server_args.py 93.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
Lianmin Zheng's avatar
Lianmin Zheng committed
14
15
"""The arguments of the server."""

Lianmin Zheng's avatar
Lianmin Zheng committed
16
17
import argparse
import dataclasses
18
import json
19
import logging
20
import os
21
import random
22
import sys
23
import tempfile
24
from typing import List, Literal, Optional, Union
Lianmin Zheng's avatar
Lianmin Zheng committed
25

26
from sglang.srt.hf_transformers_utils import check_gguf_file, get_config
27
from sglang.srt.layers.utils import is_sm100_supported
28
from sglang.srt.lora.lora_registry import LoRARef
Xihuai Wang's avatar
Xihuai Wang committed
29
from sglang.srt.reasoning_parser import ReasoningParser
30
from sglang.srt.utils import (
31
32
    LORA_TARGET_ALL_MODULES,
    SUPPORTED_LORA_TARGET_MODULES,
Vincent's avatar
Vincent committed
33
    configure_ipv6,
34
    get_device,
Lianmin Zheng's avatar
Lianmin Zheng committed
35
    get_device_memory_capacity,
36
    is_flashinfer_available,
HAI's avatar
HAI committed
37
    is_hip,
38
    is_port_available,
39
    is_remote_url,
40
    is_valid_ipv6_address,
bjmsong's avatar
bjmsong committed
41
    nullable_str,
42
)
43

44
45
logger = logging.getLogger(__name__)

Lianmin Zheng's avatar
Lianmin Zheng committed
46
47
48

@dataclasses.dataclass
class ServerArgs:
Lianmin Zheng's avatar
Lianmin Zheng committed
49
    # Model and tokenizer
Lianmin Zheng's avatar
Lianmin Zheng committed
50
51
52
    model_path: str
    tokenizer_path: Optional[str] = None
    tokenizer_mode: str = "auto"
53
    skip_tokenizer_init: bool = False
Lianmin Zheng's avatar
Lianmin Zheng committed
54
    load_format: str = "auto"
55
    model_loader_extra_config: str = "{}"
56
    trust_remote_code: bool = False
57
    context_length: Optional[int] = None
58
    is_embedding: bool = False
59
    enable_multimodal: Optional[bool] = None
60
    revision: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
61
    model_impl: str = "auto"
Lianmin Zheng's avatar
Lianmin Zheng committed
62

Lianmin Zheng's avatar
Lianmin Zheng committed
63
    # HTTP server
Lianmin Zheng's avatar
Lianmin Zheng committed
64
65
    host: str = "127.0.0.1"
    port: int = 30000
Lianmin Zheng's avatar
Lianmin Zheng committed
66
67
    skip_server_warmup: bool = False
    warmups: Optional[str] = None
68
    nccl_port: Optional[int] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
69

Lianmin Zheng's avatar
Lianmin Zheng committed
70
71
72
73
74
75
    # Quantization and data type
    dtype: str = "auto"
    quantization: Optional[str] = None
    quantization_param_path: Optional[str] = None
    kv_cache_dtype: str = "auto"

Lianmin Zheng's avatar
Lianmin Zheng committed
76
    # Memory and scheduling
Lianmin Zheng's avatar
Lianmin Zheng committed
77
    mem_fraction_static: Optional[float] = None
78
    max_running_requests: Optional[int] = None
79
    max_queued_requests: Optional[int] = sys.maxsize
80
    max_total_tokens: Optional[int] = None
81
    chunked_prefill_size: Optional[int] = None
82
    max_prefill_tokens: int = 16384
83
    schedule_policy: str = "fcfs"
84
    schedule_conservativeness: float = 1.0
85
    cpu_offload_gb: int = 0
86
    page_size: Optional[int] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
87
88
89
    hybrid_kvcache_ratio: Optional[float] = None
    swa_full_tokens_ratio: float = 0.8
    disable_hybrid_swa_memory: bool = False
Lianmin Zheng's avatar
Lianmin Zheng committed
90

Lianmin Zheng's avatar
Lianmin Zheng committed
91
92
    # Runtime options
    device: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
93
    tp_size: int = 1
94
95
    pp_size: int = 1
    max_micro_batch_size: Optional[int] = None
96
    stream_interval: int = 1
97
    stream_output: bool = False
98
    random_seed: Optional[int] = None
99
    constrained_json_whitespace_pattern: Optional[str] = None
100
    watchdog_timeout: float = 300
101
    dist_timeout: Optional[int] = None  # timeout for torch.distributed
102
    download_dir: Optional[str] = None
103
    base_gpu_id: int = 0
104
    gpu_id_step: int = 1
105
    sleep_on_idle: bool = False
Lianmin Zheng's avatar
Lianmin Zheng committed
106
107
108

    # Logging
    log_level: str = "info"
109
    log_level_http: Optional[str] = None
110
    log_requests: bool = False
111
    log_requests_level: int = 2
112
    crash_dump_folder: Optional[str] = None
Liangsheng Yin's avatar
Liangsheng Yin committed
113
    show_time_cost: bool = False
114
    enable_metrics: bool = False
115
    enable_metrics_for_all_schedulers: bool = False
116
117
    bucket_time_to_first_token: Optional[List[float]] = None
    bucket_inter_token_latency: Optional[List[float]] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
118
    bucket_e2e_request_latency: Optional[List[float]] = None
119
    collect_tokens_histogram: bool = False
120
    decode_log_interval: int = 40
121
    enable_request_time_stats_logging: bool = False
122
    kv_events_config: Optional[str] = None
Liangsheng Yin's avatar
Liangsheng Yin committed
123

124
    # API related
125
    api_key: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
126
    served_model_name: Optional[str] = None
127
    weight_version: str = "default"
Lianmin Zheng's avatar
Lianmin Zheng committed
128
129
    chat_template: Optional[str] = None
    completion_template: Optional[str] = None
130
    file_storage_path: str = "sglang_storage"
131
    enable_cache_report: bool = False
Xihuai Wang's avatar
Xihuai Wang committed
132
    reasoning_parser: Optional[str] = None
133
    tool_call_parser: Optional[str] = None
134
    tool_server: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
135

136
137
138
    # Data parallelism
    dp_size: int = 1
    load_balance_method: str = "round_robin"
139

140
    # Multi-node distributed serving
141
    dist_init_addr: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
142
    nnodes: int = 1
143
    node_rank: int = 0
Lianmin Zheng's avatar
Lianmin Zheng committed
144
145
146

    # Model override args in JSON
    json_model_override_args: str = "{}"
147
    preferred_sampling_params: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
148

149
    # LoRA
150
    enable_lora: Optional[bool] = None
151
    max_lora_rank: Optional[int] = None
152
    lora_target_modules: Optional[Union[set[str], List[str]]] = None
153
    lora_paths: Optional[Union[dict[str, str], dict[str, LoRARef], List[str]]] = None
154
    max_loaded_loras: Optional[int] = None
155
    max_loras_per_batch: int = 8
156
    lora_backend: str = "triton"
157
158

    # Kernel backend
159
    attention_backend: Optional[str] = None
160
161
    decode_attention_backend: Optional[str] = None
    prefill_attention_backend: Optional[str] = None
162
    sampling_backend: Optional[str] = None
163
    grammar_backend: Optional[str] = None
164
    mm_attention_backend: Optional[str] = None
165

166
167
    # Speculative decoding
    speculative_algorithm: Optional[str] = None
168
    speculative_draft_model_path: Optional[str] = None
169
170
171
    speculative_num_steps: Optional[int] = None
    speculative_eagle_topk: Optional[int] = None
    speculative_num_draft_tokens: Optional[int] = None
172
173
    speculative_accept_threshold_single: float = 1.0
    speculative_accept_threshold_acc: float = 1.0
174
    speculative_token_map: Optional[str] = None
175

176
177
    # Expert parallelism
    ep_size: int = 1
178
    moe_a2a_backend: Optional[Literal["deepep"]] = None
179
180
    enable_flashinfer_cutlass_moe: bool = False
    enable_flashinfer_trtllm_moe: bool = False
181
    enable_flashinfer_allreduce_fusion: bool = False
182
    deepep_mode: Literal["auto", "normal", "low_latency"] = "auto"
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
    ep_num_redundant_experts: int = 0
    ep_dispatch_algorithm: Optional[Literal["static", "dynamic", "fake"]] = None
    init_expert_location: str = "trivial"
    enable_eplb: bool = False
    eplb_algorithm: str = "auto"
    eplb_rebalance_num_iterations: int = 1000
    eplb_rebalance_layers_per_chunk: Optional[int] = None
    expert_distribution_recorder_mode: Optional[
        Literal["stat", "stat_approx", "per_pass", "per_token"]
    ] = None
    expert_distribution_recorder_buffer_size: Optional[int] = None
    enable_expert_distribution_metrics: bool = False
    deepep_config: Optional[str] = None
    moe_dense_tp_size: Optional[int] = None

Lianmin Zheng's avatar
Lianmin Zheng committed
198
199
200
201
202
    # Hierarchical cache
    enable_hierarchical_cache: bool = False
    hicache_ratio: float = 2.0
    hicache_size: int = 0
    hicache_write_policy: str = "write_through_selective"
203
204
    hicache_io_backend: str = "kernel"
    hicache_mem_layout: str = "layer_first"
Lianmin Zheng's avatar
Lianmin Zheng committed
205
    hicache_storage_backend: Optional[str] = None
pansicheng's avatar
pansicheng committed
206
    hicache_storage_prefetch_policy: str = "best_effort"
Lianmin Zheng's avatar
Lianmin Zheng committed
207

208
209
    # Double Sparsity
    enable_double_sparsity: bool = False
Vincent's avatar
Vincent committed
210
    ds_channel_config_path: Optional[str] = None
211
212
213
214
215
    ds_heavy_channel_num: int = 32
    ds_heavy_token_num: int = 256
    ds_heavy_channel_type: str = "qk"
    ds_sparse_decode_threshold: int = 4096

216
    # Optimization/debug options
Lianmin Zheng's avatar
Lianmin Zheng committed
217
    disable_radix_cache: bool = False
218
219
    cuda_graph_max_bs: Optional[int] = None
    cuda_graph_bs: Optional[List[int]] = None
220
    disable_cuda_graph: bool = False
221
    disable_cuda_graph_padding: bool = False
222
    enable_profile_cuda_graph: bool = False
223
    enable_cudagraph_gc: bool = False
224
    enable_nccl_nvls: bool = False
225
    enable_symm_mem: bool = False
226
    enable_tokenizer_batch_encode: bool = False
227
    disable_outlines_disk_cache: bool = False
228
    disable_custom_all_reduce: bool = False
229
    enable_mscclpp: bool = False
230
    disable_overlap_schedule: bool = False
231
    enable_mixed_chunk: bool = False
Ke Bao's avatar
Ke Bao committed
232
    enable_dp_attention: bool = False
233
    enable_dp_lm_head: bool = False
234
    enable_two_batch_overlap: bool = False
235
    tbo_token_distribution_threshold: float = 0.48
236
    enable_torch_compile: bool = False
237
    torch_compile_max_bs: int = 32
238
    torchao_config: str = ""
239
    enable_nan_detection: bool = False
240
    enable_p2p_check: bool = False
241
    triton_attention_reduce_in_fp32: bool = False
242
    triton_attention_num_kv_splits: int = 8
243
    num_continuous_decode_steps: int = 1
244
    delete_ckpt_after_loading: bool = False
245
    enable_memory_saver: bool = False
246
    allow_auto_truncate: bool = False
247
    enable_custom_logit_processor: bool = False
248
    flashinfer_mla_disable_ragged: bool = False
249
    disable_shared_experts_fusion: bool = False
250
    disable_chunked_prefix_cache: bool = False
Lianmin Zheng's avatar
Lianmin Zheng committed
251
    disable_fast_image_processor: bool = False
252
    enable_return_hidden_states: bool = False
Yuan Luo's avatar
Yuan Luo committed
253
    enable_triton_kernel_moe: bool = False
254
    enable_flashinfer_mxfp4_moe: bool = False
255
    scheduler_recv_interval: int = 1
256
257
258
259
260

    # Debug tensor dumps
    debug_tensor_dump_output_folder: Optional[str] = None
    debug_tensor_dump_input_file: Optional[str] = None
    debug_tensor_dump_inject: bool = False
261
    debug_tensor_dump_prefill_only: bool = False
262

Lianmin Zheng's avatar
Lianmin Zheng committed
263
    # PD disaggregation: can be "null" (not disaggregated), "prefill" (prefill-only), or "decode" (decode-only)
Byron Hsu's avatar
Byron Hsu committed
264
    disaggregation_mode: str = "null"
265
    disaggregation_transfer_backend: str = "mooncake"
266
    disaggregation_bootstrap_port: int = 8998
Byron Hsu's avatar
Byron Hsu committed
267
268
269
    disaggregation_decode_tp: Optional[int] = None
    disaggregation_decode_dp: Optional[int] = None
    disaggregation_prefill_pp: Optional[int] = 1
270
    disaggregation_ib_device: Optional[str] = None
271
    num_reserved_decode_tokens: int = 512  # used for decode kv cache offload in PD
272
    pdlb_url: Optional[str] = None
Byron Hsu's avatar
Byron Hsu committed
273

