",
            type=str,
            choices=["sdpa", "fa3", "triton_attn"],
            default=ServerArgs.mm_attention_backend,
            help="Set multimodal attention backend.",
        )
1466

1467
1468
1469
1470
        # Speculative decoding
        parser.add_argument(
            "--speculative-algorithm",
            type=str,
James Liu's avatar
James Liu committed
1471
            choices=["EAGLE", "EAGLE3", "NEXTN"],
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
            help="Speculative algorithm.",
        )
        parser.add_argument(
            "--speculative-draft-model-path",
            type=str,
            help="The path of the draft model weights. This can be a local folder or a Hugging Face repo ID.",
        )
        parser.add_argument(
            "--speculative-num-steps",
            type=int,
            help="The number of steps sampled from draft model in Speculative Decoding.",
            default=ServerArgs.speculative_num_steps,
        )
        parser.add_argument(
            "--speculative-eagle-topk",
            type=int,
1488
            help="The number of tokens sampled from the draft model in eagle2 each step.",
1489
1490
            default=ServerArgs.speculative_eagle_topk,
        )
1491
1492
1493
        parser.add_argument(
            "--speculative-num-draft-tokens",
            type=int,
1494
            help="The number of tokens sampled from the draft model in Speculative Decoding.",
1495
1496
            default=ServerArgs.speculative_num_draft_tokens,
        )
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
        parser.add_argument(
            "--speculative-accept-threshold-single",
            type=float,
            help="Accept a draft token if its probability in the target model is greater than this threshold.",
            default=ServerArgs.speculative_accept_threshold_single,
        )
        parser.add_argument(
            "--speculative-accept-threshold-acc",
            type=float,
            help="The accept probability of a draft token is raised from its target probability p to min(1, p / threshold_acc).",
            default=ServerArgs.speculative_accept_threshold_acc,
        )
1509
1510
1511
1512
1513
1514
        parser.add_argument(
            "--speculative-token-map",
            type=str,
            help="The path of the draft model's small vocab table.",
            default=ServerArgs.speculative_token_map,
        )
1515
1516
1517
1518
1519

        # Expert parallelism
        parser.add_argument(
            "--expert-parallel-size",
            "--ep-size",
Cheng Wan's avatar
Cheng Wan committed
1520
            "--ep",
1521
1522
1523
1524
1525
            type=int,
            default=ServerArgs.ep_size,
            help="The expert parallelism size.",
        )
        parser.add_argument(
1526
1527
            "--moe-a2a-backend",
            type=str,
1528
            choices=["none", "deepep"],
1529
1530
            default=ServerArgs.moe_a2a_backend,
            help="Choose the backend for MoE A2A.",
1531
        )
1532
        parser.add_argument(
1533
1534
1535
1536
1537
1538
1539
1540
            "--moe-runner-backend",
            type=str,
            choices=[
                "auto",
                "triton",
                "triton_kernel",
                "flashinfer_trtllm",
                "flashinfer_cutlass",
1541
                "flashinfer_mxfp4",
1542
1543
1544
            ],
            default=ServerArgs.moe_runner_backend,
            help="Choose the runner backend for MoE.",
1545
1546
        )
        parser.add_argument(
1547
1548
1549
1550
1551
1552
1553
            "--flashinfer-mxfp4-moe-precision",
            type=str,
            choices=["mxfp4", "bf16"],
            default=ServerArgs.flashinfer_mxfp4_moe_precision,
            help="Choose the computation precision of flashinfer mxfp4 moe",
        )
        parser.add_argument(
1554
1555
            "--enable-flashinfer-allreduce-fusion",
            action="store_true",
1556
            help="Enable FlashInfer allreduce fusion with Residual RMSNorm.",
1557
        )
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
        parser.add_argument(
            "--deepep-mode",
            type=str,
            choices=["normal", "low_latency", "auto"],
            default="auto",
            help="Select the mode when enable DeepEP MoE, could be `normal`, `low_latency` or `auto`. Default is `auto`, which means `low_latency` for decode batch and `normal` for prefill batch.",
        )
        parser.add_argument(
            "--ep-num-redundant-experts",
            type=int,
            default=ServerArgs.ep_num_redundant_experts,
            help="Allocate this number of redundant experts in expert parallel.",
        )
        parser.add_argument(
            "--ep-dispatch-algorithm",
            type=str,
            default=ServerArgs.ep_dispatch_algorithm,
            help="The algorithm to choose ranks for redundant experts in expert parallel.",
        )
        parser.add_argument(
            "--init-expert-location",
            type=str,
            default=ServerArgs.init_expert_location,
            help="Initial location of EP experts.",
        )
        parser.add_argument(
            "--enable-eplb",
            action="store_true",
            help="Enable EPLB algorithm",
        )
        parser.add_argument(
            "--eplb-algorithm",
            type=str,
            default=ServerArgs.eplb_algorithm,
            help="Chosen EPLB algorithm",
        )
        parser.add_argument(
            "--eplb-rebalance-num-iterations",
            type=int,
            default=ServerArgs.eplb_rebalance_num_iterations,
            help="Number of iterations to automatically trigger a EPLB re-balance.",
        )
        parser.add_argument(
            "--eplb-rebalance-layers-per-chunk",
            type=int,
            default=ServerArgs.eplb_rebalance_layers_per_chunk,
            help="Number of layers to rebalance per forward pass.",
        )
1606
1607
1608
1609
1610
1611
        parser.add_argument(
            "--eplb-min-rebalancing-utilization-threshold",
            type=float,
            default=ServerArgs.eplb_min_rebalancing_utilization_threshold,
            help="Minimum threshold for GPU average utilization to trigger EPLB rebalancing. Must be in the range [0.0, 1.0].",
        )
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
        parser.add_argument(
            "--expert-distribution-recorder-mode",
            type=str,
            default=ServerArgs.expert_distribution_recorder_mode,
            help="Mode of expert distribution recorder.",
        )
        parser.add_argument(
            "--expert-distribution-recorder-buffer-size",
            type=int,
            default=ServerArgs.expert_distribution_recorder_buffer_size,
            help="Circular buffer size of expert distribution recorder. Set to -1 to denote infinite buffer.",
        )
        parser.add_argument(
            "--enable-expert-distribution-metrics",
            action="store_true",
            help="Enable logging metrics for expert balancedness",
        )
        parser.add_argument(
            "--deepep-config",
            type=str,
            default=ServerArgs.deepep_config,
            help="Tuned DeepEP config suitable for your own cluster. It can be either a string with JSON content or a file path.",
        )
        parser.add_argument(
            "--moe-dense-tp-size",
            type=int,
            default=ServerArgs.moe_dense_tp_size,
            help="TP size for MoE dense MLP layers. This flag is useful when, with large TP size, there are errors caused by weights in MLP layers having dimension smaller than the min dimension GEMM supports.",
        )
1641