274
275
    # For model weight update
    custom_weight_loader: Optional[List[str]] = None
276
    weight_loader_disable_mmap: bool = False
277

278
279
280
281
    # For PD-Multiplexing
    enable_pdmux: bool = False
    sm_group_num: int = 3

282
283
284
285
    # Deprecated arguments
    enable_ep_moe: bool = False
    enable_deepep_moe: bool = False

Lianmin Zheng's avatar
Lianmin Zheng committed
286
    def __post_init__(self):
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
        # Check deprecated arguments
        def print_deprecated_warning(message: str):
            logger.warning(f"\033[33m{message}\033[0m")

        if self.enable_ep_moe:
            self.ep_size = self.tp_size
            print_deprecated_warning(
                "NOTE: --enable-ep-moe is deprecated. Please set `--ep-size` to the same value as `--tp-size` instead."
            )
        if self.enable_deepep_moe:
            self.moe_a2a_backend = "deepep"
            print_deprecated_warning(
                "NOTE: --enable-deepep-moe is deprecated. Please set `--moe-a2a-backend` to 'deepep' instead."
            )

302
        # Set missing default values
Lianmin Zheng's avatar
Lianmin Zheng committed
303
304
        if self.tokenizer_path is None:
            self.tokenizer_path = self.model_path
305
306
        if self.served_model_name is None:
            self.served_model_name = self.model_path
307
308
        if self.device is None:
            self.device = get_device()
309
310
311
        if self.random_seed is None:
            self.random_seed = random.randint(0, 1 << 30)

Lianmin Zheng's avatar
Lianmin Zheng committed
312
        gpu_mem = get_device_memory_capacity(self.device)
313

314
        # Set mem fraction static
Lianmin Zheng's avatar
Lianmin Zheng committed
315
        if self.mem_fraction_static is None:
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
            if gpu_mem is not None:
                # GPU memory capacity = model weights + KV cache pool + activations + cuda graph buffers
                # mem_fraction_static = (model weights + KV cache pool) / GPU memory capacity.

                # We want mem_fraction_static to be as large as possible but still has enough room
                # for activations and cuda graph buffers. We use the following heuristic to
                # compute the needed size for activations and cuda graph buffers:
                # - The size of the activation depends on the chunked_prefill_size and model size.
                # - The size of cuda graph buffers depends on the cuda graph capture range and model size.
                # For GPUs with more memory, we use a larger chunked_prefill_size and
                # capture more cuda graphs, so they need to reserve more memory.
                parallel_size = self.tp_size * self.pp_size

                if gpu_mem < 20 * 1024:
                    # T4, 4080. (chunked_prefill_size 2k, cuda_graph_max_bs 8)
                    reserved_mem = (2.8 + parallel_size / 10) * 1024
                elif gpu_mem < 35 * 1024:
                    # A10, L40, 4090, 5090. (chunked_prefill_size 2k, cuda_graph_max_bs 8)
                    reserved_mem = (2.8 + parallel_size / 10) * 1024
                elif gpu_mem < 90 * 1024:
                    # H100, A100. (chunked_prefill_size 8k, cuda_graph_max_bs 160)
                    reserved_mem = (9.5 + parallel_size / 2) * 1024
                elif gpu_mem < 100 * 1024:
                    # H20. (chunked_prefill_size 8k, cuda_graph_max_bs 256)
                    reserved_mem = (12 + parallel_size / 2) * 1024
                elif gpu_mem < 160 * 1024:
                    # H200. (chunked_prefill_size 8k, cuda_graph_max_bs 256)
                    reserved_mem = (12 + parallel_size / 2) * 1024
344
                else:
345
346
347
                    # B200, MI300. (chunked_prefill_size 16k, cuda_graph_max_bs 512)
                    reserved_mem = 32 * 1024

348
                if self.speculative_algorithm is not None:
349
350
351
352
353
354
                    # draft model and larger cuda graph buffers
                    reserved_mem += 2 * 1024
                if self.enable_dp_attention:
                    reserved_mem += 4 * 1024

                self.mem_fraction_static = round((gpu_mem - reserved_mem) / gpu_mem, 3)
355
            else:
356
                self.mem_fraction_static = 0.88
357

358
            # Lazy init to avoid circular import
Lianmin Zheng's avatar
Lianmin Zheng committed
359
            # Multimodal models need more memory for the image processor
360
361
362
            from sglang.srt.configs.model_config import ModelConfig

            model_config = ModelConfig.from_server_args(self)
Lianmin Zheng's avatar
Lianmin Zheng committed
363
364
            if model_config.is_multimodal:
                self.adjust_mem_fraction_for_vlm(model_config)
365

366
367
        # Set chunked prefill size, which depends on the gpu memory capacity
        if self.chunked_prefill_size is None:
368
369
370
371
372
373
374
            if gpu_mem is not None:
                if gpu_mem < 35 * 1024:  # A10, L40, 4090
                    self.chunked_prefill_size = 2048
                elif gpu_mem < 160 * 1024:  # H100, H200, A100, H20
                    self.chunked_prefill_size = 8192
                else:  # B200, MI300
                    self.chunked_prefill_size = 16384
375
            else:
376
                self.chunked_prefill_size = 4096
Lianmin Zheng's avatar
Lianmin Zheng committed
377

378
379
380
381
382
383
384
385
386
        # Set cuda graph max batch size
        if self.cuda_graph_max_bs is None:
            # Based on detailed statistics, when serving TP1/TP2 models on lower-end GPUs with HBM<25G, you can either disable cuda graph or set `cuda_graph_max_bs` to a very small value to reduce the memory overhead of creating cuda graphs, with almost no impact on performance. However, when serving models with TP4 or TP8, we need to enable cuda graph to maintain high performance. In this case, we can set `cuda_graph_max_bs` to 80 (half of the default value 160) to reduce the memory overhead of creating cuda graphs. Looking at the logs from TP4 serving of qwen2-72b, a value of 80 is sufficient and can reduce the memory overhead of creating cuda graphs on lower-end GPUs compared to the original 160, avoiding OOM issues.
            if gpu_mem is not None and gpu_mem < 35 * 1024:
                if self.tp_size < 4:
                    self.cuda_graph_max_bs = 8
                else:
                    self.cuda_graph_max_bs = 80

387
        # Set kernel backends for hpu device
388
389
390
391
        if self.device == "hpu":
            self.attention_backend = "torch_native"
            self.sampling_backend = "pytorch"

392
393
394
        # Model-specific adjustments
        self.model_specific_adjustments()

Lianmin Zheng's avatar
Lianmin Zheng committed
395
        # Set kernel backends
396
397
398
399
400
        if self.device == "cpu":
            if self.attention_backend is None:
                self.attention_backend = "intel_amx"
            self.sampling_backend = "pytorch"

401
        if self.sampling_backend is None:
402
403
404
405
406
            self.sampling_backend = (
                "flashinfer" if is_flashinfer_available() else "pytorch"
            )

        if self.attention_backend == "torch_native":
407
            logger.warning(
408
409
410
                "Cuda graph is disabled because of using torch native attention backend"
            )
            self.disable_cuda_graph = True
411

412
413
414
415
416
417
        if self.attention_backend == "ascend":
            logger.warning(
                "At this moment Ascend attention backend only supports a page_size of 128, change page_size to 128."
            )
            self.page_size = 128

418
419
420
421
        if (
            self.attention_backend == "flashmla"
            or self.decode_attention_backend == "flashmla"
        ):
Lianmin Zheng's avatar
Lianmin Zheng committed
422
423
424
425
426
            logger.warning(
                "FlashMLA only supports a page_size of 64, change page_size to 64."
            )
            self.page_size = 64

427
428
429
430
        if (
            self.attention_backend == "cutlass_mla"
            or self.decode_attention_backend == "cutlass_mla"
        ):
Lianmin Zheng's avatar
Lianmin Zheng committed
431
432
433
434
435
            logger.warning(
                "Cutlass MLA only supports a page_size of 128, change page_size to 128."
            )
            self.page_size = 128

Faraz's avatar
Faraz committed
436
437
438
439
        if (
            self.attention_backend == "trtllm_mla"
            or self.decode_attention_backend == "trtllm_mla"
        ):
440
441
442
443
444
445
446
447
448
449
            if not is_sm100_supported():
                raise ValueError(
                    "TRTLLM MLA backend is only supported on Blackwell GPUs (SM100). Please use a different backend."
                )

            if self.page_size not in [32, 64]:
                logger.warning(
                    f"TensorRT-LLM MLA only supports page_size of 32 or 64, changing page_size from {self.page_size} to 64."
                )
                self.page_size = 64
Faraz's avatar
Faraz committed
450

451
452
453
454
            if self.speculative_algorithm is not None:
                raise ValueError(
                    "trtllm_mla backend does not support speculative decoding yet."
                )
Faraz's avatar
Faraz committed
455
456
457
458
459

            if self.kv_cache_dtype not in ["fp8_e4m3", "auto"]:
                raise ValueError(
                    "TensorRT-LLM MLA backend only supports kv-cache-dtype of fp8_e4m3 or auto."
                )
460

461
462
463
464
465
        if (
            self.attention_backend == "trtllm_mha"
            or self.decode_attention_backend == "trtllm_mha"
            or self.prefill_attention_backend == "trtllm_mha"
        ):
466
467
468
469
470
471
472
473
474
475
476
477
478
            if not is_sm100_supported():
                raise ValueError(
                    "TRTLLM MHA backend is only supported on Blackwell GPUs (SM100). Please use a different backend."
                )

            if self.page_size not in [16, 32, 64]:
                logger.warning(
                    f"TensorRT-LLM MHA only supports page_size of 16, 32 or 64, changing page_size from {self.page_size} to 64."
                )
                self.page_size = 64

            if self.speculative_algorithm is not None:
                raise ValueError(
479
                    "trtllm_mha backend does not support speculative decoding yet."
480
                )
481

482
483
        if self.attention_backend == "dual_chunk_flash_attn":
            logger.warning(
484
                "Mixed chunk, radix cache, and cuda graphs are disabled because of using dual chunk flash attention backend"
485
486
487
488
489
            )
            self.enable_mixed_chunk = False
            self.disable_cuda_graph = True
            self.disable_radix_cache = True

490
491
492
493
494
495
496
497
        # Set page size
        if self.page_size is None:
            self.page_size = 1

        # AMD-specific Triton attention KV splits default number
        if is_hip():
            self.triton_attention_num_kv_splits = 16

498
499
500
        # Choose grammar backend
        if self.grammar_backend is None:
            self.grammar_backend = "xgrammar"
501

502
        # Data parallelism attention
Ke Bao's avatar
Ke Bao committed
503
        if self.enable_dp_attention:
504
            self.schedule_conservativeness = self.schedule_conservativeness * 0.3
Lianmin Zheng's avatar
Lianmin Zheng committed
505
506
507
508
509
            assert (
                self.dp_size > 1
            ), "Please set a dp-size > 1. You can use 1 < dp-size <= tp-size "
            assert self.tp_size % self.dp_size == 0
            self.chunked_prefill_size = self.chunked_prefill_size // self.dp_size
510
            logger.warning(
511
                f"DP attention is enabled. The chunked prefill size is adjusted to {self.chunked_prefill_size} to avoid MoE kernel issues. "
512
            )
513

514
515
516
        if self.enable_dp_lm_head:
            assert (
                self.enable_dp_attention
517
            ), "Please enable dp attention when setting enable_dp_lm_head. "
518

519
        # MoE kernel
520
        if self.enable_flashinfer_cutlass_moe:
521
522
523
524
            assert (
                self.quantization == "modelopt_fp4"
            ), "modelopt_fp4 quantization is required for Flashinfer MOE"
            os.environ["TRTLLM_ENABLE_PDL"] = "1"
525
526
527
528
            assert self.ep_size in [
                1,
                self.tp_size,
            ], "The expert parallel size must be 1 or the same as the tensor parallel size"
529

530
531
532
533
534
535
536
        if self.enable_flashinfer_trtllm_moe:
            if not self.disable_shared_experts_fusion:
                self.disable_shared_experts_fusion = True
                logger.warning(
                    "FlashInfer TRTLLM MoE is enabled. --disable-shared-experts-fusion is automatically set."
                )

537
        # DeepEP MoE
538
        if self.moe_a2a_backend == "deepep":
539
540
541
            if self.deepep_mode == "normal":
                logger.warning("Cuda graph is disabled because deepep_mode=`normal`")
                self.disable_cuda_graph = True
542
            self.ep_size = self.tp_size
Lianmin Zheng's avatar
Lianmin Zheng committed
543
            logger.warning(
544
545
                f"DeepEP MoE is enabled. The expert parallel size is adjusted to be the same as the tensor parallel size[{self.tp_size}]."
            )
546