Lianmin Zheng's avatar
Lianmin Zheng committed
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
        # Hierarchical cache
        parser.add_argument(
            "--enable-hierarchical-cache",
            action="store_true",
            help="Enable hierarchical cache",
        )
        parser.add_argument(
            "--hicache-ratio",
            type=float,
            default=ServerArgs.hicache_ratio,
            help="The ratio of the size of host KV cache memory pool to the size of device pool.",
        )
        parser.add_argument(
            "--hicache-size",
            type=int,
            default=ServerArgs.hicache_size,
            help="The size of host KV cache memory pool in gigabytes, which will override the hicache_ratio if set.",
        )
        parser.add_argument(
            "--hicache-write-policy",
            type=str,
            choices=["write_back", "write_through", "write_through_selective"],
            default=ServerArgs.hicache_write_policy,
            help="The write policy of hierarchical cache.",
        )
        parser.add_argument(
            "--hicache-io-backend",
            type=str,
            choices=["direct", "kernel"],
            default=ServerArgs.hicache_io_backend,
            help="The IO backend for KV cache transfer between CPU and GPU",
        )
1674
1675
1676
1677
1678
1679
1680
        parser.add_argument(
            "--hicache-mem-layout",
            type=str,
            choices=["layer_first", "page_first"],
            default=ServerArgs.hicache_mem_layout,
            help="The layout of host memory pool for hierarchical cache.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1681
1682
1683
        parser.add_argument(
            "--hicache-storage-backend",
            type=str,
1684
            choices=["file", "mooncake", "hf3fs", "nixl"],
Lianmin Zheng's avatar
Lianmin Zheng committed
1685
1686
1687
            default=ServerArgs.hicache_storage_backend,
            help="The storage backend for hierarchical KV cache.",
        )
pansicheng's avatar
pansicheng committed
1688
1689
1690
1691
1692
1693
1694
        parser.add_argument(
            "--hicache-storage-prefetch-policy",
            type=str,
            choices=["best_effort", "wait_complete", "timeout"],
            default=ServerArgs.hicache_storage_prefetch_policy,
            help="Control when prefetching from the storage backend should stop.",
        )
1695
1696
1697
1698
1699
1700
        parser.add_argument(
            "--hicache-storage-backend-extra-config",
            type=str,
            default=ServerArgs.hicache_storage_backend_extra_config,
            help="A dictionary in JSON string format containing extra configuration for the storage backend.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1701

1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
        # Double Sparsity
        parser.add_argument(
            "--enable-double-sparsity",
            action="store_true",
            help="Enable double sparsity attention",
        )
        parser.add_argument(
            "--ds-channel-config-path",
            type=str,
            default=ServerArgs.ds_channel_config_path,
            help="The path of the double sparsity channel config",
        )
        parser.add_argument(
            "--ds-heavy-channel-num",
            type=int,
            default=ServerArgs.ds_heavy_channel_num,
            help="The number of heavy channels in double sparsity attention",
        )
        parser.add_argument(
            "--ds-heavy-token-num",
            type=int,
            default=ServerArgs.ds_heavy_token_num,
            help="The number of heavy tokens in double sparsity attention",
        )
        parser.add_argument(
            "--ds-heavy-channel-type",
            type=str,
            default=ServerArgs.ds_heavy_channel_type,
            help="The type of heavy channels in double sparsity attention",
        )
        parser.add_argument(
            "--ds-sparse-decode-threshold",
            type=int,
            default=ServerArgs.ds_sparse_decode_threshold,
            help="The type of heavy channels in double sparsity attention",
        )

fzyzcjy's avatar
fzyzcjy committed
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
        # Offloading
        parser.add_argument(
            "--cpu-offload-gb",
            type=int,
            default=ServerArgs.cpu_offload_gb,
            help="How many GBs of RAM to reserve for CPU offloading.",
        )
        parser.add_argument(
            "--offload-group-size",
            type=int,
            default=ServerArgs.offload_group_size,
            help="Number of layers per group in offloading.",
        )
        parser.add_argument(
            "--offload-num-in-group",
            type=int,
            default=ServerArgs.offload_num_in_group,
            help="Number of layers to be offloaded within a group.",
        )
        parser.add_argument(
            "--offload-prefetch-step",
            type=int,
            default=ServerArgs.offload_prefetch_step,
            help="Steps to prefetch in offloading.",
        )
        parser.add_argument(
            "--offload-mode",
            type=str,
            default=ServerArgs.offload_mode,
            help="Mode of offloading.",
        )

1771
        # Optimization/debug options
Liangsheng Yin's avatar
Liangsheng Yin committed
1772
        parser.add_argument(
Lianmin Zheng's avatar
Lianmin Zheng committed
1773
            "--disable-radix-cache",
Liangsheng Yin's avatar
Liangsheng Yin committed
1774
            action="store_true",
Ying Sheng's avatar
Ying Sheng committed
1775
            help="Disable RadixAttention for prefix caching.",
Liangsheng Yin's avatar
Liangsheng Yin committed
1776
        )
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
        parser.add_argument(
            "--cuda-graph-max-bs",
            type=int,
            default=ServerArgs.cuda_graph_max_bs,
            help="Set the maximum batch size for cuda graph. It will extend the cuda graph capture batch size to this value.",
        )
        parser.add_argument(
            "--cuda-graph-bs",
            type=int,
            nargs="+",
            help="Set the list of batch sizes for cuda graph.",
        )
1789
1790
1791
        parser.add_argument(
            "--disable-cuda-graph",
            action="store_true",
1792
            help="Disable cuda graph.",
1793
        )
1794
        parser.add_argument(
1795
1796
            "--disable-cuda-graph-padding",
            action="store_true",
1797
            help="Disable cuda graph when padding is needed. Still uses cuda graph when padding is not needed.",
1798
        )
1799
1800
1801
1802
1803
        parser.add_argument(
            "--enable-profile-cuda-graph",
            action="store_true",
            help="Enable profiling of cuda graph capture.",
        )
1804
1805
1806
1807
1808
        parser.add_argument(
            "--enable-cudagraph-gc",
            action="store_true",
            help="Enable garbage collection during CUDA graph capture. If disabled (default), GC is frozen during capture to speed up the process.",
        )
1809
1810
1811
1812
1813
        parser.add_argument(
            "--enable-nccl-nvls",
            action="store_true",
            help="Enable NCCL NVLS for prefill heavy requests when available.",
        )
1814
1815
1816
1817
1818
        parser.add_argument(
            "--enable-symm-mem",
            action="store_true",
            help="Enable NCCL symmetric memory for fast collectives.",
        )
1819
1820
1821
1822
1823
        parser.add_argument(
            "--disable-flashinfer-cutlass-moe-fp4-allgather",
            action="store_true",
            help="Disables quantize before all-gather for flashinfer cutlass moe.",
        )
1824
1825
1826
1827
1828
        parser.add_argument(
            "--enable-tokenizer-batch-encode",
            action="store_true",
            help="Enable batch tokenization for improved performance when processing multiple text inputs. Do not use with image inputs, pre-tokenized input_ids, or input_embeds.",
        )
1829
        parser.add_argument(
1830
            "--disable-outlines-disk-cache",
1831
            action="store_true",
1832
            help="Disable disk cache of outlines to avoid possible crashes related to file system or high concurrency.",
1833
        )
1834
1835
1836
1837
1838
        parser.add_argument(
            "--disable-custom-all-reduce",
            action="store_true",
            help="Disable the custom all-reduce kernel and fall back to NCCL.",
        )
1839
1840
1841
1842
1843
        parser.add_argument(
            "--enable-mscclpp",
            action="store_true",
            help="Enable using mscclpp for small messages for all-reduce kernel and fall back to NCCL.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1844
        parser.add_argument(
1845
            "--disable-overlap-schedule",
Lianmin Zheng's avatar
Lianmin Zheng committed
1846
            action="store_true",
1847
            help="Disable the overlap scheduler, which overlaps the CPU scheduler with GPU model worker.",
Lianmin Zheng's avatar
Lianmin Zheng committed
1848
        )
1849
1850
1851
        parser.add_argument(
            "--enable-mixed-chunk",
            action="store_true",
1852
            help="Enabling mixing prefill and decode in a batch when using chunked prefill.",
1853
        )
Ke Bao's avatar
Ke Bao committed
1854
1855
1856
        parser.add_argument(
            "--enable-dp-attention",
            action="store_true",
1857
            help="Enabling data parallelism for attention and tensor parallelism for FFN. The dp size should be equal to the tp size. Currently DeepSeek-V2 and Qwen 2/3 MoE models are supported.",
Ke Bao's avatar
Ke Bao committed
1858
        )
1859
1860
1861
1862
1863
        parser.add_argument(
            "--enable-dp-lm-head",
            action="store_true",
            help="Enable vocabulary parallel across the attention TP group to avoid all-gather across DP groups, optimizing performance under DP attention.",
        )
1864
1865
1866
1867
1868
        parser.add_argument(
            "--enable-two-batch-overlap",
            action="store_true",
            help="Enabling two micro batches to overlap.",
        )
1869
1870
1871
1872
1873
1874
        parser.add_argument(
            "--tbo-token-distribution-threshold",
            type=float,
            default=ServerArgs.tbo_token_distribution_threshold,
            help="The threshold of token distribution between two batches in micro-batch-overlap, determines whether to two-batch-overlap or two-chunk-overlap. Set to 0 denote disable two-chunk-overlap.",
        )
1875
1876
1877
        parser.add_argument(
            "--enable-torch-compile",
            action="store_true",
1878
1879
            help="Optimize the model with torch.compile. Experimental feature.",
        )
1880
        parser.add_argument(
1881
            "--torch-compile-max-bs",
1882
            type=int,
1883
            default=ServerArgs.torch_compile_max_bs,
1884
1885
            help="Set the maximum batch size when using torch compile.",
        )
1886
1887
1888
1889
        parser.add_argument(
            "--torchao-config",
            type=str,
            default=ServerArgs.torchao_config,
1890
            help="Optimize the model with torchao. Experimental feature. Current choices are: int8dq, int8wo, int4wo-<group_size>, fp8wo, fp8dq-per_tensor, fp8dq-per_row",
1891
        )
1892
1893
1894
1895
1896
        parser.add_argument(
            "--enable-nan-detection",
            action="store_true",
            help="Enable the NaN detection for debugging purposes.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1897
        parser.add_argument(
1898
            "--enable-p2p-check",
Lianmin Zheng's avatar
Lianmin Zheng committed
1899
            action="store_true",
1900
            help="Enable P2P check for GPU access, otherwise the p2p access is allowed by default.",
Lianmin Zheng's avatar
Lianmin Zheng committed
1901
        )
1902
        parser.add_argument(
1903
            "--triton-attention-reduce-in-fp32",
1904
            action="store_true",
1905
            help="Cast the intermediate attention results to fp32 to avoid possible crashes related to fp16."
1906
            "This only affects Triton attention kernels.",
1907
        )
1908
1909
1910
1911
1912
1913
        parser.add_argument(
            "--triton-attention-num-kv-splits",
            type=int,
            default=ServerArgs.triton_attention_num_kv_splits,
            help="The number of KV splits in flash decoding Triton kernel. Larger value is better in longer context scenarios. The default value is 8.",
        )
1914
1915
1916
1917
1918
1919
1920
1921
        parser.add_argument(
            "--num-continuous-decode-steps",
            type=int,
            default=ServerArgs.num_continuous_decode_steps,
            help="Run multiple continuous decoding steps to reduce scheduling overhead. "
            "This can potentially increase throughput but may also increase time-to-first-token latency. "
            "The default value is 1, meaning only run one decoding step at a time.",
        )
1922
1923
1924
1925
1926
        parser.add_argument(
            "--delete-ckpt-after-loading",
            action="store_true",
            help="Delete the model checkpoint after loading the model.",
        )
1927
1928
1929
1930
1931
        parser.add_argument(
            "--enable-memory-saver",
            action="store_true",
            help="Allow saving memory using release_memory_occupation and resume_memory_occupation",
        )
1932
1933
1934
1935
1936
        parser.add_argument(
            "--allow-auto-truncate",
            action="store_true",
            help="Allow automatically truncating requests that exceed the maximum input length instead of returning an error.",
        )
1937
1938
1939
1940
1941
        parser.add_argument(
            "--enable-custom-logit-processor",
            action="store_true",
            help="Enable users to pass custom logit processors to the server (disabled by default for security)",
        )
1942
        parser.add_argument(
1943
            "--flashinfer-mla-disable-ragged",
1944
            action="store_true",
1945
            help="Not using ragged prefill wrapper when running flashinfer mla",
1946
        )
1947
        parser.add_argument(
1948
1949
1950
            "--disable-shared-experts-fusion",
            action="store_true",
            help="Disable shared experts fusion optimization for deepseek v3/r1.",
1951
        )
1952
1953
1954
1955
1956
        parser.add_argument(
            "--disable-chunked-prefix-cache",
            action="store_true",
            help="Disable chunked prefix cache feature for deepseek, which should save overhead for short sequences.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1957
1958
1959
1960
1961
        parser.add_argument(
            "--disable-fast-image-processor",
            action="store_true",
            help="Adopt base image processor instead of fast image processor.",
        )
1962
1963
1964
1965
1966
        parser.add_argument(
            "--enable-return-hidden-states",
            action="store_true",
            help="Enable returning hidden states with responses.",
        )
1967
1968
1969
1970
1971
1972
        parser.add_argument(
            "--scheduler-recv-interval",
            type=int,
            default=ServerArgs.scheduler_recv_interval,
            help="The interval to poll requests in scheduler. Can be set to >1 to reduce the overhead of this.",
        )
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992