547
548
        if self.enable_eplb and (self.expert_distribution_recorder_mode is None):
            self.expert_distribution_recorder_mode = "stat"
549
            logger.warning(
550
                "EPLB is enabled. The expert_distribution_recorder_mode is automatically set."
551
552
553
554
555
556
557
            )

        if (self.enable_eplb or (self.init_expert_location is not None)) and (
            self.ep_dispatch_algorithm is None
        ):
            self.ep_dispatch_algorithm = "static"

558
        if self.enable_eplb:
559
            assert self.ep_size > 1 or self.moe_a2a_backend is not None
560

561
562
563
564
565
        if self.enable_expert_distribution_metrics and (
            self.expert_distribution_recorder_mode is None
        ):
            self.expert_distribution_recorder_mode = "stat"

566
        if self.expert_distribution_recorder_buffer_size is None:
567
568
            if (x := self.eplb_rebalance_num_iterations) is not None:
                self.expert_distribution_recorder_buffer_size = x
569
570
571
            elif self.expert_distribution_recorder_mode is not None:
                self.expert_distribution_recorder_buffer_size = 1000

Lianmin Zheng's avatar
Lianmin Zheng committed
572
573
574
575
576
577
578
        # Pipeline parallelism
        if self.pp_size > 1:
            self.disable_overlap_schedule = True
            logger.warning(
                "Pipeline parallelism is incompatible with overlap schedule."
            )

Lianmin Zheng's avatar
Lianmin Zheng committed
579
        # Hicache
580
581
582
583
584
        if self.hicache_storage_backend == "mooncake":
            # to use mooncake storage backend, the following conditions must be met:
            self.hicache_io_backend = "kernel"
            self.hicache_mem_layout = "page_first"

585
        # Speculative Decoding
586
587
588
589
        if self.speculative_algorithm == "NEXTN":
            # NEXTN shares the same implementation of EAGLE
            self.speculative_algorithm = "EAGLE"

Lianmin Zheng's avatar
Lianmin Zheng committed
590
        if self.speculative_algorithm in ("EAGLE", "EAGLE3"):
591
            if self.max_running_requests is None:
592
                self.max_running_requests = 48
593
            self.disable_overlap_schedule = True
Lianmin Zheng's avatar
Lianmin Zheng committed
594
            logger.warning(
595
                "Overlap scheduler is disabled because of using "
596
                "eagle speculative decoding."
597
            )
598
599
600
601
602
603
            if self.enable_mixed_chunk:
                self.enable_mixed_chunk = False
                logger.warning(
                    "Mixed chunked prefill is disabled because of using "
                    "eagle speculative decoding."
                )
604

Lianmin Zheng's avatar
Lianmin Zheng committed
605
            model_arch = self.get_hf_config().architectures[0]
Yuxuan Zhang's avatar
Yuxuan Zhang committed
606
            if model_arch in ["DeepseekV3ForCausalLM", "Glm4MoeForCausalLM"]:
Hanming Lu's avatar
Hanming Lu committed
607
                # Auto set draft_model_path DeepSeek-V3/R1
608
609
610
611
612
613
                if self.speculative_draft_model_path is None:
                    self.speculative_draft_model_path = self.model_path
                else:
                    logger.warning(
                        "DeepSeek MTP does not require setting speculative_draft_model_path."
                    )
614

615
616
617
618
619
620
621
622
623
624
            # Auto choose parameters
            if self.speculative_num_steps is None:
                assert (
                    self.speculative_eagle_topk is None
                    and self.speculative_num_draft_tokens is None
                )
                (
                    self.speculative_num_steps,
                    self.speculative_eagle_topk,
                    self.speculative_num_draft_tokens,
625
                ) = auto_choose_speculative_params(self)
626

627
628
629
630
            if (
                self.speculative_eagle_topk == 1
                and self.speculative_num_draft_tokens != self.speculative_num_steps + 1
            ):
Lianmin Zheng's avatar
Lianmin Zheng committed
631
                logger.warning(
632
633
634
                    "speculative_num_draft_tokens is adjusted to speculative_num_steps + 1 when speculative_eagle_topk == 1"
                )
                self.speculative_num_draft_tokens = self.speculative_num_steps + 1
635

636
            # The token generated from the verify step is counted.
637
            # If sepculative_num_steps >= speculative_num_draft_tokens, the additional tokens will definitely be discarded.
638
            # assert self.speculative_num_steps < self.speculative_num_draft_tokens
639

640
641
642
643
644
645
        # GGUF
        if (
            self.load_format == "auto" or self.load_format == "gguf"
        ) and check_gguf_file(self.model_path):
            self.quantization = self.load_format = "gguf"

646
        # Model loading
647
648
        if is_remote_url(self.model_path):
            self.load_format = "remote"
649
650
        if self.custom_weight_loader is None:
            self.custom_weight_loader = []
651

Byron Hsu's avatar
Byron Hsu committed
652
        # PD disaggregation
Byron Hsu's avatar
Byron Hsu committed
653
654
655
656
657
658
659
660
        if self.disaggregation_mode == "decode":
            assert (
                self.disaggregation_decode_tp is None
            ), "Cannot set --disaggregation-decode-tp for the decode engine."
            assert (
                self.disaggregation_decode_dp is None
            ), "Cannot set --disaggregation-decode-dp for the decode engine."

Byron Hsu's avatar
Byron Hsu committed
661
            self.disable_radix_cache = True
662
            logger.warning("KV cache is forced as chunk cache for decode server")
Byron Hsu's avatar
Byron Hsu committed
663
664
665
666
667
668
669
670
671
672
673
        elif self.disaggregation_mode == "prefill":
            if self.disaggregation_decode_tp is None:
                self.disaggregation_decode_tp = self.tp_size
            if self.disaggregation_decode_dp is None:
                self.disaggregation_decode_dp = self.dp_size

            self.disaggregation_prefill_pp = self.pp_size
            self.validate_disagg_tp_size(self.tp_size, self.disaggregation_decode_tp)

            self.disable_cuda_graph = True
            logger.warning("Cuda graph is disabled for prefill server")
Byron Hsu's avatar
Byron Hsu committed
674

675
        # Propagate env vars
676
677
678
        os.environ["SGLANG_ENABLE_TORCH_COMPILE"] = (
            "1" if self.enable_torch_compile else "0"
        )
679
680
681
682
        # Set env var before grammar backends init
        os.environ["SGLANG_DISABLE_OUTLINES_DISK_CACHE"] = (
            "1" if self.disable_outlines_disk_cache else "0"
        )
683

Lianmin Zheng's avatar
Lianmin Zheng committed
684
685
    @staticmethod
    def add_cli_args(parser: argparse.ArgumentParser):
Lianmin Zheng's avatar
Lianmin Zheng committed
686
        # Model and tokenizer
Lianmin Zheng's avatar
Lianmin Zheng committed
687
688
        parser.add_argument(
            "--model-path",
689
            "--model",
Lianmin Zheng's avatar
Lianmin Zheng committed
690
691
692
693
694
695
696
697
698
699
            type=str,
            help="The path of the model weights. This can be a local folder or a Hugging Face repo ID.",
            required=True,
        )
        parser.add_argument(
            "--tokenizer-path",
            type=str,
            default=ServerArgs.tokenizer_path,
            help="The path of the tokenizer.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
700
701
702
703
704
705
706
707
708
        parser.add_argument(
            "--tokenizer-mode",
            type=str,
            default=ServerArgs.tokenizer_mode,
            choices=["auto", "slow"],
            help="Tokenizer mode. 'auto' will use the fast "
            "tokenizer if available, and 'slow' will "
            "always use the slow tokenizer.",
        )
709
710
711
        parser.add_argument(
            "--skip-tokenizer-init",
            action="store_true",
712
            help="If set, skip init tokenizer and pass input_ids in generate request.",
713
        )
714
        parser.add_argument(
Lianmin Zheng's avatar
Lianmin Zheng committed
715
716
717
            "--load-format",
            type=str,
            default=ServerArgs.load_format,
718
719
720
721
722
723
            choices=[
                "auto",
                "pt",
                "safetensors",
                "npcache",
                "dummy",
724
                "sharded_state",
725
726
                "gguf",
                "bitsandbytes",
727
                "layered",
728
                "remote",
729
            ],
Lianmin Zheng's avatar
Lianmin Zheng committed
730
731
732
733
734
735
736
737
738
            help="The format of the model weights to load. "
            '"auto" will try to load the weights in the safetensors format '
            "and fall back to the pytorch bin format if safetensors format "
            "is not available. "
            '"pt" will load the weights in the pytorch bin format. '
            '"safetensors" will load the weights in the safetensors format. '
            '"npcache" will load the weights in pytorch format and store '
            "a numpy cache to speed up the loading. "
            '"dummy" will initialize the weights with random values, '
739
            "which is mainly for profiling."
740
741
            '"gguf" will load the weights in the gguf format. '
            '"bitsandbytes" will load the weights using bitsandbytes '
742
743
744
745
            "quantization."
            '"layered" loads weights layer by layer so that one can quantize a '
            "layer before loading another to make the peak memory envelope "
            "smaller.",
Lianmin Zheng's avatar
Lianmin Zheng committed
746
        )
747
748
749
750
751
752
753
        parser.add_argument(
            "--model-loader-extra-config",
            type=str,
            help="Extra config for model loader. "
            "This will be passed to the model loader corresponding to the chosen load_format.",
            default=ServerArgs.model_loader_extra_config,
        )
754
755
756
757
758
        parser.add_argument(
            "--trust-remote-code",
            action="store_true",
            help="Whether or not to allow for custom models defined on the Hub in their own modeling files.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
        parser.add_argument(
            "--context-length",
            type=int,
            default=ServerArgs.context_length,
            help="The model's maximum context length. Defaults to None (will use the value from the model's config.json instead).",
        )
        parser.add_argument(
            "--is-embedding",
            action="store_true",
            help="Whether to use a CausalLM as an embedding model.",
        )
        parser.add_argument(
            "--enable-multimodal",
            default=ServerArgs.enable_multimodal,
            action="store_true",
            help="Enable the multimodal functionality for the served model. If the model being served is not multimodal, nothing will happen",
        )
        parser.add_argument(
            "--revision",
            type=str,
            default=None,
            help="The specific model version to use. It can be a branch "
            "name, a tag name, or a commit id. If unspecified, will use "
            "the default version.",
        )
        parser.add_argument(
            "--model-impl",
            type=str,
            default=ServerArgs.model_impl,
            help="Which implementation of the model to use.\n\n"
            '* "auto" will try to use the SGLang implementation if it exists '
            "and fall back to the Transformers implementation if no SGLang "
            "implementation is available.\n"
            '* "sglang" will use the SGLang model implementation.\n'
            '* "transformers" will use the Transformers model '
            "implementation.\n",
        )

        # HTTP server
        parser.add_argument(
            "--host",
            type=str,
            default=ServerArgs.host,
            help="The host of the HTTP server.",
        )
        parser.add_argument(
            "--port",
            type=int,
            default=ServerArgs.port,
            help="The port of the HTTP server.",
        )
        parser.add_argument(
            "--skip-server-warmup",
            action="store_true",
            help="If set, skip warmup.",
        )
        parser.add_argument(
            "--warmups",
            type=str,
            required=False,
            help="Specify custom warmup functions (csv) to run before server starts eg. --warmups=warmup_name1,warmup_name2 "
            "will run the functions `warmup_name1` and `warmup_name2` specified in warmup.py before the server starts listening for requests",
        )
        parser.add_argument(
            "--nccl-port",
            type=int,
            default=ServerArgs.nccl_port,
            help="The port for NCCL distributed environment setup. Defaults to a random port.",
        )