        # Debug tensor dumps
        parser.add_argument(
            "--debug-tensor-dump-output-folder",
            type=str,
            default=ServerArgs.debug_tensor_dump_output_folder,
            help="The output folder for dumping tensors.",
        )
        parser.add_argument(
            "--debug-tensor-dump-input-file",
            type=str,
            default=ServerArgs.debug_tensor_dump_input_file,
            help="The input filename for dumping tensors",
        )
        parser.add_argument(
            "--debug-tensor-dump-inject",
            type=str,
            default=ServerArgs.debug_tensor_dump_inject,
            help="Inject the outputs from jax as the input of every layer.",
        )
1993
1994
1995
1996
1997
        parser.add_argument(
            "--debug-tensor-dump-prefill-only",
            action="store_true",
            help="Only dump the tensors for prefill requests (i.e. batch size > 1).",
        )
1998

Lianmin Zheng's avatar
Lianmin Zheng committed
1999
        # PD disaggregation
Byron Hsu's avatar
Byron Hsu committed
2000
2001
2002
2003
2004
2005
2006
        parser.add_argument(
            "--disaggregation-mode",
            type=str,
            default="null",
            choices=["null", "prefill", "decode"],
            help='Only used for PD disaggregation. "prefill" for prefill-only server, and "decode" for decode-only server. If not specified, it is not PD disaggregated',
        )
2007
2008
2009
2010
        parser.add_argument(
            "--disaggregation-transfer-backend",
            type=str,
            default=ServerArgs.disaggregation_transfer_backend,
2011
            choices=DISAGG_TRANSFER_BACKEND_CHOICES,
2012
2013
            help="The backend for disaggregation transfer. Default is mooncake.",
        )
2014
2015
2016
2017
2018
2019
        parser.add_argument(
            "--disaggregation-bootstrap-port",
            type=int,
            default=ServerArgs.disaggregation_bootstrap_port,
            help="Bootstrap server port on the prefill server. Default is 8998.",
        )
Byron Hsu's avatar
Byron Hsu committed
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
        parser.add_argument(
            "--disaggregation-decode-tp",
            type=int,
            default=ServerArgs.disaggregation_decode_tp,
            help="Decode tp size. If not set, it matches the tp size of the current engine. This is only set on the prefill server.",
        )
        parser.add_argument(
            "--disaggregation-decode-dp",
            type=int,
            default=ServerArgs.disaggregation_decode_dp,
            help="Decode dp size. If not set, it matches the dp size of the current engine. This is only set on the prefill server.",
        )
        parser.add_argument(
            "--disaggregation-prefill-pp",
            type=int,
            default=ServerArgs.disaggregation_prefill_pp,
            help="Prefill pp size. If not set, it is default to 1. This is only set on the decode server.",
        )
2038
2039
2040
2041
        parser.add_argument(
            "--disaggregation-ib-device",
            type=str,
            default=ServerArgs.disaggregation_ib_device,
2042
2043
2044
            help="The InfiniBand devices for disaggregation transfer, accepts single device (e.g., --disaggregation-ib-device mlx5_0) "
            "or multiple comma-separated devices (e.g., --disaggregation-ib-device mlx5_0,mlx5_1). "
            "Default is None, which triggers automatic device detection when mooncake backend is enabled.",
2045
        )
2046
2047
2048
2049
2050
2051
        parser.add_argument(
            "--num-reserved-decode-tokens",
            type=int,
            default=ServerArgs.num_reserved_decode_tokens,
            help="Number of decode tokens that will have memory reserved when adding new request to the running batch.",
        )
2052
2053
2054
2055
2056
2057
        parser.add_argument(
            "--pdlb-url",
            type=str,
            default=None,
            help="The URL of the PD disaggregation load balancer. If set, the prefill/decode server will register with the load balancer.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
2058
2059

        # Custom weight loader
2060
2061
2062
2063
2064
2065
2066
        parser.add_argument(
            "--custom-weight-loader",
            type=str,
            nargs="*",
            default=None,
            help="The custom dataloader which used to update the model. Should be set with a valid import path, such as my_package.weight_load_func",
        )
2067
2068
2069
2070
2071
2072
2073
        parser.add_argument(
            "--weight-loader-disable-mmap",
            action="store_true",
            help="Disable mmap while loading weight using safetensors.",
        )

        # For PD-Multiplexing
2074
2075
2076
2077
2078
        parser.add_argument(
            "--enable-pdmux",
            action="store_true",
            help="Enable PD-Multiplexing, PD running on greenctx stream.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
2079

2080
2081
2082
2083
2084
2085
        parser.add_argument(
            "--sm-group-num",
            type=int,
            default=ServerArgs.sm_group_num,
            help="Number of sm partition groups.",
        )
Byron Hsu's avatar
Byron Hsu committed
2086

2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
        # Deprecated arguments
        parser.add_argument(
            "--enable-ep-moe",
            action="store_true",
            help="(Deprecated) Enabling expert parallelism for moe. The ep size is equal to the tp size.",
        )
        parser.add_argument(
            "--enable-deepep-moe",
            action="store_true",
            help="(Deprecated) Enabling DeepEP MoE implementation for EP MoE.",
        )
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
        parser.add_argument(
            "--enable-flashinfer-cutlass-moe",
            action="store_true",
            help="(Deprecated) Enable FlashInfer CUTLASS MoE backend for modelopt_fp4 quant on Blackwell. Supports MoE-EP",
        )
        parser.add_argument(
            "--enable-flashinfer-trtllm-moe",
            action="store_true",
            help="(Deprecated) Enable FlashInfer TRTLLM MoE backend on Blackwell. Supports BlockScale FP8 MoE-EP",
        )
        parser.add_argument(
            "--enable-triton-kernel-moe",
            action="store_true",
            help="(Deprecated) Use triton moe grouped gemm kernel.",
        )
2113
2114
2115
2116
2117
        parser.add_argument(
            "--enable-flashinfer-mxfp4-moe",
            action="store_true",
            help="(Deprecated) Enable FlashInfer MXFP4 MoE backend for modelopt_fp4 quant on Blackwell.",
        )
2118

Lianmin Zheng's avatar
Lianmin Zheng committed
2119
2120
    @classmethod
    def from_cli_args(cls, args: argparse.Namespace):
2121
        args.tp_size = args.tensor_parallel_size
2122
        args.pp_size = args.pipeline_parallel_size
2123
        args.dp_size = args.data_parallel_size
xiaobochen's avatar
xiaobochen committed
2124
        args.ep_size = args.expert_parallel_size
Lianmin Zheng's avatar
Lianmin Zheng committed
2125
2126
2127
2128
        attrs = [attr.name for attr in dataclasses.fields(cls)]
        return cls(**{attr: getattr(args, attr) for attr in attrs})

    def url(self):
2129
        if is_valid_ipv6_address(self.host):
2130
2131
2132
            return f"http://[{self.host}]:{self.port}"
        else:
            return f"http://{self.host}:{self.port}"
Lianmin Zheng's avatar
Lianmin Zheng committed
2133

Lianmin Zheng's avatar
Lianmin Zheng committed
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
    def get_hf_config(self):
        kwargs = {}
        hf_config = get_config(
            self.model_path,
            trust_remote_code=self.trust_remote_code,
            revision=self.revision,
            model_override_args=json.loads(self.json_model_override_args),
            **kwargs,
        )
        return hf_config

2145
    def check_server_args(self):
2146
        # Check parallel size constraints
2147
        assert (
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
            self.tp_size * self.pp_size
        ) % self.nnodes == 0, "tp_size must be divisible by number of nodes"

        if self.pp_size > 1:
            assert (
                self.disable_overlap_schedule
                and self.speculative_algorithm is None
                and not self.enable_mixed_chunk
            ), "Pipeline parallelism is not compatible with overlap schedule, speculative decoding, mixed chunked prefill."

2158
        assert not (
2159
2160
            self.dp_size > 1 and self.nnodes != 1 and not self.enable_dp_attention
        ), "multi-node data parallel is not supported unless dp attention!"
2161

2162
        assert self.base_gpu_id >= 0, "base_gpu_id must be non-negative"
2163
        assert self.gpu_id_step >= 1, "gpu_id_step must be positive"
2164

Lianmin Zheng's avatar
Lianmin Zheng committed
2165
2166
2167
2168
2169
        assert self.moe_dense_tp_size in {
            1,
            None,
        }, "moe_dense_tp_size only support 1 and None currently"

2170
        # Check LoRA
2171
2172
        self.check_lora_server_args()

2173
2174
2175
2176
2177
2178
2179
        # Check speculative decoding
        if self.speculative_algorithm is not None:
            assert (
                not self.enable_mixed_chunk
            ), "enable_mixed_chunk is required for speculative decoding"