        # Quantization and data type
Lianmin Zheng's avatar
Lianmin Zheng committed
830
        parser.add_argument(
Lianmin Zheng's avatar
Lianmin Zheng committed
831
            "--dtype",
Cody Yu's avatar
Cody Yu committed
832
            type=str,
Lianmin Zheng's avatar
Lianmin Zheng committed
833
            default=ServerArgs.dtype,
Ying Sheng's avatar
Ying Sheng committed
834
835
            choices=["auto", "half", "float16", "bfloat16", "float", "float32"],
            help="Data type for model weights and activations.\n\n"
Lianmin Zheng's avatar
Lianmin Zheng committed
836
            '* "auto" will use FP16 precision for FP32 and FP16 models, and '
Ying Sheng's avatar
Ying Sheng committed
837
            "BF16 precision for BF16 models.\n"
Lianmin Zheng's avatar
Lianmin Zheng committed
838
839
840
841
            '* "half" for FP16. Recommended for AWQ quantization.\n'
            '* "float16" is the same as "half".\n'
            '* "bfloat16" for a balance between precision and range.\n'
            '* "float" is shorthand for FP32 precision.\n'
Ying Sheng's avatar
Ying Sheng committed
842
843
            '* "float32" for FP32 precision.',
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
844
845
846
847
        parser.add_argument(
            "--quantization",
            type=str,
            default=ServerArgs.quantization,
Ying Sheng's avatar
Ying Sheng committed
848
849
850
851
852
853
            choices=[
                "awq",
                "fp8",
                "gptq",
                "marlin",
                "gptq_marlin",
Ying Sheng's avatar
Ying Sheng committed
854
                "awq_marlin",
Ying Sheng's avatar
Ying Sheng committed
855
                "bitsandbytes",
856
                "gguf",
857
                "modelopt",
858
                "modelopt_fp4",
859
                "petit_nvfp4",
860
                "w8a8_int8",
HandH1998's avatar
HandH1998 committed
861
                "w8a8_fp8",
AniZpZ's avatar
AniZpZ committed
862
                "moe_wna16",
HandH1998's avatar
HandH1998 committed
863
                "qoq",
864
                "w4afp8",
865
                "mxfp4",
Ying Sheng's avatar
Ying Sheng committed
866
            ],
Lianmin Zheng's avatar
Lianmin Zheng committed
867
868
            help="The quantization method.",
        )
869
870
871
872
873
874
875
876
877
        parser.add_argument(
            "--quantization-param-path",
            type=nullable_str,
            default=None,
            help="Path to the JSON file containing the KV cache "
            "scaling factors. This should generally be supplied, when "
            "KV cache dtype is FP8. Otherwise, KV cache scaling factors "
            "default to 1.0, which may cause accuracy issues. ",
        )
878
        parser.add_argument(
Lianmin Zheng's avatar
Lianmin Zheng committed
879
            "--kv-cache-dtype",
880
            type=str,
Lianmin Zheng's avatar
Lianmin Zheng committed
881
882
883
            default=ServerArgs.kv_cache_dtype,
            choices=["auto", "fp8_e5m2", "fp8_e4m3"],
            help='Data type for kv cache storage. "auto" will use model data type. "fp8_e5m2" and "fp8_e4m3" is supported for CUDA 11.8+.',
884
        )
885

886
        # Memory and scheduling
Lianmin Zheng's avatar
Lianmin Zheng committed
887
888
889
890
        parser.add_argument(
            "--mem-fraction-static",
            type=float,
            default=ServerArgs.mem_fraction_static,
891
            help="The fraction of the memory used for static allocation (model weights and KV cache memory pool). Use a smaller value if you see out-of-memory errors.",
Lianmin Zheng's avatar
Lianmin Zheng committed
892
        )
893
894
895
896
897
898
        parser.add_argument(
            "--max-running-requests",
            type=int,
            default=ServerArgs.max_running_requests,
            help="The maximum number of running requests.",
        )
899
900
901
902
903
904
        parser.add_argument(
            "--max-queued-requests",
            type=int,
            default=ServerArgs.max_queued_requests,
            help="The maximum number of queued requests. This option is ignored when using disaggregation-mode.",
        )
905
906
907
908
        parser.add_argument(
            "--max-total-tokens",
            type=int,
            default=ServerArgs.max_total_tokens,
909
910
            help="The maximum number of tokens in the memory pool. If not specified, it will be automatically calculated based on the memory usage fraction. "
            "This option is typically used for development and debugging purposes.",
911
        )
912
913
914
915
        parser.add_argument(
            "--chunked-prefill-size",
            type=int,
            default=ServerArgs.chunked_prefill_size,
916
            help="The maximum number of tokens in a chunk for the chunked prefill. Setting this to -1 means disabling chunked prefill.",
917
918
919
920
921
922
923
        )
        parser.add_argument(
            "--max-prefill-tokens",
            type=int,
            default=ServerArgs.max_prefill_tokens,
            help="The maximum number of tokens in a prefill batch. The real bound will be the maximum of this value and the model's maximum context length.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
924
        parser.add_argument(
925
            "--schedule-policy",
Lianmin Zheng's avatar
Lianmin Zheng committed
926
            type=str,
927
            default=ServerArgs.schedule_policy,
928
            choices=["lpm", "random", "fcfs", "dfs-weight", "lof"],
929
            help="The scheduling policy of the requests.",
Lianmin Zheng's avatar
Lianmin Zheng committed
930
        )
931
932
933
934
        parser.add_argument(
            "--schedule-conservativeness",
            type=float,
            default=ServerArgs.schedule_conservativeness,
935
            help="How conservative the schedule policy is. A larger value means more conservative scheduling. Use a larger value if you see requests being retracted frequently.",
936
        )
937
938
939
940
        parser.add_argument(
            "--cpu-offload-gb",
            type=int,
            default=ServerArgs.cpu_offload_gb,
941
            help="How many GBs of RAM to reserve for CPU offloading.",
942
        )
943
944
945
946
947
948
        parser.add_argument(
            "--page-size",
            type=int,
            default=ServerArgs.page_size,
            help="The number of tokens in a page.",
        )
tarinkk's avatar
tarinkk committed
949
950
951
952
953
954
955
956
957
958
959
960
        parser.add_argument(
            "--hybrid-kvcache-ratio",
            nargs="?",
            const=0.5,
            type=float,
            default=ServerArgs.hybrid_kvcache_ratio,
            help=(
                "Mix ratio in [0,1] between uniform and hybrid kv buffers "
                "(0.0 = pure uniform: swa_size / full_size = 1)"
                "(1.0 = pure hybrid: swa_size / full_size = local_attention_size / context_length)"
            ),
        )
Hanming Lu's avatar
Hanming Lu committed
961
962
963
964
965
966
967
968
969
970
971
972
        parser.add_argument(
            "--swa-full-tokens-ratio",
            type=float,
            default=ServerArgs.swa_full_tokens_ratio,
            help="The ratio of SWA layer KV tokens / full layer KV tokens, regardless of the number of swa:full layers. It should be between 0 and 1. "
            "E.g. 0.5 means if each swa layer has 50 tokens, then each full layer has 100 tokens.",
        )
        parser.add_argument(
            "--disable-hybrid-swa-memory",
            action="store_true",
            help="Disable the hybrid SWA memory.",
        )
973

Lianmin Zheng's avatar
Lianmin Zheng committed
974
975
976
977
978
979
980
        # Runtime options
        parser.add_argument(
            "--device",
            type=str,
            default=ServerArgs.device,
            help="The device to use ('cuda', 'xpu', 'hpu', 'npu', 'cpu'). Defaults to auto-detection if not specified.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
981
        parser.add_argument(
982
            "--tensor-parallel-size",
Lianmin Zheng's avatar
Lianmin Zheng committed
983
            "--tp-size",
Lianmin Zheng's avatar
Lianmin Zheng committed
984
            type=int,
Lianmin Zheng's avatar
Lianmin Zheng committed
985
            default=ServerArgs.tp_size,
986
            help="The tensor parallelism size.",
987
        )
988
989
990
991
992
993
994
995
996
997
998
999
1000
        parser.add_argument(
            "--pipeline-parallel-size",
            "--pp-size",
            type=int,
            default=ServerArgs.pp_size,
            help="The pipeline parallelism size.",
        )
        parser.add_argument(
            "--max-micro-batch-size",
            type=int,
            default=ServerArgs.max_micro_batch_size,
            help="The maximum micro batch size in pipeline parallelism.",
        )
1001
1002
1003
        parser.add_argument(
            "--stream-interval",
            type=int,
Lianmin Zheng's avatar
Lianmin Zheng committed
1004
            default=ServerArgs.stream_interval,
1005
            help="The interval (or buffer size) for streaming in terms of the token length. A smaller value makes streaming smoother, while a larger value makes the throughput higher",
1006
        )
1007
1008
1009
1010
1011
        parser.add_argument(
            "--stream-output",
            action="store_true",
            help="Whether to output as a sequence of disjoint segments.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1012
1013
1014
1015
        parser.add_argument(
            "--random-seed",
            type=int,
            default=ServerArgs.random_seed,
1016
            help="The random seed.",
Lianmin Zheng's avatar
Lianmin Zheng committed
1017
        )
1018
1019
1020
1021
        parser.add_argument(
            "--constrained-json-whitespace-pattern",
            type=str,
            default=ServerArgs.constrained_json_whitespace_pattern,
Lianmin Zheng's avatar
Lianmin Zheng committed
1022
            help="(outlines backend only) Regex pattern for syntactic whitespaces allowed in JSON constrained output. For example, to allow the model generate consecutive whitespaces, set the pattern to [\n\t ]*",
1023
        )
1024
1025
1026
1027
1028
1029
        parser.add_argument(
            "--watchdog-timeout",
            type=float,
            default=ServerArgs.watchdog_timeout,
            help="Set watchdog timeout in seconds. If a forward batch takes longer than this, the server will crash to prevent hanging.",
        )
1030
1031
1032
1033
1034
1035
        parser.add_argument(
            "--dist-timeout",
            type=int,
            default=ServerArgs.dist_timeout,
            help="Set timeout for torch.distributed initialization.",
        )
1036
1037
1038
1039
        parser.add_argument(
            "--download-dir",
            type=str,
            default=ServerArgs.download_dir,
1040
            help="Model download directory for huggingface.",
1041
        )
1042
1043
1044
1045
1046
1047
        parser.add_argument(
            "--base-gpu-id",
            type=int,
            default=ServerArgs.base_gpu_id,
            help="The base GPU ID to start allocating GPUs from. Useful when running multiple instances on the same machine.",
        )
1048
1049
1050
1051
1052
1053
        parser.add_argument(
            "--gpu-id-step",
            type=int,
            default=ServerArgs.gpu_id_step,
            help="The delta between consecutive GPU IDs that are used. For example, setting it to 2 will use GPU 0,2,4,...",
        )
1054
1055
1056
1057
1058
        parser.add_argument(
            "--sleep-on-idle",
            action="store_true",
            help="Reduce CPU usage when sglang is idle.",
        )
1059
1060

        # Logging
Lianmin Zheng's avatar
Lianmin Zheng committed
1061
1062
1063
1064
        parser.add_argument(
            "--log-level",
            type=str,
            default=ServerArgs.log_level,
1065
            help="The logging level of all loggers.",
Lianmin Zheng's avatar
Lianmin Zheng committed
1066
        )
1067
        parser.add_argument(
1068
1069
1070
1071
            "--log-level-http",
            type=str,
            default=ServerArgs.log_level_http,
            help="The logging level of HTTP server. If not set, reuse --log-level by default.",
1072
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1073
        parser.add_argument(
1074
            "--log-requests",
Lianmin Zheng's avatar
Lianmin Zheng committed
1075
            action="store_true",
1076
1077
1078
1079
1080
            help="Log metadata, inputs, outputs of all requests. The verbosity is decided by --log-requests-level",
        )
        parser.add_argument(
            "--log-requests-level",
            type=int,
1081
            default=ServerArgs.log_requests_level,
1082
1083
1084
1085
1086
1087
1088
1089
            help="0: Log metadata (no sampling parameters). 1: Log metadata and sampling parameters. 2: Log metadata, sampling parameters and partial input/output. 3: Log every input/output.",
            choices=[0, 1, 2, 3],
        )
        parser.add_argument(
            "--crash-dump-folder",
            type=str,
            default=ServerArgs.crash_dump_folder,
            help="Folder path to dump requests from the last 5 min before a crash (if any). If not specified, crash dumping is disabled.",
Lianmin Zheng's avatar
Lianmin Zheng committed
1090
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1091
1092
1093
        parser.add_argument(
            "--show-time-cost",
            action="store_true",
Ying Sheng's avatar
Ying Sheng committed
1094
            help="Show time cost of custom marks.",
Lianmin Zheng's avatar
Lianmin Zheng committed
1095
        )
1096
1097
1098
1099
1100
        parser.add_argument(
            "--enable-metrics",
            action="store_true",
            help="Enable log prometheus metrics.",
        )
1101
1102
1103
1104
1105
1106
1107
        parser.add_argument(
            "--enable-metrics-for-all-schedulers",
            action="store_true",
            help="Enable --enable-metrics-for-all-schedulers when you want schedulers on all TP ranks (not just TP 0) "
            "to record request metrics separately. This is especially useful when dp_attention is enabled, as "
            "otherwise all metrics appear to come from TP 0.",
        )
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
        parser.add_argument(
            "--bucket-time-to-first-token",
            type=float,
            nargs="+",
            default=ServerArgs.bucket_time_to_first_token,
            help="The buckets of time to first token, specified as a list of floats.",
        )
        parser.add_argument(
            "--bucket-inter-token-latency",
            type=float,
            nargs="+",
            default=ServerArgs.bucket_inter_token_latency,
            help="The buckets of inter-token latency, specified as a list of floats.",
        )
        parser.add_argument(
            "--bucket-e2e-request-latency",
            type=float,
            nargs="+",
            default=ServerArgs.bucket_e2e_request_latency,
            help="The buckets of end-to-end request latency, specified as a list of floats.",
        )
        parser.add_argument(
            "--collect-tokens-histogram",
            action="store_true",
            default=ServerArgs.collect_tokens_histogram,
            help="Collect prompt/generation tokens histogram.",
        )
1135
1136
1137
1138
        parser.add_argument(
            "--decode-log-interval",
            type=int,
            default=ServerArgs.decode_log_interval,
1139
            help="The log interval of decode batch.",
1140
        )
1141
1142
1143
1144
1145
1146
        parser.add_argument(
            "--enable-request-time-stats-logging",
            action="store_true",
            default=ServerArgs.enable_request_time_stats_logging,
            help="Enable per request time stats logging",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1147
1148
1149
1150
1151
1152
        parser.add_argument(
            "--kv-events-config",
            type=str,
            default=None,
            help="Config in json format for NVIDIA dynamo KV event publishing. Publishing will be enabled if this flag is used.",
        )
1153