        # Check chunked prefill
2180
2181
2182
2183
2184
        # Skip validation if chunked prefill is disabled (i.e., size <= 0).
        if self.chunked_prefill_size > 0:
            assert (
                self.chunked_prefill_size % self.page_size == 0
            ), "chunked_prefill_size must be divisible by page_size"
2185

2186
2187
2188
        # Check multi tokenizer
        assert self.tokenizer_worker_num > 0, "Tokenizer worker num must >= 1"

2189
    def check_lora_server_args(self):
2190
        assert self.max_loras_per_batch > 0, "max_loras_per_batch must be positive"
2191

2192
2193
2194
2195
        # Enable LoRA if any LoRA paths are provided for backward compatibility.
        if self.lora_paths:
            if self.enable_lora is None:
                self.enable_lora = True
2196
                logger.warning(
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
                    "--enable-lora is set to True because --lora-paths is provided."
                )
            elif self.enable_lora is False:
                logger.warning(
                    "--enable-lora is set to False, any provided lora_paths will be ignored."
                )

        if self.enable_lora:
            if isinstance(self.lora_paths, list):
                lora_paths = self.lora_paths
2207
                self.lora_paths = []
2208
                for lora_path in lora_paths:
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
                    if isinstance(lora_path, str):
                        if "=" in lora_path:
                            name, path = lora_path.split("=", 1)
                            lora_ref = LoRARef(
                                lora_name=name, lora_path=path, pinned=False
                            )
                        else:
                            lora_ref = LoRARef(
                                lora_name=lora_path, lora_path=lora_path, pinned=False
                            )
                    elif isinstance(lora_path, dict):
                        assert (
                            "lora_name" in lora_path and "lora_path" in lora_path
                        ), f"When providing LoRA paths as a list of dict, each dict should contain 'lora_name' and 'lora_path' keys. Got: {lora_path}"
                        lora_ref = LoRARef(
                            lora_name=lora_path["lora_name"],
                            lora_path=lora_path["lora_path"],
                            pinned=lora_path.get("pinned", False),
2227
                        )
2228
                    else:
2229
2230
2231
                        raise ValueError(
                            f"Invalid type for item in --lora-paths list: {type(lora_path)}. "
                            "Expected a string or a dictionary."
2232
                        )
2233
                    self.lora_paths.append(lora_ref)
2234
            elif isinstance(self.lora_paths, dict):
2235
2236
                self.lora_paths = [
                    LoRARef(lora_name=k, lora_path=v, pinned=False)
2237
                    for k, v in self.lora_paths.items()
2238
                ]
2239
            elif self.lora_paths is None:
2240
                self.lora_paths = []
2241
2242
2243
2244
2245
            else:
                raise ValueError(
                    f"Invalid type for --lora-paths: {type(self.lora_paths)}. "
                    "Expected a list or a dictionary."
                )
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259

            # Expand target modules
            if self.lora_target_modules:
                self.lora_target_modules = set(self.lora_target_modules)
                if "all" in self.lora_target_modules:
                    assert (
                        len(self.lora_target_modules) == 1
                    ), "If 'all' is specified in --lora-target-modules, it should be the only module specified."
                    self.lora_target_modules = set(SUPPORTED_LORA_TARGET_MODULES)

            # Ensure sufficient information is provided for LoRA initialization.
            assert self.lora_paths or (
                self.max_lora_rank and self.lora_target_modules
            ), "When no initial --lora-paths is provided, you need to specify both --max-lora-rank and --lora-target-modules for LoRA initialization."
2260

2261
2262
2263
2264
2265
2266
            # Validate max_loaded_loras
            if self.max_loaded_loras is not None:
                assert self.max_loaded_loras >= self.max_loras_per_batch, (
                    "max_loaded_loras should be greater than or equal to max_loras_per_batch. "
                    f"max_loaded_loras={self.max_loaded_loras}, max_loras_per_batch={self.max_loras_per_batch}"
                )
2267
                assert len(self.lora_paths) <= self.max_loaded_loras, (
2268
2269
2270
2271
                    "The number of LoRA paths should not exceed max_loaded_loras. "
                    f"max_loaded_loras={self.max_loaded_loras}, lora_paths={len(self.lora_paths)}"
                )

Lianmin Zheng's avatar
Lianmin Zheng committed
2272
2273
2274
2275
2276
2277
2278
2279
    def validate_disagg_tp_size(self, prefill_tp: int, decode_tp: int):
        larger_tp = max(decode_tp, prefill_tp)
        smaller_tp = min(decode_tp, prefill_tp)
        assert larger_tp % smaller_tp == 0, (
            "Different tp size is supported only when one tp is multiple of the other. "
            f"decode_tp={decode_tp}, prefill_tp={prefill_tp}"
        )

2280
2281
2282
2283
2284
    def model_specific_adjustments(self):
        hf_config = self.get_hf_config()
        model_arch = hf_config.architectures[0]
        if model_arch in ["GptOssForCausalLM"]:
            if self.attention_backend is None:
2285
                if is_cuda() and is_sm100_supported():
2286
                    self.attention_backend = "trtllm_mha"
2287
                elif is_cuda() and is_sm90_supported():
2288
2289
2290
                    self.attention_backend = "fa3"
                else:
                    self.attention_backend = "triton"
2291
            supported_backends = ["triton", "trtllm_mha", "fa3"]
2292
2293
2294
            logger.info(
                f"Use {self.attention_backend} as attention backend for GptOssForCausalLM"
            )
2295
2296
2297
            assert (
                self.attention_backend in supported_backends
            ), f"GptOssForCausalLM requires one of {supported_backends} attention backend, but got '{self.attention_backend}'"
2298
2299

            if is_sm100_supported():
2300
2301
2302
2303
2304
                if not self.enable_dp_attention:
                    self.enable_flashinfer_allreduce_fusion = True
                    logger.info(
                        "Enable FlashInfer AllReduce Fusion on sm100 for GptOssForCausalLM"
                    )
2305
2306
2307
2308
2309
2310
2311
            quantization_config = getattr(hf_config, "quantization_config", None)
            is_mxfp4_quant_format = (
                quantization_config is not None
                and quantization_config.get("quant_method") == "mxfp4"
            )

            if is_sm100_supported() and is_mxfp4_quant_format:
2312
                self.moe_runner_backend = "flashinfer_mxfp4"
2313
2314
2315
2316
                logger.warning(
                    "Detected SM100 and MXFP4 quantization format for GPT-OSS model, enabling FlashInfer MXFP4 MOE kernel."
                )
            else:
2317
                if self.moe_runner_backend == "triton_kernel":
2318
2319
2320
                    assert (
                        self.ep_size == 1
                    ), "Triton kernel MoE is only supported when ep_size == 1"
2321
2322
2323
2324
2325
2326
                if (
                    self.moe_runner_backend == "auto"
                    and self.ep_size == 1
                    and is_triton_kernels_available()
                ):
                    self.moe_runner_backend = "triton_kernel"
2327
2328
2329
2330
2331
2332
2333
                    logger.warning(
                        "Detected GPT-OSS model, enabling triton_kernels MOE kernel."
                    )
            self.disable_hybrid_swa_memory = True
            if is_mxfp4_quant_format:
                # use bf16 for mxfp4 triton kernels
                self.dtype = "bfloat16"
2334

2335
        elif "Llama4" in model_arch:
2336
2337
2338
2339
            assert self.attention_backend in {
                "fa3",
                "aiter",
            }, "fa3 or aiter is required for Llama4 model"
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
        elif model_arch in [
            "Gemma2ForCausalLM",
            "Gemma3ForCausalLM",
            "Gemma3ForConditionalGeneration",
            "Gemma3nForCausalLM",
            "Gemma3nForConditionalGeneration",
        ]:
            # FIXME: https://github.com/sgl-project/sglang/pull/7367 is not compatible with gemma2 model.
            # It failed at this test: https://github.com/sgl-project/sglang/actions/runs/16255155597/job/45890331952#step:4:736
            logger.warning(
                f"Disable hybrid SWA memory for {model_arch} as it is not yet supported."
            )
            self.disable_hybrid_swa_memory = True

Lianmin Zheng's avatar
Lianmin Zheng committed
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
    def adjust_mem_fraction_for_vlm(self, model_config):
        vision_config = getattr(model_config.hf_config, "vision_config", None)
        if vision_config is None:
            return

        # roughly reduce the mem_fraction_static base on params of Vit
        original_server_arg_mem_fraction = self.mem_fraction_static
        # a base mem_fraction_static factor for regular Vit
        base_mem_fraction_reduction_ratio = 0.95

        vit_num_layers = getattr(vision_config, "num_hidden_layers", 24)
        vit_hidden_size = getattr(vision_config, "hidden_size", 1024)

        # baseline ViT params (ViT-L/14)
        baseline_vit_layers = 24
        baseline_vit_hidden_size = 1024

        # weight params count
        current_complexity_score = vit_num_layers * (vit_hidden_size**2)
        baseline_complexity_score = baseline_vit_layers * (baseline_vit_hidden_size**2)
        complexity_ratio = (
            current_complexity_score / baseline_complexity_score
            if baseline_complexity_score > 0
            else 1.0
        )

        # every time the complexity grows 100%, adjust final factor for 10%
        sensitivity_scale = 0.1
        dynamic_adjustment_factor = 1.0 - sensitivity_scale * (complexity_ratio - 1.0)
        dynamic_adjustment_factor = max(0.8, min(1.05, dynamic_adjustment_factor))

        final_overall_factor = (
            base_mem_fraction_reduction_ratio * dynamic_adjustment_factor
        )
        self.mem_fraction_static = (
            original_server_arg_mem_fraction * final_overall_factor
        )

Lianmin Zheng's avatar
Lianmin Zheng committed
2392

Lianmin Zheng's avatar
Lianmin Zheng committed
2393
def prepare_server_args(argv: List[str]) -> ServerArgs:
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
    """
    Prepare the server arguments from the command line arguments.

    Args:
        args: The command line arguments. Typically, it should be `sys.argv[1:]`
            to ensure compatibility with `parse_args` when no arguments are passed.

    Returns:
        The server arguments.
    """
    parser = argparse.ArgumentParser()
    ServerArgs.add_cli_args(parser)
Lianmin Zheng's avatar
Lianmin Zheng committed
2406
    raw_args = parser.parse_args(argv)
2407
2408
2409
2410
    server_args = ServerArgs.from_cli_args(raw_args)
    return server_args


2411
2412
2413
ZMQ_TCP_PORT_DELTA = 233


Lianmin Zheng's avatar
Lianmin Zheng committed
2414
2415
@dataclasses.dataclass
class PortArgs:
2416
2417
2418
2419
2420
2421
    # The ipc filename for tokenizer to receive inputs from detokenizer (zmq)
    tokenizer_ipc_name: str
    # The ipc filename for scheduler (rank 0) to receive inputs from tokenizer (zmq)
    scheduler_input_ipc_name: str
    # The ipc filename for detokenizer to receive inputs from scheduler (zmq)
    detokenizer_ipc_name: str
2422

2423
2424
    # The port for nccl initialization (torch.dist)
    nccl_port: int
2425

2426
2427
2428
    # The ipc filename for rpc call between Engine and Scheduler
    rpc_ipc_name: str

2429
2430
2431
    # The ipc filename for Scheduler to send metrics
    metrics_ipc_name: str

2432
2433
2434
    # The ipc filename for Tokenizer and worker tokenizer
    tokenizer_worker_ipc_name: Optional[str]