1154
        # API related
Liangsheng Yin's avatar
Liangsheng Yin committed
1155
1156
1157
1158
        parser.add_argument(
            "--api-key",
            type=str,
            default=ServerArgs.api_key,
1159
            help="Set API key of the server. It is also used in the OpenAI API compatible server.",
Liangsheng Yin's avatar
Liangsheng Yin committed
1160
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1161
1162
1163
1164
1165
1166
        parser.add_argument(
            "--served-model-name",
            type=str,
            default=ServerArgs.served_model_name,
            help="Override the model name returned by the v1/models endpoint in OpenAI API server.",
        )
1167
1168
1169
1170
1171
1172
        parser.add_argument(
            "--weight-version",
            type=str,
            default=ServerArgs.weight_version,
            help="Version identifier for the model weights. Defaults to 'default' if not specified.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
        parser.add_argument(
            "--chat-template",
            type=str,
            default=ServerArgs.chat_template,
            help="The buliltin chat template name or the path of the chat template file. This is only used for OpenAI-compatible API server.",
        )
        parser.add_argument(
            "--completion-template",
            type=str,
            default=ServerArgs.completion_template,
            help="The buliltin completion template name or the path of the completion template file. This is only used for OpenAI-compatible API server. only for code completion currently.",
        )
1185
        parser.add_argument(
1186
            "--file-storage-path",
1187
            type=str,
1188
            default=ServerArgs.file_storage_path,
1189
1190
            help="The path of the file storage in backend.",
        )
1191
1192
1193
1194
1195
        parser.add_argument(
            "--enable-cache-report",
            action="store_true",
            help="Return number of cached tokens in usage.prompt_tokens_details for each openai request.",
        )
Xihuai Wang's avatar
Xihuai Wang committed
1196
1197
1198
1199
1200
1201
1202
        parser.add_argument(
            "--reasoning-parser",
            type=str,
            choices=list(ReasoningParser.DetectorMap.keys()),
            default=ServerArgs.reasoning_parser,
            help=f"Specify the parser for reasoning models, supported parsers are: {list(ReasoningParser.DetectorMap.keys())}.",
        )
1203
1204
1205
        parser.add_argument(
            "--tool-call-parser",
            type=str,
1206
            choices=[  # TODO: use FunctionCallParser.DetectorMap.keys()
Atream's avatar
Atream committed
1207
1208
1209
1210
1211
1212
                "qwen25",
                "mistral",
                "llama3",
                "deepseekv3",
                "pythonic",
                "kimi_k2",
1213
                "qwen3_coder",
Yuxuan Zhang's avatar
Yuxuan Zhang committed
1214
                "glm45",
Chang Su's avatar
Chang Su committed
1215
                "step3",
1216
                "gpt-oss",
Atream's avatar
Atream committed
1217
            ],
1218
            default=ServerArgs.tool_call_parser,
Chang Su's avatar
Chang Su committed
1219
            help="Specify the parser for handling tool-call interactions. Options include: 'qwen25', 'mistral', 'llama3', 'deepseekv3', 'pythonic', 'kimi_k2', 'qwen3_coder', 'glm45', and 'step3'.",
1220
        )
1221
1222
1223
1224
1225
1226
        parser.add_argument(
            "--tool-server",
            type=str,
            default=None,
            help="Either 'demo' or a comma-separated list of tool server urls to use for the model. If not specified, no tool server will be used.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1227

1228
1229
        # Data parallelism
        parser.add_argument(
1230
            "--data-parallel-size",
1231
1232
1233
            "--dp-size",
            type=int,
            default=ServerArgs.dp_size,
1234
            help="The data parallelism size.",
1235
1236
1237
1238
1239
        )
        parser.add_argument(
            "--load-balance-method",
            type=str,
            default=ServerArgs.load_balance_method,
1240
            help="The load balancing strategy for data parallelism.",
1241
1242
1243
            choices=[
                "round_robin",
                "shortest_queue",
1244
                "minimum_tokens",
1245
1246
            ],
        )
1247

1248
        # Multi-node distributed serving
1249
        parser.add_argument(
1250
            "--dist-init-addr",
1251
            "--nccl-init-addr",  # For backward compatibility. This will be removed in the future.
1252
            type=str,
1253
            help="The host address for initializing distributed backend (e.g., `192.168.0.2:25000`).",
1254
1255
        )
        parser.add_argument(
Liangsheng Yin's avatar
Liangsheng Yin committed
1256
            "--nnodes", type=int, default=ServerArgs.nnodes, help="The number of nodes."
1257
        )
1258
1259
1260
        parser.add_argument(
            "--node-rank", type=int, default=ServerArgs.node_rank, help="The node rank."
        )
1261

Lianmin Zheng's avatar
Lianmin Zheng committed
1262
1263
1264
1265
1266
1267
1268
        # Model override args
        parser.add_argument(
            "--json-model-override-args",
            type=str,
            help="A dictionary in JSON string format used to override default model configurations.",
            default=ServerArgs.json_model_override_args,
        )
1269
1270
1271
1272
1273
        parser.add_argument(
            "--preferred-sampling-params",
            type=str,
            help="json-formatted sampling settings that will be returned in /get_model_info",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1274

1275
        # LoRA
1276
1277
1278
1279
1280
1281
        parser.add_argument(
            "--enable-lora",
            default=ServerArgs.enable_lora,
            action="store_true",
            help="Enable LoRA support for the model. This argument is automatically set to True if `--lora-paths` is provided for backward compatibility.",
        )
1282
1283
1284
1285
1286
1287
1288
1289
1290
        parser.add_argument(
            "--max-lora-rank",
            default=ServerArgs.max_lora_rank,
            type=int,
            help="The maximum rank of LoRA adapters. If not specified, it will be automatically inferred from the adapters provided in --lora-paths.",
        )
        parser.add_argument(
            "--lora-target-modules",
            type=str,
1291
            choices=SUPPORTED_LORA_TARGET_MODULES + [LORA_TARGET_ALL_MODULES],
1292
1293
            nargs="*",
            default=None,
1294
1295
1296
            help="The union set of all target modules where LoRA should be applied. If not specified, "
            "it will be automatically inferred from the adapters provided in --lora-paths. If 'all' is specified, "
            "all supported modules will be targeted.",
1297
        )
1298
1299
1300
1301
1302
1303
        parser.add_argument(
            "--lora-paths",
            type=str,
            nargs="*",
            default=None,
            action=LoRAPathAction,
1304
            help="The list of LoRA adapters. You can provide a list of either path in str or renamed path in the format {name}={path}.",
1305
1306
1307
1308
1309
        )
        parser.add_argument(
            "--max-loras-per-batch",
            type=int,
            default=8,
1310
1311
            help="Maximum number of adapters for a running batch, include base-only request.",
        )
1312
1313
1314
1315
1316
1317
        parser.add_argument(
            "--max-loaded-loras",
            type=int,
            default=ServerArgs.max_loaded_loras,
            help="If specified, it limits the maximum number of LoRA adapters loaded in CPU memory at a time. The value must be greater than or equal to `--max-loras-per-batch`.",
        )
1318
1319
1320
1321
1322
        parser.add_argument(
            "--lora-backend",
            type=str,
            default="triton",
            help="Choose the kernel backend for multi-LoRA serving.",
1323
1324
1325
        )

        # Kernel backend
1326
        ATTN_BACKENDS = [
Lianmin Zheng's avatar
Lianmin Zheng committed
1327
1328
1329
1330
            # Common
            "triton",
            "torch_native",
            # NVIDIA specific
1331
1332
1333
1334
1335
1336
1337
            "cutlass_mla",
            "fa3",
            "flashinfer",
            "flashmla",
            "trtllm_mla",
            "trtllm_mha",
            "dual_chunk_flash_attn",
Lianmin Zheng's avatar
Lianmin Zheng committed
1338
1339
            # AMD specific
            "aiter",
1340
            "wave",
Lianmin Zheng's avatar
Lianmin Zheng committed
1341
1342
1343
            # Other platforms
            "intel_amx",
            "ascend",
1344
        ]
1345
1346
1347
        parser.add_argument(
            "--attention-backend",
            type=str,
1348
            choices=ATTN_BACKENDS,
1349
1350
1351
            default=ServerArgs.attention_backend,
            help="Choose the kernels for attention layers.",
        )
1352
1353
1354
        parser.add_argument(
            "--prefill-attention-backend",
            type=str,
1355
            choices=ATTN_BACKENDS,
1356
1357
1358
            default=ServerArgs.prefill_attention_backend,
            help="Choose the kernels for prefill attention layers (have priority over --attention-backend).",
        )
1359
1360
1361
1362
1363
1364
1365
        parser.add_argument(
            "--decode-attention-backend",
            type=str,
            choices=ATTN_BACKENDS,
            default=ServerArgs.decode_attention_backend,
            help="Choose the kernels for decode attention layers (have priority over --attention-backend).",
        )
1366
1367
1368
1369
1370
1371
1372
        parser.add_argument(
            "--sampling-backend",
            type=str,
            choices=["flashinfer", "pytorch"],
            default=ServerArgs.sampling_backend,
            help="Choose the kernels for sampling layers.",
        )
1373
1374
1375
        parser.add_argument(
            "--grammar-backend",
            type=str,
1376
            choices=["xgrammar", "outlines", "llguidance", "none"],
1377
            default=ServerArgs.grammar_backend,
Lianmin Zheng's avatar
Lianmin Zheng committed
1378
            help="Choose the backend for grammar-guided decoding.",
1379
        )
1380
1381
1382
1383
1384
1385
1386
        parser.add_argument(
            "--mm-attention-backend",
            type=str,
            choices=["sdpa", "fa3", "triton_attn"],
            default=ServerArgs.mm_attention_backend,
            help="Set multimodal attention backend.",
        )
1387

1388
1389
1390
1391
        # Speculative decoding
        parser.add_argument(
            "--speculative-algorithm",
            type=str,
James Liu's avatar
James Liu committed
1392
            choices=["EAGLE", "EAGLE3", "NEXTN"],
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
            help="Speculative algorithm.",
        )
        parser.add_argument(
            "--speculative-draft-model-path",
            type=str,
            help="The path of the draft model weights. This can be a local folder or a Hugging Face repo ID.",
        )
        parser.add_argument(
            "--speculative-num-steps",
            type=int,
            help="The number of steps sampled from draft model in Speculative Decoding.",
            default=ServerArgs.speculative_num_steps,
        )
        parser.add_argument(
            "--speculative-eagle-topk",
            type=int,
1409
            help="The number of tokens sampled from the draft model in eagle2 each step.",
1410
1411
            default=ServerArgs.speculative_eagle_topk,
        )
1412
1413
1414
        parser.add_argument(
            "--speculative-num-draft-tokens",
            type=int,
1415
            help="The number of tokens sampled from the draft model in Speculative Decoding.",
1416
1417
            default=ServerArgs.speculative_num_draft_tokens,
        )
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
        parser.add_argument(
            "--speculative-accept-threshold-single",
            type=float,
            help="Accept a draft token if its probability in the target model is greater than this threshold.",
            default=ServerArgs.speculative_accept_threshold_single,
        )
        parser.add_argument(
            "--speculative-accept-threshold-acc",
            type=float,
            help="The accept probability of a draft token is raised from its target probability p to min(1, p / threshold_acc).",
            default=ServerArgs.speculative_accept_threshold_acc,
        )
1430
1431
1432
1433
1434
1435
        parser.add_argument(
            "--speculative-token-map",
            type=str,
            help="The path of the draft model's small vocab table.",
            default=ServerArgs.speculative_token_map,
        )
1436
1437
1438
1439
1440

        # Expert parallelism
        parser.add_argument(
            "--expert-parallel-size",
            "--ep-size",
Cheng Wan's avatar
Cheng Wan committed
1441
            "--ep",
1442
1443
1444
1445
1446
            type=int,
            default=ServerArgs.ep_size,
            help="The expert parallelism size.",
        )
        parser.add_argument(
1447
1448
1449
1450
1451
            "--moe-a2a-backend",
            type=str,
            choices=["deepep"],
            default=ServerArgs.moe_a2a_backend,
            help="Choose the backend for MoE A2A.",
1452
        )
1453
        parser.add_argument(
1454
            "--enable-flashinfer-cutlass-moe",
1455
            action="store_true",
1456
            help="Enable FlashInfer CUTLASS MoE backend for modelopt_fp4 quant on Blackwell. Supports MoE-EP",
1457
        )
1458
        parser.add_argument(
1459
1460
            "--enable-flashinfer-trtllm-moe",
            action="store_true",
1461
            help="Enable FlashInfer TRTLLM MoE backend on Blackwell. Supports BlockScale FP8 MoE-EP",
1462
1463
        )
        parser.add_argument(
1464
1465
            "--enable-flashinfer-allreduce-fusion",
            action="store_true",
1466
            help="Enable FlashInfer allreduce fusion with Residual RMSNorm.",
1467
        )
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
        parser.add_argument(
            "--deepep-mode",
            type=str,
            choices=["normal", "low_latency", "auto"],
            default="auto",
            help="Select the mode when enable DeepEP MoE, could be `normal`, `low_latency` or `auto`. Default is `auto`, which means `low_latency` for decode batch and `normal` for prefill batch.",
        )
        parser.add_argument(
            "--ep-num-redundant-experts",
            type=int,
            default=ServerArgs.ep_num_redundant_experts,
            help="Allocate this number of redundant experts in expert parallel.",
        )
        parser.add_argument(
            "--ep-dispatch-algorithm",
            type=str,
            default=ServerArgs.ep_dispatch_algorithm,
            help="The algorithm to choose ranks for redundant experts in expert parallel.",
        )
        parser.add_argument(
            "--init-expert-location",
            type=str,
            default=ServerArgs.init_expert_location,
            help="Initial location of EP experts.",
        )
        parser.add_argument(
            "--enable-eplb",
            action="store_true",
            help="Enable EPLB algorithm",
        )
        parser.add_argument(
            "--eplb-algorithm",
            type=str,
            default=ServerArgs.eplb_algorithm,
            help="Chosen EPLB algorithm",
        )
        parser.add_argument(
            "--eplb-rebalance-num-iterations",
            type=int,
            default=ServerArgs.eplb_rebalance_num_iterations,
            help="Number of iterations to automatically trigger a EPLB re-balance.",
        )
        parser.add_argument(
            "--eplb-rebalance-layers-per-chunk",
            type=int,
            default=ServerArgs.eplb_rebalance_layers_per_chunk,
            help="Number of layers to rebalance per forward pass.",
        )
        parser.add_argument(
            "--expert-distribution-recorder-mode",
            type=str,
            default=ServerArgs.expert_distribution_recorder_mode,
            help="Mode of expert distribution recorder.",
        )
        parser.add_argument(
            "--expert-distribution-recorder-buffer-size",
            type=int,
            default=ServerArgs.expert_distribution_recorder_buffer_size,
            help="Circular buffer size of expert distribution recorder. Set to -1 to denote infinite buffer.",
        )
        parser.add_argument(
            "--enable-expert-distribution-metrics",
            action="store_true",
            help="Enable logging metrics for expert balancedness",
        )
        parser.add_argument(
            "--deepep-config",
            type=str,
            default=ServerArgs.deepep_config,
            help="Tuned DeepEP config suitable for your own cluster. It can be either a string with JSON content or a file path.",
        )
        parser.add_argument(
            "--moe-dense-tp-size",
            type=int,
            default=ServerArgs.moe_dense_tp_size,
            help="TP size for MoE dense MLP layers. This flag is useful when, with large TP size, there are errors caused by weights in MLP layers having dimension smaller than the min dimension GEMM supports.",
        )
1545

Lianmin Zheng's avatar
Lianmin Zheng committed
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
        # Hierarchical cache
        parser.add_argument(
            "--enable-hierarchical-cache",
            action="store_true",
            help="Enable hierarchical cache",
        )
        parser.add_argument(
            "--hicache-ratio",
            type=float,
            default=ServerArgs.hicache_ratio,
            help="The ratio of the size of host KV cache memory pool to the size of device pool.",
        )
        parser.add_argument(
            "--hicache-size",
            type=int,
            default=ServerArgs.hicache_size,
            help="The size of host KV cache memory pool in gigabytes, which will override the hicache_ratio if set.",
        )
        parser.add_argument(
            "--hicache-write-policy",
            type=str,
            choices=["write_back", "write_through", "write_through_selective"],
            default=ServerArgs.hicache_write_policy,
            help="The write policy of hierarchical cache.",
        )
        parser.add_argument(
            "--hicache-io-backend",
            type=str,
            choices=["direct", "kernel"],
            default=ServerArgs.hicache_io_backend,
            help="The IO backend for KV cache transfer between CPU and GPU",
        )
1578
1579
1580
1581
1582
1583
1584
        parser.add_argument(
            "--hicache-mem-layout",
            type=str,
            choices=["layer_first", "page_first"],
            default=ServerArgs.hicache_mem_layout,
            help="The layout of host memory pool for hierarchical cache.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1585
1586
1587
        parser.add_argument(
            "--hicache-storage-backend",
            type=str,
1588
            choices=["file", "mooncake", "hf3fs", "nixl"],
Lianmin Zheng's avatar
Lianmin Zheng committed
1589
1590
1591
            default=ServerArgs.hicache_storage_backend,
            help="The storage backend for hierarchical KV cache.",
        )
pansicheng's avatar
pansicheng committed
1592
1593
1594
1595
1596
1597
1598
        parser.add_argument(
            "--hicache-storage-prefetch-policy",
            type=str,
            choices=["best_effort", "wait_complete", "timeout"],
            default=ServerArgs.hicache_storage_prefetch_policy,
            help="Control when prefetching from the storage backend should stop.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1599

1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
        # Double Sparsity
        parser.add_argument(
            "--enable-double-sparsity",
            action="store_true",
            help="Enable double sparsity attention",
        )
        parser.add_argument(
            "--ds-channel-config-path",
            type=str,
            default=ServerArgs.ds_channel_config_path,
            help="The path of the double sparsity channel config",
        )
        parser.add_argument(
            "--ds-heavy-channel-num",
            type=int,
            default=ServerArgs.ds_heavy_channel_num,
            help="The number of heavy channels in double sparsity attention",
        )
        parser.add_argument(
            "--ds-heavy-token-num",
            type=int,
            default=ServerArgs.ds_heavy_token_num,
            help="The number of heavy tokens in double sparsity attention",
        )
        parser.add_argument(
            "--ds-heavy-channel-type",
            type=str,
            default=ServerArgs.ds_heavy_channel_type,
            help="The type of heavy channels in double sparsity attention",
        )
        parser.add_argument(
            "--ds-sparse-decode-threshold",
            type=int,
            default=ServerArgs.ds_sparse_decode_threshold,
            help="The type of heavy channels in double sparsity attention",
        )

1637
        # Optimization/debug options
Liangsheng Yin's avatar
Liangsheng Yin committed
1638
        parser.add_argument(
Lianmin Zheng's avatar
Lianmin Zheng committed
1639
            "--disable-radix-cache",
Liangsheng Yin's avatar
Liangsheng Yin committed
1640
            action="store_true",
Ying Sheng's avatar
Ying Sheng committed
1641
            help="Disable RadixAttention for prefix caching.",
Liangsheng Yin's avatar
Liangsheng Yin committed
1642
        )
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
        parser.add_argument(
            "--cuda-graph-max-bs",
            type=int,
            default=ServerArgs.cuda_graph_max_bs,
            help="Set the maximum batch size for cuda graph. It will extend the cuda graph capture batch size to this value.",
        )
        parser.add_argument(
            "--cuda-graph-bs",
            type=int,
            nargs="+",
            help="Set the list of batch sizes for cuda graph.",
        )
1655
1656
1657
        parser.add_argument(
            "--disable-cuda-graph",
            action="store_true",
1658
            help="Disable cuda graph.",
1659
        )
1660
        parser.add_argument(
1661
1662
            "--disable-cuda-graph-padding",
            action="store_true",
1663
            help="Disable cuda graph when padding is needed. Still uses cuda graph when padding is not needed.",
1664
        )
1665
1666
1667
1668
1669
        parser.add_argument(
            "--enable-profile-cuda-graph",
            action="store_true",
            help="Enable profiling of cuda graph capture.",
        )
1670
1671
1672
1673
1674
        parser.add_argument(
            "--enable-cudagraph-gc",
            action="store_true",
            help="Enable garbage collection during CUDA graph capture. If disabled (default), GC is frozen during capture to speed up the process.",
        )
1675
1676
1677
1678
1679
        parser.add_argument(
            "--enable-nccl-nvls",
            action="store_true",
            help="Enable NCCL NVLS for prefill heavy requests when available.",
        )
1680
1681
1682
1683
1684
        parser.add_argument(
            "--enable-symm-mem",
            action="store_true",
            help="Enable NCCL symmetric memory for fast collectives.",
        )
1685
1686
1687
1688
1689
        parser.add_argument(
            "--enable-tokenizer-batch-encode",
            action="store_true",
            help="Enable batch tokenization for improved performance when processing multiple text inputs. Do not use with image inputs, pre-tokenized input_ids, or input_embeds.",
        )
1690
        parser.add_argument(
1691
            "--disable-outlines-disk-cache",
1692
            action="store_true",
1693
            help="Disable disk cache of outlines to avoid possible crashes related to file system or high concurrency.",
1694
        )
1695
1696
1697
1698
1699
        parser.add_argument(
            "--disable-custom-all-reduce",
            action="store_true",
            help="Disable the custom all-reduce kernel and fall back to NCCL.",
        )
1700
1701
1702
1703
1704
        parser.add_argument(
            "--enable-mscclpp",
            action="store_true",
            help="Enable using mscclpp for small messages for all-reduce kernel and fall back to NCCL.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1705
        parser.add_argument(
1706
            "--disable-overlap-schedule",
Lianmin Zheng's avatar
Lianmin Zheng committed
1707
            action="store_true",
1708
            help="Disable the overlap scheduler, which overlaps the CPU scheduler with GPU model worker.",
Lianmin Zheng's avatar
Lianmin Zheng committed
1709
        )
1710
1711
1712
        parser.add_argument(
            "--enable-mixed-chunk",
            action="store_true",
1713
            help="Enabling mixing prefill and decode in a batch when using chunked prefill.",
1714
        )
Ke Bao's avatar
Ke Bao committed
1715
1716
1717
        parser.add_argument(
            "--enable-dp-attention",
            action="store_true",
1718
            help="Enabling data parallelism for attention and tensor parallelism for FFN. The dp size should be equal to the tp size. Currently DeepSeek-V2 and Qwen 2/3 MoE models are supported.",
Ke Bao's avatar
Ke Bao committed
1719
        )
1720
1721
1722
1723
1724
        parser.add_argument(
            "--enable-dp-lm-head",
            action="store_true",
            help="Enable vocabulary parallel across the attention TP group to avoid all-gather across DP groups, optimizing performance under DP attention.",
        )
1725
1726
1727
1728
1729
        parser.add_argument(
            "--enable-two-batch-overlap",
            action="store_true",
            help="Enabling two micro batches to overlap.",
        )
1730
1731
1732
1733
1734
1735
        parser.add_argument(
            "--tbo-token-distribution-threshold",
            type=float,
            default=ServerArgs.tbo_token_distribution_threshold,
            help="The threshold of token distribution between two batches in micro-batch-overlap, determines whether to two-batch-overlap or two-chunk-overlap. Set to 0 denote disable two-chunk-overlap.",
        )
1736
1737
1738
        parser.add_argument(
            "--enable-torch-compile",
            action="store_true",
1739
1740
            help="Optimize the model with torch.compile. Experimental feature.",
        )
1741
        parser.add_argument(
1742
            "--torch-compile-max-bs",
1743
            type=int,
1744
            default=ServerArgs.torch_compile_max_bs,
1745
1746
            help="Set the maximum batch size when using torch compile.",
        )
1747
1748
1749
1750
        parser.add_argument(
            "--torchao-config",
            type=str,
            default=ServerArgs.torchao_config,
1751
            help="Optimize the model with torchao. Experimental feature. Current choices are: int8dq, int8wo, int4wo-<group_size>, fp8wo, fp8dq-per_tensor, fp8dq-per_row",
1752
        )
1753
1754
1755
1756
1757
        parser.add_argument(
            "--enable-nan-detection",
            action="store_true",
            help="Enable the NaN detection for debugging purposes.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1758
        parser.add_argument(
1759
            "--enable-p2p-check",
Lianmin Zheng's avatar
Lianmin Zheng committed
1760
            action="store_true",
1761
            help="Enable P2P check for GPU access, otherwise the p2p access is allowed by default.",
Lianmin Zheng's avatar
Lianmin Zheng committed
1762
        )
1763
        parser.add_argument(
1764
            "--triton-attention-reduce-in-fp32",
1765
            action="store_true",
1766
            help="Cast the intermediate attention results to fp32 to avoid possible crashes related to fp16."
1767
            "This only affects Triton attention kernels.",
1768
        )
1769
1770
1771
1772
1773
1774
        parser.add_argument(
            "--triton-attention-num-kv-splits",
            type=int,
            default=ServerArgs.triton_attention_num_kv_splits,
            help="The number of KV splits in flash decoding Triton kernel. Larger value is better in longer context scenarios. The default value is 8.",
        )
1775
1776
1777
1778
1779
1780
1781
1782
        parser.add_argument(
            "--num-continuous-decode-steps",
            type=int,
            default=ServerArgs.num_continuous_decode_steps,
            help="Run multiple continuous decoding steps to reduce scheduling overhead. "
            "This can potentially increase throughput but may also increase time-to-first-token latency. "
            "The default value is 1, meaning only run one decoding step at a time.",
        )
1783
1784
1785
1786
1787
        parser.add_argument(
            "--delete-ckpt-after-loading",
            action="store_true",
            help="Delete the model checkpoint after loading the model.",
        )
1788
1789
1790
1791
1792
        parser.add_argument(
            "--enable-memory-saver",
            action="store_true",
            help="Allow saving memory using release_memory_occupation and resume_memory_occupation",
        )
1793
1794
1795
1796
1797
        parser.add_argument(
            "--allow-auto-truncate",
            action="store_true",
            help="Allow automatically truncating requests that exceed the maximum input length instead of returning an error.",
        )
1798
1799
1800
1801
1802
        parser.add_argument(
            "--enable-custom-logit-processor",
            action="store_true",
            help="Enable users to pass custom logit processors to the server (disabled by default for security)",
        )
1803
        parser.add_argument(
1804
            "--flashinfer-mla-disable-ragged",
1805
            action="store_true",
1806
            help="Not using ragged prefill wrapper when running flashinfer mla",
1807
        )
1808
        parser.add_argument(
1809
1810
1811
            "--disable-shared-experts-fusion",
            action="store_true",
            help="Disable shared experts fusion optimization for deepseek v3/r1.",
1812
        )
1813
1814
1815
1816
1817
        parser.add_argument(
            "--disable-chunked-prefix-cache",
            action="store_true",
            help="Disable chunked prefix cache feature for deepseek, which should save overhead for short sequences.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1818
1819
1820
1821
1822
        parser.add_argument(
            "--disable-fast-image-processor",
            action="store_true",
            help="Adopt base image processor instead of fast image processor.",
        )
1823
1824
1825
1826
1827
        parser.add_argument(
            "--enable-return-hidden-states",
            action="store_true",
            help="Enable returning hidden states with responses.",
        )
Yuan Luo's avatar
Yuan Luo committed
1828
1829
1830
1831
1832
        parser.add_argument(
            "--enable-triton-kernel-moe",
            action="store_true",
            help="Use triton moe grouped gemm kernel.",
        )
1833
1834
1835
1836
1837
        parser.add_argument(
            "--enable-flashinfer-mxfp4-moe",
            action="store_true",
            help="Enable FlashInfer MXFP4 MoE backend for modelopt_fp4 quant on Blackwell.",
        )
1838
1839
1840
1841
1842
1843
        parser.add_argument(
            "--scheduler-recv-interval",
            type=int,
            default=ServerArgs.scheduler_recv_interval,
            help="The interval to poll requests in scheduler. Can be set to >1 to reduce the overhead of this.",
        )
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863