2435
    @staticmethod
2436
    def init_new(server_args, dp_rank: Optional[int] = None) -> "PortArgs":
2437
        if server_args.nccl_port is None:
Lianmin Zheng's avatar
Lianmin Zheng committed
2438
            nccl_port = server_args.port + random.randint(100, 1000)
2439
            while True:
Lianmin Zheng's avatar
Lianmin Zheng committed
2440
                if is_port_available(nccl_port):
2441
                    break
Lianmin Zheng's avatar
Lianmin Zheng committed
2442
2443
                if nccl_port < 60000:
                    nccl_port += 42
2444
                else:
Lianmin Zheng's avatar
Lianmin Zheng committed
2445
                    nccl_port -= 43
2446
        else:
Lianmin Zheng's avatar
Lianmin Zheng committed
2447
            nccl_port = server_args.nccl_port
2448

2449
2450
2451
2452
2453
2454
        if not server_args.enable_dp_attention:
            # Normal case, use IPC within a single node
            return PortArgs(
                tokenizer_ipc_name=f"ipc://{tempfile.NamedTemporaryFile(delete=False).name}",
                scheduler_input_ipc_name=f"ipc://{tempfile.NamedTemporaryFile(delete=False).name}",
                detokenizer_ipc_name=f"ipc://{tempfile.NamedTemporaryFile(delete=False).name}",
Lianmin Zheng's avatar
Lianmin Zheng committed
2455
                nccl_port=nccl_port,
2456
                rpc_ipc_name=f"ipc://{tempfile.NamedTemporaryFile(delete=False).name}",
2457
                metrics_ipc_name=f"ipc://{tempfile.NamedTemporaryFile(delete=False).name}",
2458
                tokenizer_worker_ipc_name=None,
2459
2460
2461
2462
2463
            )
        else:
            # DP attention. Use TCP + port to handle both single-node and multi-node.
            if server_args.nnodes == 1 and server_args.dist_init_addr is None:
                dist_init_addr = ("127.0.0.1", server_args.port + ZMQ_TCP_PORT_DELTA)
Vincent's avatar
Vincent committed
2464
2465
2466
            elif server_args.dist_init_addr.startswith("["):  # ipv6 address
                port_num, host = configure_ipv6(server_args.dist_init_addr)
                dist_init_addr = (host, str(port_num))
2467
2468
            else:
                dist_init_addr = server_args.dist_init_addr.split(":")
Vincent's avatar
Vincent committed
2469

2470
2471
2472
2473
2474
2475
            assert (
                len(dist_init_addr) == 2
            ), "please provide --dist-init-addr as host:port of head node"

            dist_init_host, dist_init_port = dist_init_addr
            port_base = int(dist_init_port) + 1
2476
2477
2478
            detokenizer_port = port_base + 1
            rpc_port = port_base + 2
            metrics_ipc_name = port_base + 3
2479
            if dp_rank is None:
2480
                # TokenizerManager to DataParallelController
2481
                scheduler_input_port = port_base + 4
2482
            else:
2483
                scheduler_input_port = port_base + 4 + 1 + dp_rank
2484
2485
2486
2487

            return PortArgs(
                tokenizer_ipc_name=f"tcp://{dist_init_host}:{port_base}",
                scheduler_input_ipc_name=f"tcp://{dist_init_host}:{scheduler_input_port}",
2488
                detokenizer_ipc_name=f"tcp://{dist_init_host}:{detokenizer_port}",
Lianmin Zheng's avatar
Lianmin Zheng committed
2489
                nccl_port=nccl_port,
2490
2491
                rpc_ipc_name=f"tcp://{dist_init_host}:{rpc_port}",
                metrics_ipc_name=f"tcp://{dist_init_host}:{metrics_ipc_name}",
2492
                tokenizer_worker_ipc_name=None,
2493
            )
2494

2495
2496
2497

class LoRAPathAction(argparse.Action):
    def __call__(self, parser, namespace, values, option_string=None):
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
        lora_paths = []
        if values:
            assert isinstance(values, list), "Expected a list of LoRA paths."
            for lora_path in values:
                lora_path = lora_path.strip()
                if lora_path.startswith("{") and lora_path.endswith("}"):
                    obj = json.loads(lora_path)
                    assert "lora_path" in obj and "lora_name" in obj, (
                        f"{repr(lora_path)} looks like a JSON str, "
                        "but it does not contain 'lora_name' and 'lora_path' keys."
                    )
                    lora_paths.append(obj)
                else:
                    lora_paths.append(lora_path)

        setattr(namespace, self.dest, lora_paths)
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523


class DeprecatedAction(argparse.Action):
    def __init__(self, option_strings, dest, nargs=0, **kwargs):
        super(DeprecatedAction, self).__init__(
            option_strings, dest, nargs=nargs, **kwargs
        )

    def __call__(self, parser, namespace, values, option_string=None):
        raise ValueError(self.help)
2524
2525


2526
2527
2528
2529
def print_deprecated_warning(message: str):
    logger.warning(f"\033[33m{message}\033[0m")


2530
def auto_choose_speculative_params(self: ServerArgs):
2531
2532
2533
2534
2535
    """
    Automatically choose the parameters for speculative decoding.

    You can tune them on your own models and prompts with scripts/playground/bench_speculative.py
    """
Lianmin Zheng's avatar
Lianmin Zheng committed
2536
    hf_config = self.get_hf_config()
2537
2538
    arch = hf_config.architectures[0]

2539
2540
2541
    if arch in ["LlamaForCausalLM"]:
        # The default value for llama
        return (5, 4, 8)
2542
2543
2544
2545
2546
2547
    elif arch in [
        "DeepseekV3ForCausalLM",
        "DeepseekV2ForCausalLM",
        "GptOssForCausalLM",
    ]:
        # The default value for deepseek and gpt-oss
2548
        return (3, 1, 4)
2549
2550
2551
2552
2553
    elif arch in ["Grok1ForCausalLM", "Grok1VForCausalLM"]:
        return (5, 4, 8)
    else:
        # The default value for all other models
        return (5, 4, 8)