        # Debug tensor dumps
        parser.add_argument(
            "--debug-tensor-dump-output-folder",
            type=str,
            default=ServerArgs.debug_tensor_dump_output_folder,
            help="The output folder for dumping tensors.",
        )
        parser.add_argument(
            "--debug-tensor-dump-input-file",
            type=str,
            default=ServerArgs.debug_tensor_dump_input_file,
            help="The input filename for dumping tensors",
        )
        parser.add_argument(
            "--debug-tensor-dump-inject",
            type=str,
            default=ServerArgs.debug_tensor_dump_inject,
            help="Inject the outputs from jax as the input of every layer.",
        )
1864
1865
1866
1867
1868
        parser.add_argument(
            "--debug-tensor-dump-prefill-only",
            action="store_true",
            help="Only dump the tensors for prefill requests (i.e. batch size > 1).",
        )
1869

Lianmin Zheng's avatar
Lianmin Zheng committed
1870
        # PD disaggregation
Byron Hsu's avatar
Byron Hsu committed
1871
1872
1873
1874
1875
1876
1877
        parser.add_argument(
            "--disaggregation-mode",
            type=str,
            default="null",
            choices=["null", "prefill", "decode"],
            help='Only used for PD disaggregation. "prefill" for prefill-only server, and "decode" for decode-only server. If not specified, it is not PD disaggregated',
        )
1878
1879
1880
1881
        parser.add_argument(
            "--disaggregation-transfer-backend",
            type=str,
            default=ServerArgs.disaggregation_transfer_backend,
1882
            choices=["mooncake", "nixl", "ascend"],
1883
1884
            help="The backend for disaggregation transfer. Default is mooncake.",
        )
1885
1886
1887
1888
1889
1890
        parser.add_argument(
            "--disaggregation-bootstrap-port",
            type=int,
            default=ServerArgs.disaggregation_bootstrap_port,
            help="Bootstrap server port on the prefill server. Default is 8998.",
        )
Byron Hsu's avatar
Byron Hsu committed
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
        parser.add_argument(
            "--disaggregation-decode-tp",
            type=int,
            default=ServerArgs.disaggregation_decode_tp,
            help="Decode tp size. If not set, it matches the tp size of the current engine. This is only set on the prefill server.",
        )
        parser.add_argument(
            "--disaggregation-decode-dp",
            type=int,
            default=ServerArgs.disaggregation_decode_dp,
            help="Decode dp size. If not set, it matches the dp size of the current engine. This is only set on the prefill server.",
        )
        parser.add_argument(
            "--disaggregation-prefill-pp",
            type=int,
            default=ServerArgs.disaggregation_prefill_pp,
            help="Prefill pp size. If not set, it is default to 1. This is only set on the decode server.",
        )
1909
1910
1911
1912
        parser.add_argument(
            "--disaggregation-ib-device",
            type=str,
            default=ServerArgs.disaggregation_ib_device,
1913
1914
1915
            help="The InfiniBand devices for disaggregation transfer, accepts single device (e.g., --disaggregation-ib-device mlx5_0) "
            "or multiple comma-separated devices (e.g., --disaggregation-ib-device mlx5_0,mlx5_1). "
            "Default is None, which triggers automatic device detection when mooncake backend is enabled.",
1916
        )
1917
1918
1919
1920
1921
1922
        parser.add_argument(
            "--num-reserved-decode-tokens",
            type=int,
            default=ServerArgs.num_reserved_decode_tokens,
            help="Number of decode tokens that will have memory reserved when adding new request to the running batch.",
        )
1923
1924
1925
1926
1927
1928
        parser.add_argument(
            "--pdlb-url",
            type=str,
            default=None,
            help="The URL of the PD disaggregation load balancer. If set, the prefill/decode server will register with the load balancer.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1929
1930

        # Custom weight loader
1931
1932
1933
1934
1935
1936
1937
        parser.add_argument(
            "--custom-weight-loader",
            type=str,
            nargs="*",
            default=None,
            help="The custom dataloader which used to update the model. Should be set with a valid import path, such as my_package.weight_load_func",
        )
1938
1939
1940
1941
1942
        parser.add_argument(
            "--enable-pdmux",
            action="store_true",
            help="Enable PD-Multiplexing, PD running on greenctx stream.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1943
1944

        # For PD-Multiplexing
1945
1946
1947
1948
1949
1950
        parser.add_argument(
            "--sm-group-num",
            type=int,
            default=ServerArgs.sm_group_num,
            help="Number of sm partition groups.",
        )
1951
1952
1953
1954
1955
        parser.add_argument(
            "--weight-loader-disable-mmap",
            action="store_true",
            help="Disable mmap while loading weight using safetensors.",
        )
Byron Hsu's avatar
Byron Hsu committed
1956

1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
        # Deprecated arguments
        parser.add_argument(
            "--enable-ep-moe",
            action="store_true",
            help="(Deprecated) Enabling expert parallelism for moe. The ep size is equal to the tp size.",
        )
        parser.add_argument(
            "--enable-deepep-moe",
            action="store_true",
            help="(Deprecated) Enabling DeepEP MoE implementation for EP MoE.",
        )

Lianmin Zheng's avatar
Lianmin Zheng committed
1969
1970
    @classmethod
    def from_cli_args(cls, args: argparse.Namespace):
1971
        args.tp_size = args.tensor_parallel_size
1972
        args.pp_size = args.pipeline_parallel_size
1973
        args.dp_size = args.data_parallel_size
xiaobochen's avatar
xiaobochen committed
1974
        args.ep_size = args.expert_parallel_size
Lianmin Zheng's avatar
Lianmin Zheng committed
1975
1976
1977
1978
        attrs = [attr.name for attr in dataclasses.fields(cls)]
        return cls(**{attr: getattr(args, attr) for attr in attrs})

    def url(self):
1979
        if is_valid_ipv6_address(self.host):
1980
1981
1982
            return f"http://[{self.host}]:{self.port}"
        else:
            return f"http://{self.host}:{self.port}"
Lianmin Zheng's avatar
Lianmin Zheng committed
1983

Lianmin Zheng's avatar
Lianmin Zheng committed
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
    def get_hf_config(self):
        kwargs = {}
        hf_config = get_config(
            self.model_path,
            trust_remote_code=self.trust_remote_code,
            revision=self.revision,
            model_override_args=json.loads(self.json_model_override_args),
            **kwargs,
        )
        return hf_config

1995
    def check_server_args(self):
1996
        # Check parallel size constraints
1997
        assert (
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
            self.tp_size * self.pp_size
        ) % self.nnodes == 0, "tp_size must be divisible by number of nodes"

        if self.pp_size > 1:
            assert (
                self.disable_overlap_schedule
                and self.speculative_algorithm is None
                and not self.enable_mixed_chunk
            ), "Pipeline parallelism is not compatible with overlap schedule, speculative decoding, mixed chunked prefill."

2008
        assert not (
2009
2010
            self.dp_size > 1 and self.nnodes != 1 and not self.enable_dp_attention
        ), "multi-node data parallel is not supported unless dp attention!"
2011

2012
        assert self.base_gpu_id >= 0, "base_gpu_id must be non-negative"
2013
        assert self.gpu_id_step >= 1, "gpu_id_step must be positive"
2014

Lianmin Zheng's avatar
Lianmin Zheng committed
2015
2016
2017
2018
2019
        assert self.moe_dense_tp_size in {
            1,
            None,
        }, "moe_dense_tp_size only support 1 and None currently"

2020
        # Check LoRA
2021
2022
        self.check_lora_server_args()

2023
2024
2025
2026
2027
2028
2029
        # Check speculative decoding
        if self.speculative_algorithm is not None:
            assert (
                not self.enable_mixed_chunk
            ), "enable_mixed_chunk is required for speculative decoding"

        # Check chunked prefill
2030
2031
2032
2033
2034
        # Skip validation if chunked prefill is disabled (i.e., size <= 0).
        if self.chunked_prefill_size > 0:
            assert (
                self.chunked_prefill_size % self.page_size == 0
            ), "chunked_prefill_size must be divisible by page_size"
2035

2036
    def check_lora_server_args(self):
2037
        assert self.max_loras_per_batch > 0, "max_loras_per_batch must be positive"
2038

2039
2040
2041
2042
        # Enable LoRA if any LoRA paths are provided for backward compatibility.
        if self.lora_paths:
            if self.enable_lora is None:
                self.enable_lora = True
2043
                logger.warning(
2044
2045
2046
2047
2048
2049
2050
2051
2052
                    "--enable-lora is set to True because --lora-paths is provided."
                )
            elif self.enable_lora is False:
                logger.warning(
                    "--enable-lora is set to False, any provided lora_paths will be ignored."
                )

        if self.enable_lora:
            # Normalize lora_paths to a dictionary if it is a list.
2053
            # TODO (lifuhuang): support specifying pinned adapters in server_args.
2054
2055
2056
2057
2058
2059
            if isinstance(self.lora_paths, list):
                lora_paths = self.lora_paths
                self.lora_paths = {}
                for lora_path in lora_paths:
                    if "=" in lora_path:
                        name, path = lora_path.split("=", 1)
2060
2061
2062
                        self.lora_paths[name] = LoRARef(
                            lora_name=name, lora_path=path, pinned=False
                        )
2063
                    else:
2064
                        self.lora_paths[lora_path] = LoRARef(
2065
                            lora_name=lora_path, lora_path=lora_path, pinned=False
2066
2067
2068
                        )
            elif isinstance(self.lora_paths, dict):
                self.lora_paths = {
2069
                    k: LoRARef(lora_name=k, lora_path=v, pinned=False)
2070
2071
2072
2073
2074
2075
2076
2077
2078
                    for k, v in self.lora_paths.items()
                }
            elif self.lora_paths is None:
                self.lora_paths = {}
            else:
                raise ValueError(
                    f"Invalid type for --lora-paths: {type(self.lora_paths)}. "
                    "Expected a list or a dictionary."
                )
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092

            # Expand target modules
            if self.lora_target_modules:
                self.lora_target_modules = set(self.lora_target_modules)
                if "all" in self.lora_target_modules:
                    assert (
                        len(self.lora_target_modules) == 1
                    ), "If 'all' is specified in --lora-target-modules, it should be the only module specified."
                    self.lora_target_modules = set(SUPPORTED_LORA_TARGET_MODULES)

            # Ensure sufficient information is provided for LoRA initialization.
            assert self.lora_paths or (
                self.max_lora_rank and self.lora_target_modules
            ), "When no initial --lora-paths is provided, you need to specify both --max-lora-rank and --lora-target-modules for LoRA initialization."
2093

2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
            # Validate max_loaded_loras
            if self.max_loaded_loras is not None:
                assert self.max_loaded_loras >= self.max_loras_per_batch, (
                    "max_loaded_loras should be greater than or equal to max_loras_per_batch. "
                    f"max_loaded_loras={self.max_loaded_loras}, max_loras_per_batch={self.max_loras_per_batch}"
                )
                assert (
                    not self.lora_paths or len(self.lora_paths) <= self.max_loaded_loras
                ), (
                    "The number of LoRA paths should not exceed max_loaded_loras. "
                    f"max_loaded_loras={self.max_loaded_loras}, lora_paths={len(self.lora_paths)}"
                )

Lianmin Zheng's avatar
Lianmin Zheng committed
2107
2108
2109
2110
2111
2112
2113
2114
    def validate_disagg_tp_size(self, prefill_tp: int, decode_tp: int):
        larger_tp = max(decode_tp, prefill_tp)
        smaller_tp = min(decode_tp, prefill_tp)
        assert larger_tp % smaller_tp == 0, (
            "Different tp size is supported only when one tp is multiple of the other. "
            f"decode_tp={decode_tp}, prefill_tp={prefill_tp}"
        )

2115
2116
2117
2118
2119
2120
    def model_specific_adjustments(self):
        hf_config = self.get_hf_config()
        model_arch = hf_config.architectures[0]
        if model_arch in ["GptOssForCausalLM"]:
            if self.attention_backend is None:
                self.attention_backend = "triton"
2121
2122
2123
2124
            supported_backends = ["triton", "trtllm_mha", "fa3"]
            assert (
                self.attention_backend in supported_backends
            ), f"GptOssForCausalLM requires one of {supported_backends} attention backend, but got '{self.attention_backend}'"
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
            quantization_config = getattr(hf_config, "quantization_config", None)
            is_mxfp4_quant_format = (
                quantization_config is not None
                and quantization_config.get("quant_method") == "mxfp4"
            )

            if is_sm100_supported() and is_mxfp4_quant_format:
                self.enable_flashinfer_mxfp4_moe = True
                self.enable_triton_kernel_moe = False
                logger.warning(
                    "Detected SM100 and MXFP4 quantization format for GPT-OSS model, enabling FlashInfer MXFP4 MOE kernel."
                )
            else:
                if self.enable_triton_kernel_moe:
                    assert (
                        self.ep_size == 1
                    ), "Triton kernel MoE is only supported when ep_size == 1"
                if not self.enable_triton_kernel_moe and self.ep_size == 1:
                    self.enable_triton_kernel_moe = True
                    logger.warning(
                        "Detected GPT-OSS model, enabling triton_kernels MOE kernel."
                    )
            self.disable_hybrid_swa_memory = True
            if is_mxfp4_quant_format:
                # use bf16 for mxfp4 triton kernels
                self.dtype = "bfloat16"
        elif "Llama4" in model_arch:
            assert self.attention_backend == "fa3", "fa3 is required for Llama4 model"
        elif model_arch in [
            "Gemma2ForCausalLM",
            "Gemma3ForCausalLM",
            "Gemma3ForConditionalGeneration",
            "Gemma3nForCausalLM",
            "Gemma3nForConditionalGeneration",
        ]:
            # FIXME: https://github.com/sgl-project/sglang/pull/7367 is not compatible with gemma2 model.
            # It failed at this test: https://github.com/sgl-project/sglang/actions/runs/16255155597/job/45890331952#step:4:736
            logger.warning(
                f"Disable hybrid SWA memory for {model_arch} as it is not yet supported."
            )
            self.disable_hybrid_swa_memory = True

Lianmin Zheng's avatar
Lianmin Zheng committed
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
    def adjust_mem_fraction_for_vlm(self, model_config):
        vision_config = getattr(model_config.hf_config, "vision_config", None)
        if vision_config is None:
            return

        # roughly reduce the mem_fraction_static base on params of Vit
        original_server_arg_mem_fraction = self.mem_fraction_static
        # a base mem_fraction_static factor for regular Vit
        base_mem_fraction_reduction_ratio = 0.95

        vit_num_layers = getattr(vision_config, "num_hidden_layers", 24)
        vit_hidden_size = getattr(vision_config, "hidden_size", 1024)

        # baseline ViT params (ViT-L/14)
        baseline_vit_layers = 24
        baseline_vit_hidden_size = 1024

        # weight params count
        current_complexity_score = vit_num_layers * (vit_hidden_size**2)
        baseline_complexity_score = baseline_vit_layers * (baseline_vit_hidden_size**2)
        complexity_ratio = (
            current_complexity_score / baseline_complexity_score
            if baseline_complexity_score > 0
            else 1.0
        )

        # every time the complexity grows 100%, adjust final factor for 10%
        sensitivity_scale = 0.1
        dynamic_adjustment_factor = 1.0 - sensitivity_scale * (complexity_ratio - 1.0)
        dynamic_adjustment_factor = max(0.8, min(1.05, dynamic_adjustment_factor))

        final_overall_factor = (
            base_mem_fraction_reduction_ratio * dynamic_adjustment_factor
        )
        self.mem_fraction_static = (
            original_server_arg_mem_fraction * final_overall_factor
        )

Lianmin Zheng's avatar
Lianmin Zheng committed
2205

Lianmin Zheng's avatar
Lianmin Zheng committed
2206
def prepare_server_args(argv: List[str]) -> ServerArgs:
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
    """
    Prepare the server arguments from the command line arguments.

    Args:
        args: The command line arguments. Typically, it should be `sys.argv[1:]`
            to ensure compatibility with `parse_args` when no arguments are passed.

    Returns:
        The server arguments.
    """
    parser = argparse.ArgumentParser()
    ServerArgs.add_cli_args(parser)
Lianmin Zheng's avatar
Lianmin Zheng committed
2219
    raw_args = parser.parse_args(argv)
2220
2221
2222
2223
    server_args = ServerArgs.from_cli_args(raw_args)
    return server_args


2224
2225
2226
ZMQ_TCP_PORT_DELTA = 233


Lianmin Zheng's avatar
Lianmin Zheng committed
2227
2228
@dataclasses.dataclass
class PortArgs:
2229
2230
2231
2232
2233
2234
    # The ipc filename for tokenizer to receive inputs from detokenizer (zmq)
    tokenizer_ipc_name: str
    # The ipc filename for scheduler (rank 0) to receive inputs from tokenizer (zmq)
    scheduler_input_ipc_name: str
    # The ipc filename for detokenizer to receive inputs from scheduler (zmq)
    detokenizer_ipc_name: str
2235

2236
2237
    # The port for nccl initialization (torch.dist)
    nccl_port: int
2238

2239
2240
2241
    # The ipc filename for rpc call between Engine and Scheduler
    rpc_ipc_name: str

2242
2243
2244
    # The ipc filename for Scheduler to send metrics
    metrics_ipc_name: str

2245
    @staticmethod
2246
    def init_new(server_args, dp_rank: Optional[int] = None) -> "PortArgs":
2247
        if server_args.nccl_port is None:
Lianmin Zheng's avatar
Lianmin Zheng committed
2248
            nccl_port = server_args.port + random.randint(100, 1000)
2249
            while True:
Lianmin Zheng's avatar
Lianmin Zheng committed
2250
                if is_port_available(nccl_port):
2251
                    break
Lianmin Zheng's avatar
Lianmin Zheng committed
2252
2253
                if nccl_port < 60000:
                    nccl_port += 42
2254
                else:
Lianmin Zheng's avatar
Lianmin Zheng committed
2255
                    nccl_port -= 43
2256
        else:
Lianmin Zheng's avatar
Lianmin Zheng committed
2257
            nccl_port = server_args.nccl_port
2258

2259
2260
2261
2262
2263
2264
        if not server_args.enable_dp_attention:
            # Normal case, use IPC within a single node
            return PortArgs(
                tokenizer_ipc_name=f"ipc://{tempfile.NamedTemporaryFile(delete=False).name}",
                scheduler_input_ipc_name=f"ipc://{tempfile.NamedTemporaryFile(delete=False).name}",
                detokenizer_ipc_name=f"ipc://{tempfile.NamedTemporaryFile(delete=False).name}",
Lianmin Zheng's avatar
Lianmin Zheng committed
2265
                nccl_port=nccl_port,
2266
                rpc_ipc_name=f"ipc://{tempfile.NamedTemporaryFile(delete=False).name}",
2267
                metrics_ipc_name=f"ipc://{tempfile.NamedTemporaryFile(delete=False).name}",
2268
2269
2270
2271
2272
            )
        else:
            # DP attention. Use TCP + port to handle both single-node and multi-node.
            if server_args.nnodes == 1 and server_args.dist_init_addr is None:
                dist_init_addr = ("127.0.0.1", server_args.port + ZMQ_TCP_PORT_DELTA)
Vincent's avatar
Vincent committed
2273
2274
2275
            elif server_args.dist_init_addr.startswith("["):  # ipv6 address
                port_num, host = configure_ipv6(server_args.dist_init_addr)
                dist_init_addr = (host, str(port_num))
2276
2277
            else:
                dist_init_addr = server_args.dist_init_addr.split(":")
Vincent's avatar
Vincent committed
2278

2279
2280
2281
2282
2283
2284
            assert (
                len(dist_init_addr) == 2
            ), "please provide --dist-init-addr as host:port of head node"

            dist_init_host, dist_init_port = dist_init_addr
            port_base = int(dist_init_port) + 1
2285
2286
2287
            detokenizer_port = port_base + 1
            rpc_port = port_base + 2
            metrics_ipc_name = port_base + 3
2288
            if dp_rank is None:
2289
                # TokenizerManager to DataParallelController
2290
                scheduler_input_port = port_base + 4
2291
            else:
2292
                scheduler_input_port = port_base + 4 + 1 + dp_rank
2293
2294
2295
2296

            return PortArgs(
                tokenizer_ipc_name=f"tcp://{dist_init_host}:{port_base}",
                scheduler_input_ipc_name=f"tcp://{dist_init_host}:{scheduler_input_port}",
2297
                detokenizer_ipc_name=f"tcp://{dist_init_host}:{detokenizer_port}",
Lianmin Zheng's avatar
Lianmin Zheng committed
2298
                nccl_port=nccl_port,
2299
2300
                rpc_ipc_name=f"tcp://{dist_init_host}:{rpc_port}",
                metrics_ipc_name=f"tcp://{dist_init_host}:{metrics_ipc_name}",
2301
            )
2302

2303
2304
2305
2306
2307
2308
2309
2310
2311
2312

class LoRAPathAction(argparse.Action):
    def __call__(self, parser, namespace, values, option_string=None):
        setattr(namespace, self.dest, {})
        for lora_path in values:
            if "=" in lora_path:
                name, path = lora_path.split("=", 1)
                getattr(namespace, self.dest)[name] = path
            else:
                getattr(namespace, self.dest)[lora_path] = lora_path
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322


class DeprecatedAction(argparse.Action):
    def __init__(self, option_strings, dest, nargs=0, **kwargs):
        super(DeprecatedAction, self).__init__(
            option_strings, dest, nargs=nargs, **kwargs
        )

    def __call__(self, parser, namespace, values, option_string=None):
        raise ValueError(self.help)
2323
2324


2325
def auto_choose_speculative_params(self: ServerArgs):
2326
2327
2328
2329
2330
    """
    Automatically choose the parameters for speculative decoding.

    You can tune them on your own models and prompts with scripts/playground/bench_speculative.py
    """
Lianmin Zheng's avatar
Lianmin Zheng committed
2331
    hf_config = self.get_hf_config()
2332
2333
    arch = hf_config.architectures[0]

2334
2335
2336
2337
2338
    if arch in ["LlamaForCausalLM"]:
        # The default value for llama
        return (5, 4, 8)
    elif arch in ["DeepseekV3ForCausalLM", "DeepseekV2ForCausalLM"]:
        # The default value for deepseek
2339
        return (3, 1, 4)
2340
2341
2342
2343
2344
    elif arch in ["Grok1ForCausalLM", "Grok1VForCausalLM"]:
        return (5, 4, 8)
    else:
        # The default value for all other models
        return (5, 4, 8)